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Abstract

The continued northwards spread of Rhodesian sleeping sickness or Human African Trypanosomiasis (HAT) within Uganda
is raising concerns of overlap with the Gambian form of the disease. Disease convergence would result in compromised
diagnosis and treatment for HAT. Spatial determinants for HAT are poorly understood across small areas. This study
examines the relationships between Rhodesian HAT and several environmental, climatic and social factors in two newly
affected districts, Kaberamaido and Dokolo. A one-step logistic regression analysis of HAT prevalence and a two-step logistic
regression method permitted separate analysis of both HAT occurrence and HAT prevalence. Both the occurrence and
prevalence of HAT were negatively correlated with distance to the closest livestock market in all models. The significance of
distance to the closest livestock market strongly indicates that HAT may have been introduced to this previously unaffected
area via the movement of infected, untreated livestock from endemic areas. This illustrates the importance of the animal
reservoir in disease transmission, and highlights the need for trypanosomiasis control in livestock and the stringent
implementation of regulations requiring the treatment of cattle prior to sale at livestock markets to prevent any further
spread of Rhodesian HAT within Uganda.
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Introduction

Human African trypanosomiasis (HAT), or sleeping sickness, is

caused by two sub species of a hemoflagellate parasite that are

transmitted by tsetse flies. Trypanosoma brucei rhodesiense causes an

acute disease in eastern sub-Saharan Africa and has a reservoir in

wild and domestic animals while Trypanosoma brucei gambiense causes

a chronic form of the disease in western and central sub-Saharan

Africa. Uganda has had the misfortune to sustain active

transmission of both types of the disease: T. b. gambiense in the

north west and T. b. rhodesiense in the south east [1]. To date,

however, Rhodesian and Gambian HAT have not co-existed in

any area of Uganda, which is fortunate since the two forms of

HAT are diagnosed and treated differently and geographical

location forms the basis of diagnostic tool selection for the

confirmation of diagnosis [2]. Uganda has experienced a

resurgence of HAT in the past two decades. Since HAT (caused

by T. b. rhodesiense) was introduced into Tororo District in 1987, the

disease has persistently spread northwards into previously

unaffected areas of Uganda [3,4]. Since the disease imparts a

considerable burden on the health systems of the poor, rural

communities that it affects, the expansion of the T. b. rhodesiense

focus is a persistent concern. The Northwards spread of disease

has narrowed the area between the active foci of Rhodesian and

Gambian HAT, with an estimated 150 km now separating the two

forms of the disease [3]. Evidence suggests that the introduction of

Rhodesian HAT into Soroti district could be attributed to the

movement of untreated cattle from endemic areas through the

local livestock market [5,6]. The further spread into Kaberamaido,

Dokolo, Lira and Amolotar districts raised the possibility of the

potential overlap of the two types of the disease and stimulated the

creation of a Public Private Partnership, Stamp Out Sleeping

Sickness, to control the disease spread by treating the animal

reservoir of infection [7].

It is essential that the dynamics of disease spread are understood

if HAT is to be controlled in Uganda. A comprehensive

understanding of the factors involved in the disease’s spatial

distribution and movements will enable more effective targeting of

control efforts. The spatial distribution of HAT is driven by

complex interactions of many factors. The occurrence of disease in
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an area is dependent on the establishment of disease transmission,

which in turn is reliant on the suitability of an area for the disease.

Within affected areas, a spatially varying intensity of transmission

can result in the heterogeneous village level prevalence of disease.

These two processes giving rise to i) the establishment of HAT

transmission and ii) the heterogeneous prevalence of HAT in an

area are likely to be driven by different environmental, climatic

and social factors associated with the presence and density of tsetse

flies [8–11], the introduction of the parasite, the presence of

reservoir host species and the frequency of human-fly contact [12].

Spatial analysis and geographic information systems (GIS) have

been applied increasingly to infectious disease epidemiology in

recent years, including to the analysis of HAT [6,12–15], animal

trypanosomiasis [16–18] and tsetse distribution data [19,20].

However, the factors that control the heterogeneous distribution of

HAT within small areas are poorly understood, though this

knowledge would be of practical use for the targeting of control

efforts and the prevention of further spread. Previous studies have

linked the distribution of Rhodesian HAT in Uganda with

proximity to areas of swamp and low population densities

[14,15]. Distance to the local HAT treatment centre has also

been found to have a confounding effect due to issues of health

care accessibility [14]. In addition, several studies have examined

the distribution of the tsetse fly vector, with a number of

environmental variables found to have significant correlations

with their distribution, including the normalised difference

vegetation index (NDVI – a measure of the amount of green

vegetation), humidity [21], temperature, rainfall [22] and elevation

[23], utilising a variety of data sources, including remotely sensed

data.

The spatial distribution of T. b. rhodesiense HAT in two newly

affected districts of Uganda (Kaberamaido and Dokolo) was

examined in relation to several environmental, climatic and social

variables. Prevalence of HAT was then predicted spatially to

highlight areas with the potential for high prevalence and to

enable the targeting of future control efforts. The utilities of two

different methodologies were compared: a two-step regression

method and a traditional one-step regression method. The two-

step regression was used to allow the separate analysis of factors

governing the occurrence and prevalence of HAT. The prevalence

analysis in the two-step regression model was conducted solely on

areas that had a high predicted probability of occurrence. This was

anticipated to provide an increase in predictive accuracy (for

predicted prevalence) due to the exclusion of large areas with little

or no HAT transmission.

Materials and Methods

The study area included Kaberamaido and Dokolo districts in

Uganda (see Figure 1), two of the districts most recently affected by

HAT (caused by T. b. rhodesiense). Kaberamaido (Eastern region)

and Dokolo (Northern region) districts lie to the north of Lake

Kyoga with a combined area of approximately 2740 km2. The

main economic activities within the study area are agriculture and

fishing, with the majority of the population engaged in subsistence

farming [24].

Human African Trypanosomiasis data
A handheld global positioning system (GPS: Garmin, E-trex)

was used to geo-reference the central point of all villages within

the study area with guidance from local government staff.

Coordinates were taken in the WGS84 geographical coordinate

system in decimal degrees (data were re-projected to Universal

Transverse Mercator for the calculation of distances). Compre-

hensive HAT hospital records were collected in collaboration with

the Ugandan Ministry of Health from the two HAT treatment

centres serving the study area; Lwala Hospital (Kaberamaido

district) and Serere Health Centre IV (Soroti district). To maintain

anonymity of subjects and patient confidentiality and to adhere to

Figure 1. Map of Uganda highlighting study area.
doi:10.1371/journal.pntd.0000563.g001

Author Summary

Human African Trypanosomiasis (HAT) or sleeping sickness
is a parasitic disease of humans, transmitted by the tsetse
fly. There are two different forms of HAT: Rhodesian (in
eastern sub-Saharan Africa), which also affects wild and
domestic animals, and Gambian (in western and central
sub-Saharan Africa). Diagnosis and treatment of the two
diseases differ, and disease characterisation is based on
prior knowledge of known geographical disease distribu-
tions. Presently, the two forms of HAT do not overlap in
any area: Uganda is the only country which sustains active
transmission of both types.

In recent years, Rhodesian HAT has spread into areas of
Uganda that had not previously been affected, thus
narrowing the gap between areas of Rhodesian and
Gambian HAT transmission. This spread has raised
concerns of a potential overlap of the two types of the
disease, which would severely complicate their diagnosis
and treatment. Earlier work indicated that Rhodesian HAT
was introduced to Soroti district due to the movement of
untreated cattle from affected areas. Here we show that
the continued spread of HAT in Uganda (to a further 2
districts) may also have occurred due to cattle movements,
despite legal requirements to treat livestock from affected
areas prior to sale at markets. These findings can assist in
the targeting of HAT control efforts in Uganda and show
that the stringent implementation of animal treatments at
livestock markets should be a priority.

Spatial Methods to Predict Sleeping Sickness
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the International Ethical Guidelines for Biomedical Research

Involving Human Subjects, no patient names were recorded

within the database or as part of the data collection process. The

hospital records were matched with the geo-referenced villages by

cross-referencing each case’s village of residence with the names

from the geo-referenced villages. This resulted in a spatially

referenced dataset of all patients residing within the study area

who had received a diagnosis of HAT (normally using light

microscopy).

Cases occurring from February 2004 (when the first cases were

reported) to December 2006 were included in the analysis. Cases

diagnosed later than December 2006 were excluded because a

control programme was instigated in September 2006 that

involved the mass treatment of cattle in the study area and

adjoining districts. By decreasing the prevalence of human

infective T. b. rhodesiense in the reservoir, the control programme

resulted in an altered epidemiology of HAT within the study area

in the subsequent year and so may have affected the results of the

regression analyses.

Covariate data
The geo-referenced HAT case data were visualised using

ArcMap 9.1 (ESRI, Redlands, CA). External covariate datasets as

listed in Table 1 were collected and linked with the HAT case data

by village.

Several temporal Fourier-processed indices were obtained from

Advanced Very High Resolution Radiometer (AVHRR) imagery:

land surface temperature (LST), NDVI and middle-infrared (MIR,

AVHRR channel 3). NDVI is a measure of the amount of green

vegetation [25] and reflectance in the MIR band has also been

linked to vegetation cover [26]. Both vegetation cover (in terms of

suitable tsetse habitat) and temperature have been shown to

influence the distribution of tsetse [22]. Temporal Fourier

processing reduces the number of data to be processed by

eliminating redundancy and characterising seasonality. The

minimum, mean, maximum, phase (the timing of the cycle) and

amplitude (the amount of variation around the mean) of the

annual and biannual cycles were used for each of LST, NDVI and

MIR. Full details regarding these data can be found in Hay et al

Table 1. Covariates collected for analysis, indicating variables used for model development.

Source Variable Spatial resolution Units Used in regression

NDVI2 phase of annual and biannual cycle 1 km Months X

Minimum and maximum NDVI2 1 km No units X

Annual and biannual amplitude of NDVI2 1 km No units X

Mean NDVI2 1 km No units X

Fourier processed AVHRR1 data sets [27] MIR3 phase of annual and biannual cycle 1 km Months

Minimum and maximum MIR3 1 km uC

Annual and biannual amplitude of MIR3 1 km uC

Mean MIR3 1 km uC

LST4 phase of annual and biannual cycle 1 km Months X

Minimum and maximum LST4 1 km uC X

Annual and biannual amplitude of LST4 1 km uC X

Mean LST4 1 km uC X

Predicted suitability for G. fuscipes 1.1 km Predicted % suitability

Predicted tsetse suitability coverages [29] Predicted suitability for G. morsitans 1.1 km Predicted % suitability

Predicted suitability for G. pallidipes 1.1 km Predicted % suitability

Shuttle Radar Topography Mission [30] Elevation 3 arc seconds Metres X

Landsat [28] NDVI2 30 m No units

Landscan [31] Population density 30 arc seconds People per Km2 X

Nighttime lights of the world [32] Nightlights 30 arc seconds Percentage

Distance to gazetted land Continuous Kilometres X

Distance to river Continuous Kilometres

Distance to bush areas Continuous Kilometres X

Distance to wooded areas Continuous Kilometres X

National biomass study [34] Distance to swamp land Continuous Kilometres

Distance to permanently wet land Continuous Kilometres X

Distance to seasonally wet land Continuous Kilometres X

Other geo-referenced locations Distance to health centre (any type) Continuous Kilometres X

Distance to livestock market Continuous Kilometres X

1Advanced Very High Resolution Radiometer.
2normalised difference vegetation index.
3middle-infrared.
4land surface temperature.
doi:10.1371/journal.pntd.0000563.t001
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[27]. NDVI was also calculated using the red and near-infrared

wavebands of a Landsat ETM+ image (which has a finer spatial

resolution than AVHRR imagery) [28] using the following

formula: NDVI = (near-infrared2red)/(near-infrared + red) [25].

Predicted tsetse suitability maps were obtained from the Food and

Agricultural Organization [29]. This dataset was the result of a

predictive model (using tsetse fly distribution data with environmen-

tal, climatic and demographic covariates), and its reliability for the

study area depends on the availability of training data from this area

during the model development. Elevation [30], population density

[31] and nighttime lights data [32] (which has been demonstrated to

be a proxy for poverty [33]) were also obtained for use in the analyses.

Distances to physical features (in km) were calculated. Land

cover data [34] were used to calculate distance to gazetted land,

rivers, bush, woodland, swamps, permanently wet land and

seasonally wet land. Several of these variables (bush, woodland,

swamps and seasonally wet land) were the result of a quantitative

interpretation of remotely sensed images along with ground data

and supplementary data layers and, thus, their accuracy may be

variable. These covariates were selected as potential tsetse habitats

to investigate the effect of proximity of villages to these types of

landcover on HAT occurrence and prevalence.

In addition, distances to the closest livestock market and health

centre (of any type) were calculated using the coordinates of each

of these features that were obtained during fieldwork. The distance

to the closest health centre (of any type i.e. not necessarily trained

or equipped to diagnose or treat HAT) was used to deal with the

confounding effect of access to health care. The distance to the

closest livestock market was included to investigate the possibility

that cattle movements in this area may have caused or contributed

to the introduction and establishment of HAT transmission, as was

found in a neighbouring district [6]. The distance to the HAT

treatment centre was not used as there was only one treatment

centre within the study area and an additional treatment centre in

the neighbouring district serving the study population, which

would affect the final predictions and prevent extrapolation over a

larger area. The covariates used are listed in Table 1: all were

continuous variables. In addition, village population data from the

most recent national census were obtained from the Uganda

Bureau of Statistics [35].

Statistical analysis
Exploratory analysis was conducted for each of the covariates: i)

scatter plots to examine relationships with HAT prevalence; ii) box

and whisker plots to examine the distributions of covariate data in

villages which have had cases of HAT compared to villages which

have not and iii) visualisation of the geographical distributions of

the outcome variables in relation to the external covariates.

Seventeen covariates were selected for use in the regression

analyses (Table 1) based on observed relationships with HAT

occurrence and prevalence and previous knowledge of significant

variables from published research.

The statistical modelling was carried out using logistic

regression: a generalised linear model used for the analysis of

binomial data such as disease occurrence (outcome variable can

take one of two possible values) or disease prevalence (where the

outcome is bounded between zero and one) [36]. The modelling

process describes the variability in the response variable as a

function of the explanatory variables. Odds ratios (ORs) are

calculated by exponentiating the regression parameters associated

with each covariate; these illustrate the strength and direction of

associations between the explanatory and outcome variables.

An OR of one indicates no association, an OR greater than one

indicates a positive association with the odds of disease and an OR

less than one indicates a negative association [36]. The size of the

OR signifies the strength of the association; for example an OR of

0.5 would mean that every increase of one unit in the explanatory

variable relates to a 50% reduction in the odds of disease.

Likewise, an OR of 1.5 would show a 50% increase in the odds of

disease for an increase of one unit for the explanatory variable.

The intercept term can be interpreted as the odds of disease when

all the explanatory variables are (hypothetically) zero. Statistical

significance was judged at the 95% level in all analyses. All

statistical analyses were carried out using R statistical software

[37], and the main steps are summarised in Figure 2.

Two-step analysis of HAT occurrence and prevalence
This methodology comprised two logistic regression models

applied sequentially (first analysis, Figure 2). An initial model was

fitted that predicted probability of HAT occurrence using the

HAT status of all villages in the study area as the outcome of

interest. Villages for which at least one case of HAT was reported

during the study period were classified as case villages, while

villages for which no cases were reported were treated as controls

(giving a binary outcome).

The two-step model was developed to test its predictive

capability against a traditional regression analysis and to

investigate aspects of the underlying epidemiology affecting the

spatial heterogeneity in disease occurrence (which villages had

been affected by HAT) as well as prevalence (how intense was the

transmission within affected areas) which are confounded in a one-

step approach.

Forwards stepwise addition beginning with the null model (no

explanatory variables) was used in the model fitting. At each step

the variable resulting in the greatest reduction in deviance was

selected. A Chi-squared likelihood ratio test was used to compare

models, and additional explanatory variables were accepted only if

this test was significant and the covariate was significant within the

model. Any variables that lost significance in subsequent steps

were removed from the model. The stepwise addition of plausible

interaction terms (if interaction is present the effect of one variable

on odds of disease changes in relation to the effect of another

variable) was then carried out in the same manner after the

variables were centred (variable mean was subtracted from each

value).

The sensitivity (true positive rate) and specificity (true negative

rate) of the fitted model were calculated for a variety of cut-off

points (the value of the predicted probability of occurrence above

which a location would be defined as a case village) using the

predicted and observed values, and plotted against the cut-off

points. The cut-off point where the sensitivity and specificity

crossed was selected as a suitable cut-off point for the classification

of case and non-case villages: this point maximises both the

specificity and the sensitivity of the classification of locations. A 10-

fold cross-validation (where predicted values are compared with

observed values) was performed using ten random sub-divisions of

the dataset. The area under the receiver operator characteristic

curve (AUC) was calculated; this value gives a measure of the

overall performance of the model in classifying villages. An AUC

of 1 indicates perfect discrimination between case and control

villages, and an AUC of 0.5 illustrates a model that is in effect

worthless for discrimination purposes.

The resulting regression equation (probability of occurrence as a

function of the explanatory variables) was used to predict

probability of occurrence of HAT across a grid with an area of

30,000 km2 (including the study region) and a 1.1 km cell size (this

was the minimum spatial resolution from the covariate datasets).

All villages within the study area lying within an area of high

Spatial Methods to Predict Sleeping Sickness

www.plosntds.org 4 December 2009 | Volume 3 | Issue 12 | e563



predicted probability of occurrence (probability of occurrence

above the selected cut-off value) were extracted for use in the

second step of the analysis.

The outcome variable for the second step of the two-step

regression was defined as prevalence of HAT (number of cases

divided by village population). Prevalence data from all villages

within areas of high predicted probability of occurrence were

included in the model, including those with no reported cases (i.e.

a reported prevalence of zero). Forwards stepwise addition was

used in the model fitting procedure, as for the first step. For this

section of the analysis, the distance to health centre variable was

forced into the model (regardless of it’s significance) to ensure that

Figure 2. Diagram illustrating the two regression methodologies, including the main steps involved in each.
doi:10.1371/journal.pntd.0000563.g002
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access to health care was controlled for in the final results. The

fitted model was used to predict the prevalence of Rhodesian HAT

across the same area as was used in the first step.

One-step analysis of prevalence using all villages
For the one-step analysis (second analysis, Figure 2), the same

methodology was used as the second step of the two-step

regression, using prevalence data from all villages.

Results

A total of 690 villages within Kaberamaido and Dokolo districts

were geo-referenced. Two villages were not geo-referenced due to

logistical difficulties, and 18 villages that had recently separated

into two were merged for the purpose of the analysis. A total of 52

patient records could not be matched to any of the known villages

in the study area and so were excluded from the analysis. This was

most likely due to inaccuracies in the recording of patient details in

the hospital records. The total number of cases used in the study

was 302. The distribution of villages, along with the village

prevalence of HAT using data from 2004–2006 is illustrated in

Figure 3.

Two-step regression analysis of HAT suitability and
prevalence

Four covariates were found to influence significantly the

occurrence of HAT across the study area (p,0.05) as shown in

Table 2. Occurrence of HAT was negatively correlated with

distance to the closest livestock market, with a 21% reduction in

odds of disease for every kilometre increase in distance when

accounting for the additional variables. This was found to interact

(the effect of one variable on odds of disease changes in relation to

the effect of another variable) with maximum NDVI, which also

demonstrated a negative correlation with HAT occurrence. In

addition, occurrence was positively correlated with minimum

LST and negatively correlated with distance to the closest health

centre.

For prediction purposes, the selected probability cut-off point

for the prediction of areas suitable for transmission was 0.2, and

model diagnostics indicated that the model provided a reasonable

fit to the data, and reliable predictions (AUC: 0.87, 10-fold cross-

validation estimate of accuracy: 85%). The predicted suitability for

transmission across the study area using the specified model is

illustrated in Figure 4.

The prediction was used to create a mask over the study area;

all areas with a predicted probability of occurrence less than 0.2

were excluded. 279 villages lay within the area defined as having a

high probability of occurrence. However, seven of those villages

had no population data and so were excluded from the remaining

analysis leaving 272 villages. The results from the second

(prevalence) model are shown in Table 3.

HAT prevalence was significantly correlated with nine variables

in addition to distance to the closest health centre that was

negatively correlated and of borderline significance (p = 0.05,

variable forced into the model). Prevalence was negatively

correlated with distance to the closest livestock market with every

additional kilometre resulting in a 20% decrease in odds of disease.

This was shown to interact with distance to the closest area of

woodland, which in turn showed a positive correlation with

prevalence. In addition, HAT prevalence was negatively correlat-

ed with distance to the closest area of bush and maximum NDVI

and positively correlated with NDVI phase of annual cycle, NDVI

annual amplitude, LST phase of annual cycle, LST annual

amplitude and minimum LST.

The two-step regression analysis resulted in a correlation

between observed and predicted prevalence of 0.57 (a value of 1

indicates perfect correlation and 0 no correlation). The model had

a small tendency to over predict prevalence with a median error of

0.05% (error calculations are based on prevalence per 100

population and so are expressed as a percentage). The mean

absolute error for the predicted prevalence per 100 population was

0.24%. The scatter plot of predicted prevalence against observed

prevalence (Figure 5) shows a tendency for over-prediction of

prevalence in villages with an observed prevalence of zero. The

predicted prevalence from the two-step analysis is shown in

Figure 6.

Figure 3. Village level period prevalence of HAT, 2004–2006.
Blue areas represent water bodies. District boundaries are also shown as
black lines.
doi:10.1371/journal.pntd.0000563.g003

Table 2. Results of the first model from the two-step
regression analysis, using a binary response variable and all
villages.

Variable Odds ratio (95% CI) p-value

Intercept 7.42E26 (3.39 E28–0.002) ,0.0001

Distance to livestock market 0.79 (0.75–0.84) ,0.0001

Maximum NDVI 9.56 E27 (2.64 E212–0.35) 0.03

Minimum LST 2.10 (1.44–3.04) 0.0001

Distance to health centre 0.84 (0.74–0.94) 0.002

Distance to market * Max NDVI 32.46 (3.34–315.52) 0.003

doi:10.1371/journal.pntd.0000563.t002
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One-step regression analysis of prevalence using all
villages

Nine variables were shown to be significantly associated with

prevalence of HAT across the study area using the one-step

regression, as shown in Table 4. HAT prevalence was negatively

correlated with distance to the closest livestock market with a 21%

reduction in odds of disease for every kilometre increase in

distance. This was shown to interact significantly with both NDVI

phase of annual cycle and distance to the closest area of woodland,

both of which were also negatively correlated with prevalence.

Additionally, prevalence was negatively correlated with maximum

Figure 4. Predicted probability of HAT occurrence from the first step of the second analysis. White and pale green indicate areas with
low predicted probability of occurrence. Black circles indicate case villages and white circles represent non-case villages within the study area.
doi:10.1371/journal.pntd.0000563.g004

Table 3. Results of the second step from the two-step
regression analysis, using prevalence response variable and a
subset of villages.

Variable Odds ratio (95% CI) p-value

Intercept 1.72 E28 (1.78 E212–0.0002) 0.0001

Distance to health centre1 0.92 (0.85–1.00) 0.05

Distance to livestock market 0.80 (0.77–0.83) ,0.0001

NDVI phase of annual cycle 3.46 (1.67–7.14) 0.0008

NDVI annual amplitude 2.18 E+11 (1.85 E+6–2.59 E+16) ,0.0001

LST phase of annual cycle 1.27 (1.13–1.43) ,0.0001

Distance to woodland 1.15 (0.95–1.40) 0.18

Distance to bush 0.93 (0.90–0.97) 0.0007

Maximum NDVI 3.50 E25 (1.46 E28–0.08) 0.01

LST annual amplitude 1.27 (1.07–1.52) 0.009

Minimum LST 1.46 (1.13–1.89) 0.004

Distance to livestock market *
Distance to woodland

0.91 (0.86–0.97) 0.002

1Forced into the model to ensure that access to health services was controlled
for in the model.

doi:10.1371/journal.pntd.0000563.t003

Figure 5. Scatter plot of observed prevalence versus predicted
prevalence (per 100 population) using the two-step analysis.
doi:10.1371/journal.pntd.0000563.g005
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NDVI, mean LST and distance to the closest health centre. HAT

prevalence was positively correlated with minimum LST, LST

phase of annual cycle and LST annual amplitude.

The correlation between predicted and observed prevalence

values was 0.58 indicating a modest linear association. The model

was slightly biased with a very small tendency to over-predict

prevalence (median error = 0.02%) and the mean absolute error

was 0.13% (calculated based on prevalence per 100 population

and so expressed as a percentage). The scatter plot of predicted

prevalence against observed prevalence values (Figure 7) illustrates

Figure 6. Predicted prevalence of HAT from the second step of the two-step analysis. White indicates areas predicted to be unsuitable for
transmission. Blue circles indicate case villages and white circles represent control villages within the study area, with increasing circle size denoting
increasing village period prevalence (2004–2006).
doi:10.1371/journal.pntd.0000563.g006

Table 4. Results of one-step regression analysis using
prevalence outcome variable and all villages.

Variable Odds ratio (95% CI) p-value

Intercept 0.32 (0.0005–200.1) 0.003

Distance to livestock market 0.79 (0.76–0.82) ,0.001

Maximum NDVI 2.6E206 (3.59 E29–0.002) 0.0001

Minimum LST 2.05 (1.62–2.60) ,0.0001

LST phase of annual cycle 1.26 (1.12–1.42) ,0.0001

LST annual amplitude 1.75 (1.36–2.26) ,0.001

Mean LST 0.56 (0.39–0.81) 0.003

Distance to woodland 0.96 (0.76–1.22) 0.76

Distance to health centre 0.87 (0.80–0.94) ,0.0001

NDVI phase of annual cycle 0.98 (0.42–2.33) 0.97

Distance to market * NDVI
phase of annual cycle

0.84 (0.74–0.94) 0.002

Distance to market * distance to
woodland

0.95 (0.91–0.99) 0.01

doi:10.1371/journal.pntd.0000563.t004

Figure 7. Scatter plot of observed prevalence versus predicted
prevalence (per 100 population) using the one-step analysis.
doi:10.1371/journal.pntd.0000563.g007
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that many of the errors are associated with over-prediction for

villages with observed prevalence of zero. Figure 8 shows the

predicted prevalence across the study area using the final

prevalence model.

To allow a direct comparison of the predictive accuracy of the

two methodologies, the one-step model was used to calculate

predicted prevalence for the villages with high predicted

probabilities of occurrence from the two-step analysis (i.e.

excluding areas with a predicted probability of occurrence of less

than 0.2). The correlation between predicted and observed

prevalence was 0.50, lower than that for the two-step regression

method (0.57). Again, the model was shown to have a tendency to

over predict prevalence, with a median error of 0.05% (calculated

using prevalence per 100 population). The mean absolute error

was 0.24%, equal to the mean absolute error from the two-step

regression methodology.

Discussion

Spatial determinants for HAT are poorly understood across small

areas. This study examined the relationships between Rhodesian

HAT and several environmental, climatic and social factors in two

newly affected districts, Kaberamaido and Dokolo. The application

of a two-step regression approach for the prediction of HAT

prevalence in a newly affected area of Uganda allowed the

investigation of factors influencing the occurrence and prevalence

of HAT separately, and overall resulted in a slight increase in

predictive accuracy when compared to a one-step analysis in areas

with high predicted probability of occurrence. Each of the models

has illustrated an increased risk of HAT in villages closer to livestock

markets than in villages further away, suggesting the persistent

spread of Rhodesian HAT in Uganda may have resulted from the

continued movement of untreated cattle.

The two-step regression model gave a slight increase in

predictive accuracy in comparison with the one-step analysis with

a correlation between fitted and observed prevalence values of

0.57 for the two-step regression and 0.50 for the one-step

regression analysis (when looking only at areas with a high

predicted probability of occurrence). Both models tended to

predict higher prevalence than was observed, particularly in

villages of zero prevalence, with a median error of 0.05% for both

models. The mean absolute error was equal for the two methods

(0.24%). The difference in predicted prevalence of HAT from the

two methods was small over the majority of the prediction area,

with divergences mainly occurring in areas of high predicted

prevalence outside of the study area (see Figure 9).

There were only two health centres trained and equipped to

diagnose and treat HAT serving the study population during the

study period. It has been shown previously that levels of

geographical accessibility to treatment facilities can have an effect

on the observed spatial distribution of HAT, with smaller numbers

of cases reported from areas which are further from the treatment

centres [13]. However, an added complication arises in this study

as the choice of site for the main HAT treatment facility in the

area (at Lwala Hospital) was driven in part by its location within

the focus of new cases of HAT in 2004. Moreover, this facility is

close to one of the major livestock markets in the study area

(7.5 km away) making their separate influences on observed

prevalence difficult to distinguish.

Distance to the closest livestock market was an important

predictor in the one-step regression and in both steps of the two-

step regression, with decreasing odds of infection at increasing

distances. Previous research has confirmed the introduction of HAT

to a previously unaffected area via the introduction of untreated,

infected livestock [6]. These results suggest that despite reinforced

policy regarding the treatment of livestock for trypanosomes prior to

Figure 8. Predicted prevalence of HAT from one-step regression analysis.
doi:10.1371/journal.pntd.0000563.g008
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movement from endemic areas [38], the ongoing spread of HAT

into Kaberamaido and Dokolo may have been facilitated by the

movement of infected cattle through one or more of the local

livestock markets. The main cattle trading routes within this part of

Uganda run from T. b. rhodesiense endemic areas in the south east,

through the study area and neighbouring districts, to the T. b.

gambiense endemic areas in the far north west of Uganda towards

southern Sudan. Clearly, this increases the risk of overlap of the two

subspecies, particularly if the regulations regarding the treatment of

cattle being moved from T. b. rhodesiense endemic areas continue to

be broken. The stringent implementation of regulations requiring

the treatment of cattle prior to sale at livestock markets should be a

priority for the Ugandan Government and tsetse control efforts may

be more efficiently targeted to areas surrounding livestock markets

to prevent the establishment of transmission in previously unaffected

areas as occurred in Soroti district in the late 1990s and

Kaberamaido and Dokolo districts in 2004.

Other variables that were also significantly correlated with HAT

prevalence and/or occurrence included distance to the nearest

health centre, maximum Normalised Difference Vegetation Index

(NDVI), NDVI phase of annual variation, NDVI annual

amplitude, minimum Land Surface Temperature (LST), LST

phase of annual variation, LST annual amplitude, mean LST,

distance to the closest area of woodland and distance to the closest

area of bush. The significance of these variables highlights the

importance of climatic and environmental conditions for HAT

transmission. Distance to the closest health centre was also a

significant factor in each model, with decreasing prevalence

observed at increasing distances. This suggests a confounding

relationship due to accessibility of health services as has been

previously reported [13].

Each of the regression models (the one-step regression model

and each step of the two-step regression models) included

maximum NDVI (negative association) and minimum LST

(positive association) as significant predictors. These are likely to

relate to the habitat and environmental requirements of the tsetse

fly vector of disease. The additional variables found to be

significantly correlated with HAT prevalence in each analysis

are probably also linked to the suitability of an area for the tsetse

fly vector (due to their preferred habitat and also climatic

requirements), and so will influence the intensity of transmission

and observed prevalence of HAT.

Analysis of the residual variation (after accounting for the

covariate effects) indicated that there was some spatial autocor-

relation in the residuals from the one-step regression and the

probability of occurrence analysis (first step of the two-step

regression analysis). For the two-step regression, the probability of

occurrence regression was carried out partially to provide a mask

over areas with low predicted probability of occurrence to enable

the focusing of the prevalence analysis, and so the small amount of

spatial autocorrelation in the residuals is not seen as problematic as

it would have a negligible effect on the final prevalence model.

However, for the one-step regression, the small amount of spatial

autocorrelation in the residuals may lead to inflated statistical

significance for some of the covariates. Further research is

underway to address this autocorrelation in the residuals and to

assess any increase in the predictive accuracy using a model-based

geostatistics approach [39].

From these and previous findings [6], it is thought to be likely

that the movement of T. b. rhodesiense infected livestock from

endemic areas through livestock markets within the study area

occurs periodically. A complex interaction of factors is involved in

the establishment of transmission following such an occurrence. In

addition to the variables included in the current analysis, tsetse and

livestock densities, human-cattle-tsetse contact and also to a large

degree, chance, may play roles. Further research is planned to

build upon these findings, incorporating detailed livestock market

data and cattle trading networks to give a more thorough

understanding of the spatial and temporal dynamics of HAT

within Uganda.
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