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Abstract

Background: The persistent spread of Rhodesian human African trypanosomiasis (HAT) in Uganda in recent years has
increased concerns of a potential overlap with the Gambian form of the disease. Recent research has aimed to increase the
evidence base for targeting control measures by focusing on the environmental and climatic factors that control the spatial
distribution of the disease.

Objectives: One recent study used simple logistic regression methods to explore the relationship between prevalence of
Rhodesian HAT and several social, environmental and climatic variables in two of the most recently affected districts of
Uganda, and suggested the disease had spread into the study area due to the movement of infected, untreated livestock.
Here we extend this study to account for spatial autocorrelation, incorporate uncertainty in input data and model
parameters and undertake predictive mapping for risk of high HAT prevalence in future.

Materials and Methods: Using a spatial analysis in which a generalised linear geostatistical model is used in a Bayesian
framework to account explicitly for spatial autocorrelation and incorporate uncertainty in input data and model parameters
we are able to demonstrate a more rigorous analytical approach, potentially resulting in more accurate parameter and
significance estimates and increased predictive accuracy, thereby allowing an assessment of the validity of the livestock
movement hypothesis given more robust parameter estimation and appropriate assessment of covariate effects.

Results: Analysis strongly supports the theory that Rhodesian HAT was imported to the study area via the movement of
untreated, infected livestock from endemic areas. The confounding effect of health care accessibility on the spatial
distribution of Rhodesian HAT and the linkages between the disease’s distribution and minimum land surface temperature
have also been confirmed via the application of these methods.

Conclusions: Predictive mapping indicates an increased risk of high HAT prevalence in the future in areas surrounding
livestock markets, demonstrating the importance of livestock trading for continuing disease spread. Adherence to
government policy to treat livestock at the point of sale is essential to prevent the spread of sleeping sickness in Uganda.
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Introduction

The geographical ranges of Rhodesian human African try-

panosomiasis (HAT, also known as sleeping sickness), caused by

the Trypanosoma brucei rhodesiense parasite, and the Gambian form of

the disease, caused by Trypanosoma brucei gambiense are not believed

to overlap, and Uganda is the only country thought to support

transmission of both diseases within its borders [1]. Since the

1980s, Rhodesian HAT has spread into eight districts in Uganda

which have not previously supported transmission [1–6], narrow-

ing substantially the zone currently distancing it from endemic foci

of Gambian HAT [1]. Both forms of HAT are transmitted by

tsetse flies (Glossina spp), and are fatal if untreated, although the

speed of progression to death varies between the two (within

approximately six months for Rhodesian HAT compared with

years for Gambian HAT). A reservoir of infection is present for T.

b. rhodesiense (predominantly livestock in Uganda) in contrast with

T. b. gambiense for which no known reservoir exists other than

humans. As a result, the most effective control options for the two

forms of the disease differ, as do diagnostic procedures and

treatment regimes. Currently, treatment is implemented based on

knowledge of the areas affected by each type of HAT; Gambian
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HAT occurs in the north west of Uganda and Rhodesian HAT in

the south east. Medical staff in endemic areas will presume

infection is caused by the subtype known to exist in that area and

implement the appropriate treatment regimen. A definitive

diagnostic differentiation between the two parasite subtypes is

difficult and requires expensive, complex methods which are not

currently available in affected areas. Consequently, spatial

concurrence of the two forms of HAT would compromise

diagnostic and treatment protocols, resulting in a higher

proportion of treatment failures and placing increased pressure

on an already stretched health system [7].

Recent research has focused attention on the environmental

and climatic variables involved in the spatial distribution and

spread of Rhodesian HAT [4,6,8,9]. It is believed that the spread

of Rhodesian HAT into Tororo district in 1984 was encouraged

by the political and economic situation in the country during an

epidemic which began in the early 1970s. A lack of resources and

trained personnel, insufficient control efforts and large volumes of

uncontrolled population movements through tsetse infested bush

ultimately led to the spread into Tororo district [2,3,10].

Subsequent movement further north west in 1998, into Soroti

district, was attributed to the trading of untreated, infected

livestock from T. b. rhodesiense endemic areas at a local livestock

market [4]. Since this finding, regulations have been introduced

requiring the treatment (with trypanocidal drugs) of all cattle from

endemic areas prior to the issue of transport permits [11].

However, the further subsequent spread into Kaberamaido and

Dokolo districts in 2004 has raised questions over the implemen-

tation of these regulations, with a recent study indicating that this

new expansion could also be due to the movement of untreated

livestock from endemic areas [6].

It is well documented that the focal distribution of human HAT

is determined largely by the ecological and environmental

requirements of the tsetse fly vectors [8,12–14]. There is a wide

range of Glossina species present across the sub-Saharan fly belt;

within the areas of Uganda affected by Rhodesian HAT, the

predominant species of tsetse vector is Glossina fuscipes fuscipes,

which is restricted to riverine vegetation habitats (patches of

vegetation on the banks of rivers, lakes or wetlands) [15,16].

Several studies have used a combination of ground measured and

satellite-derived variables to investigate and quantify relationships

between the occurrence of tsetse fly vectors and external factors

(i.e. environmental or climatic). Environmental factors demon-

strated to have a significant influence on vector density include

vegetation cover, land use patterns, land cover types, normalised

difference vegetation index (NDVI; a surrogate measure for the

greenness of vegetation) and rainfall [12,14,17–21]. However, the

observed relationships vary between vector species, studies, and

geographical areas, highlighting the importance of local factors in

vector occurrence.

The dependence of HAT transmission on the availability of

competent vector populations leads to indirect associations

between the spatial distribution of HAT and a variety of

environmental and climatic factors. Within affected regions, areas

with high HAT incidence tend to occur where there is a lot of

contact between humans, tsetse flies and animal reservoirs (for

Rhodesian HAT), for example, watering points [17]. Increased

disease risk and the spatial clustering of cases have been observed

in areas close to wetlands and swamps, highlighting the

importance of tsetse habitat requirements within the study areas

[8,13]. A comprehensive understanding of the social, environ-

mental and climatic aspects involved in the spatial distribution and

spread of Rhodesian HAT is vital to enable the targeting of disease

control activities. The interaction of factors influencing the long

distance spread of Rhodesian HAT (e.g. livestock trading

networks) with the environmental and climatic factors controlling

the spatial distribution of the disease in affected areas is not well

understand. Such knowledge could provide significant evidence for

targeted control measures to prevent the further spread and

establishment of the disease.

Batchelor et al [6] conducted a preliminary study of the spatial

distribution of Rhodesian HAT in two of the most recently

affected districts of Uganda (Kaberamaido and Dokolo) using two

variations of a logistic regression method. A one-step logistic

regression modelling the prevalence of HAT was compared with a

two-step method which modelled the occurrence of HAT,

delineated areas with a high predicted probability of occurrence,

and then modelled the prevalence of HAT within these areas only.

Both methods detected significant correlations between the

occurrence or prevalence of HAT and external variables including

distance to the closest livestock market, distance to the closest

health centre, maximum normalised difference vegetation index

(NDVI a measure of the amount of green vegetation) and

minimum land surface temperature (LST) as well as several other

environmental variables. The results indicated that the spread of

HAT into this area may have been facilitated by the continuing

trade of untreated, infected livestock from endemic areas as has

been previously demonstrated in neighbouring Soroti district [4].

However, the large number of significant variables in each model

hinders the biological interpretation of covariate effects. In

addition, both models were shown to over-predict prevalence of

HAT, particularly in villages with an observed prevalence of zero.

The use of non-spatial methods for the analysis of data with a

spatial structure can lead to biased regression parameters,

underestimated standard errors, falsely narrow confidence inter-

vals and, thus, an overestimation of the significance of covariates

[22–24]. Residual analysis following the logistic regression

modelling indicated the presence of some residual spatial

autocorrelation (where observations separated by small distances

are more alike than observations separated by larger distances)

after accounting for covariate effects, signifying that the variables

Author Summary

The tsetse transmitted parasites, Trypanosoma brucei
rhodesiense and Trypanosoma brucei gambiense, cause
the fatal disease human African trypanosomiasis (HAT); the
clinical progression, as well as the preferred diagnostic and
treatment methods differ between the two types. Cur-
rently, the two do not overlap, although recent spread of
Rhodesian HAT in Uganda has raised concerns over a
potential future overlap. A recent study using geo-
referenced HAT case records suggested that the most
recent spread of Rhodesian HAT may have been due to
movements of infected, untreated livestock (the main
reservoir of the parasite). Here, the initial analysis has been
extended by explicitly accounting for spatial locations and
their proximity to one another, providing improved
accuracy. The results provide strengthened evidence of
the significance of livestock movements for the continued
spread of Rhodesian HAT within Uganda, despite the
introduction of cattle treatment regulations which were
implemented in an effort to curb the disease’s spread. The
application of predictive mapping indicates an increased
risk of HAT in areas surrounding livestock markets,
demonstrating the importance of livestock trading for
continuing disease spread. This robust evidence can be
used for the targeting of disease control efforts within
Uganda to prevent further spread of Rhodesian HAT.

Bayesian Geostatistical Analysis of Rhodesian HAT
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used in the models did not capture all of the spatial variation in the

observations [6]. The current research employs a spatial extension

of the one-step logistic regression analysis. Specifically, a

generalised linear geostatistical model in a Bayesian framework

was used to account explicitly for spatial autocorrelation and

incorporate uncertainty in the input data and model parameters.

The current analysis provides a more rigorous analytical

approach, potentially resulting in more accurate parameter and

significance estimates and increased predictive accuracy

[22,25,26]. The validity of the hypothesis that the movement of

untreated, infected livestock resulted in the introduction of T. b.

rhodesiense to the study area was assessed, given a more robust

parameter estimation and appropriate assessment of covariate

effects. The application of such methods to epidemiological

research for the estimation of covariate effects and predictive

mapping has been demonstrated in several recent studies including

Diggle et al [27], Hay et al [28], Craig et al [29] and Kazembe et al

[30].

Materials and Methods

Ethics Statement
No patient names were recorded to maintain patient confiden-

tiality and to adhere to the International Ethical Guidelines for

Biomedical Research Involving Human Subjects. The use of these

data was approved by the University of Edinburgh Research

Ethics Committee.

Study area
The area of study included Kaberamaido and Dokolo districts

(in the Eastern and Northern regions respectively) in Uganda,

which have been affected by Rhodesian HAT since 2004. The

study districts border the northern shore of Lake Kyoga with a

combined area of approximately 2,740 km2 and a population of

approximately 261,000 [31]. The main economic activities within

the study area are agriculture and fishing, with the majority of the

population engaged in subsistence farming [32]. The study period

included Rhodesian HAT cases occurring from February 2004

(when the first cases were reported) to December 2006. A control

programme involving the mass treatment of cattle in the study

area began in September 2006. This control programme aimed to

decrease the prevalence of human infective T. b. rhodesiense in the

reservoir and, thus, altered the epidemiology of HAT in this area

in the subsequent year; hence we have excluded from the analysis

any cases diagnosed after 2006.

Human African trypanosomiasis data
Records of all patients resident within Kaberamaido and

Dokolo districts that received a positive diagnosis (direct detection

of the parasite in blood, lymphatic fluid or cerebrospinal fluid

using microscopy) of HAT between January 2004 and December

2006 were obtained from Lwala hospital (Kaberamaido district)

and Serere hospital (Soroti district, which neighbours Kabera-

maido). All villages within Kaberamaido and Dokolo districts were

geo-referenced using a handheld global positioning system (GPS:

Garmin, E-trex Venture), with direction from local guides. The

HAT records were linked to the geo-referenced village dataset

using village of residence and visualised using ArcMap 9.1 (ESRI,

Redlands, CA). To maintain the anonymity of subjects and patient

confidentiality and to adhere to the International Ethical

Guidelines for Biomedical Research Involving Human Subjects,

no patient names were recorded within the database or as part of

the data collection process. Further details regarding the

provenance of these data have previously been published by

Batchelor et al [6].

Covariate data
Non-spatial logistic regression methods were used to identify a

set of environmental, climatic and social variables that were

significantly correlated with HAT prevalence [6]. These were:

distance to closest livestock market; distance to closest health

centre; distance to closest area of woodland; maximum normalized

difference vegetation index (NDVI); NDVI phase of annual cycle

(the timing of the cycle); minimum land surface temperature

(LST); mean LST; LST phase of annual cycle and LST annual

amplitude (the amount of variation around the mean). The value

of each covariate was extracted for each village in the study area.

The locations of all livestock markets and health centres within

the study area were recorded during fieldwork using a handheld

GPS. Maps detailing areas of woodland within the study area were

obtained from the National Biomass Survey, which was conducted

by the Uganda Forest Department between 1995 and 2002 [33].

These classifications were the result of a quantitative interpretation

of remotely sensed images along with ground data and

supplementary data layers and, thus, their accuracy may be

variable. The distance between each village and the closest

livestock market, health centre and area of woodland was

calculated in kilometres. The LST and NDVI indices were

derived using a Fourier transformation of Advanced Very High

Resolution Radiometer (AVHRR) imagery. NDVI is a measure of

the amount of green vegetation [34]; both vegetation cover (in

terms of suitable tsetse habitat) and temperature have been shown

to influence the distribution of HAT [12]. Temporal Fourier

processing reduces the number of data to be processed by

eliminating redundancy and characterising seasonality. Full details

regarding the data used and the Fourier analysis can be found in

Hay et al [35].

Statistical analysis
The spatial variation in HAT prevalence within Kaberamaido

and Dokolo districts was modelled using model-based geostatistics

[26,36] with a spatial generalised linear model and Bayesian

inference of model parameters [36]. The method used was a

spatial extension of a logistic regression model, which can be used

for the analysis of geo-referenced binomial data (e.g. disease

prevalence where the outcome variable is bounded between zero

and one) [26,36,37]. The modelling process describes the

variability in the response variable as a function of the explanatory

variables with the addition of a stochastic spatial effect to model

the residual spatial autocorrelation [26,37]. Exponentiation of the

model parameters gives the odds ratio (OR) for each covariate; this

indicates the strength and direction of relationships between the

explanatory and outcome variables.

Model specification
The total number of HAT cases Yi within village i was

modelled as a conditionally independent binomial variable,

Yi*Bin ni,pið Þ, where ni is the total village population and pi is

the underlying population prevalence of HAT at location i. The

method is an extension of a GLM using the logit link function,

incorporating a stochastic spatial effect S(x) as follows:

Log pi=½1{pi�f g~b0zb1n1i:::zbknkizSi

where b0 is the intercept term and b1 to bk are the regression

coefficients relating to covariates n1 to nk.

Bayesian Geostatistical Analysis of Rhodesian HAT
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The stochastic spatial component is modelled as a zero mean

Gaussian process with variance s2 and autocorrelation function

r dij ,h
� �

, where dij~xi{xj measures the Euclidean distance

between xi and xj ; h~ w,s2
�

,t2
�

; w is the range (effectively the

maximum distance at which there is spatial autocorrelation

between observations) and t2 is the relative nugget. This serves

to model the spatial variation in the residuals after accounting for

the covariates, n1 to nk.

The model parameters were estimated using a Bayesian

framework with a Markov chain Monte Carlo (MCMC) algorithm

in the package geoRglm [37] in the R statistical software [38].

MCMC methods involve the construction of a Markov chain (a

mathematical representation of a random process where future

values are conditionally independent of past values, and depend

only on the present value), with the desired probability distribution

at its equilibrium (the stationary posterior distribution which the

chain will converge to following a suitable number of iterations).

Samples can then be drawn from the equilibrium distribution and

summarised to provide parameter estimates, quantiles and other

measures of the distribution [39].

Priors (in Bayesian inference a prior is a probability distribution

expressing uncertainty about a parameter before taking into

account data observations) were selected for each parameter to

represent prior knowledge of their distributions. Non-informative,

uniform priors were selected for the regression parameters, bk and

the variance, s2 in the absence of prior knowledge. This allows the

observed data to have the greatest influence on posterior

distributions without being constrained by the choice of prior

and can also improve MCMC convergence [27,40]. The range

parameter, w, was fixed and optimised by minimising the mean

squared error due to potential problems with the estimation of

both w and s2 [41]. This acted as a compromise between statistical

rigor and computational ease: the range parameter would ideally

be estimated along with all other parameters, but previous trials

indicated problems with the mixing and convergence of MCMC

chains when both w and s2 were being estimated. A Matérn

correlation function was used [27] with a discrete order

(smoothness parameter) of 0.5. This equates to the use of an

exponential correlation function. The relative nugget parameter,

t2, was fixed at 1 after inspection of the residual variogram.

Univariate parameter estimation
Due to convergence and mixing problems when including all of

the covariates listed in Table 1, each of the explanatory variables

was examined independently using the above modelling frame-

work. The MCMC algorithms were tuned to give an acceptance

rate of approximately 60%, and the fixed prior for w was optimised

using several iterations to obtain a minimised mean squared error

for each explanatory variable.

The univariate spatial models were run for 2,000,000 iterations,

with the first 1,000,000 discarded and every 100th iteration

thereafter stored to assess the significance of each explanatory

variable. Convergence and mixing of the MCMC algorithms was

judged based on traceplots and autocorrelation plots for each

model parameter to ensure that convergence had been reached,

the chains had mixed adequately and autocorrelation amongst the

samples was minimal. The mean values from the posterior

distribution and their 95% credible intervals (CI)s were calculated

and exponentiated to provide odds ratios (OR)s and their

respective uncertainty measures. Only those covariates that were

significantly associated with HAT prevalence (i.e. the 95% CI for

the OR did not include the value 1) were selected for the

multivariate spatial regression model.

Multivariate parameter estimation
An initial run of the multivariate model was carried out

following the optimisation of w and tuning of the MCMC

algorithm as described for the univariate parameter estimation.

The regression parameters and 95% CIs were inspected. Any

covariates that were non-significant in the multivariate model were

discarded from the final model.

The fixed w value was again optimised for the final multivariate

model and the MCMC algorithm tuned. Following a burn-in of

1,000,000 iterations, the chain was run for a further 5,000,000

iterations, with every 1000th iteration thereafter stored, resulting in

a total of 5,000 samples from the posterior distributions. The

regression parameters and 95% CIs were obtained from the model

and exponentiated as above.

Spatial predictions
A 2 km spatial resolution prediction grid was created for the

study area, containing covariate values at each prediction location

(grid cell). Samples from the predictive distribution for each

prediction location were generated using the MCMC algorithm

given the explanatory variables at each grid cell. The posterior

medians and lower and upper 95% CI limits from the predictive

distributions were extracted to give predicted prevalence and

uncertainty estimates at all locations. The predictions were then

exported to ArcMap for illustrative purposes.

A scatter plot of predicted prevalence versus observed

prevalence was created to illustrate the relationship between the

model predictions and observations, and the correlation between

fitted and observed prevalence was calculated. In addition, the

mean error, median error and absolute mean error (calculated

using prevalence per 100 population and, therefore, expressed as

percentages) were calculated based on the difference between

observed and predicted prevalence at each location, to give an

indication of the prediction bias (mean and median error) and

accuracy (absolute mean error). The Pearson residuals were

calculated [42] and the residual variogram was plotted to examine

any residual spatial autocorrelation. This was compared with the

residual variogram from the non-spatial logistic regression model

as described in Batchelor et al [6].

Results

There were a total of 692 villages within the study area

(Kaberamaido and Dokolo districts); all but two were geo-

Table 1. Odds ratios and 95% CrI from Bayesian univariate
regression analysis.

Odds Ratio 95% CrI

Distance to closest livestock market 0.81 0.76 to 0.86*

Distance to closest health centre 0.85 0.76 to 0.95*

Maximum NDVI 1.06E25 2.75E212 to 36.60

Minimum LST 1.57 1.11 to 2.29*

LST phase of annual cycle 1.19 0.91 to 1.51

Distance to woodland 1.19 0.95 to 1.46

NDVI phase of annual cycle 3.25 1.02 to 10.07*

Mean LST 0.90 0.59 to 1.38

LST annual amplitude 0.86 0.66 to 1.13

*Indicates significance at the 95% level.
doi:10.1371/journal.pntd.0000914.t001

Bayesian Geostatistical Analysis of Rhodesian HAT
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referenced (two were excluded due to logistical difficulties). Of the

remaining 690 villages, 18 that had recently separated into two

were merged for the purpose of the analysis. Within the study

period 354 cases of HAT were reported from these two districts,

which equates to an overall period prevalence (2004–2006) of 0.14

per 100 population, although this value is very likely to be an

underestimate due to complex issues surrounding care seeking

behaviour for HAT and the under utilisation of health services

[43,44]. Of these patient records, 52 could not be matched to any

of the known villages in the study area and so were excluded from

the analysis. This was most likely due to inaccuracies in the

recording of patient details in the hospital records. Treatment

outcomes were not recorded for all cases; of the 251 cases for

which the treatment outcome was known, 93.6% were treated

successfully and 6.4% died.

Univariate parameter estimation
From the univariate spatial regression model, five variables

which were significantly correlated with HAT prevalence using

deterministic, non-spatial logistic regression did not retain their

statistical significance (see Table 1 for ORs and 95% CIs). Four

covariates retained their significance in the spatial regression

analysis. Increasing distance from the closest livestock market had

a protective effect in terms of HAT prevalence (OR = 0.81, 95%

CrI = 0.76 to 0.86), as did increasing distance to the closest health

centre (OR = 0.85, 95% CrI = 0.76 to 0.95). Areas with higher

minimum land surface temperature and larger NDVI phase of

annual cycle had significantly increased odds of HAT (OR = 1.57,

95% CrI = 1.11 to 2.29 and OR = 3.25, 95% CrI = 1.02 to 10.07

respectively).

Multivariate parameter estimation
The NDVI phase of annual cycle covariate did not retain

statistical significance when included along with the other three

significant covariates in the multivariate spatial regression

(OR = 1.73, 95% CrI = 0.61 to 5.00), and so was omitted from

the final multivariate model. The remaining three covariates

retained significance at the 95% level (see Table 2). Both

increasing distance to the closest livestock market and increasing

distance to the closest health centre had protective effects

(OR = 0.83, 95% CrI = 0.78 to 0.88 and OR = 0.88, 95%

CrI = 0.79 to 0.97 respectively). Additionally, areas with a higher

minimum LST had increased odds of HAT (OR = 1.49, 95%

CrI = 1.09 to 2.10). The variance (s2) was estimated to be 1.17

(95% CrI = 0.74 to 1.75).

The posterior distributions for all parameters were normally

distributed, although for s2 there was a slight positive skew.

Traceplots and autocorrelation plots for model parameters were

examined to assess the mixing and convergence of the MCMC

algorithms and each appeared to have reached convergence

during the burn-in period and to be mixing well. Autocorrelation

amongst samples was minimal. The posterior distribution curves

for the final model parameters (Figure S1), traceplots (Figure S2)

and autocorrelation plots (Figure S3) are available in the

supplementary information.

Spatial predictions
The predicted prevalence surface from the final spatial model is

illustrated in Figure 1a and is overlaid with observed village

prevalence data in Figure 1b (displayed as prevalence per 100

population; a percentage). Figures 1c and 1d illustrate the lower

and upper 95% credible limits for the prediction. The area of

highest predicted prevalence within the study area corresponds

with the majority of high prevalence villages. Several potential

high prevalence areas out with the study area correspond to areas

surrounding livestock markets, with the effect of distance to the

closest health centre and minimum land surface temperature also

accounted for. The areas with the highest predicted prevalence

also have the largest 95% credible intervals, which is due to the

greater variability of observed village level prevalence in the high

prevalence areas (i.e. villages with high prevalence are interspersed

with zero prevalence villages within the high prevalence area).

A plot of predicted prevalence versus observed prevalence

(Figure 2) shows a tendency to under-predict the prevalence in

high prevalence villages and over-predict in zero prevalence

villages, with an overall correlation between observed and fitted

prevalence of 0.95. The predicted prevalence (expressed as

prevalence per 100 population; a percentage) had a mean error

of 20.00094%, a median error of 0.018% and an absolute mean

error of 0.064%.

The empirical variogram of the Pearson’s residuals from the

non-spatial model as discussed in Batchelor et al [6] indicates the

presence of some unexplained spatial variation in the residuals

(Figure 3a). The residual spatial autocorrelation from the spatial

model (Figure 3b) gives a flatter variogram, with a smaller amount

of residual variation than the non-spatial model indicating that the

spatial model has accounted for a larger amount of the spatially

correlated variation in the prevalence data than the non-spatial

model. Overall, the diagnostics show that although the spatial

model results in less residual variation and greater correlation

between observed and predicted prevalence, there is still some

residual spatial variation in HAT prevalence within the study area

which is not being accounted for; in particular, several zero-

prevalence villages have higher predicted prevalence than was

observed.

Discussion

The results presented here extend an initial (non-spatial)

analysis as published by Batchelor et al [6]. A spatial analysis

was conducted, in which a generalised linear geostatistical model

was applied with Bayesian implementation, as described by Diggle

et al [26]. This method allows the assessment of covariate effects

while modelling the residual spatial autocorrelation explicitly and

incorporating uncertainty in the input data and model parameters.

This approach allowed a more robust assessment of covariate

effects, with more accurate parameter and significance estimates

than those obtained using non-spatial methods. The results

provide significant support for the hypothesis that Rhodesian

HAT was introduced into Kaberamaido and Dokolo districts via

the movement of infected livestock. In addition, the significant

Table 2. Odds ratios and 95% credible intervals from
Bayesian multivariate regression analysis.

Odds ratio 95% CrI

Intercept 9.02E26 4.77E28 to 0.001

Distance to closest livestock
market

0.83 0.78 to 0.88

Distance to closest health
centre

0.88 0.79 to 0.97

Minimum LST 1.49 1.09 to 2.10

s2 (variance) 1.17* 0.74 to 1.75

*Indicates variance value rather than OR.
doi:10.1371/journal.pntd.0000914.t002

Bayesian Geostatistical Analysis of Rhodesian HAT
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relationships between HAT prevalence and environmental,

climatic and social factors detected using the non-spatial regression

have been clarified.

Following on from the non-spatial logistic regression methods

discussed in Batchelor et al [6], many of the covariates that retained

significance in the multivariate non-spatial regression model of

HAT prevalence lost significance in the Bayesian implementation of

a spatial logistic regression model. As a starting point for the spatial

model, it would have been preferable to include all covariates from

the final fitted non-spatial logistic regression model. Any covariates

which did not retain statistical significance when accounting for

residual spatial autocorrelation would then be removed prior to the

final fitting of the model. However, when including all covariates,

problems with the convergence and mixing of the MCMC

Figure 1. Predicted prevalence of HAT per 100 population from final spatial model. Predicted prevalence (1a), predicted prevalence with
observed village prevalence (1b) and lower (1c) and upper (1d) 95% credible limits.
doi:10.1371/journal.pntd.0000914.g001
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algorithms were encountered. It is likely that the problematic

MCMC performance with the full multivariate model was due to

correlation and redundancy of some of the covariates and

potentially also difficulties in estimating a large number of

parameters at the same time.

Five covariates did not retain statistical significance during the

univariate spatial regression and one (NDVI phase of annual cycle)

did not retain significance during the multivariate spatial regression,

indicating that the non-spatial model may have inflated the

significance of covariates and produced inaccurate parameter

estimates. The final spatial model included three covariate effects:

distance to the closest livestock market, distance to the closest health

centre and minimum LST. These results, using a more robust

assessment of covariate effects, provide considerable strength to the

hypothesis that the movement of infected, untreated livestock from

endemic areas resulted in the introduction of T. b. rhodesiense to

Kaberamaido and Dokolo districts. Previous research has estab-

lished that the introduction of Rhodesian HAT transmission within

Soroti district (which neighbours the study area) was due to

movements of untreated cattle from endemic areas through a local

livestock market [4]. The results discussed here, supported by the

findings discussed in Batchelor et al [6], strongly indicate a similar

occurrence in Kaberamaido and Dokolo districts; T. b. rhodesiense is

likely to have been introduced to Dokolo and Kaberamaido via the

continued movement of untreated livestock, despite the introduc-

tion of a law requiring the treatment of livestock from endemic

areas, prior to sale [11].

Within the study area, it is problematic to separate the effects of

differential utilisation of the HAT treatment centre, where those

living closer are more likely to travel there for diagnosis and

treatment than those living further away, from the purposeful siting

of the treatment centre within the area most affected by HAT.

Following the detection of a number of cases in Kaberamaido

district in 2004, appropriate training and equipment were provided

to one hospital within the area. The facility was selected based on a

number of criteria, including the location within the affected area.

Due to this difficulty, the distance to the closest health centre of any

kind was used rather than distance to the HAT treatment centre.

The significance of this variable in the spatial regression model

highlights the importance of accessibility to health services as has

been shown previously [8,43]. The observed protective effect of

living further from a health centre may indicate a confounding

effect, with individuals living in more remote areas and further from

health care services being less likely to access treatment and, thus, be

diagnosed with and treated for HAT.

Minimum LST was observed to be a risk factor for HAT, with

higher prevalence in areas with higher minimum LST. Minimum

Figure 2. Fitted village prevalence versus observed village
prevalence.
doi:10.1371/journal.pntd.0000914.g002

Figure 3. Residual variograms using Pearson residuals. Residual variogram from the non-spatial model (3a) [6] and the Bayesian spatial model
(3b).
doi:10.1371/journal.pntd.0000914.g003
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LST is calculated using measurements of radiance modified by the

atmosphere in several spectral wavebands and varies depending on

climate and also landcover properties (e.g. amount of vegetation,

urbanisation or soil moisture) [45]. The size of the study area

(approximately 60 km by 60 km) suggests that the observed

correlations are more likely to be due to the heterogeneous

landcover profile and soil and vegetation moisture content than to

climatic variability across the two districts, although the precise

interpretation of this mechanism is not clear. Further work is

planned to disentangle the effects of climate and landcover;

utilising finer spatial resolution climatic data and encompassing a

larger study area, the research will investigate the dynamic nature

of the distribution of HAT and relate this to climatic,

environmental and social covariates (including temperature,

rainfall and landcover classes).

When the performance of the spatial regression model was

compared with that of the non-spatial model (one-step model of

prevalence as discussed in Batchelor et al [6]), the predictions from

the spatial model are seen to be more accurate. The correlation

between observed and fitted prevalence for the non-spatial model

was 0.58, compared with a correlation of 0.95 for the spatial

model. The absolute mean error for the non-spatial model was

0.13%; double that of the spatial model (0.064%, calculated based

on prevalence per 100 population). Despite the increase in

accuracy gained by modelling the residual spatial autocorrelation

after accounting for covariate effects, there was still a tendency to

over-predict in zero prevalence villages and also to under-predict

in high prevalence villages. The over-prediction in zero prevalence

villages indicates the presence of extra-binomial variation (greater

variability in the observations than can explained by the model)

whereby additional unmeasured factors may be influencing the

spatial heterogeneity of HAT prevalence within small areas. From

the observed prevalence it can be seen that within the main ‘focus’

of infection there are several zero prevalence villages interspersed

amongst high prevalence villages, which are not explained

adequately by the spatial regression model. The estimates of

model uncertainty (95% CrIs) also highlight this, with larger

predictive uncertainty in the areas with higher predicted

prevalence as can be seen in Figures 1c and 1d. This non-constant

variance in the error is known as heteroscedasticity. Future

research as described above aims to deal with these issues by

utilising a wider range of covariate datasets, with finer spatial

resolutions.

Although these methods have taken into account the effect of

health care accessibility on the spatial distribution of reported

HAT, underreporting is well documented [43,44], with evidence

suggesting that for every Rhodesian HAT case that dies within the

health care system, another 11 cases will go undetected and

therefore untreated, resulting in death [44]. Underreporting of

HAT causes serious problems for the estimation of disease burden,

determination of the spatial extent of disease transmission and the

prioritisation of resources, and also impacts on research conducted

using data acquired from passive case detection. However, the lack

of a rapid, cheap and easy to use diagnostic test for T. b. rhodesiense,

combined with the very low prevalence of disease in affected areas,

makes active screening a difficult and expensive task for the

detection of very few cases of disease. Further work which is

currently being planned includes active population screening in a

sample of villages; this data will be compared with hospital records

to ascertain the proportion of Rhodesian HAT patients that are

not accessing treatment and to allow estimation of the true burden

of disease in affected areas.

The research described utilised a variety of data sources

providing information relevant to the distribution of the tsetse fly

vector and, thus, also the distribution of Rhodesian HAT.

However, accurate tsetse distribution or density data were not

available for the study area, although the explicit inclusion of

information on the spatial distribution of tsetse may have resulted

in improved predictive power and provided further information on

the determinants influencing the spatial heterogeneity in HAT

prevalence within the main focus of disease. Additional factors that

may play an important role in the observed spatial heterogeneity

of HAT within Uganda include demographic factors, migration

and human movement and behaviour patterns, due to their

influence on the frequency of interaction between humans, tsetse

and livestock. Although human migration has the potential to

introduce T. b. rhodesiense to previously unaffected areas, in this

situation it seems unlikely to have occurred due to the strong

evidence supporting the theory of introduction via livestock

movements. Additionally, the transmission of T. b. rhodesiense

normally occurs between reservoir hosts (i.e. cattle) with only

sporadic transmission to humans [46,47].

The current research has demonstrated the application of

Bayesian geostatistical modelling to the spatial distribution of HAT

within a small area of Uganda. The more robust results provide

strengthened evidence of the role of livestock trade in the

continued spread of Rhodesian HAT within Uganda and the

utility of this methodology for the prediction of HAT prevalence

based on external covariates has also been demonstrated. The

dataset used in this situation covered a relatively small area (two

districts) with as complete a dataset as possible (all but two villages

were geo-referenced, and all HAT cases that could be matched to

a village of residence were used). The predictive power of this

model over larger areas (i.e. out with the initial study area) is

constrained due to the limited area from which the observed data

came. To allow the full exploitation of these methods, future work

will focus on a larger study area using a sample of villages. This

will allow an investigation of HAT prevalence in relation to wider

covariate ranges and will allow extrapolation over larger areas.

The Bayesian implementation of model-based geostatistics as

described here is computationally expensive and can be time

consuming, but the application of such methods to epidemiological

research is being assisted by a growing base of knowledge and

expertise, along with the creation of more efficient algorithms

[48,49]. The utility of such methods for the accurate estimation of

disease burden and the spatial targeting of control measures has

been demonstrated in the literature by a variety of applications at

local, national, regional and continental scales including malaria

[50,51], schistosomiasis [40,52] and trachoma [53].

The research presented here illustrates the importance of spatial

autocorrelation in epidemiological variables; the use of non-spatial

logistic regression analysis resulted in a model with a large number

of covariates, complicating the interpretation of their effects. The

use of a generalised linear geostatistical modelling framework,

which models the residual autocorrelation after accounting for

covariate effects, gave more precise and less biased parameter and

significance estimates, with only three covariates retaining

significance in the final model. The Bayesian implementation of

the method allowed the incorporation of uncertainty in each of the

model parameters from the posterior distributions and from the

definition of a random variable. By carrying out the spatial-

regression analysis, the quantified relationships between HAT

prevalence and significant covariates can be more confidently

described and interpreted. The predictive accuracy was also

increased by using the spatial regression when compared to the

non-spatial logistic regression analysis. These results strengthen the

evidence in support of the hypothesis generated by the analysis

discussed in Batchelor et al [6]; that the movement of untreated,
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infected livestock from endemic areas resulted in the introduction

of Rhodesian HAT to the study area.

Supporting Information

Figure S1 Posterior distributions for model parameters.

Found at: doi:10.1371/journal.pntd.0000914.s001 (0.25 MB TIF)

Figure S2 Traceplots of MCMC output for each parameter.

Found at: doi:10.1371/journal.pntd.0000914.s002 (0.68 MB TIF)

Figure S3 Autocorrelation plots of MCMC output for each

parameter.

Found at: doi:10.1371/journal.pntd.0000914.s003 (0.37 MB TIF)
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