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We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and
fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling
to several heat baths of different temperature or by time-periodic driving in combination with the coupling to
a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods
are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented
mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte
Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the
possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted
to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose
condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett.
111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected
states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field

effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
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I. INTRODUCTION

There is a huge current interest in nonequilibrium phe-
nomena of many-body systems beyond the hydrodynamic de-
scription of systems retaining approximate local equilibrium.
Recent work concerns several paradigmatic scenarios, like the
dynamics away from equilibrium in response to a slow or
an abrupt parameter variation [1-3], the possible relaxation
towards equilibrium [2,3] versus many-body localization [4,5],
and the control of many-body physics by means of strong pe-
riodic forcing [6-11]. Also the possibility to achieve transient
light-induced superconductivity above the equilibrium critical
temperature attracted enormous interest [12].

Another fundamental scenario of many-body dynamics
consists of driven-dissipative quantum systems and their
nonequilibrium steady states [13-22]. These include, for
example, time-periodically driven open many-body systems
[23—27] and photonic many-body systems [28—33]. In contrast
to equilibrium states, which depend on a few thermodynamic
parameters like temperature and chemical potential only,
such nonequilibrium steady states depend on the very details
of the environment. On the one hand, this makes their
theoretical treatment challenging. On the other hand, it offers
also interesting opportunities to engineer the state and the
properties of a many-body system beyond the constraints of
thermal equilibrium in a robust and controlled fashion.

In this context, it was recently pointed out that already
an ideal Bose gas of N particles can exhibit intriguing
behavior, when it is driven into a steady state far from
equilibrium, e.g., by coupling it to two heat baths of different
temperature or by time-periodic driving in the presence of a
heat bath (see Fig. 1). In the quantum degenerate regime of

*dv@pks.mpg.de
teckardt@pks.mpg.de

1539-3755/2015/92(6)/062119(31)

062119-1

PACS number(s): 05.30.Jp, 05.70.Ln, 67.10.Ba, 67.85.Jk

large densities, the Bose gas undergoes a generalized form
of Bose condensation, where multiple single-particle states
can be selected to acquire large occupations [23]. Namely,
the single-particle states unambiguously separate into two
groups: one that is called Bose selected, whose occupations
increase linearly when the total particle number is increased
at fixed system size, and another one whose occupations
saturate. This phenomenon is a consequence of the bosonic
quantum statistics. It includes standard Bose condensation
into a single quantum state, fragmented Bose condensation
into a small number of single-particle states, each acquiring
a macroscopic occupation, and the case where a fraction
of all single-particle states acquires large, but individually
nonextensive occupations. The properties of the system, like
its coherence or its heat conductivity, sensitively depend on
which of these scenarios occurs.

The physics of driven-dissipative ideal Bose gases is
intimately related also to collective effects in classical sys-
tems and processes, where bunching phenomena have been
identified as analog of Bose condensation. This includes the
dynamics of networks and economic models [34,35], classical
transport and traffic [36—44], chemical reactions [45], as well
as population dynamics and evolutionary game theory [46].
These connections have recently been discussed by Knebel
et al. [47].

In this paper, we investigate nonequilibrium steady states
of driven-dissipative ideal quantum gases of both bosons and
fermions. We focus on systems of sharp particle number that
exchange energy with the environment. These quantum gases
are driven out of equilibrium either by the coupling to several
heat baths of different temperature or by time-periodic driving
in combination with the coupling to a heat bath (see Fig. 1).
We treat the problem using (Floquet-)Born-Markov theory
[48-52], which is valid in the limit of weak system-bath
coupling. In Sec. II this theoretical framework is reviewed and
applied to the problem of the ideal quantum gas. Moreover,

©2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.111.240405
http://dx.doi.org/10.1103/PhysRevLett.111.240405
http://dx.doi.org/10.1103/PhysRevLett.111.240405
http://dx.doi.org/10.1103/PhysRevLett.111.240405
http://dx.doi.org/10.1103/PhysRevE.92.062119

DANIEL VORBERG et al.

(2) Floquet quantum gas

ideal } -
/V\/\/\/ quantum  <€—> 1Ca‘tT ath

. TR as
time-periodic driving 5

(b) ~
heat bath deal

b

heat bath
Ti(# T»)

quantum
gas

FIG. 1. (Color online) Two paradigmatic examples of driven-
dissipative ideal quantum gases possessing nonequilibrium steady
states. (a) Periodically driven system weakly coupled to a heat bath.
(b) Autonomous system weakly coupled to two heat baths of different
temperature.

several model systems are introduced. In order to treat
the resulting many-body master equation, we then describe
analytical and numerical methods for computing the steady
state (Sec. III). This includes a standard mean-field description
in terms of single-particle occupation numbers. We, moreover,
derive an augmented mean-field theory taking into account
also nontrivial two-particle correlations and explain how to
apply quantum-jump-type Monte Carlo simulations to the
problem. These methods are then applied to both the ideal
Bose gas (Sec. IV) and the ideal Fermi gas (Sec. V).

Our treatment of the fermionic case in Sec. V is rather brief
and demonstrates the application of our theory to simple lattice
models and the possibility to achieve exotic states via bath
engineering. These results can be relevant, e.g., for the problem
of realizing Floquet topological insulators with periodically
forced electronic systems (graphene [7] or semiconductor
heterostructures [53]).

The largest part of this paper is devoted to bosonic quantum
gases and the phenomenon of Bose selection discussed in
Sec. IV. Here we first review equilibrium Bose condensation
(Sec. IVA) and Bose selection in nonequilibrium steady
states (Secs. IVB to IVE give a detailed discussion of
the results of Ref. [23]). After that, we derive a theory
for transitions where the set of selected states changes
(Sec. IVF), present an efficient algorithm for finding the
set of selected states (Sec. IV G), discuss the possibility of
approaching a preasymptotic state at intermediate densities
before the true asymptotic state is reached at large densities
(Sec. IV H), investigate the properties of systems described by
non-fully-connected rate matrices (Sec. IV 1), study the role
of fluctuations and beyond mean-field effects (Sec. IV J), and
identify the dominant mechanisms for heat transport in the
Bose-selected state Sec. IV K.

II. GENERAL FRAMEWORK AND MODELS

In this section we set up the master equations for an ideal
quantum gas of N indistinguishable, noninteracting particles,
weakly coupled to one or several heat baths. We cover both
the case of an autonomous system with time-independent

A

Hamiltonian H and the case of a Floquet system with
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time-periodic Hamiltonian H(t) = H(t + 7). This captures
the nonequilibrium situations depicted in Fig. 1. In the case of
the periodically driven system, we encounter the Floquet states
|¢; (1)) = e~"/"|i(¢)), which are quasistationary (i.e., time-
periodic) solutions of the dynamics generated by H (1) [54-56].
Here |i(¢)) = |i(t + 1)) denotes time-periodic Floquet modes,
while ¢; are the quasienergies, which are defined modulo the
energy quantum fuw with angular driving frequency w = 2 /7.
We start with the single-particle equations. In Sec. II B, we then
generalize to the many-body case.

A. Single-particle master equation

We consider the time evolution of the density operator p in
a single-particle system. In the weak-coupling limit, where the
full rotating-wave approximation is valid, this time evolution
is governed by a master equation of Lindblad type [48], which
in the interaction picture reads

dp@) _
dt

DIipl =)  Rj [L,»jﬁa)LL - %{m,LLLU}] 0]
ij
Here {A,B} = AB + BA denotes the anticommutator. The
indices enumerate the energy eigenstates of the autonomous
system or the Floquet states of the periodically driven
system. In practice, we restrict the number M of participating
single-particle states to be finite. The dissipation causes
transitions from eigenstate |j) to eigenstate |i) according to
the jump operator L; ; = |i)(j|, where R;; is the corresponding
transition rate. This description is valid in the weak-coupling
limit, where the level broadening R;; due to the transitions
is much smaller than the (typical) energy separation of
neighboring (quasi)energy levels in the spectrum of the system.
The characteristic time scale 7g of the unitary dynamics is
then much smaller than the time scale 7z of the dissipative
relaxation, Ty < T, which makes it possible to employ the
full rotating-wave approximation leading to Eq. (1) [49-52].
Since the resulting Lindblad equation (1) is diagonal in the
basis of states |i), the dynamics of the occupation probabilities
pi; = (i|p|i) decouples from the off-diagonal elements of the
density operator, which decay as one approaches the steady
state. The dynamics of the diagonal elements are described by
the Pauli master equation

pi(t) =) _[Rijpj(t) = Rjipi(t)], 2)
J

The terms of the sum correspond to the net probability flux
from states j to state i. The uniqueness of the steady state
p =D, pili){i], obtained by requiring p; = 0, is guaranteed
by the Frobenius-Perron theorem, which holds if every state is
connected with all the other states by a sequence of transitions
with nonvanishing rates [57].

For the weak coupling to the environment considered here,
the rates R;; in Eq. (2) can, in general, be determined in
the Born-Markov (Floquet-Born-Markov) approximation for
autonomous (time-periodically driven) systems. We consider
that a bath is given by a collection of harmonic oscillators
o with angular frequency w, and annihilation operator by,
described by the bath Hamiltonian ﬁB = Za ha)alsllaa. The
bath is in thermal equilibrium with temperature 7 and coupled
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to the system via the Hamiltonian Hep =9 Do co,(l;l + by),
where c,, are the coupling parameters and 0 a coupling operator
acting in the state space of the system.

Within the Floquet-Born-Markov approximation, the rates
for the driven system are given by Fermi’s golden rule [49-52],

o0

_ (m)
Rji= Z Rji"

m=—00

my_ 2T
Ri'i)=7|vji(m)|2g(8j — & —mhw). (3)

o 27'[/50

Here vj;(m) = dte!™® (j(t)|0]i(t)) are the Fourier
coefficients of the couphng matrix elements, where the index
m accounts for the absorption or emission of |m| energy quanta
hw due to the driving. The quantity

J(E) .

g(E) = E_1 = g(—=E)e 4
is the bath correlation function, determined by the inverse
temperature § = 1/7 (the Boltzmann constant is set to one)
and the spectral density,

J(E) =) " cAI8(E — hwy) — 8(E + hwe)] = —J(=E). (5)

o

We assume Ohmic baths characterized by a spectral density
that increases linearly with E, J(E) « E.
In the autonomous system, Eq. (3) simplifies to

= > RY, §€>——!v(b>|g(E —E). (©
befl1,2}

Here v ©) — (j19®]i) now denote the matrix elements of the

couphng operator of heat bath b with respect to the eigenstates

|i) with energy E;. The rate is further characterized by the

correlation functions g,(E) = J,(E)[exp(B,E) — 1]~ of both

baths, with spectral density J,(E) and inverse temperature fp,.
Later we will see that the rate-asymmetry matrix

Aij = Rij — Rji (7

plays a major role since many properties of the system depend
on this matrix only. In the time-periodically driven case, it
reads

lj - Z Af;n)s

m=—00

m m m 277:
A =R = REY = S lvji(m)P e — & — mhw), (8)

whereas for the autonomous system one has

| (b)}J(E — E)). )

Note that the rate-asymmetry matrix is independent of the bath
temperature(s).

In contrast to equilibrium, a nonequilibrium steady state
can retain a constant energy flow through the system. For the
periodically driven system, the transition described by the rate
R;’;’) causes a change of the bath energy by &; — ¢; + mhow.
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The total energy flow from the system to the bath is thus given

by
01 = (& —

ijm

& +mhw)R'Y pi(t). (10)

Note that also pseudotransitions described by rates R\"*"
contribute to the heat flow [58]. These transitions change the
state of the bath, but not that of the system. For the autonomous

system the energy flow into bath b reads

Qu(t) = D (E; — ENR) pi0). (11)

B. Master equation for the ideal quantum gas

We now generalize the single-particle problem to a gas of
N indistinguishable, noninteracting particles. In our approach
we assume the total particle number N to be fixed, like in
the canonical ensemble. For our considerations the canonical
description poses the advantage that it contains the single-
particle case as the natural limit N = 1, and does not require
to define new terms describing the particle exchange with the
bath.

The many-body Hilbert space is spanned by Fock states
enumerated by the occupation numbers of the M single-
particle states, n = (n,n, ... ,ny). To obtain the many-body
rate equations, we replace the single-particle jump operators
L; ; = |i){(j| in Eq. (1) with their Fock-space representation

Lij=ala;. (12)

Here a; denotes the annihilation operator of a particle, boson
or fermion, in the single-particle mode i. Quantum jumps still
correspond to processes transferring a single particle from
one mode to another. The validity of the full rotating-wave
approximation is, thus, still determined by the single-particle
problem. Moreover, the total particle number N is conserved
by the dynamics.

As before, the dynamics of the many-body occupation
probabilities p, = (r|p|n) decouple from the off-diagonal
elements, which decay over time. The corresponding equations
of motion are now given by (see Appendix A for details)

pu®) =Y (L +on i Rijpu, () = Riipa(].  (13)
ij

which is the many-body generalization of the Pauli master
equation (2). Here nj; = (ny,...,n; —1,...,n; +1,...) de-
notes the occupation numbers obtained from n by transferring
one particle from i to j. The effective transition rate depends
on the quantum statistics via the choice of o, with o =1
for bosons (reflecting the enhancement of transitions into
occupied states) and o = —1 for fermions (reflecting the Pauli
exclusion principle). The classical case of distinguishable
(Boltzmann) particles corresponds to o = 0; here the transi-
tion rates are independent of the occupation of the final state.’

The bosonic master equation (13) with o = 1, as well as the
corresponding mean-field equation (31), also resemble rate equations
that are used to describe stochastic processes in classical systems, as
we mention them already in the introduction.
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For the periodically driven ideal gas the energy flow from
the system into the bath is given by

Q) =Y (ei — & + mho)R (1 + onj)n; py(t)
m nij

=Y (e — & + mho) RSP L) (1) + o (it ;) ()],
m ij

(14)

Analogously, for the autonomous ideal gas the energy flow
into bath b reads

Qu(t) =YY (Ei — R} (1 + onj)n; pu(t)

n o ij

=Y (E; — EPR U0 + o i (0] (15)
ij

C. Nonequilibrium steady state

In the following we are interested in the properties of the
steady state of the ideal quantum gas, whose density operator is
simply denoted by p.? It is diagonal in the occupation number
basis,

p=7)_ paln)nl, (16)

with p, determined by solving Eq. (13) for p, = 0. The
uniqueness of the steady state [57] is inherited from the
single-particle system, since every Fock state is connected to
every other Fock state by a sequence of allowed single-particle
transitions when this is assumed for the single-particle system.

The steady-state expectation value of an arbitrary observ-
able 0 is denoted by

(0) = tr(po). a7)

Expectation values that we consider in the following are the
mean occupations that we denote by

i = (i), (18)

with the number operator 7; = &j a; and the two-particle
correlations (#;7 ;) or, rather, their nontrivial part,

G = (W) — i = ((A; — )R — 7). (19)

For the scenarios depicted in Fig. 1 the steady state of

the system will be a nonequilibrium steady state. This can be

illustrated already on the level of the single-particle problem

(2). Let us first recapitulate the case of thermal equilibrium.

The transitions induced by a single bath of inverse temperature
B in an autonomous system are described by rates that obey

R

o = EE, (20)
ij

2Whenever we are discussing transient behavior and time-dependent
quantities (which happens only a few times) this is indicated by
writing out explicitly the time argument. For example, 4(z) denotes
the time-dependent density operator or (0)(¢) a time-dependent
expectation value. Otherwise, i.e., when writing p or (4), we are
always referring to steady-state quantities.
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This can be inferred from Eq. (6) for the case of a single
bath. This condition implies that the steady state, obtained by
solving Eq. (2) is given by the Gibbs state with p; = Z~'e=PEi
and Z = )", e PEi_ For this equilibrium state, the sum on the
right-hand side of Eq. (2) vanishes term by term. Thus, the net
probability flux between two states i and j vanishes. This is
the property of detailed balance, which is characteristic for the
thermodynamic equilibrium.

The rates characterizing the periodically driven system,
Eq. (3), or the autonomous system coupled to two heat baths of
different temperature, Eq. (6), are a sum of rates corresponding
to different energy changes in the bath or to different bath
temperatures, respectively. As a consequence, they do not
obey condition (20) anymore. This implies that, generally,
the steady state also does not fulfill detailed balance anymore.
While the net probability flux into a state i, determined by the
right-hand side of Eq. (2), still has to vanish, the probability
current from a certain state j to state i can be nonzero; i.e.,
the sum in Eq. (2) does not vanish term by term. The lack of
detailed balance characterizes a nonequilibrium steady state.
In contrast to the equilibrium state, which is determined by the
temperature of the bath only, the nonequilibrium steady state
depends on the very details of the bath(s) (the temperature,
the coupling operator, and the spectral density). This makes
the computation of the many-body nonequilibrium steady state
a difficult problem. However, it also offers opportunities to
realize states with properties that are hard (or impossible) to
achieve in equilibrium.

D. Model systems

Throughout this paper, we illustrate our findings using three
different model systems. Let us briefly define them here. Note
that our results are not limited to these example systems.

The first model system is a tight-binding chain of M lattice
sites. It is described by the Hamiltonian

M—1

H=—J ) (@ +He), @)
=1

wherein ¢, (61) denotes the annihilation (creation) operator
for a particle at site £. The single-particle eigenstates |i ), with
i=0,1,...,M — 1, are delocalized. They are described by
wave functions (£]i) o< sin(k;£), with wave numbers k; = (i +
)7 /(M + 1) and possess energies E; = —2J cos(k;) between
—2J and 2J. As sketched in Fig. 2(a), the chain is coupled to
two baths, on the left and right end of the chain. The left (right)
bath is locally coupled to the first (nelxt—to—last) site of the chain
via the coupling operators 9; = y; é}él and 0, = yzéju_ 18m—1,
respectively.®> This coupling describes a bath-induced fluctu-
ation of the on-site energy. The steady state will depend on
the coupling strength only through their relative weight y»/y1,
while their absolute weight determines how fast the system
relaxes. The temperatures of the baths are different from each
other. We will, moreover, mainly focus on the interesting case

3We avoid the choice of coupling the second bath to the last site
M since, for such a symmetric configuration, the generic effect of
fragmented Bose condensation [23] is absent.
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FIG. 2. (Color online) Two model systems. (a) Tight-binding
chain coupled to two heat baths of respective temperatures 7} and 7
and coupling strengths y; and y,. (b) Tight-binding chain subjected to
a time-periodic potential modulation at one end with driving strength
¥, and angular frequency w and coupled to a heat bath of temperature
T at the other end with coupling strength y.

cos(wt)

where one of the baths is population inverted. For such a
situation the notion of the single-particle ground state becomes
meaningless, allowing for fragmented Bose condensation with
multiple condensates [23], see Sec. IV below. We model the
population-inverted bath by a negative temperature 7, < 0 and
a spectrum that is bounded from above (v, < 0).

The second model system is also given by a tight-binding
chain of M sites. However, instead of coupling it to a second
bath, the chain is periodically driven in time. Its Hamiltonian
is given by

M—1

H(t) = —J Y @ +He) + yod cos@néy ey, (22)
=1

with the dimensionless driving strength y, and angular
frequency w. The coupling to a bath of inverlse temperature
B is realized via the coupling operator § = y¢|¢y, as depicted
in Fig. 2(b). The steady state will depend on the dimensionless
driving strength y,,, which determines the single-particle
Floquet modes and the structure of the rate matrix R;;.
However, the coupling strength to the heat bath y has no
impact on the steady state, but rather determines how fast the
system relaxes.

Finally, as a third model, we consider a system of M
single-particle states with the transition rates R;; given by
uncorrelated random numbers, independently drawn from an
exponential distribution,

P(R;;) = A" exp(—AR;). (23)
The parameter A controls the time scale of the relaxation, but
does not influence the steady state. The diagonal elements R;;
can be set to 0 as they drop out of all relevant equations [such as
Eq. (2)]. This choice of rates clearly models a nonequilibrium
situation, since detailed balance is violated almost surely. It is
motivated by the rates computed for fully chaotic periodically
driven quantum systems coupled to a heat bath [59]. A concrete
example is given by the kicked rotor coupled to a bath, which
is discussed for single particles in Ref. [60] and for many
particles in the supplemental material of Ref. [23].
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III. METHODS

In this paper we are interested in the properties of
nonequilibrium steady states (16) of driven dissipative ideal
quantum gases of N particles, described by the master equation
(2) with jump operators (12) or, equivalently, by the rate
equation (13). Even though the particles are noninteracting,
finding the steady state is a true many-body problem. Unlike
in equilibrium, the many-particle solution cannot be obtained
from the single-particle solution in a straightforward manner.
This is a consequence of the interaction with the bath and
reflected in the fact that the right-hand side of the master
equation (2) is quadratic in the jump operators (12) and, thus,
quartic in the bosonic or fermionic field operators &fﬂ. As a
consequence, Eq. (13) quickly becomes intractable when the
particle number is increased. Therefore, it is crucial to develop
and apply suitable methods for the approximate treatment of
the problem. This is done in this section.

In the following, we first describe quantum-jump-type
Monte Carlo simulations based on averaging over random
walks in the classical space of sharp occupation numbers.
This numerical method is quasiexact (the statistical error is
controlled) and allows for the treatment of moderately large
systems. In order to treat even larger systems and to obtain
an intuitive picture of the dynamics, we then describe a
mean-field theory, which is based on a description in terms of
the mean occupations #;. Finally, we augment the mean-field
theory by taking into account fluctuations given by nontrivial
two-particle correlations.

A. Monte Carlo simulations

Quantum-jump Monte Carlo simulations [61,62] are an
efficient method for computing the time evolution of open
quantum systems described by a Markovian master equation
of Lindblad form. Instead of integrating the time evolution
of the full density matrix, the method is based on integrating
the time evolution of single states (the Monte Carlo wave
function). In doing so, the dissipative effect of the environment
is included by interrupting the continuous time evolution by a
sudden quantum jump, described by one of the jump operators.
When such a quantum jump occurs, and which one, is drawn
from a suitable probability distribution. The time evolution of
expectation values can then be obtained by averaging over an
ensemble of Monte Carlo wave functions. The error depends
on the ensemble size and can, in principle, be made arbitrarily
small.

When treating the master equation (2) with jump operators
(12) we encounter a convenient situation. The dissipation can
be described by jump operators (12) that transfer a particle
from one single-particle eigenstate (or Floquet state) to another
one, i.e., between two states of sharp occupation numbers n. At
the same time, these occupation numbers are conserved by the
evolution generated by the system Hamiltonian, since we are
dealing with a system of noninteracting particles. Therefore,
the time evolution is exhausted by taking into account quantum
jumps. This corresponds to a random walk in the classical
space spanned by the Fock states |r) (not their superposi-
tions). The Monte Carlo wave function |n(¢)) jumps between
Fock states |m;), in which it resides for time intervals of
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length #;,
|n(t)) = |n;) withksuchthat Ty <t < T, (24)
where Ty = Y5, 1.

We use the Gillespie algorithm [63] in order to compute
the time evolution. At the beginning, the system is prepared
according to the chosen initial conditions. Then the algorithm
alternates between the following two steps. (i) The time
interval # determining how long the system will remain in
the current state is drawn randomly from an exponential
distribution P(#;) o exp[—t/f(n;)] with mean dwell time,

1
Zi,j Rij(1+onjn;’

(i1) The new state with occupation ny | is drawn randomly with
branching probability reflecting the many-body transition rates
R;i(1 4 onj)n,. Since only single-particle jumps are involved
in Eq. (13), the next state is obtained from the current state by
transferring a particle from a randomly drawn departure state i
to the randomly drawn target state j. This single-particle jump
has the probability

i(ny) = (25)

P(l — j,nk)zt_(nk)Rji(l+0nj)ni. (26)
These two steps are repeated until T} = Zle t; exceeds the
desired evolution time #g,.
From an ensemble of L Monte Carlo wave functions
[n(t)) labeled by @ = 1,2, ..., L, one can then compute the
expectation value of an observable 4,

L

1
(O)ememe(t) =7 D (0Ol ®).  (27)

a=1

Figure 3 shows the time evolution of the mean occupations
(fi;)(t) for N = 100 particles on M = 5 states for a single
Monte Carlo wave function (thin lines) and for an ensemble

100

50

25

0.0 0.2 0.4 0.6 08 4+ 1.0

FIG. 3. (Color online) Time evolution of the mean occupations
n;(t) for one realization of the random-rate model for M = 5 states
and N = 100 particles. Time is measured in units of the inverse mean
rate A [see Eq. (23)]. Initially, each single-particle state is occupied
with the same probability. The thin lines are obtained from a single
Monte Carlo wave function, the intermediate lines from an ensemble
of L = 1000 Monte Carlo wave functions, and the thick lines from
mean-field theory. The mean-field results show small systematic
deviations from the Monte Carlo result.
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with L = 1000 (intermediate lines). One can clearly observe
the relaxation to a steady state reached after a relaxation time
of 7, &~ 0.5. Slight temporal fluctuations observed for times
t > 1, decrease with ensemble size L. The mean-field theory
(thick lines) described below predicts the occupations rather
well, but with small systematic deviations from the Monte
Carlo result.

When computing steady-state expectation values (0), the
effect of temporal fluctuations can be reduced by combining
ensemble averaging with time averaging,

1 <& nk ‘n(a))
L2l

a=I1

(28)

Here it is useful to constrain the inner sum to k > k%), with
k("‘) such that Tk(a) > t,, in order to exclude the transient
relaxatlon process from the time average. Since we assume
that every state is connected with all the other states by
a sequence of transitions with nonvanishing rates, one can
obtain accurate steady-state expectation values from a single
Monte Carlo trajectory, provided g, is sufficiently large
so that the system forgets its initial state after a certain
correlation time. Averaging over a long time is, therefore,
equivalent to averaging over an ensemble. We determine these
uncertainties according to the Gelman-Rubin criterion [64],
generally setting the relative uncertainties below 1% (small
enough to make statistical fluctuations barely noticeable in
any figure). For a bosonic system, this allows us to access
particle numbers N ~ 10° for M = 100 single-particle states.

B. Mean-field theory

In order to treat even larger systems and to gain some
intuitive understanding of the nonequilibrium steady state of
ideal quantum gases, it is desirable to use also analytical
methods. One of them is a mean-field description of the system
in terms of the mean occupations 7; [23].

The time evolution of the mean occupations is given by the
equations

d d
Eﬁi(t) =tr[ﬁid—tﬁ(l)] = Xj:Ri,j{[ﬁj(I) + o (i) (1))

— R;i[ni () + o (Ain ;) ()]} (29)

for all i (see Appendix B). Here we encounter the typical
hierarchy: The time evolution of single-particle correlations
(expectation values of operators that are quadratic in the field
operators) is governed by two-particle correlations (expecta-
tion values of operators that are quartic in the field operators).
The evolution of the latter will, in turn, be determined by
three-particle correlations, and so on.

In order to obtain a closed set of equations in terms of the
mean occupations, we employ the factorization approximation

() () =m0 () + &) ~ 7 ()i (t) (30)

for i # j. Here nontrivial correlations are neglected, ¢;;(¢) ~
0, so that two-particle correlations are approximated by a
product of single-particle expectation values as if Wick’s
theorem was valid. In this way we arrive at the set of nonlinear
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mean-field equations
%ﬁi(f)"E Zj:{szﬁj(l)[l +oii(O)]—R i ([ 1407 (1)]}.

€2y

In the classical case of distinguishable particles, which can
be shown to be captured by o = 0, the mean-field equation
is exact. In this case, the equations of motion for the mean
occupations 7;(t) are of the same form as the single-particle
master equation (2) for the probabilities p; (¢). Therefore, in the
classical system the mean occupations are determined by the
single-particle problem and read 71;(t) = p;(¢)N. In contrast,
for quantum gases of indistinguishable bosons or fermions the
dynamics and the steady state will depend in a nontrivial way
on the total particle number. In this case, the classical solution
can still be an approximate solution of the quantum system as
long as 7i; < 1foralli, so that two-particle correlations (7,7 ;)
are negligible. However, as soon as the quantum degenerate
regime is reached, where 72; 2 1 at least for some i, quantum
statistics and with that the particle number will matter.

The mean-field equations of motion can also be obtained
by making a Gaussian ansatz,

1
Py = exp [— > niﬁ,}, (32)

with partition function Z for the many-body density operator.
For this ansatz the mean occupations are given by

1

el —o’

(ti)g = (33)
Thus, the M parameters defining the Gaussian state are
determined completely by the M mean occupations, 1; =
ln((fz,-)g1 + o), as they can be obtained by solving the
mean-field equations (31). Nontrivial correlations vanish and
multiparticle correlation functions can be decomposed into
products of single-particle correlations determined by Wick
decomposition. For the two-particle correlations the Gaussian
ansatz gives [65]

P (i) g[(1 4+ o)) + 11 fori = j,
Nj)eg = 1,51\ /n - 34
Vi) {(ni>g<n<,->g fori 2y GY
for bosons (¢ = 1) and fermions (¢ = —1). For i # j we

find (A;71;), = (A;)4(fj)g. Therefore, starting from Eq. (29)
and making the Gaussian ansatz for the density operator,
we recover the mean-field equations of motion (31) with
(1) = (Ai)s.

With the quantities (A7), the Gaussian ansatz also deter-
mines the fluctuations of the occupations 7; as well as of the
total particle number N = 3", /2;. One finds

(R — (Ai)P)e = (A2), — (A2 = (i)g + 0 (A1) (35)

and

+ ) (iinj)g — (i)elity)g)  (36)

= (i — (A1) )*)s- (37)
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The Gaussian state does not describe a system with a sharp
particle number, so we can only require that the mean particle
number obeys

(N)=N. (38)

Fluctuations of the total particle number are an immediate
consequence of enforcing trivial correlations (77 ;) = 71;71;
for i # j (unless also the occupations of the individual states
i are sharp so that their number fluctuations (ﬁiz) — ﬁlz vanish).
This can be seen from Eq. (36), where we have not yet used the
properties of the Gaussian state like in Eq. (37). It is intuitively
clear that a sharp total particle number induces nontrivial
correlations among the occupations. If the measurement of the
occupation 71; gives a value n; that is smaller (larger) than the
expectation value 71;, a sharp total particle number implies that
the number of particles in all other states is given by N — n;
and, thus, larger (smaller) than the original expectation value
N — ;. As a consequence, the probability of measuring a
certain value n; of the occupation 7 ; with j # i will depend
on the value n; measured for the occupation 7;.

The role played by fluctuations of the total particle number
becomes less and less important in large systems. Namely,
the variance of the total particle number (37) is the sum over
the variances of the occupations of individual modes (35),
which are intensive. Thus, the fluctuations of the total particle
number grow in a subextensive fashion like the square root of
the system size. That is, the relative fluctuations of the total
particle number vanish in the limit of large systems. This is the
mechanism underlying the equivalence of the canonical and the
grand-canonical ensembles. There is one important exception,
however. This is the case of Bose-Einstein condensation,
where in a bosonic system a mode i acquires a macroscopic
occupation. If the total particle number is not conserved, also
the number fluctuations of the condensate mode will be as
large as the number of condensed particles; in this case the
right-hand side of Eq. (35) is dominated by the second term.
The extensive number fluctuations in the condensate mode will
then dominate the sum of Eq. (37) and give rise to extensive
total number fluctuations, which are non-negligible in large
systems. This phenomenon is know as the grand-canonical
fluctuation catastrophe [66].

However, one should note that the dynamics of the mean
occupations ;(¢) described by Eq. (29) do not depend on
the occupation number fluctuations of the modes (the term
j =i vanishes so that (ﬁiz) does not enter on the right-hand
side). The mean-field equations of motion (31) can, therefore,
provide a good approximation to the mean occupations 7i; also
in systems featuring Bose condensation (see Ref. [23]). This
can be seen also in Fig. 3, where, despite the fact that half of the
particles occupy a single mode, mean-field theory accurately
describes both the transient and the long-time behavior of the
mean occupations.

The grand-canonical ensemble of an ideal quantum gas in
equilibrium with inverse temperature § and chemical potential
(o is described by a Gaussian density operator (32) with
n; = B(E; — ). The mean occupations Eq. 33 follow the
Bose-Einstein (Fermi-Dirac) distribution foro = 1 (6 = —1).
The grand-canonical ideal gas is thus described exactly within
the mean-field theory. This can be seen explicitly by plugging
the Gaussian state p, o []; e #E =i (solving the mean-field
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equation) into the full many-body rate equations (13). By
employing condition (20), which is fulfilled in an equilibrium
situation, one can see that the sum on the right-hand side
vanishes term by term. This implies also that the equilibrium
state obeys detailed balance as it should. Deviations from
mean-field theory occur as a consequence of two factors: (i)
the assumption of a sharp total particle number and (ii) the
violation of the detailed-balance condition (20).

Both factors (i) and (ii) are independent of each other, as can
be illustrated using two examples. The canonical equilibrium
state with sharp particle number is characterized by the non-
Gaussian probabilities

:ZL exp (— > ﬂEin,«) ify .ni=N,
pa={ 2 . (39)
0 otherwise,
with the partition function Zy. This state can be obtained
by projecting the Gaussian state onto the subspace of sharp
total particle number N. As a consequence of the sharp
particle number, it does not solve the mean-field equation,
as discussed above. However, it still obeys detailed balance.
Namely, plugging it into Eq. (13) the sum on the right-hand
side vanishes term by term as long as the condition (20) is
fulfilled. On the other hand, we can allow the particle number
to fluctuate freely, but violate condition (20). Then it will
generally not be possible to find a solution of the mean-field
form (32) that solves the many-body rate equations (13),
because the number of independent equations exceeds the
number of parameters 7;. In the following, we are interested
in the situation where a system of sharp particle number is
driven into a steady state far away from equilibrium, so that
both factors (i) and (ii) are present. Here the mean-field theory
can still provide a good approximation, as can be checked by
comparing it to quasiexact results obtained from Monte Carlo
simulations.

Within the mean-field approximation, the heat flow for the
autonomous system to bath b, given by Eq. (15), takes the form

QY1) =Y (E; — ENRYA(O[1 +0ii;(0].  (40)
i,j#i

The heat flow from the periodically driven ideal gas into the
heat bath (14) reads

Q1) =" (& —&; + mho) R A (O + 0 (1)]

moijA

+ ) > mhoR{ (1) + o (A7) (1)), (41)

m i

Here the second sum captures the heat flow related to pseudo-
transitions [see discussion below Eq. (10)]. Their contribution
depends on (ﬁiz) and, thus, on the occupation number fluctua-
tions of the modes. However, as discussed above, in a bosonic
system of sharp total particle number and where some modes
feature macroscopic occupation, the Gaussian expectation
value (ﬁiz)g = (A;)¢[2{(Ai;)¢ + 1] does generally not provide
a good approximation for the condensate mode(s). Therefore,
it might be useful to introduce another approximation for (/i?)
in an ad hoc fashion. Another possibility is to augment the
mean-field theory such that it is able to treat systems with sharp
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particle number and, thus, with nontrivial two-particle corre-
lations. Such a method is presented in the following section.

C. Augmented mean-field theory

By construction, the mean-field theory fails to take into
account nontrivial two-particle correlations ¢;; as they result
from having a sharp total particle number and from driving
the system out of equilibrium, so that the detailed-balance
condition (20) is violated. The effects of a fluctuating total
number of particles can be assessed by projecting the Gaussian
state onto the subspace of N-particle states, Oproj X ISN Pq 13N
with Py = ZnIZ; 4,=n |1)(n|. This introduces nontrivial cor-
relations, which can be obtained from (77 ;) = tr(opwjftifi ;).
However, evaluating this matrix element is an onerous task
even within efficient algorithms (see Appendix C for an
example), since all N-particle Fock states have to be accounted
for. Moreover, such an approach still does not include effects
related to the breaking of detailed balance.

In order to include the effects of nontrivial occupation
correlations and fluctuations by analytic means, we introduce
an augmented mean-field theory. This approach includes
the two-point correlation functions (7#;) into the hierarchy
of equations of motions. In the original full hierarchy, the
corresponding equations of motion take the form

d . . N .
i) = 3 o (A + Aitiudin) + Ry (i)

J
+ Rij(Agh ;) — (Rjx + Rji)(AgA;)
+ 0ik[Rej (@1 j + o (Arh )
+ Rjx(x + o (Ariij )]}
— Rix(fig + o (Akhi)) — Rii (i + o (k). (42)

Here, as well as in the rest of this section, we suppress
time arguments. This equation still involves the third-order
correlations (AixA;7 ;).

The hierarchy can be closed by assuming trivial three-
particle correlations. For that purpose we separate the number
operators like 7i; = i1; + f,- into their mean values 71; and their
fluctuations

G =hn;—a; with (&) =0. (43)

We now approximate

(&r&ig) =0, (44)

while allowing, in contrast to mean-field theory, for nontrivial

two-particle correlations &; = ($x&;) [Eq. (19)]. Thus, the

equations of motion for the mean occupations are given by
driy

7kl ;Akj[ﬁkﬁj + &l

+ Z(Rkjﬁj — Rjiiy), (45)
J
which is equivalent to the exact equation (29). The equations of

motion for the nontrivial two-particle correlations are obtained
from Eq. (42) by employing the approximation (44). It is
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nonlinear and reads (see Appendix D for details)
i Agiii Ajift Ag; + Aiit
7 NZ{U[ KkGi; + A g + (A + A6l
J

+ Rij&ij + RijCij — (Rjk + Rji)Cki
+ 00k — 8;i)(Ry; + Rjp)(gij + &xj)
+ (Bki — 8ji)(Rijiij + Rjiiig)}. (46)

The steady-state values of 71 and ¢; have to be determined by
solving Egs. (45) and (46) with the left-hand side set to zero.

Within the augmented mean-field theory the state is not only
described in terms of the mean occupations 7i;,, but also in terms
of nontrivial two-particle correlations ;. As a consequence,
we cannot only fix the mean total particle number to a value
N by requiring

(N) = Zﬁi =N. (47)

Also, the fluctuation of the total particle number can be fixed
to a value AN,

(N?) = (N)? =) i = AN™. (48)
ij

This includes the choice
AN =0 (49)

for a system of sharp particle number. Whereas the mean-field
theory was found to be equivalent to a Gaussian ansatz for the
density operator, we cannot give an analytical expression for
the density operator corresponding to the augmented theory.

IV. IDEAL BOSE GASES AND BOSE SELECTION

In this section we discuss in detail the steady state of
noninteracting bosonic quantum gases. Let us first recapitulate
the case of thermodynamic equilibrium.

A. Equilibrium and Bose condensation

Under equilibrium conditions, where the rates obey the
condition (20), the mean-field equations of motion (31) with
o = 1 for bosons are solved by a steady state characterized by
the mean occupations

_ 1
i

(= REm 1 (50)

corresponding to Eq. (33) with n;, = B(E; — ). For this
solution the right-hand side of Eq. (31) vanishes term by term,
indicating detailed balance. The occupation numbers (50)
obtained from the non-number-conserving mean-field theory
correspond to the exact grand-canonical mean occupations
[67] and provide a good approximation also for the canonical
ensemble with sharp particle number N. In the latter case, the
chemical potential has to be chosen such that

Zﬁ,- =N. (51)

Assuming the states of the system to be labeled such that
Eo<E < Ey<---, (52)
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meaningful positive occupation numbers correspond to values
of the chemical potential below the ground-state energy, © <
Ey. The chemical potential increases either when g is increased
at fixed N or when N is increased at fixed S.

When in a system of finite extent, with discrete energies
E;, the particle number N is increased at fixed 8, the chemical
potential will eventually approach the ground-state energy so
that Eg — u < E; — Ey. Once this happens at a characteristic
particle number N* specified below, the mean occupations of
the excited states can be approximated by

1
n ~ ——— for

T i>1. (53)

Thus, for N > N* the occupations of excited states become
independent of p (therefore also of N) and saturate. The
occupation of the single-particle ground-state still depends on
the chemical potential; assuming B(Ey — n) < 1, one finds

1
T —— 54
T B E -y " 69

with

1
No= N =Y o (55)

i>l

such that u ~ Ey — T /Ny. All particles that cannot be “ac-
commodated” in the excited states will occupy the ground
state. This is the phenomenon of Bose-Einstein condensation
(or, strictly speaking, its finite size precursor).

In a finite system Bose-Einstein condensation is a crossover,
occurring when N becomes comparable to the characteristic
value N*, which is directly given by the depletion of the
condensate,

1
jo—
N = Z ePE—E) _1° (56)

i>1

In the thermodynamic limit, defined by taking particle
number N and volume V to infinity while holding the density
n=N/V at a constant finite value, Bose condensation is
a sharp phase transition. At a critical density n, = N*/V,
the occupation of the ground state becomes macroscopic
and the ratio Ny/N, the condensate fraction, assumes a
nonzero value. At the transition Ey — u = T /Ny becomes
zero. However, Bose condensation does not necessarily survive
the thermodynamic limit. For a homogeneous Bose gas of
spatial dimensionality D < 2, the ratio N*/V diverges in the
thermodynamic limit due to large occupations of low-energy
states, so that no phase transition exists. In this case Bose
condensation can still be observed as a crossover in systems
of finite size. This is illustrated in Fig. 4(a), where we plot the
mean occupations of a bosonic one-dimensional tight-binding
chain of M = 20 sites versus the particle number N. In this
system M plays the role of a dimensionless volume V so
that the density is given by the dimensionless filling factor
n = N/M. One can observe a sharp crossover: For N > N*
the occupations of the excited states saturate so that newly
added particles will all become part of the condensate in the
ground state, as described by Egs. (53), (54), and (55).

062119-9



DANIEL VORBERG et al.

PHYSICAL REVIEW E 92, 062119 (2015)

108

O G T e
@>6

101 L S p—

10*1 | | | |
10° 10 102 10° 104

10° 5 10°10° 10! 10° 10° 10*

g

cos(wt)

10° 5 10°

FIG. 4. (Color online) Mean occupations versus total number of bosons for the steady state of a tight-binding chain of M = 20 sites and
tunneling parameter J > 0. The data are obtained from mean-field theory (thick solid lines), asymptotic mean-field theory (dashed lines),
augmented mean-field theory (thin solid lines), and exact Monte Carlo simulations (crosses). (a) Equilibrium situation; the chain is coupled to
one bath of temperature 7 = 1J. (b) The chain is driven away from equilibrium by two heat baths of different positive temperature (7} = 1J
and T, = 0.5J), coupled to the first and the next to last site with y; = y5. (c) Same as in (b), but now the second bath is population inverted
and described by the negative temperature 7, = —J. The color code is the same as in panels (a) and (b), where the occupations decrease with
increasing energy. (d) The chain is driven away from equilibrium by a periodic potential modulation at the last site with amplitude y,, = 2.3J
and frequency hw = 1.5J. The Floquet states are colored like the stationary states (a)-(c) from which they evolve adiabatically when the

driving is switched on (see Fig. 14).

B. Driven-dissipative Bose gas and Bose selection

The other panels of Fig. 4 show the mean occupations
ii; versus N for situations where the tight-binding chain is
driven into a steady state far from equilibrium, either by
coupling it to a second bath of different temperature or by
time-periodic forcing (see Sec. II D). In each of these panels,
we can again identify a sharp crossover. When the particle
number N reaches a characteristic value N*, many occupations
saturate as in equilibrium. However, as a striking effect, newly
added particles can now occupy a whole group of states
[Figs. 4(c) and 4(d)], with constant relative occupations among
these states. These selected states take over the role played by
the condensate mode in equilibrium. This phenomenon has
been termed Bose selection [23]. It turns out to be the generic
behavior in the ultradegenerate regime of large density at fixed
finite system size.

As becomes apparent from Fig. 4, we can distinguish two
scenarios. In the first, a single state becomes selected. This
includes the case of equilibrium Bose condensation depicted
in panel (a), but also the nonequilibrium situation shown in
panel (b), where a Bose gas is driven out of equilibrium

by the coupling to two heat baths of different positive
temperature. In the second scenario, multiple states become
selected, as can be seen in panels (c) and (d), corresponding
to situations where a system is driven out of equilibrium by an
additional population-inverted bath of negative temperature or
by periodic forcing. As we see in the following, the essential
difference between both scenarios is that in the situations (a)
and (b) the notion of the single-particle ground state is still
meaningful. In panel (b) both baths favor larger occupations in
states of lower energy and thus the largest occupation occurs in
the ground state. This is not the case anymore for the situations
(c) and (d). The population-inverted negative-temperature
bath of the system of panel (c) favors larger occupations
in states of higher energy counteracting the effect of the
positive-temperature bath. For the periodically driven system
of panel (d), the quasienergies of the single-particle Floquet
states are determined modulo hw only, so that a ground state
is not even defined.

Within the scenario of having multiple selected states
we can, furthermore, distinguish two possibilities. For that
purpose we have to consider systems of a large number of states
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FIG. 5. (Color online) Mean occupations versus total number of
bosons for (a) one realization of the random-rate model with M =
100 states and (b) a tight-binding chain of M = 100 sites coupled
to two heat baths, namely one with temperature 77 = 10J at the
first site and a population-inverted bath described by the negative
temperature 7, = —10J at the fifth-to-last site, with equal coupling
strength, y; = y, [see inset of Fig. 4(c)].

M .InFig. 5 we plot the mean occupations for two systems with
M = 100 states. Panel (a) corresponds to one realization of the
random-rate model and panel (b) is obtained for a tight-binding
chain coupled to a second population-inverted bath like in
Fig. 4(c). For the random-rate model (a) the number of selected
states M is of the order of the system size M, roughly half
of the states become selected for sufficiently large N. This
implies that none of the selected states acquires a macroscopic
occupation of the order of the total particle number. For the
tight-binding chain (b) we find that the number of selected
states My is still of the order of one; namely, three states
are selected. As a consequence, each selected state acquires
a macroscopic occupation of the order of the total particle
number and hosts a Bose condensate. This corresponds to
fragmented Bose condensation,* which is therefore a generic
situations for driven Bose gas, unlike in equilibrium where
this requires a rare ground-state degeneracy. Thus, all in
all, we can distinguish three generic types of Bose selection
occurring in the ultradegenerate regime of driven-dissipative
ideal Bose gases: standard Bose condensation where a single
state acquires a macroscopic occupation, fragmented Bose
condensation where a small number (of order one) of selected
states each acquires macroscopic occupation, and the selection
of a large number of states with nonextensive individual
occupations that together attract most particles of the system.

In the following we provide a theory for Bose selection
based on mean-field theory in the asymptotic limit of large N.

“Note that the system does not feature a single condensate in a state
being a coherent superposition of the highly occupied selected modes,
but independent condensates in each mode. Namely, according to
the Penrose-Onsager criterion Bose-Einstein condensation is defined
by a macroscopic eigenvalue of the single-particle density matrix
(aiT a;) [68]. In the situation discussed here, the off-diagonal elements
of (a,-T aj) are negligible as a consequence of the weak coupling to
the bath. Therefore, each macroscopic mean occupation 71; = (a,-T a;)
corresponds to a macroscopic eigenvalue of the single-particle density
matrix and an independent Bose condensate.
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It can be viewed as a generalization of the Eqs. (53), (54) and
(55) describing equilibrium Bose condensation to the case of
driven-dissipative ideal Bose gases. Later, also effects beyond
mean field will be discussed in terms of the augmented mean-
field theory.

C. Asymptotic mean-field theory

A theoretical description of Bose selection can be based
on mean-field theory, given by Eq. (31) with o = 1. For the
steady state this equation reads

0= [Ryi;(1 + ;) — Rjifi;(1 + )] (57)
J

for all i. Since Bose selection occurs in the asymptotic limit
of large densities, it appears natural to approximate

1+ 7, ~ny (58)

in this equation. One then obtains the equations®

0=7; Y (Ryj— R =n; Y _ Ayf;. (59)
j j

One can immediately see that some of the mean occupations
71; have to vanish on this level of approximation. Namely, if
we assume that a subset S of single-particle states possesses
nonzero occupations, these states have to obey the linear
equations

0=> Aynj, i€S, (60)
jes

which directly follow from Eq. (59). However, without fine
tuning of the skew-symmetric asymmetry matrix A;; = —Aj;,
these equations have a solution only if S contains an odd
number of states (since a skew-symmetric matrix generically
possesses an eigenvalue zero only when acting in an odd-
dimensional space). Moreover, even if a formal solution can be
found for a certain set S, it is not guaranteed that this solution
will correspond to physically meaningful solutions, where
all occupation numbers are non-negative. Both conditions
constrain the set S, so that, generically, it will not contain
all states. Those states contained in the (yet to be determined)
set S correspond to the Bose-selected states.

In order to compute the occupations of the nonselected
states, we have to include another level of approximation.
For that purpose we use that the occupation of a nonselected
state is determined predominantly by transitions from or
into selected states. The large occupations of the selected
states enhances the corresponding rates with respect to the
rates for transitions from or into other nonselected states.
Thus, neglecting transitions among nonselected states and still

5Tt is interesting to note that these equations correspond to the
conservative Lotka-Volterra equations fi; = i > ; Ajjii; as they are
used to model population dynamics. Indeed, for fully connected rate
matrices, the selected states correspond directly to those species
that will not be extinct, but survive [46,47,69]. Differences appear,
however, for not fully connected rate matrices, as discussed at the end
of Sec. IVL.
