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Abstract. The minimal sub-Planckian axion inflation model accounts for a large scalar-to-
tensor ratio via a spiralling trajectory in the field space of a complex field Φ. Here we consider
how the predictions of the model are modified by Planck scale-suppressed corrections. In the
absence of Planck corrections the model is equivalent to a φ4/3 chaotic inflation model. Planck
corrections become important when the dimensionless coupling ξ of |Φ|2 to the topological
charge density of the strongly-coupled gauge sector FF̃ satisfies ξ ∼ 1. For values of |Φ| which
allow the Planck corrections to be understood via an expansion in powers of |Φ|2/M2

Pl
, we

show that their effect is to produce a significant modification of the tensor-to-scalar ratio from
its φ4/3 chaotic inflation value without strongly modifying the spectral index. In addition, to
leading order in |Φ|2/M2

Pl
, the Planck modifications of ns and r satisfy a consistency relation,

∆ns = −∆r/16. Observation of these modifications and their correlation would allow the
model to be distinguished from a simple φ4/3 chaotic inflation model and would also provide
a signature for the influence of leading-order Planck corrections.
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1 Introduction

There has recently been renewed interest in the theoretical issues surrounding a large tensor-
to-scalar ratio r, following the claim by BICEP2 [1, 2] to have observed a large value for
r > 0.1. Although it has since become clear that the dust signal in the analysis of [1, 2]
was underestimated, the theoretical issues raised by the result remain interesting. A serious
difficulty with large r is the need for a super-Planckian value of the inflaton field in single-field
inflation models. The Lyth bound [3, 4] shows that the change of the inflaton field during
inflation must be ∼ 10MPl if r ∼ 0.1.1 In this case additional non-renormalizable potential
terms scaled by the Planck mass, which would be expected dimensionally, must somehow
be suppressed.

But even if the additive Planck potential corrections can be suppressed, in order to
discuss inflation in the absence of a complete knowledge of Planck-scale physics it may still
be necessary to have sub-Planckian field values during inflation. Moreover, it is possible that
Planck corrections will present an insurmountable barrier to inflation at super-Planckian
field values. This is true in generic supergravity models [5], for example, where even if
Planck-scale suppressed non-renormalizable superpotential terms can be eliminated (by an
R-symmetry, for example), corrections due to the eK prefactor which multiplies the SUSY
inflaton potential will still require that |Φ| < MPl in order that the potential can be calculated
without knowledge of the complete Kähler potential K, or even to allow inflation to be
possible should this prefactor grow exponentially once |Φ| > MPl.

Based on this example, we propose that, in the absence of a complete theory of Planck-
scale physics, Planck corrections to the uncorrected inflaton potential V0(φ) should generally
be considered to consist of an additive correction and a multiplicative correction

V = f

(

φ

MPl

)

V0(φ) + g

(

φ

MPl

)

. (1.1)

In order to have a model of inflation which is robust with respect to Planck corrections, we
should therefore (i) sufficiently suppress the additive term g relative to the first term and (ii)

1MPl = 1/
√
8πG.

– 1 –



J
C
A
P
0
5
(
2
0
1
5
)
0
1
4

ensure that the multiplicative term f does not prevent inflation. As in the SUGRA example,
where g is due to Planck corrections to the superpotential whereas f is due to the Kähler
potential, g can be independent of f . In the case where φ is close to MPl, we therefore need
to assume that g is no larger than V0. But even with this assumption, in the absence of a
complete Planck-scale theory giving the exact function f , we also need to assume that φ is
sub-Planckian in order to be able to control f via an expansion in φ/MPl. Therefore, in order
to have a model of inflation which is robust with respect to Planck corrections, the inflaton
should be sub-Planckian, even if the additive Planck corrections can be suppressed.

However, should a large value of r be observed, there is then the problem raised by the
Lyth bound. The Lyth bound refers to the length of the inflaton trajectory. Therefore, if
the inflaton potential can spiral in field space, for example in the space of a complex field Φ,
then the bound can be satisfied while |Φ| remains sub-Planckian. Ideally, one would hope to
find a model which is based on a straightforward particle physics effective theory and so is
independent of assumptions about the nature of the complete theory of physics. There have
been a number of effective field theory models with inflaton trajectories which can in some
way spiral. (See, for example, [6–15].) This was first achieved in [6] (see also [7]), in a model
based on two axions and two strongly-coupled gauge groups with aligned decay constants.
In [8] a two-axion model was proposed with a single non-perturbative potential term plus an
ad hoc quadratic potential for one of the axions. A similar scheme was proposed in [9], but
with a second non-perturbative potential term for one of the axions replacing the quadratic
potential term of [8], which alleviates the fine-tuning required in the models of [6, 7]. In [14]
a variation of [8] with a symmetry-breaking potential was considered. SUGRA models of
spiralling inflation were presented in [12, 13].

Recently, we proposed a minimal spiralling axion inflation model which is based on a
single axion and a single strongly-coupled gauge group [11]. It effectively replaces the second
axion of the two-axion models by |Φ|2, exploiting the natural coupling of |Φ|2 to FF̃ . This
model makes predictions which are quite different from those of the two-axion models, being
dynamically equivalent to a φ4/3 chaotic inflation model in the absence of Planck corrections.2

Here we will consider the effect of Planck corrections on the minimal sub-Planckian
axion inflation model. In particular, in the case where the coupling of |Φ|2 to the topological
charge density of the strongly-coupled gauge group has its dimensionally natural value, ξ ∼ 1,
|Φ| is close to MPl and so Planck corrections can be significant. We will show that the effect of
leading-order Planck corrections is to significantly modify the tensor-to-scalar ratio without
strongly altering the spectral index. Moreover, the shifts of the tensor-to-scalar ratio and the
spectral index due to leading-order Planck corrections satisfy a consistency relation which
is specific to the model. Observation of these shifts would therefore allow the model to be
distinguished from a simple φ4/3 chaotic inflation model and at the same time provide a
signature for the influence of Planck-scale physics on the inflaton potential.

2 The minimal sub-Planckian axion inflation model

The minimal sub-Planckian axion inflation model [11] is structurally similar to the KSVZ
axion model [16, 17]. A complex field Φ, the phase of which is the axion, couples to fermions
Q in the fundamental representation of a strongly-coupled gauge group,

hΦQRQL + h.c. . (2.1)

2An alternative model which also uses |Φ| and the phase of Φ was recently presented in [15].
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The key difference from a conventional axion model is the direct coupling of Φ to the topo-
logical charge density of the strongly-coupled gauge group via the symmetry-invariant com-
bination Φ†Φ,

g2ξ
|Φ|2
M2

Pl

FF̃ , (2.2)

where ξ is a dimensionless parameter. This coupling is consistent with all symmetries and
would therefore be generally expected to exist as part of an effective theory. The quarks
Q are assumed gain a mass from the vacuum expectation value of Φ, therefore the full
renormalizable potential is

V0(Φ) = −µ2|Φ|2 + λ|Φ|4 . (2.3)

During inflation we will assume that the symmetry breaking mass term is negligible, therefore
we will consider V0(Φ) = λ|Φ|4. As in the KSVZ model, Φ has charge +1 and Q has charge
+1/2 under a U(1)A global axial symmetry. In eq. (2.1), the phase θ of Φ (= φeiθ/

√
2) can be

rotated away via a local chiral transformation of the quarks. This results in a U(1)A-breaking
interaction of θ with the gauge fields due to the chiral anomaly,

g2θ

32π2
FF̃ . (2.4)

The total interaction with the gauge fields can therefore be written as

g2

32π2

( |Φ|2
Λ2

+ θ

)

FF̃ , (2.5)

where Λ = MPl/(32π
2ξ)1/2. The quarks gain a mass from the large value of |Φ| during

inflation. Under the assumption that the quarks are heavier than the strong-coupling scale
Λsc, the resulting non-perturbative potential term generated by the strongly-coupled gauge
sector is [18]

Vsc(|Φ|, θ) = −Λ4

sc cos

( |Φ|2
Λ2

+ θ

)

. (2.6)

Therefore the full potential responsible for inflation is

V (Φ) = V0(Φ) + Vsc(Φ) + Λ4

sc = λ|Φ|4 + Λ4

sc

[

1− cos

( |Φ|2
Λ2

+ θ

)]

, (2.7)

where we have added a constant term Λ4
sc so that the potential equals zero at the global

minimum. For a range of values of Λsc and ξ, this potential has a spiralling groove inscribed
on the |Φ|4 potential in the complex plane3 [11]. Inflation occurs along this groove (very close
to the angular or axion direction), allowing a super-Planckian change in the inflaton field while
|Φ| remains sub-Planckian. The construction of the model is such that it makes quite specific
predictions about the form of the potential, in particular the |Φ|4 perturbative potential and
inclusion of |Φ|2 in the argument of the non-perturbative potential. (All other models so far
proposed have only linear fields in the argument of the non-perturbative potential.)

3The handedness of the spiral is a result of the C- and CP-violating nature of the FF̃ term in Eq.(6),
which can produce a U(1)A charge asymmetry in the complex field. This can be seen since a field rotating in
the complex plane has a global U(1) charge density given by ρQ = −i(Φ†∂0Φ− (∂0Φ

†)Φ) = 2θ̇|Φ|2.
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It will be convenient to summarize the main results of [11]. To a good approximation,
the local minima of the potential along the φ direction satisfy

|Φ|2
Λ2

≈ 2nπ − θ , (2.8)

where n is an integer. (This is demonstrated in appendix A.) The direction of inflation is
very close to the phase direction if (dφ/dθ)2 ≪ φ2, and the resulting potential can be written
in terms of an axion field â where dâ = −φ(dθ/dφ)dφ, φ =

√
2|Φ| and dθ/dφ is obtained

from eq. (2.8). The effective inflaton â, which is defined such that â = 0 when φ = 0, is
related to φ by

â =
φ3

3Λ2
. (2.9)

Therefore along the groove (where, as shown in appendix A, the non-perturbative contribu-
tion to the potential is essentially equal to zero), V ∝ |Φ|4 ∝ â4/3 and so inflation along the
axion direction is dynamically equivalent to a φ4/3 chaotic inflation model, which predicts
r = 16/3N = 0.097 and ns = 1− 5/3N = 0.970 for N = 55. â and |Φ| are related to N by

â

MPl

=

(

8N

3

)1/2

(2.10)

and
|Φ|
MPl

= (3N)1/6
(

Λ

MPl

)2/3

. (2.11)

The value of Λ is determined by the curvature perturbation at N e-foldings

Λ

MPl

=

(

1

3

)1/4( 1

N

)5/8(8π2Pζ

λ

)3/8

. (2.12)

With P
1/2
ζ = 4.8× 10−5 and N = 55 this gives

Λ

MPl

= 1.8× 10−4 λ−3/8 (2.13)

and so
|Φ|
MPl

= 0.0075 λ−1/4 . (2.14)

The corresponding value of ξ is given by

ξ =
M2

Pl

32π2Λ2
= 9.8× 104 λ3/4 . (2.15)

Therefore, in terms of ξ,
|Φ|
MPl

= 0.35 ξ−1/3 (2.16)

and

λ = 2.2× 10−7 ξ4/3 . (2.17)

Thus |Φ| <
∼ 0.01MPl throughout N = 60 e-foldings when λ ∼ 1 and |Φ| <

∼ 0.4MPl when
ξ ∼ 1 [11].

– 4 –



J
C
A
P
0
5
(
2
0
1
5
)
0
1
4

A number of conditions must be satisfied for the model to be consistent. In order to
have a local minimum in the radial direction close to the minimum of the non-perturbative
potential, we require that V

′

sc(φ) ≫ V
′

0
(φ) when φ significantly deviates from the minimum of

Vsc. This will be satisfied if Λsc > λ1/4(Λφ)1/2 = 1.4× 10−3λ−1/16MPl. (Minimization in the
radial direction is discussed further in appendix A.) The effective mass squared in the radial
direction at the local minimum is large enough to reduce the dynamics of the model to a single-
field model in the â direction if V

′′

sc(φ) ≫ H2, which is satisfied if Λsc > 1.0×10−5 λ−1/4MPl.
The axion will be very close to the angular direction if (dφ/dθ)2 ≪ φ2. This is satisfied if
(Λ/φ)4 ≪ 1, which requires that λ > 7× 10−15 and is therefore easily satisfied. Finally, the
form of the non-perturbative potential is correct if the quark masses are large compared to
Λsc, otherwise Λ4

sc → mQΛ
3
sc [18]. With mQ = h|Φ| ∼ |Φ|, this requires that4 Λsc

<
∼ |Φ| and

so Λsc
<
∼ 7.5× 10−3λ−1/4MPl. In particular, for ξ = 1 and λ = 2.2× 10−7, all conditions are

satisfied if 0.004MPl
<
∼ Λsc

<
∼ 0.4MPl.

In [11] we focused on two cases of interest. In one case we considered λ to have its
dimensionally natural value, λ ∼ 1, in which case |Φ|/MPl

<
∼ 0.01 during inflation. In this

case the additive Planck corrections to the potential, g(|Φ|), are small enough relative to V (Φ)
to have no significant effect on inflation. Therefore this model completely solves the Planck
correction problem, but it does so at the cost of a large dimensionless coupling, ξ ∼ 105. The
other case we considered is where ξ ∼ 1. In this case, inflation requires that λ ∼ 10−7. This
is a much less severe bound than in the case of conventional chaotic inflation models, where
the φ self-coupling must satisfy λ <

∼ 10−14. The field remains sub-Planckian, but it is now
much closer to the Planck scale, with |Φ|/MPl = 0.35 for ξ = 1. Therefore the model does
not automatically solve the problem of additive Planck corrections to the potential, since a
|Φ|6/M4

Pl
term would dominate the λ|Φ|4 potential.5 One must therefore assume that the

additive Planck corrections are also suppressed by at least a factor of λ, which is a much
smaller suppression than would be required if the field were super-Planckian during inflation.
This suppression is not implausible if the renormalizable and non-renormalizable potential
terms have a common origin in the complete theory, or if λ represents a symmetry-breaking
effect such that the complete potential is exactly zero in the limit λ → 0. However, even
if the additive corrections are suppressed, in the absence of a complete theory we should
generally expect multiplicative Planck corrections. The sub-Planckian value of |Φ| predicted
by the model allows such corrections to be controlled and their effects to be understood via
an expansion in |Φ|2/M2

Pl
.

3 Modification of predictions due to Planck corrections

In general, we should expect additive and multiplicative Planck corrections of the form,6

V0(|Φ|) = λ|Φ|4 → λfv

( |Φ|2
M2

Pl

)

|Φ|4 + gv

( |Φ|2
M2

Pl

)

|Φ|4 (3.1)

4If this condition were violated it would not prevent inflation, it would only alter the form of the non-
perturbative potential. In general, increasing Λsc strengthens the assumptions leading to inflation.

5The general condition for the contribution of the |Φ|6/M4
Pl term to the φ field equation to be smaller than

that of the λ|Φ|4 term is λ > 2× 10−3 and ξ > 900.
6The fields are defined throughout to be canonically normalized, in which case Planck corrections appear

only in the potential and interaction terms. We have not included derivatives of the field φ in the Planck
corrections. Derivative corrections will be small compared to those involving only the field itself if φ̇/φ ∼
H ≪ φ, which is generally true in the model we are considering.
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and

g2ξ
|Φ|2
M2

Pl

FF̃ → g2
[

fξ

( |Φ|2
M2

Pl

)

ξ|Φ|2
M2

Pl

+ gξ

( |Φ|2
M2

Pl

)]

FF̃ . (3.2)

If |Φ|2/M2

Pl
is small compared to 1, we can expand fi and gi as

fi =
∞
∑

r=0

αir

( |Φ|2
M2

Pl

)r

; gi =
∞
∑

r=1

βir

( |Φ|2
M2

Pl

)r

, (3.3)

where i = v or ξ and we define αi0 = 1.
In the case where gv is suppressed by a factor of λ per term,7 the additive correction

becomes effectively a multiplicative correction to the λ|Φ|4 potential, therefore we can set
gv = 0. In addition, if ξ ∼ 1, the |Φ|-dependent terms from the additive correction to the FF̃
coupling are of the same magnitude as those from the first term and so we can set gξ = 0.
To simplify the notation, we expand fv and fξ as

fv = 1 + a1
|Φ|2
M2

Pl

+ a2
|Φ|4
M4

Pl

+ . . . (3.4)

and

fξ = 1 + b1
|Φ|2
M2

Pl

+ b2
|Φ|4
M4

Pl

+ . . . . (3.5)

In practice, we will consider only the leading-order corrections, since the higher-order cor-
rections only become important once the sub-Planckian expansion is already breaking down.
Dimensionally we expect |a1| ∼ |b1| ∼ 1.

We next consider how the leading-order Planck corrections modify the predictions of
the model. We first consider the a1 correction. In this case the inflaton potential becomes

V0(Φ) = λ

(

|Φ|4 + a1
|Φ|6
M2

Pl

)

. (3.6)

As in the original model, at the minimum of the non-perturbative potential |Φ| is related to
the phase θ by eq. (2.8). The direction of inflation is very close to the phase direction, and
the resulting potential can be written in terms of the axion field â, which is related to φ by
eq. (2.9). Substituting φ = (3Λ2â)1/3 into the potential eq. (3.6), we obtain

V (â) =
λ

4
K4â4/3 +

λa1
8

K6â2

M2

Pl

, (3.7)

where we have defined K = (3Λ2)1/3. The form of the leading-order correction is quite
specific to the minimal sub-Planckian axion inflation model.

The leading-order Planck correction to the potential modifies N , η and ǫ as a function
of â. To leading order in an expansion in â2/M2

Pl
,

N =
1

M2

Pl

[

3

8
â2 − 9a1

128

K2

M2

Pl

â8/3
]

, (3.8)

η =
4

9

M2

Pl

â2

(

1 +
7a1
4

K2

M2

Pl

â2/3
)

(3.9)

7Note that this would provide a sufficient suppression of the Planck corrections for sub-Planckian values
of |Φ| but not for super-Planckian values.
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and

ǫ =
8

9

M2

Pl

â2

(

1 +
a1
2

K2

M2

Pl

â2/3
)

. (3.10)

Inverting eq. (3.8) gives â2 as a function of N ,

â2

M2

Pl

=
8

3
N

(

1 +
3a1
16

(

8

3

)1/3 K2N1/3

M
4/3
Pl

)

. (3.11)

It is useful to express the leading-order corrections to ǫ and η in terms of |Φ|2/M2

Pl
at N

e-foldings. We explicitly show this for the case of η in appendix B. We find

η =
1

6N

(

1 +
25a1
8

|Φ|2
M2

Pl

)

(3.12)

and

ǫ =
1

3N

(

1 +
5a1
8

|Φ|2
M2

Pl

)

. (3.13)

Using the standard relations ns = 1 + 2η − 6ǫ and r = 16ǫ we then obtain

ns = 1− 5

3N

(

1 +
a1
8

|Φ|2
M2

Pl

)

(3.14)

and

r =
16

3N

(

1 +
5a1
8

|Φ|2
M2

Pl

)

. (3.15)

These imply a consistency relation between the shift of ns and the shift of r relative to the
predictions of the uncorrected model, which are equivalent to those of a φ4/3 chaotic inflation
model. Defining the unshifted values to be r0 = 16/3N and ns 0 = 1− 5/3N , we find

∆r ≡ r − r0 =
10a1
3N

|Φ|2
M2

Pl

(3.16)

and

∆ns ≡ ns − ns 0 = − 5a1
24N

|Φ|2
M2

Pl

. (3.17)

Therefore

∆ns = −∆r

16
. (3.18)

This relation is specific to the potential eq. (3.7) and is therefore specific to the minimal
sub-Planckian axion inflation model.

We next consider the b1 correction. In this case there are no Planck corrections to the
potential but the relation between |Φ| and â is altered. The non-perturbative potential is
modified to

Vsc = Λ4

sc

[

1− cos

( |Φ|2
Λ2

+
b1
Λ2

|Φ|4
M2

Pl

+ θ

)]

. (3.19)

Therefore at the minimum

θ = 2nπ − |Φ|2
Λ2

− b1
Λ2

|Φ|4
M2

Pl

. (3.20)

– 7 –
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Thus

dθ

dφ
= −

(

φ

Λ2
+

b1φ
3

Λ2M2

Pl

)

. (3.21)

Therefore

â =

∫

dâ = −
∫

φ

(

dθ

dφ

)

dφ =
φ3

3Λ2

(

1 +
3b1
5

φ2

M2

Pl

)

. (3.22)

Inverting this to first-order gives

φ =
(

3Λ2
)1/3

(

â1/3 − 32/3b1
5

Λ4/3â

M2

Pl

)

. (3.23)

Substituting this into the potential V (φ) = λφ4/4 then gives the effective potential for â,

V =
λ

4
K4â4/3 − λb1

5

K6â2

M2

Pl

. (3.24)

By comparing with eq. (3.7), the b1 correction to the potential can be seen to be equivalent
to the a1 correction with a1 = −8b1/5. Therefore, to leading order in Planck corrections, we
can use the results for a1 with a1 → ã1 = a1 − 8b1/5. Thus in the case where b1 ∼ −a1, the
combined effect of the a1 and b1 corrections would be to produce a significantly larger effect
on ns and r at a given value of |Φ|2/M2

Pl
than would otherwise be the case.

4 Results

We are interested in the effect of Planck corrections when the expansion in terms of |Φ|2/M2

Pl

is valid. To be definite, we will define this to be valid when |Φ|2/M2

Pl
≤ 0.25, assuming that

|a1|, |b1| ≤ 1. We will refer to this as the sub-Planckian regime. The shifts in ns and r for
N = 55 are then given by

∆ns = −9.5× 10−4ã1

( |Φ|2/M2

Pl

0.25

)

; ∆r = 0.015 ã1

( |Φ|2/M2

Pl

0.25

)

(4.1)

In the case where the a1 correction is dominant and |a1| <
∼ 1, we find |∆r| <

∼ 0.02 and
|∆ns| <∼ 0.001. Thus it is possible to obtain a significant shift of r within the sub-Planckian
regime, whereas the shift of ns is generally small. The shifts of ns and r due to leading-order
Planck corrections are correlated by eq. (3.18), allowing the model to be tested if specific
values of ns and r can be obtained with sufficiently accuracy. For |a1| <∼ 1 the model predicts
(ns, r) to be in the range (0.969, 0.12) to (0.971, 0.08) when N = 55. (The most recent Planck
bounds are r < 0.11 (2-σ) and ns = 0.9677±0.0060 (1-σ) (Planck TT + lowP + lensing) [19].)
The value of ns therefore largely preserves the φ4/3 chaotic inflation prediction, ns = 0.970.

In the case where both corrections are present, with a1 ∼ −b1 and |a1| <
∼ 1, we can

have a larger ã1 for a given value of |Φ|/MPl within the sub-Planckian regime, with |ã1| ∼ 3
being possible. In this case |∆ns| ∼ 0.003 and |∆r| ∼ 0.06 is possible. The predicted range
of (ns, r) is then (0.967, 0.16) to (0.973, 0.04), with the shifts again correlated by eq. (3.18).

– 8 –



J
C
A
P
0
5
(
2
0
1
5
)
0
1
4

5 Conclusions

We have considered the effect of leading-order Planck corrections on the minimal sub-
Planckian axion inflation model. For values of |Φ|/MPl which are small enough to allow
the corrections to be understood in an expansion in |Φ|2/M2

Pl
, Planck corrections can sub-

stantially shift the value of r from its uncorrected value of r = 0.097 (using N = 55 for
the Planck pivot), with 0.04 to 0.16 being possible. The possibility of reducing r from its
uncorrected value may be significant, given that the current 2-σ upper bound from Planck
is r < 0.11 [19]. The corresponding shift of ns is much smaller, with values in the range
0.967 to 0.973. This substantially retains the ns prediction of the uncorrected model (equiv-
alent to a φ4/3 chaotic inflation model), ns = 0.970. The corresponding Planck result is
ns = 0.9677± 0.0060, which can accommodate the expected range of ns within 1-σ.

In addition, there is a consistency relation between the shifts of ns and r due to leading-
order Planck corrections, which is specific to the minimal spiralling axion inflation model,
∆ns = −∆r/16. This simultaneously provides a test of the model, a means to distin-
guish the model from a φ4/3 chaotic inflation model and a signature for the influence of
Planck corrections.

The value of N corresponding to the Planck pivot scale depends on the reheating tem-
perature and is not precisely known at present. In the absence of a precise value for N ,
the observed values of ns and r can be used to fix the value of N and the coefficient of the
leading-order Planck correction. These can then be checked for consistency with a physically
reasonable value for N and a sub-Planckian value for the magnitude of the correction. In
contrast, the predictions of the φ4/3 chaotic inflation model depend only on N and so the
φ4/3 chaotic inflation model can be excluded by values of ns and r which are nevertheless
consistent with the Planck-corrected spiralling axion inflation model. It may also be possible
to determine the reheating temperature and so N in the spiralling axion inflation model,
given that it is based on an effective particle physics theory. We will return to this issue in
future work.
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A Minimization of the potential in the radial direction

Here we show that the condition Λsc > λ1/4(φ0Λ)
1/2 ensures that the minimum of the poten-

tial in the radial direction is close to the minimum eq. (2.8) of the non-perturbative potential
and that the shift of the potential ∆V due to the shift ∆φ from the minimum of the non-
perturbative potential satisfies |∆V/V0| ≪ 1.

The condition that the shift of φ from the minimum eq. (2.8) is small enough to be
negligible is that the shift of the argument of the non-perturbative potential is small compared
to the spacing 2π of the minima. We will therefore require that ∆ |Φ|2/Λ2 ≪ 1. To compute
the shift ∆φ, we expand the potential eq. (2.7) about a minimum φ0 of the non-perturbative
potential. This gives

∆V = λφ3

0∆φ+
1

2

(

Λ4
sc

Λ4
+ 3λ

)

φ2

0∆φ2 . (A.1)
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In general we find that Λsc > Λ, therefore we can neglect the 3λ term. Minimizing eq. (A.1)
then gives

∆φ = −λφ0Λ
4

Λ4
sc

. (A.2)

The shift of the argument of the non-perturbative potential is given by

∆

( |Φ|2
Λ2

)

=
φ0∆φ

Λ2
. (A.3)

Requiring that this is much smaller than 1 then requires that |∆φ| ≪ Λ2/φ0. From eq. (A.2),
this is satisfied if Λsc < λ1/4(φ0Λ)

1/2. The same condition can be obtained by requiring
that V

′

sc(φ) ≫ V
′

0
(φ) when the argument of the non-perturbative potential is such that

sin(|Φ|2/Λ2 + θ) ∼ 1 [11].
We next check that the shift of the potential ∆V due to ∆φ is negligible. Substituting

eq. (A.2) into eq. (A.1), we obtain

∆V = −λ2φ4
0

2

(

Λ

Λsc

)4

. (A.4)

Therefore, with V0 = λφ4
0
/4 and Λsc > λ1/4(Λφ0)

1/2, we find that

|∆V |
V0

≪ 2Λ2

φ2
0

=
Λ2

|Φ0|2
. (A.5)

Using eq. (2.13) and eq. (2.14) we then obtain

|∆V |
V0

≪ 0.0006 λ−1/4 . (A.6)

With λ ∼ 10−7 when ξ ∼ 1, this implies that |∆V |/V0 ≪ 0.03.
Therefore it is a good approximation to assume that φ is exactly at the minimum of the

non-perturbative potential and that V at the minimum is equal to V0 = λφ4/4.

B Leading-order Planck correction to η

Here we explain the calculation of the leading-order correction to η in terms of |Φ|2/M2

Pl
.

(The calculation of ǫ is similar.) In terms of â, η is given by

η =
4

9

M2

Pl

â2

(

1 +
7a1
4

K2

M2

Pl

â2/3
)

. (B.1)

From eq. (3.11),

â2

M2

Pl

=
8

3
N

(

1 +
3a1
16

(

8

3

)1/3 K2N1/3

M
4/3
Pl

)

=
8

3

(

N +
9a1
128

K2

M4

Pl

â8/3
)

, (B.2)

where we have used the zeroth-order relation â2/M2

Pl
= 8N/3 in the second term. Substitut-

ing this into the prefactor of eq. (B.1) gives

η =
4

9
× 1

8

3

(

N + 9a1
128

K2

M4
Pl
â8/3

) ×
(

1 +
7a1
4

K2

M2

Pl

â2/3
)

. (B.3)
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We then expand the denominator to first-order in the Planck correction, which gives

η =
1

6N

(

1− 9

128

a1K
2

M4

Pl
N

â8/3 +
7a1
4

K2

M2

Pl

â2/3
)

. (B.4)

Since the last two terms are first-order Planck corrections, we can substitute the relation be-
tween â and |Φ|, â2/3 = 2|Φ|2/K2, which follows from eq. (2.9), and the zeroth-order relation
between |Φ|/MPl and N , |Φ|/MPl = (3N)1/6(Λ/MPl)

2/3, to obtain the final expression

η =
1

6N

(

1 +
25

8
a1

|Φ|2
M2

Pl

)

. (B.5)
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