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Abstract 
 

The research work reported in this thesis stems from the development of an accurate and 

computationally efficient Reynolds-Averaged Navier-Stokes (RANS) research code, with a 

particular emphasis on the steady and unsteady aerodynamics analysis of complex low speed 

turbulent flows. Such turbulent flow problems include horizontal axis wind turbine (HAWT) 

and vertical axis wind turbine (VAWT) operating at design and off-design conditions. On the 

algorithmic side, the main contribution of this research is the successful development of a 

rigorous novel approach to low-speed preconditioning (LSP) for the multigrid fully coupled 

integration of the steady, time-domain and harmonic balance RANS equations coupled to the 

two-equation shear stress transport (SST) turbulence model. The design of the LSP 

implementation is such that each part of the code affected by LSP can be validated 

individually against the baseline solver by suitably specifying one numerical input parameter 

of the LSP-enhanced code. The thesis has investigated several important issues on modelling 

and numerical aspects which are seldom thoroughly analysed in the computational fluid 

dynamics problems of the type presented herein. The first and most important modelling 

issue is the necessity of applying the low speed preconditioning to both RANS and SST 

equations and maintaining the turbulent kinetic energy in the definition of the total energy, 

which, to the best knowledge of author, has never been seen in any published literature so far. 

Based on the results obtained in the analysis of the vertical axis wind turbine application, we 

have demonstrated that by preconditioning the SST turbulence equations, one can 

significantly improve the convergence rate; and keeping the turbulence kinetic energy in the 

total energy has a great positive effect on the solution accuracy. The other modelling issue to 

be analysed is the sensitivity of the flow solution to the farfield boundary conditions, 

particularly for low speed problems. The analyses reported in the thesis highlight that with a 

small size of the computational domain, the preconditioned farfield boundary conditions are 

crucial to improve the solution accuracy. As for the numerical aspects, we analyse the impact 

of using the relative velocity to build the preconditioning parameter on the flow solutions of 

an unsteady moving-grid problem. The presented results demonstrate that taking into 

account the grid motion in building the preconditioning parameter can achieve a noticeable 

enhancement of the solution accuracy. On the other hand, the nonlinear frequency-domain 

harmonic balance approach is a fairly new technology to solve the unsteady RANS equations, 
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which yields significant reduction of the run-time required to achieve periodic flows with 

respect to the conventional time-domain approach. And the implementation of the LSP 

approach into the turbulent harmonic balance RANS and SST formulations is another main 

novelty presented herein, which is also the first published research work on this aspect. 

The newly developed low speed turbulent flow predictive capabilities are comprehensively 

validated in a wide range of tests varying from subsonic flow with slight compressibility to 

user-defined extremely low speed incompressible flows. The solutions of our research code 

with LSP technology are compared with experiment data, theoretical solutions and numerical 

solutions of the state-of-the-art CFD research code and commercial package. The main 

computational results of this research consist of the analyses of HAWT and VAWT 

applications. The first one is a comparative analysis of 30% and 93.5% blade sections of a 

VESTAS multi-megawatt HAWT working in various regimes. The steady, time-domain and 

frequency-domain results obtained with the LSP solver are used to analyse in great detail the 

steady and unsteady aerodynamic characteristics in those regimes. The main motivation is to 

highlight the predictive capabilities and the numerical robustness of the LSP-enhanced 

turbulent steady, time-domain and frequency domain flow solvers for realistic complex and 

even more challenging problems, to quantify the effects of flow compressibility on the 

steady and yawed wind-induced unsteady aerodynamics in the tip region of a 82-m HAWT 

blade in rated operating condition, and to assess the computational benefits achieved by 

using the harmonic balance method rather than the conventional time-domain method. The 

second application is the comparative aerodynamic analyses of the NREL 5MW HAWT 

working in the inviscid steady flow condition. The main motivation of this analysis is to 

further demonstrate the predictive capabilities of the LSP solver to simulate the three-

dimensional wind turbine flows. The last application is the time-domain turbulent flow 

analysis of the VAWT to the aim of demonstrating the accuracy enhancement of the LSP 

solver for this particular problem, the necessity of applying the full preconditioning strategy, 

the important effect of the turbulent kinetic energy on the solution accuracy and the proper 

implementation of the preconditioning parameter required for an accurate numerical solution 

to an unsteady moving grid low-speed problem. 

Keywords:   low speed preconditioning, compressible Reynolds-Average Navier-Stokes 

equations, shear stress transport turbulence model, fully coupled multigrid 

integration, harmonic balance formulation, horizontal axis wind turbines. 
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Nomenclature 
 

𝛼𝑘 Runge-Kutta stage coefficient 

c Speed of sound, aerofoil chord 

c’ Artificial speed of sound 

𝑐𝑣 Specific heat at constant volume 

𝑐𝑝 Specific heat at constant pressure 

𝐶𝑡 Blade torque coefficient 

𝐶𝑝 Static pressure coefficient 

𝐶𝑓 Skin friction coefficient 

𝐶𝑙 Lift coefficient 

𝐶𝑑 Drag coefficient 

𝐶𝑚 Momentum coefficient 

𝐶𝑦 Vertical force coefficient 

𝐶𝑥 Horizontal force coefficient 

𝑑 Distance to the wall 

𝐷𝑘 Destruction of k 

𝐷𝜔  Destruction of 𝜔 

𝑒 Internal energy per unit mass 

𝐸  Total energy per unit mass 

𝑬𝒄 𝑥-components of Φ̂𝑐 

𝐸𝑑  𝑥-components of Φ̂𝑑 
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𝐹𝑐  𝑦-components of Φ̂𝑐 

𝐹𝑑  𝑦-components of Φ̂𝑑 

𝐹𝑥 Horizontal component of the force per unit blade length 

𝐹𝑦 Axial component of the force per unit blade length 

𝑓𝑚𝑔  Multigrid forcing function 

h Mesh width, static enthalpy per unit mass 

𝐻  Total enthalpy per unit mass 

𝑘 Turbulent kinetic energy 

K Condition number 

𝜅  Thermal conductivity 

𝐿𝐼𝑅𝑆 Implicit residual smoothing operator 

Δ𝑙𝑟 Root mean square of the cell residuals 

𝑀 Jacobian transformation matrix 

𝑀∞  Freestream Mach number  

𝒏  Unit vector 

𝑁𝐻 Number of complex harmonics 

𝑝 Static pressure 

𝑝𝑏 Pressure at the farfield boundary 

𝑝𝑖 Pressure extrapolated from the inner cells 

𝑝∞ Pressure specified at infinity 

𝑃𝑐 Preconditioning matrix with respect to conservative flow variables 

𝑃𝑟  Prandtl number 
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𝑃𝑟𝑇 Turbulent Prandtl number 

𝑃𝑑  Production term 

𝑃𝑘  Production of 𝛫 

𝑃𝜔  Production of 𝜔 

𝒒  Heat flux vector 

𝑞𝑖(𝑗)  Cartesian components of the heat flux vector 𝒒 

𝒒𝑻  Turbulent heat flux vector 

𝒒𝑻(𝒋)  Cartesian components of the turbulent heat flux vector 𝒒𝑻 

𝑄̂ Array of unknowns 

𝑅𝑒  Reynolds number 

𝑅 Rotor radius 

𝑅̂ Cell residuals 

𝑆 Total entropy, surface 

𝑑𝑆  Surface element 

𝑺  Strain rate tensor, turbulent source terms 

𝑆𝑖𝑗 Cartesian components of Strain rate tensor 𝑺 

𝑡  Time 

𝑇 Static temperature, blade torque 

𝑈̂ Conservative flow variables 

𝑈𝑛𝑏 Normal velocity at the farfield boundary 

𝑈𝑛𝑖 Normal velocity extrapolated from the inner cells 

𝑈𝑛∞ Normal velocity specified at infinity 
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𝑈𝑟𝑒𝑓 Reference velocity 

𝑉̂ Primitive flow variables 

𝑢∞ Free-stream velocity 

𝒖 Velocity vector 

𝑢𝑖(𝑗) Cartesian components of the flow velocity vector 𝒖 

𝑢𝜏 Friction velocity vector 

𝑢+  Nondimensionalised velocity component parallel to the wall 

𝑣𝑏 Velocity vector of the boundary 

𝑉 Volume 

𝑑𝑉 Volume element 

𝑉𝑝 Preconditioned velocity 

W Characteristic variables 

𝑊𝑥 Axial component of the freestream velocity 

𝑊𝜃 Circumferential component of the freestream velocity 

𝑦+ Nondimensionalised wall distance 

𝜖 Preconditioning cutoff parameter 

𝛽∗ Turbulent coefficient 

𝛽 Turbulent coefficient, preconditioning parameter 

𝛾 Ratio of specific heat, turbulent coefficient 

𝛾∗ Turbulent coefficient 

𝛾𝑝 Blade twisted angle9* 

Γ𝑝 Preconditioning matrix with respect to primitive variables 
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𝛿𝑖𝑗 Kronecker Delta Function 

𝛿 Yaw angle 

𝜆 Eigenvalues, reduce frequency 

𝜇 Molecular dynamic viscosity 

𝜇𝑇 Eddy viscosity 

𝜈𝑇 Kinematic eddy viscosity 

𝜌 Density 

𝜌𝑝 Partial derivative of density with respect to pressure 

𝜌𝑇 Partial derivative of density with respect to temperature 

𝜌𝑝′ Modified partial derivative of density with respect to pressure 

𝜎𝑘 Turbulent coefficient 

𝜎𝜔 Turbulent coefficient 

𝜏 Molecular stress tensor 

𝜏𝑅  Reynolds stress tensor 

𝛥𝜏 Local pseudo-time-step 

Φ̂𝑐 Generalized convective flux vectors 

Φ̂𝑑 Generalized diffusive flux vectors 

Φ∞ Angle of attack perceived by the blade 

𝜔 Specific dissipation rate, excitation frequency 

Ω Modulus of vorticity 
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Chapter 1  

Introduction 

 

1.1 Computational fluid dynamics 
 

With the development of the semiconductor industry, a rapid advancement has been achieved 

in terms of the modern computing technology in the recent decades, which has allowed 

engineers to reduce the time spent on accurately analysing and solving complex fluid 

dynamics problems. Thanks to the growing computing power and new revolutionary 

powerful computing devices such as General Purpose Graphics Processing Units (GPU) 

(Owens et al., 2008), large numbers of designs of significantly improved quality have thus 

been made in various areas of engineering research and development, such as automotive or 

aerospace industry. Moreover, it has also led to numerous innovations on complex design 

problems which have been previously hindered by the lack of satisfactory resolution for a 

long time. Therefore, on the basis of the new hardware technology, many new advanced 

aerodynamic and aeroelastics analysis methods have come into reality, and have been applied 

extensively to modern cutting-edge engineering tasks.  

One representative approach to carry out the above said analyses refers to the area of high-

fidelity computational aerodynamics and computational aeroelasticity both based on 

Computational Fluid Dynamics (CFD). The use of high-fidelity CFD is of crucial importance 

to multiple areas, including mechanical, aeronautical, marine and civil engineering. Important 

aspects about CFD are the fundamental theory on which it is based, which provides the 

foundations of the conservation laws of fluid mechanics. With CFD the numerical solution of 

the governing equations is obtained at the discrete points of a computational grid obtained by 

discretising the physical domain of interest (Blazek, 2005, Kundu and Cohen, 2008, Hirsch, 

2007). As a consequence, many newly-developed numerical methods or solvers of 

commercial or research codes, have been implemented for the purpose of solving both 

academic and industrial problems, and have gained great success in terms of both accuracy 

and computational efficiency. In the recent years the great development of CFD and the 
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growth of its modelling capabilities have significantly benefited the analysis and design of 

aircraft components (Nielsen and Anderson, 1999) or rotorcraft components (Cathy et al., 

2013) or the whole body, wind turbine rotors (Zahle et al., 2014), hydraulic machines (Xiao 

et al., 2013) and gas turbine rotors (Walther and Nadarajah, 2012) and automobile shapes 

(Ahmed and Chacko, 2012). In the past few decades, the increasing popularity of CFD has 

helped industry to greatly reduce product development budgets by replacing expensive 

experimental campaigns with much cheaper CFD simulations. However, it should be also 

noted that experimental testing still plays a critical role and is considered as the only reliable 

source of solution in certain applications characterised by very high complexity of the flow 

physics. For this reason, experimental testing has another essential function, namely that of 

validating new CFD methods and modelling capabilities. Despite the fact that the final stage 

of complex products development such as aircraft and aircraft engines is still based on the 

very expensive experiments, the important function  of CFD in the product development 

process is also undeniable, and gives birth to more innovative and imaginative design to be 

tested.  

In general, using the CFD approach requires running a computer code to solve numerically 

the physical conservation laws governing the fluid problem at hand. Various fluid flow 

models of widely varying complexity have been developed and implemented in different 

codes, ranging from the steady incompressible inviscid irrotational potential flow model to 

the time-dependent compressible Navier-Stokes (NS) viscous model (Ferziger and Perić, 

2002), which can be solved (numerically in general, and analytically only in special cases) by 

considering a Laplacian operator, and solved with a system of parabolic partial differential 

equations (with respect to time-dependent variables) respectively. Unfortunately, providing 

the most comprehensive description of fluid flow physics, the Navier-Stokes flow model 

cannot be solved analytically in the majority of flow problems of interest, and this has 

prompted the development of novel numerical approaches to solve engineering flow 

problems by means of Navier-Stokes CFD codes.  

Historically, the name of Navier-Stokes equations denoted only the conservation law of the 

linear momentum of the fluid flow under consideration; currently, however, the name is used 

to refer to the whole system of conservation laws, namely the conservation of mass, the 

conservation of linear momentum (which is a vectorial equation with 2 or 3 components 

depending on the problem dimensionality), and the conservation of energy. For problems 

involving the flow past stationary or moving objects (e.g. wings, blades, aircraft or ships), 
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they are mostly turbulent, and always stochastic and chaotic, which results in the occurrence 

of eddies of widely different length- and time-scales. 

An extremely high temporal and spatial resolution is often linked to directly solving the 

Navier-Stokes equations for high Reynolds number turbulent flow problems, because of the 

wide range of temporal and spatial scales in such flows. The approach whereby the Navier-

Stokes equations are solved ‘directly’, modelling all temporal and spatial scales of turbulent 

eddies is called Direct Numerical Simulation (DNS) (Cook and Riley, 1996). However, DNS 

is seldom used in industrial engineering problems due to the lack of sufficiently large 

computational resources, and is used in academic research mainly to investigate fundamental 

aspects of the physics of turbulence making use of simple three-dimensional simulation set-

ups. Consequently, several computationally less expensive alternatives have been developed 

which enable the solution of complex turbulent flow problems with the Navier-Stokes 

equations while by reducing the computational burden with respect to the DNS approach. 

Such alternative approaches rely on approximations level of the turbulent flow features. The 

use of models to simulate the turbulent characteristics of the flow rather than the NS 

equations to resolve directly all physical characteristics of turbulent flows, significantly 

reduce the computational burden, enabling the NS model to be used on a wide scale for 

research and development tasks both in the industry and the Academia.  

The most popular approach to approximating the effects of turbulence relies on the use of the 

so-called Reynolds-Averaged Navier-Stokes (RANS) equations, in which a time averaging 

scheme is applied to the NS equations on the time-scales of turbulence. Although the 3 partial 

differential equations (PDEs) of the RANS system are almost identical to their original forms, 

they differ from the NS equations for the presence of additional unknown terms resulting 

from the time-averaging, and taking into account the effects of turbulence in a mean sense. 

The occurrence of new unknowns in the RANS system requires the introduction of new 

equations, since the number of PDEs and unknowns must be equal (closure problem). Thus, 

one has to choose a specific turbulence model (Wilcox, 1994). A large number of turbulence 

models exist, and they can be classified according to different criteria. One of such criteria is 

the number of equations the turbulence model is made up of. For example, there exist semi-

empirical models with a single algebraic equation, like the Baldwin-Lomax model (Baldwin 

and Lomax, 1978); one-equation models, such as the Spalart-Allmaras model (Spalart and 

Allmaras, 1994); two equation models, such as the 𝐾 − 𝜀 (Jones and Launder, 1973) and the 
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𝐾 −𝜔 (Wilcox, 1988) models, or even seven-equation models, such as the Reynolds stress 

model (Launder et al., 1975, Dreeben and Pope, 1997). 

In essence, the main differences between the NS and RANS equations lie in the definition of 

the flow variables: the flow variables of the former flow model represent the instantaneous 

values of the time-dependent fluctuating turbulent flow, whereas the variables of the latter 

flow model represent time-averaged values of the turbulent fluctuating flow field. In the 

RANS model, the averages of the flow fluctuations appear explicitly only in the additional 

unknown terms introduced by the equation averaging, and such terms are modelled by means 

of the selected turbulence model. The advantage of the Reynolds averaging approach is that 

the temporal and spatial refinement of the computational grids required to analyse realistic 

engineering problems is much smaller than for DNS. This is because the RANS approach 

does not require the resolution of all the small and medium temporal and spatial scales of 

turbulence, but only the large ones associated with the characteristic length of the object 

surrounded by the flow of interest (e.g. wing or blade chord) and a characteristic time 

depending on the mean flow velocity (e.g. the time taken by a flow particle to travel a chord 

length).  

The modelling fidelity of RANS approach is generally lower than that achieved by DNS, 

which is a consequence of the partly empirical nature of turbulence models for the system 

closure: some of the coefficients of turbulence models are based on a limited amount of 

experimental data, and turbulence models often end up being used for turbulent problems 

quite different from those used to define their constants. Nevertheless, the fidelity of the 

RANS model is found to be adequate when solving a surprisingly wide range of flow 

problems, in which a low to medium degree of separation near solid wall boundaries 

characterises the flow field. Even when the evolution of wakes and shed vorticity is not 

sufficiently well resolved by the RANS approach (the degree to which this occurs, however, 

also depends on the complexity of the adopted turbulence model),  the force acting on the 

body of interest, which are often the main output of engineering interest, are well resolved.  

It should be noted that in addition to the DNS and RANS approaches to account for the 

effects of turbulence, there are other approaches featuring a fidelity level between that of 

RANS and DNS. The best known one of such models is called Large Eddy Simulation (LES) 

(Piomelli, 1998), and is conceptually similar to the RANS approach. The major difference 

between the RANS and LES models is their specific approach to deal with the turbulence 
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scales. The RANS approach models the mean effects of turbulence only on the large scales 

associated with the typical dimension of the engineering geometry being analysed and times 

depending on such characteristic length and the mean flow speed; LES, unlike RANS, 

computes directly the larger scales of turbulence, but, like RANS, uses turbulence modelling 

to account for the effects of turbulence on the smallest spatial and temporal scales not 

resolved by the computational grid. For these reasons, LES often provides better resolution 

than RANS of the temporal and spatial evolution of wakes and shed vorticity in the middle- 

and farfield regions, where the LES model is indeed expected to outperform the RANS model; 

for cases in which low, moderate and sometimes fairly high levels of separation occur, 

however, LES and RANS are often found to give comparable accuracy for predicting the 

forces acting on aerodynamic bodies such as aircraft wings and wind turbine blades 

(Johansen et al., 2002). However, in case of high-Reynolds number wall-bound problems, a 

relatively high grid refinement is required to ensure an accurate LES, and this leads to similar 

limitations as those incurred by DNS, which can be used only in the very few cases in which 

very large supercomputers are available. This is also, though often to a slightly lower extent, 

the main drawback of the hybrid RANS/LES approach known as Detached Eddy Simulations 

(DES) (Spalart et al., 1997, Nikitin et al., 2000, Bechmann and Sorensen, 2010) and Delayed 

Detached Eddy Simulation (DDES) (IM and Zha, 2011, Spalart et al., 2006).  

In DES, the RANS and LES models are applied in a mixed fashion in the whole 

computational domain. In this method, the region close to solid walls is simulated with 

RANS and the flow in the rest of the domain is simulated with LES. As a consequence, 

substantially coarser grids than in a fully LES approach are required in the wall proximity 

which help reducing the computational cost of the DES technology with respect to that of 

LES, although the cost remains significantly higher than that of the RANS model. 

Nevertheless, it is undeniable that the DES approach constitutes an ideal compromise 

between cost and accuracy, particularly in the case of high Reynolds number separated flows, 

which are characterised by a significant vorticity production at solid wall boundaries and 

propagation of such vortical structures through large regions of the computational domain. 

The two main difficulties associated with DES CFD are 1). the establishment of a robust and 

reliable criterion to determine the domain portion where a specific approach (RANS or DES) 

is to be used, and 2). the implementation of a smooth transition between the two models 

(Piomelli et al., 2003, Sørensen et al., 2011). 
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1.2 Incompressible, low-speed, and multi-speed flows 
 

Many existing CFD codes have been utilised in the aerospace and automotive industry to 

solve the compressible flow equations required to take into account the important 

compressibility effects associated with transonic and supersonic Mach numbers. However, 

from a more general perspective, other important applications, such as those in hydraulic 

power engineering (Xiao et al., 2013), naval engineering, and biological fluid mechanics do 

not necessarily require the use of a compressible solver, since there are no compressibility 

effects. These applications are more frequently dealt with by means of a CFD code solving 

the incompressible NS equations. The NS incompressible flow equations can be derived by 

the compressible equations by setting the density equal to a constant value and removing all 

temporal and spatial derivatives from the equation. When solving the NS equations in 

conservative form, an equation of state is also needed. A typical example of equation of state 

for the compressible flow equations is the perfect gas law, which relates pressure, 

temperature and density. In the case of the incompressible flow equations, the equation of 

state simply state that the density is constant. 

The obvious application of the incompressible flow equations is the flow of an 

incompressible fluid such that of water in a hydraulic turbomachine, which can be 

characterised by fairly high flow speeds. However, the incompressible equations can also be 

used to study the flow of a compressible fluid, such as air, when such flow is characterised by 

fairly low speeds. This is because in this circumstance, the density variations due to speed 

variations are so small that they can be neglected in most applications of engineering interest. 

The use of compressible solvers for the analysis of low-speed compressible flows, however, 

results in a large disparity between the convective and the acoustic speeds of the flow, and 

this occurrence leads to reduced accuracy and convergence rates of the compressible solver. 

As explained and shown in the rest of this thesis, these issues can be circumvented by using a 

numerical method known as low-speed preconditioning (LSP), one of the main topics of this 

research. 

However, there are many problems which are of a mixed type, and do not fall unambiguously 

within any of the flow classes discussed above: problems in which one has to accurately 

assess the variations of the density of an incompressible or low-speed compressible fluid flow 

due to thermal effects, and problems in which a compressible fluid behaves like 
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incompressible in certain regions, characterised by small fluid velocities, and behaves as 

compressible in other regions, characterised by high flow speeds. Significant density 

variations of an incompressible fluid flow occur in the presence of strong heat fluxes. This 

phenomenon is the key mechanism of natural circulation-based heating systems. A constant 

pressure combustion process also represents an example in which significant density 

variations occur as a consequence of thermal effects (heat generated in the combustion 

process) rather than variations of the fluid velocity.  

The second class of mixed flow, which is that of interest to the research of this thesis, is that 

of the compressible fluid flow problems characterised by regions with very low speeds, 

where compressibility effects are negligible, and regions characterised by high speeds, where 

compressibility effects are instead quite significant. In these problems, the density variations 

are caused primarily by convective speed variations. A typical example of such problems 

includes transonic flows with regions of low speed near the stagnation points or reverse flow 

regions. This type of flows is characterised by a wide range of characteristic speeds ranging 

from the speed of sound of acoustic waves to the convective speeds of eddies and vortices 

propagating at low particle speeds. One of the representative engineering problems is the 

Harrier aircraft in near-hover (landing approach) condition (Chaderjian et al., 2002). In this 

situation, the aircraft’s forward velocity is approximately 0.04 Mach; meanwhile the aircraft 

is on the contrary hovering in the air supported by four high speed jet exhausts downward to 

the ground. Another example would be the newest multi-megawatt HAWT (Campobasso et 

al., 2014a) featuring blade heights in excess of 80 m, and thus results in that the local Mach 

number in the tip region is even higher than 0.3, which is the conventional threshold at which 

compressibility effects start becoming significant; however the relative Mach number 

perceived by the blades decreases in a nearly linear fashion from the tip to the root of the 

blade, where it reaches values of order 0.01 or less and is treated undoubtedly as 

incompressible flow. Similar phenomena can be also found in the case of the helicopter in 

forward flight where the rotational speeds of the rotors and the fuselage’s forward velocity 

can be differed by more than 2 orders of magnitude. Two-phase flow mixing between 

compressible and incompressible or rocket propulsion flow-fields involving low speeds in the 

combustor and supersonic flow in the nozzle can also be grouped into this category. These 

problems can be dealt with only by means of compressible flow solvers, due to necessity of 

modelling the high-speed regions of the flow field at hand.  
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However, such a wide range of flow speeds poses a severe challenge to even the most 

advanced compressible CFD algorithms due to the large difference of characteristic speeds. 

In mixed-speed flow problems, the low speed region would have significant effect on the 

convergence problems if the low speed region is relatively large. One difficulty of handling 

such problems lies in the fact that in the low Mach regions, the general time-marching 

algorithm for computing compressible flows will become ineffective (Choi and Merkle, 

1993). As the magnitude of the flow speed decreases and becomes quite small compared to 

the acoustic speed, a large disparity between the two speeds causes stiff convective terms in 

the time-dependent equations and consequently hinders the convergence of time-marching 

method resulting in high computational cost of the simulation. Apart from the negative 

influence on the convergence, such disparity between the acoustic and particle speeds would 

also spoil the accuracy of the numerical solution as explained later in the thesis. Therefore in 

keeping with the broad capability of the time-marching algorithm, it is imperative to develop 

a proper treatment which could eliminate the convergence and accuracy problems incurred by 

the low Mach number regions. 

 

1.3 Low speed preconditioning 
 

Before providing the analyses of the research of using the compressible algorithm to solve 

complex flow problems, we would at first introduce an important term called the condition 

number. For the Euler equations, the condition number is simply defined as the ratio between 

the smallest and largest wave speeds or absolute eigenvalues. Regarding a simple model of a 

1-D Euler equations, which is shown as below, 

   𝜕𝑄

𝜕𝑡
+ 𝐴

𝜕𝑄

𝜕𝑥
= 0 (1.1) 

where 𝑄 stands for the flow variables (𝑄 = [𝜌, 𝜌𝑢, 𝜌𝐸] and 𝜌, 𝑢 and 𝐸 are respectively, the 

flow density, the x-component of the flow velocity vector 𝑣 and the total energy per unit 

mass) and 𝐴 = 𝜕𝑈/𝜕𝑄 is the flux Jacobian matrix between the convective flux term 𝑈 (𝑈 =

[𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝜌𝑢𝐻] and 𝑝 and 𝐻 are the pressure and total enthalpy per unit mass) and the 

flow variable 𝑄. The eigenvalues for this 1-D system is thus determined by the matrix 𝐴 and 

given as, 
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   λ1 = 𝑢,      λ2 = 𝑢 + 𝑐,      λ3 = 𝑢 − 𝑐 (1.2) 

where 𝑐 is the speed of the sound.  

Since there always exist a complete set of eigenvalues and eigenvectors, the mathematical 

expression of the condition number 𝐾 of the Euler system can be written as, 

   𝐾 =
|𝜆|𝑚𝑎𝑥
|𝜆|𝑚𝑖𝑛 

 (1.3) 

where |𝜆|𝑚𝑖𝑛 and |𝜆|𝑚𝑎𝑥 are the smallest and largest eigenvalues. 

The condition number, or so called the characteristic condition number referring to the 

characteristic speeds of the Euler equations, can often determine the relative stiffness of the 

system, and the optimum value of the condition number is unity. At such a condition number, 

all waves would propagate at the same rate, which yields an efficient calculation process. For 

example, in the explicit local time-stepping, the maximum local time step is restricted by the 

fastest wave speeds in order to fulfil the requirement of the CFL condition, 

   Δ𝑡 ≤
ℎ

|𝜆|𝑚𝑎𝑥
 (1.4) 

where ℎ represents the mesh width.  

As the fastest wave passed the whole mesh width, the slowest wave would only move, 

   Δ𝑡|𝜆|𝑚𝑖𝑛 =
ℎ

|𝜆|𝑚𝑎𝑥
|𝜆|𝑚𝑖𝑛 =

ℎ

𝐾
 (1.5) 

The essential problem is that the error associated with different wave mode travels out of the 

domain with specific speed equal to that of its characteristic wave, thus if the wave speeds are 

largely different, the errors will leave the domain at different times which will consequently 

slows down the convergence with respect to the case in which all error modes have 

comparable speeds and leave the domain approximately within the same time. Therefore, a 

large condition number would have negative influence on the efficiency of the wave 

propagation and consequently lower the convergence  

In case of a subsonic regime (𝑀 < 0.5) of our research interest in this study, the condition 

number is determined as 𝐾 = (𝑢 + 𝑐)/𝑢 = 1 + 1/𝑀 > 3, and it can be easily noticed that as 

the Mach number approaches to zero (or the difference between the acoustic and particle 

speeds increases), the condition number will become as large as infinity, which, due to the 
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above theory, causes a severe convergence issue and lower the computational efficiency 

dramatically. In addition to this issue, using compressible codes without LSP to solve low 

Mach number problems suffers an incorrect numerical dissipation which is caused by the 

large disparity of eigenvalues, and such wrong numerical dissipation can deteriorate the 

accuracy of the computed solution, thereby confirming our previous statement that it is 

ineffective to use compressible flow algorithms to solve mix-speed flow problems involving 

incompressible region.  

On the other hand, purely incompressible flow algorithms that are effective for all 

incompressible fluid flows and compressible fluid low speed flows are usually incapable of 

handling acoustic and compressibility effects of compressible fluid flows featuring both low 

and high convective speeds. Therefore, to accurately resolve the above low speed 

compressible fluid problems and compressible fluid problems with mixed-speed flows, it is 

impossible to rely on either a single compressible or incompressible solver.  

To enable an incompressible code to account for the compressibility effect in a low Mach 

flow, a method called the artificial compressibility has been first introduced by Chorin (1967) 

and followed by a wide development and extension (Fiterman et al., 1995, Turkel, 1987, Van 

Leer et al., 1991), which replaces the standard physical time-derivative terms in the 

incompressible equations with a set of artificial time-derivatives that eliminate the stiffness 

difficulties between the wave speeds. Specifically, the method adds a pseudo-time derivative 

of density into the continuity equation which allows a time-marching algorithm to be applied 

in the same way as in the momentum equations, and thereby introduces a set of pseudo-

acoustic waves that travel at speeds similar to the particle waves. A similar convergence like 

those obtained with the compressible equations in the transonic flow can now be obtained in 

the low Mach condition. 

Regarding the progress of overcoming the challenges associated with the use of compressible 

codes, significant efforts have been invested in developing a method called the low speed 

preconditioning, which aims to reduce the condition number of the system and thus 

strengthens its numerical capability dealing with the low Mach number problems. Example of 

such advanced technique and its related theories can be found in refs.(Choi and Merkle, 1993, 

Turkel, 1987, Weiss and Smith, 1995, Van Leer et al., 1991). As a matter of fact, 

preconditioning method can be regarded as a viable approach to extend the capability of 

compressible codes to low Mach number range, by pre-multiplying the time derivative terms 



1.3 Low speed preconditioning 

24 

in the Euler/Navier-Stokes equations with local Mach dependent matrices. For example a 1-D 

preconditioned Euler equations can be modified as, 

   𝑃
𝜕𝑄

𝜕𝑡
+ 𝐴

𝜕𝑄

𝜕𝑥
= 0 (1.6) 

where 𝑃  is the matrix depending on the local Mach number and is the so-called 

preconditioner. The new eigenvalues of the system is thus determined by the matrix 𝑃−1𝐴 

and can be written in a general form as below 

   λ1 = 𝑢,      λ2 = 𝑢 + 𝑐′,      λ3 = 𝑢 − 𝑐′′ (1.7) 

where 𝑐′ and 𝑐′′ are two pseudo acoustic speeds and may have different expressions based on 

the specific choice of the preconditioner 𝑃. With such acoustic speeds being modified to the 

same order of magnitude as the particle speeds, the condition number of the new system can 

be greatly reduced for all Mach numbers in the subsonic regime. A comprehensive study of 

the influence on optimising the condition number with various preconditioning approach can 

be found in ref. (Hejranfar and Kamali-Moghadam, 2012), and we only present here a simple 

analysis of optimising the condition number with Choi and Merkle’s preconditioner which 

has also been adopted in our research. The detailed expressions of the preconditioning matrix 

and eigenvalues are reported in Appendix B. 

 

Figure 1.1 Condition number as a function of Mach number for the 1-D Euler equations with 
and without low speed preconditioning approach 
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A plot of the condition number as a function of Mach number is shown in Figure 1.1 for both 

preconditioned and standard (non-preconditioned) Euler equations. Apparently, the LSP 

approach has greatly optimised the condition number particularly at low Mach numbers by 

achieving a reduction of more than two orders of magnitude with respect to the non-

preconditioned value, and it thus successfully removes the effect of stiffness issues on 

convergence and enables the algorithm to provide accurate CFD results (the reason why an 

optimal value of unity is not achieved here can be due to the specific chosen LSP method, 

and a detailed investigation of various preconditioning approaches on optimising the 

condition number has been given in Chapter 4). Therefore a compressible flow solver with 

the preconditioning method can have the advantage of handling problems involving both 

compressible and incompressible flow regions. 

 

1.4 Frequency-domain computational fluid dynamics 
 

Two different approaches have been used to solve the unsteady Reynolds-Averaged Navier-

Stokes (URANS) equations in our research. The first and most popular one, applicable to 

general unsteady flow problems (e.g. transient states) is the classical time-domain method, 

whereby one starts the solution process at a user-given initial time and marches the solution 

in time until reaching the specified final time. The other one is the nonlinear frequency-

domain (FD) harmonic balance (HB) approach often applied to solve nonlinear periodic flow 

problems. 

In many unsteady periodic flows, one is interested primarily in the characteristics of the 

periodic flow solution rather than the physical transient leading to that periodic state. For 

example, the analysis of the periodic flow associated with the horizontal axis wind turbines in 

yawed wind conditions, requires long simulation time when using the time-domain (TD) 

approach due to the fact that several rotor revolutions have to be completed to achieve a 

periodic state. On the other hand, such a high wallclock time required by TD solutions can be 

substantially reduced with a FD formulation, among which the harmonic balance (HB) NS 

approach (Hall et al., 2002) to the solution of unsteady periodic flows is one of the most 

promising methods. The harmonic balance algorithm is an expansion method for determining 

the periodic solutions of systems of ordinary differential equations (ODEs) in a fairly quick 
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fashion. The basic idea of the frequency domain method is to represent the solution as a 

truncated Fourier series with a user-given number of complex harmonics. For a periodic 

turbulent flow problem which only requires a relatively small number of complex harmonics 

to represent the time-domain solution accurately, the benefit of method over time-domain 

method turns out particularly significant, thus yielding a substantial reduction of the 

computational time without noticeable penalties of the solution accuracy. Aiming at reaching 

the final periodic solution without the intermediate process of computing the transient flow 

state like in the case of the time-domain analysis, is one of the main reasons why the 

harmonic balance solver is substantially faster than the time-domain solver. Another reason is 

that most of the problems of engineering interest can be accurately represented with a few 

harmonics even though they are significant nonlinear. It is found in (Hall et al., 2002) who 

first introduced and developed the harmonic balance approach, that the computational time 

can be reduced by at least one order of magnitude using this technology with respect to the 

solution of time-domain method. Therefore this new advanced computational technology has 

been applied to the prediction of the periodic flow associated with flutter and forced response 

of turbomachinery blades (Su and Yuan, 2010, Hall et al., 2002, Van Der Weide et al., 2005), 

and various vibratory motion modes of aircraft configurations (Da Ronch et al., 2013, Sicot et 

al., 2008). 

 

1.5 Motivation, objectives and overview 
 

The research work summarised in the thesis is driven by two major motivations: on one hand, 

a novel algorithmic and modelling technology has been developed and validated aimed to 

improve the solution accuracy and computational efficiency of the RANS model-based 

analysis of general unsteady and periodic turbulent flow problems with mixed or low speed 

flow regions; on the other hand, incorporation of the above numerical approach into an 

advanced frequency domain method has been realised and aimed to demonstrate its accuracy 

and effectiveness of saving computational time by analysing various challenging high-

Reynolds number unsteady flows, namely the unsteady aerodynamics analyses of a horizontal 

axis wind turbine aerofoil and a horizontal axis wind turbine rotor in yawed wind condition. 
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More specifically, the main objectives associated with the algorithmic work of this research 

are to:  

extend the low speed preconditioning strategy (i.e. preconditioning matrix, artificial 

dissipation) to turbulence model and implement it with the fully-coupled integration of the 

steady, time-domain and harmonic balance RANS and SST turbulence model equations; 

validate and assess the computational efficiency and accuracy achieved by using the 

turbulent RANS SST harmonic balance LSP-solver by performing time-domain and 

harmonic balance turbulent analyses of a horizontal axis wind turbine aerofoil and rotor in 

yawed wind condition, and make comparisons of the computational resources required by the 

two approaches. 

Several elements of novelty on the algorithmic side have been presented in the thesis. The 

low speed preconditioning approach extended to the two-equation 𝑘 − 𝜔 and SST turbulence 

models and its associated implementations go beyond the purely mathematical analyses given 

by Venkateswaran and Merkle (1999), but more importantly have been successfully validated 

on a wide range of challenging problems. . The developed multigrid fully coupled integration 

of the preconditioned steady and time-domain RANS and SST equations is also a tremendous 

extension of the frameworks of the steady equations in (Liu and Zheng, 1996) and time-

domain analysis given by Yao et al. (2001), as the adaptation of this approach to the SST 

turbulence model, particularly with the implementation of the low speed preconditioning, and 

the related theoretical and numerical analyses carried out to optimise the effectiveness of this 

procedure are one of the novel features reported for the first time in this thesis. On top of that, 

the extension of the LSP approach has also been made to the fully coupled integration of the 

turbulent harmonic balance RANS and SST equations, and this is another main novelty 

presented herein, which, to the best of the author’s knowledge, has never been seen in the 

published literature. 

The structure of the thesis is organised as follows. Chapter 2 - Governing Equations gives in 

great details the time-dependent and harmonic balance formulations of the compressible 

RANS and SST turbulence model equations, forming the fundamental context of developing 

the LSP method, and it is concluded with the quasi-linear form of the RANS and SST 

equations. 
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Chapter 3 - Solution of the Navier-Stokes Equations focuses on the numerical approaches, in 

terms of different aspects, to the solution of RANS and SST equations. It first reports the 

space discretisation method of the governing equations. The theoretical analyses of the 

strongly coupled integration method is presented as follows and its implementation in the 

steady, time-dependent and harmonic balance formulations will also be provided in details in 

Chapter 3. Description of the farfield boundary conditions is given finally to conclude the 

chapter. The farfield BCs are formulated in two different forms (Riemann invariants and 

characteristic variables) and it is highlighted that only the latter form can be implemented 

with the LSP approach.  

An investigation of the preconditioning methods proposed by different researchers (Turkel, 

Merkle, Van Leer, Roe, Chorin, etc) is provided in Chapter 4 - Low Speed Preconditioning, 

focusing on various treatments of the extended implementation with different turbulence 

models. This is followed by a detailed review and comparison of two types of integration 

schemes (implicit and explicit) usually applied in the preconditioned system. Last but not 

least, the analysis of the preconditioning parameter adopted in different flow problems 

(steady, time-dependent unsteady, etc) is documented. 

Chapter 5 – Preconditioning of Fully Coupled RANS and SST Equations focuses on the 

discussion of several numerical aspects associated with the development and the 

implementation of the low speed preconditioning into the system. The preconditioned RANS 

and SST turbulence model equations considered as the fundamental part of the whole scheme 

is presented at the beginning. To secure the accuracy of the solution for low speed problems, 

preconditioned artificial dissipation is developed and its detailed analyse is given herein. An 

optimised farfield boundary condition with LSP implemented is also beneficial to obtain an 

accurate solution when the computational domain of a small size is used. Therefore the 

chapter presents the detailed mathematical derivation process of such boundary conditions as 

well as a numerical analysis to validate its effectiveness. The strongly coupled integration 

approach to the solutions of different preconditioned formulations (i.e. steady, time-domain 

and frequency-domain) is also reported herein as a significant extension of those discussed in 

Chapter 3. Finally we will discuss the preconditioning parameters based on the absolute and 

relative velocities in the moving grid unsteady problem as such particular choice may affect 

the solution and convergence rate to some extent. Therefore a mathematical model of the 

relative velocity based preconditioning parameter is provided herein. 
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Chapter 6 - Validation presents the solution of several turbulent flow problems in subsonic 

regime, which are used to validate the turbulent flow predictive capabilities of the low speed 

preconditioning approach. Firstly a steady turbulent flat plate boundary layer is considered: 

the numerical solution obtained by the CFD solver (COSA) used in our research is compared 

with available theoretical results for three different Mach numbers. In the second case the 

flow separation and reattachment caused by a backward facing step is analysed and the 

simulated results of COSA are compared with both the solution of a well-established research 

code (CFL3D) and the available experiment data. This is followed by the numerical analyses 

of a 2D wall-mounted hump experiment where a Glauert-Goldschmied type body is mounted 

in the lower wall. Experiment data and CFL3D results are used as benchmarks to assess the 

low speed flow predictive ability of the LSP solver. The last internal flow problem is the 2D 

simulation of a convex curvature boundary layer in a duct in which we primarily analyse the 

flow characteristics near the convex wall curvature. The first external problem is a so-called 

Model-A aerofoil in a low Mach number turbulent flow where characteristics of velocity 

profiles are measured in the wake at the angle-of-attack of 0 degree. The last test case is the 

NACA4412 aerofoil in a subsonic turbulent flow featuring a flow reversal in the rear portion 

of the suction side. The COSA solutions have been compared to available experiment data. In 

all test cases, comparisons of the numerical solutions of COSA with and without LSP 

implementation with the experiment data and results of CFL3D analyses are presented, 

particularly two additional simulations with lower Mach numbers with respect to the original 

value are included in each problem to further challenge the flow predicting capability of LSP 

in terms of solution accuracy and stability. It is highlighted that despite the compressibility 

effect in specific aerofoil cases, solutions of LSP solver have demonstrated an independence 

of the variation of Mach numbers, and also featured higher numerical accuracy in the low 

Mach number flow problems due to the correct scaling of the artificial dissipation term. 

Chapter 7 - Results provides the main computational results of this research, consisting of 

analyses of two horizontal axis wind turbine applications and one vertical axis wind turbine 

application. The first one is a thorough comparative analysis of the 30% and 93.5% blade 

sections of a VESTAS multi-megawatt HAWT working in various regimes (i.e. steady 

problem where the wind direction is orthogonal to the rotor plane and the unsteady yawed 

wind condition) and three different freestream Mach numbers, namely the one corresponding 

to the rated wind speed and two lower Mach numbers for which the flow is required to be 

treated as incompressible. The main objective for analysing this problem is to assess the 
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compressibility effect by using LSP to approximate the incompressible solution. Presented 

results demonstrate the predictive capabilities of the LSP solver for different formulations 

(steady, time-domain and frequency-domain) and the computational benefits achieved by 

using the harmonic balance method of the RANS and SST equations rather than the 

conventional time-domain method through comparing the numerical solutions obtained by 

these two approaches. The second application is the steady inviscid flow analysis of a NREL 

multi-megawatt HAWT working in the operating conditions corresponding to both the rated 

wind speed and fairly low Mach number flow. The main motivation of carrying out this 

research is to demonstrate the accurate solution achieved by using LSP in analysing the entire 

three-dimensional wind turbine application. The last application is the time-domain turbulent 

flow analysis of a vertical axis wind turbine (VAWT), where simulations with and without 

LSP technology have been performed to the aim of to the aim of demonstrating the enhanced 

accuracy achieved by the LSP solver for this particular problem, the necessity of applying the 

full preconditioning strategy, the important effect of the turbulent kinetic energy on the 

solution accuracy and the proper implementation of the preconditioning parameter required 

for an accurate numerical solution to an unsteady moving grid low-speed problem. 

The conclusions of the thesis and future work are provided in Chapter 8 - Conclusion. 
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Chapter 2  

Governing Equations 
 

This chapter outlines the derivation of the differential conservative form of the Unsteady 

Reynolds-Averaged Navier-Stokes (URANS) equations in a Cartesian reference system. This 

derivation is a multi-stage process. First the time-dependent equations are averaged on the 

turbulence time-scales. This results in a new system of Partial Differential Equations (PDEs), 

which differs from the original time-dependent equations for two reasons: a) the new system 

does no longer have time-derivatives, so it can be used for the numerical solution of steady 

turbulent flows, and b) the new system has additional unknown terms which form the 

components of a second order tensor, called Reynolds stress tensor. Making use of the 

Boussinesq approximation and the two-equation turbulence model, such a tensor is assumed 

to have the same structure as the molecular stress tensor. More precisely, the main part of the 

Reynolds stress tensor is taken to be proportional to the strain rate tensor through an eddy 

viscosity parameter 𝜇𝑇. In the Shear Stress Transport (SST) turbulence model considered in 

this thesis, this parameter, the value of which depends on the position in the computational 

domain, is determined by the local values of the turbulent kinetic energy k and the specific 

dissipation rate 𝜔 . These two variables are obtained by solving two additional transport 

equations, one for turbulent kinetic energy k and the other for 𝜔. 

The solution of steady turbulent problems is obtained by solving the system of PDE's made 

up of the Navier-Stokes equations averaged on the turbulence time-scales (i.e. Reynolds 

Averaged Navier-Stokes (RANS) equations) and the two PDE's associated with the 

turbulence model. Time-dependent turbulent flows can instead be solved by adding to each 

RANS PDE and to each PDE of the turbulence model a suitable time-derivative, which refers 

to time-variations taking place on the characteristic time-scales associated with engineering 

problem at hand. For example, the main temporal scales in vibrating body problems are the 

period of the vibration and, possibly, the frequency of vortex shedding. One of the 

advantages of differential turbulence models over simple algebraic models, is that the former 

ones allow inertial (time-dependent) and global (through the spatial derivatives of the 

turbulence model) effects to be taken into account when modelling the effects of turbulence.
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The integral form of the Arbitrary Lagrangian Eulerian (ALE) formulation of the governing 

equations is also presented in the chapter, which is the fundamental part of the finite volume 

algorithm used by our research code COSA for problems with moving grids. The chapter is 

concluded by performing the derivation of the harmonic balance formulation of the governing 

equations, the great benefits of which, saving computational time and maintain good accuracy, 

will be demonstrated in Chapter 7 by comparing results with those obtained by time-domain 

approach. 

 

2.1 Differential conservative form of the time-

dependent Navier-Stokes equations 
 

The dimensional forms of the PDEs expressing the conservation of mass, momentum and 

energy of a compressible flow in a three-dimensional Cartesian system are respectively (the 

Newtonian convention of summation over repeated indices is adopted in all the equations 

presented herein, and a two-dimensional system can be easily obtained by removing the 

components related to the third direction in each equation): 

   
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗) = 0 (2.1) 

 

   
𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑢𝑖) = −

𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑗𝑖

𝜕𝑥𝑗
            𝑖, 𝑗 = 1,2,3 (2.2) 

 

   
𝜕

𝜕𝑡
(𝜌𝐸) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝐻) =

𝜕

𝜕𝑥𝑗
[𝑢𝑖𝜏𝑖𝑗 − 𝑞𝑗] (2.3) 

where 𝑢𝑖(𝑗) denotes the Cartesian component of the flow velocity in the direction 𝑖(𝑗), 𝜌 is 

the fluid density, 𝑝 is the thermodynamic pressure, 𝐸 is the total energy per unit mass, and 𝐻 

is the total enthalpy per unit mass. The definitions of 𝐸 and 𝐻 are respectively: 

   𝐸 = 𝑒 +
𝑢𝑖𝑢𝑖
2
,             𝐻 = ℎ +

𝑢𝑖𝑢𝑖
2

 (2.4) 

where 𝑒 is the internal energy per unit mass (for a calorically perfect gas 𝑒 = 𝑐𝑣𝑇 with 𝑇 

being the temperature and 𝑐𝑣 being the specific heat at constant volume), and ℎ is the static 
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enthalpy per unit mass (for a calorically perfect gas ℎ = 𝑐𝑝𝑇 = 𝑒 +
𝑝

𝜌
 with 𝑐𝑝  being the 

specific heat at constant pressure). The symbol 𝜏𝑖𝑗  denotes the generic component of the 

molecular stress tensor. For a Newtonian fluid, its expression is: 

   𝜏𝑖𝑗 = 2𝜇 [𝑆𝑖𝑗 −
1

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗] ,         𝑆𝑖𝑗 =
1

2
[
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
] (2.5) 

where 𝜇 is the molecular dynamic viscosity, 𝑆𝑖𝑗 is the generic component of the strain rate 

tensor, and 𝛿𝑖𝑗 is the Kronecker Delta Function. Sutherland's Law is used to compute 𝜇: 

   𝜇 = 𝜇𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
)

3
2 𝑇𝑟𝑒𝑓 + 𝑆

𝑇 + 𝑆
 (2.6) 

where 𝜇𝑟𝑒𝑓 = 1.716 ⋅ 10−5𝑘𝑔 𝑚−1𝑠−1, 𝑇𝑟𝑒𝑓 = 273.15𝐾 and 𝑆 = 110.4𝐾.  

The symbol 𝑞𝑗 appearing in Eqn. (2.3) denotes the 𝑗𝑡ℎ Cartesian component of the heat flux 

vector. Its expression is defined by Fourier's law: 

   𝑞𝑗 = −𝜅
𝜕𝑇 

𝜕𝑥𝑗
 (2.7) 

in which 𝜅 is the thermal conductivity. 

The system of PDE's defined so far and used to obtain the solution of three-dimensional 

problems has 6 unknowns, namely 3 velocity components and 3 thermodynamic variables. 

The missing condition is an equation of state. For a perfect gas, such an equation is 𝑝 = 𝜌𝑅𝑇. 

 

 

2.2 Differential conservative form of the URANS and 

Menter’s Shear Stress Transport (SST) turbulence 

model equations  
 

The CFD research code, COSA, adopted in all the simulations appearing in this thesis 

features both the 𝑘 − 𝜔 turbulence model proposed by Wilcox (1988) and 𝑘 − 𝜔 Shear Stress 

Transport (SST) model of Menter (1994), however, we have only focused on the analysis of 

the latter model, and its different kinds of formulations. The SST model is introduced along 
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with another two-equation turbulence model called Baseline (BSL) model, which is based on 

the original 𝑘 − 𝜔 model and the 𝑘 − 𝜖 model (Jones and Launder, 1973) with replacing the 

variable 𝜀 associated with the turbulent energy dissipation rate with the variable 𝜔 = 𝜖/𝑘 

associated with the specific dissipation rate of turbulent kinetic energy. In the near wall 

region the BSL model uses the robust and fairly accurate 𝑘 − 𝜔  model, while gradually 

transits to the standard 𝑘 − 𝜖 model outside the boundary layer. The advantage of using the 

𝑘 − 𝜖 model outside shear layers lies in the fact that it is substantially less sensitive to the 

freestream turbulence data, 𝜔 for example, than the 𝑘 − 𝜔 model, whereas the 𝑘 − 𝜔 model 

shows a more accurate predictive capability of flow characteristics in boundary layers than 

the 𝑘 − 𝜖 model. For free shear layers the new BSL model performs equally well with the 

𝑘 − 𝜖 model. On the basis of the BSL model, Menter modified the definition of the turbulent 

eddy viscosity and one constant (𝜎𝐾1), yielding the so-called SST model which is based on 

Bradshaw’s assumption that the principal shear-stress is linearly proportional to the turbulent 

kinetic energy. Such a model has achieved further improvements with respect to the BSL 

model, particularly when predicting the separated flows in adverse pressure gradient. In terms 

of the comparison with the original 𝑘 − 𝜔 model, the SST model has greatly reduced the 

sensitivity to the somewhat arbitrary value of the specific dissipation rate enforced at the 

farfield boundaries of the computational domain, and enhanced the solution accuracy of 

turbulent flows by improving the capability of the 𝑘 − 𝜔 model to predict the onset and 

amount of separation in adverse pressure flows. The numerical results of Menter (1994) and 

later comparative analyses performed for internal (Koubogiannis et al., 2003) and external 

(Ekaterinaris and Menter, 1994) turbulent flows highlight that the SST model achieves both 

objectives. Other extensions of the original 𝑘 − 𝜔  model aiming to achieve the same 

objectives have also been developed by Wilcox (2008). One-equation eddy viscosity 

turbulence models (Spalart and Allmaras, 1994) require the solution of only one transport 

equation. Historically, the development of one-equation models has followed that of two-

equation models, and its main motivation has been to reduce the computational cost 

associated with two-equation models while limiting the accuracy loss with respect to flow 

simulations based on two-equation models. Several comparative analyses of realistic 

turbulent flow problems using both one- and two-equation turbulence modelling highlight 

that, though the results of modern two-equation models often appear to be closer to 

experimental data, the solution differences between one- and two-equation models are indeed 

often small. A wider review of turbulence modelling is beyond the scope of this thesis, and 
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the interested reader is referred to the review article (Spalart, 2000) for a wider overview of 

the present state, challenges and needs of turbulence modelling for engineering applications, 

and long term projections for the progress in this area. 

The URANS equations in dimensional form are: 

   
𝜕𝜌̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗̅̅ ̅̅ ̅) = 0 (2.8) 

 

   
𝜕

𝜕𝑡
(𝜌𝑢𝑖̅̅ ̅̅ ) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑢𝑖̅̅ ̅̅ ̅̅ ̅) = −

𝜕𝑝̅

𝜕𝑥𝑖
+
𝜕𝜏̂𝑗𝑖̅̅ ̅ 

𝜕𝑥𝑗
 (2.9) 

 

   
𝜕

𝜕𝑡
(𝜌𝐸̅̅̅̅ ) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝐻̅̅ ̅̅ ̅̅ ̅) =

𝜕

𝜕𝑥𝑗
[𝑢𝑖𝜏̂𝑖𝑗̅̅ ̅̅ ̅̅ + (𝜇 + 𝜎𝑘𝜇𝑇)

𝜕𝑘̅

𝜕𝑥𝑗
− 𝑞̂𝑗̅] (2.10) 

The system of Eqn. (2.8), (2.9) and (2.10) is formally identical to the system of Eqn. (2.1), 

(2.2) and (2.3) except for three main features: a) all the variables appearing in the URANS 

equations are time-averaged over the turbulence time-scales and denoted with symbol 

overbar, and for brevity, the author has dropped the symbols for all other variables in the rest 

of thesis; b) the molecular stress tensor 𝜏𝑖𝑗  has been replaced by the stress tensor 𝜏̂𝑖𝑗 , the 

molecular heat flux vector 𝑞𝑗  has been replaced by the heat flux vector 𝑞̂𝑗 ; c) there is an 

additional diffusive term in the energy equation depending on the eddy viscosity 𝜇𝑇 and the 

components of the gradient of the turbulent kinetic energy k, and the symbol 𝜎𝑘 in the energy 

equation denotes one of the constants of the 𝑆𝑆𝑇 model.  

The stress tensor 𝜏̂𝑖𝑗 is the sum of the laminar stress tensor 𝜏𝑖𝑗 and the Reynolds stress tensor 

𝜏𝑖𝑗
𝑅 . Thus  

   𝜏̂𝑖𝑗 = 𝜏𝑖𝑗 + 𝜏𝑖𝑗
𝑅  (2.11) 

where the formal definition of the molecular stress tensor 𝜏𝑖𝑗 is provided by Eqn. (2.5), and 

   𝜏𝑖𝑗
𝑅 = 2𝜇𝑇 [𝑆𝑖𝑗 −

1

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗] −
2

3
𝜌𝑘𝛿𝑖𝑗 (2.12) 

The formal definition of the strain rate tensor 𝑆𝑖𝑗 is the same as in the molecular stress tensor. 

The generic component 𝑞̂𝑗  of the heat flux vector results from the sum of a laminar and 

turbulent contribution. Noting that molecular viscosity, constant pressure specific heat and 



2.2 Differential conservative form of the URANS and SST turbulence model equations 

36 

thermal conductivity are linked by the Prandtl number 𝑃𝑟 =
𝜇𝑐𝑝

𝑘
, the component 𝑞̂𝑗  can be 

written as:  

   𝑞̂𝑗 = − [
𝜇

𝑃𝑟
+
𝜇𝑇
𝑃𝑟𝑇

]
𝜕ℎ

𝜕𝑥𝑗
 (2.13) 

𝑃𝑟𝑇 is the turbulent Prandtl number, relating the turbulent viscosity and the turbulent 

counterpart of the molecular thermal conductivity. 

It should be noted that in the URANS case one can include the turbulent kinetic energy k in 

the definition of the total energy and the total enthalpy. By doing so, the definitions of these 

two variables becomes respectively: 

   𝐸 = 𝑒 +
𝑢𝑖𝑢𝑖
2

+ 𝑘,             𝐻 = ℎ +
𝑢𝑖𝑢𝑖
2

+ 𝑘 (2.14) 

In the case of a perfect gas, the internal energy e is defined as 

𝑐𝑣𝑇 =
𝑅𝑇

𝛾 − 1
=

𝑝

𝜌(𝛾 − 1)
 

which implies that the static pressure p is defined as: 

   𝑝 = (𝛾 − 1) [𝜌𝐸 −
1

2
𝜌(𝑢𝑖𝑢𝑖) − 𝜌𝑘] (2.15) 

To be noted that, although 𝛾 is the ratio between the specific heat at constant pressure and 

specific heat at constant volume and can be a function of T and p in a general case, however 

for the calorically perfect gas considered in this thesis, the heat capacity can be treated as 

constant yielding a constant value of 𝛾 equal to 1.4. 

It can be seen that the URANS equations contain two additional variables with respect to the 

non-averaged NS equations, namely the eddy viscosity 𝜇𝑇 and the turbulent kinetic energy k. 

These two variable establish a strong coupling with the 2 PDEs associated with the SST 

turbulence model, which, as shown in Chapter 5, requires one to apply the preconditioning 

method to both RANS and turbulence equations in a rigorous mathematical point of view. 

The SST turbulence model consists of two transport equations, one for the turbulent kinetic 

energy k, the other for the specific dissipation rate 𝜔. These two equations are respectively: 

   
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑘) = 𝜏𝑖𝑗

𝑅
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝜔𝑘 +
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑇)

𝜕𝑘

𝜕𝑥𝑗
] (2.16) 
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𝜕

𝜕𝑡
(𝜌𝜔) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝜔)

=
𝛾

𝜈𝑡
𝜏𝑖𝑗
𝑅
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽𝜌𝜔2 +
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑇)

𝜕𝜔

𝜕𝑥𝑗
] + 𝐶𝐷𝑡𝑒𝑟𝑚 

(2.17) 

where 𝐶𝐷𝑡𝑒𝑟𝑚 = 2𝜌(1 − 𝐹1)𝜎𝜔2
1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 . 

In Eqn. (2.16), the term 𝜏𝑖𝑗
𝑅 𝜕𝑢𝑖

𝜕𝑥𝑗
  leads to the production of the turbulent kinetic energy, and the 

term 𝛽⋆𝜌𝜔𝑘 leads to its destruction, whereas in Eqn. (2.17), the term 
𝛾𝜌

𝜇𝑇
𝜏𝑖𝑗
𝑅 𝜕𝑢𝑖

𝜕𝑥𝑗
  leads to the 

production of the specific dissipation rate and the term 𝛽𝜌𝜔2 leads to destruction of the same 

variable, which are all called the source terms 𝑆̂. Diffusion of the turbulent kinetic energy and 

the specific dissipation rate are instead enforced by the term 
𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑇)

𝜕𝑘

𝜕𝑥𝑗
]  and 

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑇)

𝜕𝑘

𝜕𝑥𝑗
]. The turbulent source terms can thus be summarised as, 

   𝑃𝑘 = 𝜏𝑖𝑗
𝑅
𝜕𝑢𝑖
𝜕𝑥𝑗

 ,        𝑃𝜔 =
𝛾𝜌

𝜇𝑇
𝜏𝑖𝑗
𝑅
𝜕𝑢𝑖
𝜕𝑥𝑗

 (2.18) 

 

   𝐷𝑘 = 𝛽⋆𝜌𝜔𝑘,            𝐷𝜔 = 𝛽𝜌𝜔2 (2.19) 

The production terms 𝑃𝑘 and 𝑃𝜔 can be also expressed as, 

   𝑃𝑘 = 𝜇𝑇𝑃𝑑 −
2

3
(∇ ⋅ 𝑢) 𝜌𝑘 (2.20) 

 

   𝑃𝜔 = 𝛾𝜌 𝑃𝑑 −
𝛾𝜌

𝜇𝑇

2

3
(∇ ⋅ 𝑢) 𝜌𝑘 (2.21) 

 

   𝑃𝑑 = 2( 𝑆 −
1

3
∇ ⋅ 𝑢) ∇𝑢 (2.22) 

Since it can be proved that the term 𝑃𝑑 is always positive, the source terms of the turbulent 

kinetic energy 𝑘 − equation and the specific dissipation rate 𝜔 − equation both feature a term 

which is always positive (production terms proportional to 𝑃𝑑 ), a term which is always 

negative (destruction terms 𝐷𝑘  and 𝐷𝜔 ) and a term which is either positive or negative 

depending on the sign of ∇ ⋅ 𝑢. Moreover, the source term of the 𝜔 − equation includes the 
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additional cross-diffusion term 𝐶𝐷𝑡𝑒𝑟𝑚 compared with the corresponding source term in the 

original 𝑘 − 𝜔 model, and it can be either positive or negative. As demonstrated in previous 

studies (Liu and Zheng, 1996, Lin and Sotiropoulos, 1997), the identification of positive and 

negative source terms is crucially important to the numerical integration of the 𝑘 − 𝜔 

turbulence model equations. Particularly in terms of applying numerical acceleration 

techniques such as the explicit multigrid method, the different adoptions of the treatments for 

the positive and negative turbulent source terms may have various effects on the 

improvement of the convergence rate of the solution process. More detailed analyses can be 

found in Chapter 3 and Chapter 5. 

The definition of the eddy viscosity 𝜇𝑇 in the SST turbulence model is : 

   𝜇𝑇 =
𝛼1𝜌𝑘

max(𝛼1𝜔,Ω𝐹2)
 (2.23) 

where 𝛼1 is a constant and 𝛺 is the modulus of the vorticity. The variables 𝐹1  and 𝐹2  are 

blending functions used to combine the 𝑘 − 𝜖 and 𝑘 − 𝜔 models, defined as: 

   𝐹1 = tanh(arg1
4  ) (2.24) 

 

   arg1
4 = min [max (

√𝑘 

𝛽⋆𝜔 𝑑
,
500 𝜇

𝜌 𝜔 𝑑2
) ,
4 𝜌 𝜎𝜔2𝑘 

𝐶𝐷𝐾𝜔 𝑑2
] (2.25) 

 

   𝐶𝐷𝑘𝜔 = max(2𝜌𝜎𝜔2
1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−20) (2.26) 

 

   𝐹2 = tanh(arg2
2  ) (2.27) 

 

   arg2  = max (
2√𝑘 

𝛽⋆𝜔 𝑑
,
500 𝜇

𝜌 𝜔 𝑑2
) (2.28) 

where 𝑑 is the distance to the nearest wall. 

In order to complete the definition of the SST turbulence model, the turbulent coefficients 

have to be specified. The final coefficients implemented in the model are defined by the 

combination of two groups of coefficients using the blending function 𝛷. The constants of the 
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first group are 𝛽1, 𝜎𝑘1, 𝜎𝜔1and 𝛾1, and 𝛽2, 𝜎𝑘2, 𝜎𝜔2and 𝛾2 for the second group, shown in 

Eqn. (2.29) and (2.30) as below.  

   𝑔𝑟𝑜𝑢𝑝 1: [𝛽1, 𝜎𝑘1, 𝜎𝜔1, 𝛾1] = [0.0750, 0.85, 0.500, 0.55317] (2.29) 

 

   𝑔𝑟𝑜𝑢𝑝 2: [𝛽2, 𝜎𝑘2, 𝜎𝜔2, 𝛾2] = [0.0828, 1.00, 0.856, 0.44035] (2.30) 

Other coefficients used by the model are 𝛽⋆ = 0.09, 𝜅 = 0.41 and 𝛼1 = 0.31. Some of the 

above coefficients have been optimised and are different from their originally proposed 

values based on the numerical test. The equation used to calculate the coefficients 𝛾1 and 𝛾2 

is: 

   𝛾1 =
𝛽1
𝛽⋆
−
𝜎𝜔1𝜅

2

√𝛽⋆
, 𝛾2 =

𝛽2
𝛽⋆
−
𝜎𝜔2𝜅

2

√𝛽⋆
 (2.31) 

Using the blending function 𝛷 defined by equation (2.32), one can compute the coefficients 𝛽, 

𝜎𝑘, 𝜎𝜔 and 𝛾 for any area of the computational domain 

   𝛷 = 𝐹1𝛷1 + (1 − 𝐹1)𝛷2 (2.32) 

 

 

2.3 Integral form of the URANS and Shear Stress 

Transport (SST) turbulence model equations  
 

The URANS equations (2.8), (2.9) and (2.10) and the turbulence model equations (2.16) and 

(2.17) can be written in a compact vector form as follows: 

   
𝜕𝑼

𝜕𝑡 
+
𝜕(𝑬𝑐 − 𝑬𝑑)

𝜕𝑥
+
𝜕(𝑭𝑐 − 𝑭𝑑)

𝜕𝑦
= 𝑺 (2.33) 

where the array U collects the conservative flow variables of all transport equations, the 

arrays 𝑬𝑐 and 𝑭𝑐 collect respectively the x- and y- components of the convective fluxes of all 

equations, the arrays 𝑬𝑑  and 𝑭𝑑  collect respectively the 𝑥 - and 𝑦 - components of the 

diffusive fluxes of all equations, and the array S contains the turbulent source terms of the 

𝑆𝑆𝑇 equations. The definitions of the arrays U, 𝑬𝑐 and 𝑭𝑐 are respectively: 
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   𝑼 =

[
 
 
 
 
 
𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸
𝜌𝑘
𝜌𝜔]
 
 
 
 
 

 ,      𝑬𝑐 =

[
 
 
 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝐸
𝜌𝑢𝑘
𝜌𝑢𝜔 ]

 
 
 
 
 

 ,     𝑭𝑐 =

[
 
 
 
 
 

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑝
𝜌𝑣𝐸
𝜌𝑣𝑘
𝜌𝑣𝜔 ]

 
 
 
 
 

 (2.34) 

where the total energy E and the total enthalpy H are defined by Eqn. (2.14). The definitions 

of the diffusive flux vectors 𝑬𝑑 and 𝑭𝑑 are respectively:  

   𝑬𝑑 =

[
 
 
 
 
 
 
 
 
 

0
𝜏𝑥𝑥
𝜏𝑥𝑦

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + (𝜇 + 𝜎𝑘 𝜇𝑇)
𝜕𝑘

𝜕𝑥
− 𝑞𝑥

(𝜇 + 𝜎𝑘 𝜇𝑇)
𝜕𝑘

𝜕𝑥

(𝜇 + 𝜎𝜔 𝜇𝑇)
𝜕𝜔

𝜕𝑥 ]
 
 
 
 
 
 
 
 
 

 (2.35) 

 

   𝑭𝑑 =

[
 
 
 
 
 
 
 
 
 

0
𝜏𝑥𝑦
𝜏𝑦𝑦

𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 + (𝜇 + 𝜎𝑘 𝜇𝑇)
𝜕𝑘

𝜕𝑦
− 𝑞𝑦

(𝜇 + 𝜎𝑘 𝜇𝑇)
𝜕𝑘

𝜕𝑦

(𝜇 + 𝜎𝜔 𝜇𝑇)
𝜕𝜔

𝜕𝑦 ]
 
 
 
 
 
 
 
 
 

 (2.36) 

The definition of the array S is: 

   𝑺 =

[
 
 
 
 
 

0
0
0
0

𝑃𝑘 − 𝐷𝑘
𝑃𝜔 − 𝐷𝜔 + 𝐶𝐷𝑡𝑒𝑟𝑚]

 
 
 
 
 

 (2.37) 

where the expressions of all the source terms have been given in Eqns. (2.18) and (2.19). 

The integral formulation of the differential divergence form of the conservation laws 

expressed by system (2.33) is obtained by applying the divergence theorem. Given a fixed 

control volume 𝓒 with boundary S, the integral form of the 2D time-dependent RANS 

equations coupled to the two transport equations of the SST turbulence model is:  
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𝜕

𝜕𝑡
(∫ 𝑼 𝑑𝒞 

𝒞 

) + ∮ (𝚽̂𝑐 − 𝚽̂𝑑) ⋅ 𝑑 𝑆̂ = ∫𝑺 𝑑𝓒
𝒞𝑆

 (2.38) 

The generalised convective flux vector 𝚽̂𝑐 is 

   𝚽̂𝑐 = 𝑬𝑐 𝑖̂ + 𝑭𝑐𝑗̂ (2.39) 

The generalised diffusive flux vector 𝚽̂𝑑 is 

   𝚽̂𝑑 = 𝑬𝑑 𝑖̂ + 𝑭𝑑𝑗̂ (2.40) 

 

 

2.4 Arbitrary Lagrangian/Eulerian Integral form of 

the URANS and Shear Stress Transport (SST) 

turbulence model equations  
 

Given a time-varying control volume 𝒞(𝑡) with boundary 𝑆(𝑡), the Arbitrary Lagrangian-

Eulerian integral form of the 2D time-dependent RANS equations coupled to the two 

transport equations of the SST turbulence model is: 

   
𝜕

𝜕𝑡
(∫ 𝑼 𝑑𝓒

𝒞(𝑡)

) + ∮ (𝚽̂𝑐 − 𝚽̂𝑑) ⋅ 𝑑 𝑆̂ = ∫ 𝑺 𝑑𝓒
𝒞(𝑡)𝑆(𝑡)

 (2.41) 

The generalised convective flux vector 𝚽̂𝑐 is: 

   𝚽̂𝑐 = 𝑬𝑐 𝑖̂ + 𝑭𝑐𝑗̂ − 𝑣𝑏𝑼 (2.42) 

where the vector 𝑣𝑏  is the velocity of the boundary S, and the flux term −𝑣𝑏𝑼  is its 

contribution to the overall flux balance, which is nonzero only in the case of unsteady 

problems with moving boundaries. In the case of time-varying control volumes, the 

generalised diffusive flux vector 𝚽̂𝑑 has the same expression of that associated with the case 

of the motionless control volume, and is thus given by Eqn. (2.40). 
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2.5 Harmonic balance form of URANS and Shear Stress 

Transport (SST) turbulence model equations 
 

The Harmonic Balance formulation of the RANS equations assumes that the fundamental 

frequency 𝜔 of the sought periodic flow field is known. Representing the volume and surface 

integral of the RANS and turbulence equations (2.41) by 𝒖 and 𝒉  respectively, one can 

approximate these two variables by means of the truncated Fourier series below: 

   𝒖(𝑡) ≈ 𝒖̂0 +∑(𝒖̂2𝑛−1 cos(𝜔𝑛𝑡) + 𝒖̂2𝑛 sin(𝜔𝑛𝑡))

𝑁𝐻

𝑛=1

 (2.43) 

 

   𝒉(𝑡) ≈ 𝒉̂0 +∑(𝒉̂2𝑛−1 cos(𝜔𝑛𝑡) + 𝒉̂2𝑛 sin(𝜔𝑛𝑡))

𝑁𝐻

𝑛=1

 (2.44) 

The time-derivative of 𝒖 is approximated as: 

   𝜕𝒖(𝑡)

𝜕𝑡
= ∑𝑛𝜔(−𝒖̂2𝑛−1 sin(𝜔𝑛𝑡) + 𝒖̂2𝑛 cos(𝜔𝑛𝑡))

𝑁𝐻

𝑛=1

 (2.45) 

Note the arrays 𝒖̂𝑛 and 𝒉̂𝑛 appearing in equations (2.43), (2.44) and (2.45) have length 𝑁𝑃𝐷𝐸 

and represent respectively the real and imaginary parts of the complex harmonics of the 

volume and surface integrals of the system of RANS and SST equations, where 𝑁𝑃𝐷𝐸 is the 

number of considered conservation laws. In the case of 2D RANS equations coupled to the 

SST model equations, 𝑁𝑃𝐷𝐸  is equal to 6. Inserting the expressions (2.44) and (2.45) into 

ALE form of equation (2.41) and balancing harmonics to the same order results in a system 

of 𝑁𝑇 = 𝑁𝑃𝐷𝐸 × (2𝑁𝐻 + 1) equations, which can be expressed as 

   𝜔 𝐴 𝒖̂ + 𝒉̂ = 0 (2.46) 

where 𝒖̂ = [𝑢̂0
′   𝑢̂1

′ …  𝑢̂2𝑁𝐻
′ ]

′
,  𝒉̂ = [ℎ̂0

′   ℎ̂1
′ …  ℎ̂2𝑁𝐻

′ ]
′

 and the superscript ′  denotes the 

transpose operator. The symbol 𝐴 denotes a 𝑁𝑇 × 𝑁𝑇  matrix, and it can be expressed as 

below, 
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   𝐴 =

[
 
 
 
 
𝐽0

𝐽1
𝐽2

…
𝐽𝑁𝐻]

 
 
 
 

,   𝐽𝑛 = 𝐼𝑁𝑃𝐷𝐸⨂ 𝑛 [
0 1
−1 0

] , 𝑛 = 0,1, … ,𝑁𝐻 (2.47) 

where the symbol ⨂ denotes the Kronecker tensor product, 𝐼𝑁𝑃𝐷𝐸 denotes the identity matrix 

of size (𝑁𝑃𝐷𝐸
2 ), and blocks 𝐽𝑛  have size (2𝑁𝑃𝐷𝐸)

2
. Writing explicitly the equations of the 

system in Eqn. (2.46), one finds that the unknown harmonic components 𝒖̂ are coupled by the 

harmonic residuals 𝒉̂, whereas no coupling occurs through the first term of the equation, 

since matrix A is block diagonal. As pointed out by Hall et al. (2002), the computational cost 

of the HB system in Eqn. (2.46) grows superlinearly with the number of retained harmonics 

𝑁𝐻, and the analytical derivation of the equations becomes extremely complex when dealing 

with the turbulence models required for high Reynolds number flows. To alleviate these 

problems, it has been noted that an alternative formulation of the HB equations is obtained by 

reconstructing the Fourier coefficients of the volume integral 𝒖̂ of the conservation variables 

and the surface integral 𝒉̂ of the fluxes to become the 2𝑁𝐻 + 1 equally spaced snapshots of 

the sought periodic flow field with period 𝑇 =
2𝜋

𝜔
. The array 𝒖̃ containing the snapshots of 

the volume integral and the array 𝒉̃ containing the snapshots of the surface integral are given 

respectively by: 

   𝒖̃ =

{
 
 

 
 
𝒖(𝑡0 + Δ𝑡 )

𝒖(𝑡0 + 2Δ𝑡 )
.
.
.

𝒖(𝑡0 + T ) }
 
 

 
 

,         𝒉̃ =

{
 
 

 
 
𝒉(𝑡0 + Δ𝑡 )

𝒉(𝑡0 + 2Δ𝑡 )
.
.
.

𝒉(𝑡0 + T ) }
 
 

 
 

 (2.48) 

where Δ𝑡 =
2𝜋

(2𝑁𝐻+1)𝜔
. Through a Fourier matrix 𝐸−1, one can relate the Fourier harmonics 

with the snapshots shown above, 

   𝒖̃ = 𝐸−1 𝒖̂  (2.49) 

 

   𝒉̃ = 𝐸−1 𝒉̂ (2.50) 

Substituting the terms 𝒖̂ and 𝒉̂ in equations (2.46) with the above two expressions yields,  
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   𝜔 𝐴 𝐸 𝒖̃ + 𝐸 𝒉̃ = 0 (2.51) 

Pre-multiplying the whole equation by the transformation matrix 𝐸−1 yields the system,   

   𝜔 𝐷 𝒖̃ + 𝒉̃ = 0 (2.52) 

where  

   𝐷 = 𝐸−1𝐴 𝐸 (2.53) 

Inserting the integral definitions of 𝒖̃ and 𝒉̃ into equation (2.52) gives the high-dimensional 

harmonic balance formulation of the RANS and turbulence equations: 

   𝜔 𝐷 (∫ 𝑈̂𝐻 𝑑𝑉
𝑉(𝑡)

) + ∮ (𝚽̂𝑐𝐻 − 𝚽̂𝑑𝐻) 𝑑𝑆
𝑆(𝑡)

= ∫ 𝑆̂𝐻𝑑𝑉
𝑉(𝑡)

 (2.54) 

where the unknown array 𝑈̂𝐻 is made up of 2𝑁𝐻 + 1 flow field snapshots, referring to the 

equally spaced points of one period: 

   𝑡𝑛 =
𝑛

(2𝑁𝐻 + 1)

2𝜋 

𝜔
,   𝑛 = 0, 1, … , 2𝑁𝐻 (2.55) 

 

   𝑈̂𝐻 = [𝑈̂(𝑡0), 𝑈̂(𝑡1), 𝑈̂(𝑡2),… , 𝑈̂(𝑡2𝑁𝐻−1), 𝑈̂(𝑡2𝑁𝐻)]
𝑇
 (2.56) 

 

   Φ̂𝑐𝐻 = [Φ̂𝑐𝐻
(𝑡0), Φ̂𝑐𝐻

(𝑡1), Φ̂𝑐𝐻
(𝑡2),… , Φ̂𝑐𝐻(𝑡2𝑁𝐻−1), Φ̂𝑐𝐻(𝑡2𝑁𝐻)]

𝑇
 (2.57) 

Similar expressions hold for Φ̂𝑑𝐻  and Ŝ𝐻. As one can see the number of unknowns of the 

system has been increased from 𝑁𝑃𝐷𝐸 to 𝑁𝑃𝐷𝐸 × (2𝑁𝐻 + 1). Despite the fact that the number 

of PDE’s to be solved has increased, the HB approach allows one to compute unsteady 

periodic flows at a lower computational cost with respect to the time-domain approach, and 

detailed analyses of the result will be shown in Chapter 7 of this thesis. 
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2.6 Quasi-linear form of URANS and Shear Stress 

Transport (SST) turbulence model equations 
 

As shown in Chapter 3, the quasi-linear form of the governing equations is required in 

determining the eigenvalues and the eigenvectors of the system, and more importantly, in the 

procedure of implementing the low speed preconditioning reported in Chapter 5, the 

preconditioned numerical dissipation is also derived based on such kind of formulations. 

Therefore the 2D time-dependent RANS equations coupled to the two transport equations of 

the SST turbulence model is written in its quasi-linear form and shown as below: 

   𝜕𝑈 ̂

𝜕𝑡
+
𝜕(𝚽̂𝑐 − 𝚽̂𝑑)

𝜕𝑈̂
∇𝑈̂ = 𝑆̂ (2.58) 

or explicitly, 

   𝜕𝑈 ̂

𝜕𝑡
+ 𝐴̂

𝜕𝑈̂

𝜕𝑥
+ 𝐵̂

𝜕𝑈̂

𝜕𝑦
 = 𝑆̂ (2.59) 

where 𝑈̂, Φ̂𝑐  Φ̂𝑑  and 𝑆̂ can be found from equations (2.34), (2.39), (2.40) and (2.37). The 

symbols 𝐴̂ and 𝐵̂ are the Jacobian matrices of the flux vector Φ̂ and they are defined as 

   𝐴̂ =
𝜕(𝐸̂𝑐 − 𝐸̂𝑑 )

𝜕 𝑈̂
,    𝐵̂ =

𝜕(𝐹̂𝑐 − 𝐹𝑑 )

𝜕 𝑈̂
 (2.60) 

where 𝐸̂𝑐, 𝐸̂𝑑, 𝐹̂𝑐 and 𝐹̂𝑑 can be found from equations (2.34), (2.35) and (2.36) respectively. 
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Chapter 3  

Solution of the RANS Equations 
 

In seeking the solution to the RANS equations and the two shear stress transport equations 

used for the turbulence closure, a wide range of numerical methods are adopted in terms of 

different aspects. This chapter highlights the space discretisation, and the approaches adopted 

for the solution of the time-domain and the harmonic balance RANS equations by the CFD 

code adopted for the research work presented in the thesis. The detailed description of each 

algorithm has been provided focusing on the features which are affected by the LSP 

technologies developed in this research (see Chapter 5 for corresponding analyses with the 

LSP implementation). 

 

3.1 Space discretisation 
 

In regard to the PDEs of the RANS system and two equations of the SST turbulence model 

presented in Chapter 2, an analytical solution is rarely found to be plausible, thereby the 

system has to be solved numerically in general, whereby the space discretisation of the 

system of RANS and the SST equations is an important stage involved in obtaining the 

numerical solution. As one of the essential elements of the LSP implementation, this section 

primarily outlines the space-discretisation of the convective fluxes used to solve the 

governing equations in the framework of this research, which is performed using Van Leer's 

second order Monotone Upstream-centred Schemes for Conservation Laws (MUSCL) (Van 

Leer, 1977) extrapolations and Roe's flux-difference splitting (Van Leer, 1982), while  the 

discretisation of the diffusive fluxes and the turbulent source terms is based on second order 

finite-differencing, which is described in (Campobasso et al., 2013). 

The convective fluxes of Eqn. (2.38) are represented by the term 

 𝚽𝑐,𝑓 = (𝚽̂𝑐 ⋅ 𝑛̂) 𝑑𝑆 = (𝑬𝑐𝑛𝑥 + 𝑭𝑐𝑛𝑦) 𝑑𝑆 (3.1) 

where 𝑑𝑆 denotes the area of the face across which the flux is being computed, and 𝑛𝑥 and 

𝑛𝑦  are respectively the 𝑥 −  and 𝑦 − components of its outward normal vector 𝑛̂ . The 
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numerical estimation of the convective fluxes is performed by means of the flux difference 

splitting technique and Roe's averaging to compute the numerical dissipation. Using flux 

difference splitting, the numerical representation of the convective fluxes is:  

 𝚽𝑐,𝑓
⋆ =

1

2
[𝚽𝑐,𝑓(𝑼𝐿) + 𝚽𝑐,𝑓(𝑼𝑅) − |

𝜕𝚽𝑐,𝑓

𝜕𝑼
| 𝛿𝑼] (3.2) 

Here the superscript ⋆ , the subscript 𝑓 , and the subscripts 𝐿  and 𝑅  denote numerical 

approximation, face value, and value extrapolated from the left and from the right, 

respectively. The numerical dissipation depends on the flow state discontinuity across the cell 

face, defined by 𝛿𝑈 = (𝑈𝑅 −𝑈𝐿), and the generalised flux Jacobian 𝐾𝑈 is evaluated at the 

face under analysis: 

 (𝐾𝑈)𝑓 =
𝜕𝚽𝑐,𝑓

𝜕𝑼
= (

𝜕𝑬𝑐
𝜕𝑼

𝑛𝑥 +
𝜕𝑭𝑐
𝜕𝑼

𝑛𝑦)
𝑓
= (𝐴𝑛𝑥 + 𝐵𝑛𝑦)𝑓 (3.3) 

The symbols A and B denote respectively the flux Jacobians of the convective fluxes in the 

𝑥 − and 𝑦 −  direction. The subscript 𝑐  of 𝚽𝑐,𝑓 indicates that this Jacobian refers to the 

differential form of the conservation laws. 

As highlighted by Eqn.(3.2) the numerical dissipation is proportional to 𝐾𝑈, and this term can 

also be written as: 

 𝛿𝚽 = |𝐾𝑈|𝛿𝑼 = 𝑃|Λ|𝑃
−1𝛿𝑈 = 𝑃|Λ|𝛿𝑾 (3.4) 

where P is the matrix of right eigenvectors of 𝐾𝑈 (more specifically the columns of P are the 

right eigenvectors of 𝐾𝑈 ), Λ  is the matrix of eigenvalues of 𝐾𝑈  (more specifically Λ  is 

diagonal and its nonzero entries are the eigenvalues of 𝐾𝑈), and 𝛿𝑾 are the discontinuity of 

characteristic variables, defined by 𝛿𝑊 = 𝑃−1𝛿𝑈. The symbol 𝑃−1 denotes the matrix of left 

eigenvectors of 𝐾𝑈 : its rows are the left eigenvectors of 𝐾𝑈 . Eqn.(3.4) highlights that the 

construction of the numerical dissipation only requires the calculation of the eigenvalues and 

the eigenvectors of 𝐾𝑈.  

The construction of the numerical dissipation can be simplified by considering the convective 

terms of the RANS and turbulence equations obtained by writing the equations with respect 

to a new set of independent variables, namely the primitive variables V defined as: 
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 𝑉 =

[
 
 
 
 
 
𝜌
𝑢
𝑣
𝑝
𝐾
𝜔]
 
 
 
 
 

 (3.5) 

The aforementioned convective terms expressed with respect to the variables V are: 

 𝐴̃
𝜕𝑽

𝜕𝑥
+ 𝐵̃

𝜕𝑽

𝜕𝑦
 (3.6) 

where the symbols 𝐴̃ and 𝐵̃ denote respectively the flux Jacobians of the convective fluxes 

with respect to the primitive variables in the 𝑥 − and 𝑦 − direction. 

The process of constructing the required numerical dissipation can be simplified by 

considering the Jacobian 𝐾𝑉 = 𝐴̃𝑛𝑥 + 𝐵̃𝑛𝑦, and it can be easily shown that,  

 𝐾𝑈 = 𝑀𝐾𝑉𝑀
−1 (3.7) 

where 𝑀 is the Jacobian matrix of the transformation from primitive to conservative variables, 

and 𝑀−1 is its inverse. Eqn. (3.7) defines a similarity transformation from 𝐾𝑈 to 𝐾𝑉 and vice 

versa. The matrices 𝐾𝑈  and 𝐾𝑉  are similar, and this implies that they have the same 

eigenvalues and also that their eigenvectors are related through the transformation 𝑀  as 

shown in the following. Inserting Eqn. (3.7) into Eqn. (3.4), one finds: 

 |𝐾𝑈|𝛿𝑼 = 𝑀|𝐾𝑉|𝑀
−1𝛿𝑼 = 𝑀𝐿|Λ|𝐿−1𝑀−1𝛿𝑼 = 𝑀𝐿|Λ|𝐿−1𝛿𝑽 (3.8) 

where the columns of 𝐿 are the right eigenvectors of 𝐾𝑉 , and the rows of 𝐿−1 are the left 

eigenvectors of 𝐾𝑉. Comparing Equations (3.4) and (3.8) shows that 

 𝑃 = 𝑀𝐿 (3.9) 

and 

 𝛿𝑊 = 𝐿−1𝛿𝑉 (3.10) 

Given that the calculation of the eigenmodes of 𝐾𝑉  is simpler than the calculation of the 

eigenmodes of 𝐾𝑈, the matrix of right eigenvectors P and the variation of the characteristic 

variables appearing in Eqn. (3.4), are determined by means of Equations (3.9) and (3.10) 

respectively, namely by using the matrix of left eigenvalues 𝐿−1 and right eigenvectors 𝐿. 

The eigenvalues of 𝐾𝑈 and 𝐾𝑉 can thus be determined as: 

 



3.1 Space discretisation 

49 

 

                         𝜆1 = 𝜆2 = 𝜆5 = 𝜆6 = 𝑈𝑛                   

 𝜆3 = 𝑈𝑛 + 𝑐 

𝜆4 = 𝑈𝑛 − 𝑐 

(3.11) 

where 𝑈𝑛 denotes the component of the flow velocity along the outward face normal vector 𝑛̂,  

𝑈𝑛 = 𝑢𝑛𝑥 + 𝑣𝑛𝑦. Eqn. (3.4) can also be written as 

 𝛿𝚽 = 𝑃|Λ|𝛿𝑾 =∑|𝜆𝑘|𝛿𝑊𝑘

6

𝑘=1

𝒓𝑘 (3.12) 

where 𝛿𝑊𝑘 is the 𝑘𝑡ℎ component of 𝛿𝑊 and 𝑟𝑘 is the 𝑘𝑡ℎ right eigenvector of 𝐾𝑈, which is 

also the 𝐾𝑡ℎ column of 𝑃. 

 

3.1.1 moving grid problems 
 

When dealing with moving-grid problems, the convective fluxes include the contribution 

associated with the velocity of the cell boundaries 𝑣𝑏 . In this circumstance, the array of 

convective fluxes 𝚽̂𝑐 is given by Eqn. (2.42). The convective fluxes at the boundary of each 

cell become: 

 𝚽𝑐,𝑓 = (𝚽̂𝑐 ⋅ 𝑛̂) 𝑑𝑆 = (𝑬𝑐𝑛𝑥 + 𝑭𝑐𝑛𝑦 − 𝑼𝑣𝑏𝑛) 𝑑𝑆 (3.13) 

with 

 𝑣𝑏𝑛 = 𝑣𝑏 ⋅ 𝑛̂ (3.14) 

The expression of the numerical flux at each cell boundary is formally identical to Eqn. (3.2). 

The only practical differences are that 𝑎)  the analytical fluxes Φ𝑐,𝑓(𝑈𝐿)  and Φ𝑐,𝑓(𝑈𝑅)  

include the flux contribution associated with the boundary velocity, and 𝑏) the expression of 

the generalised flux Jacobian 𝐾𝑈′ evaluated at the face under analysis becomes: 

 (𝐾𝑈′)𝑓 =
𝜕𝚽𝑐,𝑓

𝜕𝑼
= (

𝜕𝑬𝑐
𝜕𝑼

𝑛𝑥 +
𝜕𝑭𝑐
𝜕𝑼

𝑛𝑦)
𝑓
− 𝐼𝑣𝑏𝑛 = (𝐾𝑈)𝑓 − 𝐼𝑣𝑏𝑛 (3.15) 

Since the operators (𝐾𝑈′)𝑓 and (𝐾𝑈)𝑓 differ only by a diagonal term, their eigenvalues will 

differ by the constant offset 𝑣𝑏𝑛, and the eigenvectors are also different due to the same term. 

More specifically, the eigenvalues of (𝐾𝑈′)𝑓 are: 
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                         𝜆1 = 𝜆2 = 𝜆5 = 𝜆6 = 𝑈𝑛 − 𝑣𝑏𝑛                   

 𝜆3 = 𝑈𝑛 − 𝑣𝑏𝑛 + 𝑐   

𝜆4 = 𝑈𝑛 − 𝑣𝑏𝑛 − 𝑐 

(3.16) 

Consequently, the expression of the flux differences 𝛿Φ for problems with moving grids is 

formally identical to expression (3.4), and the only difference with respect to problems with 

motionless grid is the appearance of the boundary velocity term in the eigenvalues of (𝐾𝑈′)𝑓. 

N.B. Detailed expressions of all matrices and terms can be found in Appendix A.  

 

3.2 Numerical integration 
 

To solve numerically the large system of algebraic equations resulting from the space-

discretisation of the mean flow and turbulence model equations, either explicit or implicit 

numerical integration scheme can be applied. As highlighted in the detailed review in Chapter 

4 of advantages and disadvantages of both categories implemented with LSP, we would 

present herein the adopted standard (non-preconditioned) explicit multigrid integration 

strategy for solving the space-discretised RANS equations and the two equations of the SST 

turbulence model. Being treated as a single set of strongly coupled systems, the steady RANS 

equations and the two-turbulence equations are solved iteratively using the same multi-stage 

Runge-Kutta smoother. The system stiffness issues resulting from the presence of certain 

source terms in the turbulence equations are resolved by treating implicitly such source terms 

within the Runge-Kutta integration. General time-dependent flow problems are solved using 

the so-called dual-time-stepping approach, whereby the physical time-derivatives of the 

governing equations are discretised by means of second order backward finite-difference 

leading to a system of nonlinear equations for the flow field at each discrete physical time, 

and each single system can be treated as a steady problem using the same Runge-Kutta 

smoother for obtaining a sought steady solution. In cases of unsteady periodic flow problems, 

the high-dimensional harmonic balance formulation is employed, as this results in substantial 

reductions of run-times with respect to the case in which the time-domain equations are 

solved. The harmonic balance RANS and SST equations are solved using the same numerical 

integration strategy as in steady problems. 
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3.2.1 strongly coupled integration 
 

The space-discretised governing equations will reduce to a set of non-linear ordinary 

differential equations in time, which can be solved by using the multistage scheme. However, 

special care must be taken for the time integration of the two turbulence equations. In case of 

the loosely coupled approach (Liu and Zheng, 1994), the mean flow equations and turbulence 

equations are marched separately in time, whereby the values of variables of 𝑆𝑆𝑇 equations 

(i.e. 𝐾, 𝜔, 𝜇𝑡) are kept frozen while the Navier-Stokes equations are marched in time, and 

vice versa. More specifically, three evaluations of the viscous terms of the Navier-Stokes 

equations are performed within a five-stage time-stepping scheme, whereas the 𝑆𝑆𝑇 

equations are only marched at the first, third and fifth stage when the viscous terms are 

evaluated for the Navier-Stokes equations. Accelerating techniques, such as multigird and 

implicit residual smoothing, are only applied to the flow equations. As a consequence, the 

convergence of the 𝑆𝑆𝑇 equations is found to lag that of the Navier-Stokes equations, which 

has exerted a dramatically negative influence on the computational efficiency of the time 

marching scheme of the overall system.  

To cope with the above issue, a strongly coupled solution strategy of the Navier–Stokes 

equations and the two-equation turbulence model equations becomes imperative and is 

anticipated to results in an improvement of the convergence rate. Therefore, Liu and Zheng 

(1996) and Lin and Sotiropoulos (1997) have suggested the so-called fully coupled 

integration method, whereby both the mean flow equations and the 𝑆𝑆𝑇 equations are 

marched in time simultaneously using the same multistage smoother, namely all the variables 

are updated within the same stage of time stepping and no ‘frozen’ treatment is required. 

With the equally applied multigrid and residual smoothing, the Navier-Stokes and turbulence 

model equations are solved as a single system of coupled equations.  

In the following sections, a detailed description of the implementation of this strongly 

coupled integration into steady, time-dependent and harmonic balance problems will be 

provided, which would form the essential basis for the extension to LSP research.  
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3.2.2 steady problems 
 

For steady problems the time-derivative appearing in Eqn. (2.41) vanishes, and space-

discretising all remaining terms on a computational grid consisting of 𝑁𝑐𝑒𝑙𝑙 finite volumes 

leads to a system of nonlinear algebraic equations of the form: 

 𝑹𝜙(𝑸) = 0 (3.17) 

The entries of the array Q are the unknown flow variables at the 𝑁𝑐𝑒𝑙𝑙 cell centers, and the 

array Q is made up of 𝑁𝑐𝑒𝑙𝑙 subarrays, each of which stores the 𝑁𝑃𝐷𝐸 flow unknowns at a 

particular cell centre. The length of Q is therefore (𝑁𝑃𝐷𝐸 × 𝑁𝑐𝑒𝑙𝑙). The array 𝑹Φ stores the 

cell residuals, and its structure is the same as that of Q. For each cell, the 𝑁𝑃𝐷𝐸 residuals are 

obtained by adding the convective fluxes and the diffusive fluxes through all its faces, and for 

the 𝑘 and 𝜔 residuals, by also adding the associated source terms evaluated at the cell centre. 

The RANS and SST equations are solved with a fully coupled time marching algorithm 

whereby the two sets of equations are time marched simultaneously. The unknown flow 

vector Q is computed by solving iteratively Eqn. (3.17). A fictitious time derivative (𝑑𝑄/𝑑𝜏) 

premultiplied by the cell volumes is added to this system, which yields: 

 𝑽
𝝏𝑸

𝝏𝝉
+ 𝑹𝜙(𝑸) = 0 (3.18) 

and this fictitious time derivative is then discretised with a four stage Runge-Kutta (RK) 

scheme. The numerical solution is thus marched in pseudo-time until the steady state is 

achieved. The convergence rate is enhanced by means of local time-stepping (LTS), variable-

coefficient central implicit residual smoothing (IRS) and a full-approximation scheme (FAS) 

multigrid (MG) algorithm. When solving turbulent problems using a two-equation turbulence 

model, however, this explicit integration method has a very poor convergence rate, due to the 

operator stiffness caused by the large negative source terms of the turbulence model, such as 

−𝐷𝑘, −𝐷𝜔 and, when the velocity divergence is positive, −∇ ⋅ 𝑣. To alleviate this problem, a 

semi-implicit integration strategy (Liu and Zheng, 1996) is adopted whereby the negative 

source terms of the turbulence equations are treated implicitly within each RK stage. Using 

this approach (see (Campobasso et al., 2013) for the detailed derivation), the semi-implicit 

turbulent smoother reads: 
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𝑊0 = 𝑄𝑙 

(𝐼 + 𝛼𝑘Δ𝜏𝐴)𝑊
𝑘 = 𝑊0 + 𝛼𝑘Δ𝜏𝐴𝑊

𝑘−1 − 𝛼𝑘Δ𝜏𝑉
−1𝐿𝐼𝑅𝑆[𝑅Φ(𝑊

𝑘−1) + 𝑓𝑀𝐺] 

𝑄𝑙+1 = 𝑊𝑁𝑆 

(3.19) 

where Δ𝜏 is the local pseudo-time-step, l is the RK cycle counter, k is the RK stage index, and 

𝛼𝑘 is the 𝑘𝑡ℎ stage RK coefficient, 𝐿𝐼𝑅𝑆 denotes the IRS operator, and 𝑓𝑀𝐺  is the MG forcing 

function, which is nonzero when the smoother (3.19) is used on a coarse level after a 

restriction step. The diagonal matrix V stores the volumes of the grid cells. It can be viewed 

as a block-diagonal matrix of size (𝑁𝑐𝑒𝑙𝑙 × 𝑁𝑐𝑒𝑙𝑙) with each block being the identity matrix of 

size (𝑁𝑃𝐷𝐸 ×𝑁𝑃𝐷𝐸) multiplied by the volume of the cell the block refers to. The matrix A is 

block-diagonal and has size (𝑁𝑐𝑒𝑙𝑙 × 𝑁𝑐𝑒𝑙𝑙). The only nonzero elements of each (𝑁𝑃𝐷𝐸 × 𝑁𝑃𝐷𝐸) 

block 𝐴𝑖  on the diagonal of A are those of the bottom right (2×2) partition, and this 

occurrence results in the coupling of the update process of the turbulent variables. The 

abovesaid partition is: 

 𝐴𝑖(5: 6,5: 6) = 𝐴𝑆𝑆𝑇 = [
Δ+ + 𝛽⋆𝜔 𝛽⋆𝑘

𝛾Δ+/𝜈𝑇 2𝛽𝜔
] (3.20) 

in which Δ+ = max (0,
2

3
∇ ⋅ 𝑣), all variables are evaluated at the RK stage k−1, and the 

subscript i identifies the grid cell the matrix block refers to. The cross-diffusion term 𝐶𝐷𝜔 

can also be positive or negative depending on the local flow conditions, and therefore, when 

negative, it could be treated like ∆+ in the semi-implicit integration. However, this approach 

would make the implementation substantially more complex and less efficient because the 

term 𝐶𝐷𝜔  depends on ∇𝑘 and ∇𝜔. The evaluation of these gradients at stage k would couple 

the update process of several cells, thus requiring the inversion of significantly larger systems. 

For this reason, the integration we have adopted in this research treats the term 𝐶𝐷𝜔 

explicitly regardless of its sign. It should be noted that this term is absent in the standard 𝑘 −

𝜔 model. Another difference between the semi-implicit integration of the standard 𝑘 − 𝜔 

model and that of the SST model is that, in the former case, 𝜌𝜔 can be updated independently 

of 𝜌𝑘. This is however not possible in the SST case, since 𝐴𝑆𝑆𝑇(2,1) is not zero. Hence, a 

(2×2) matrix inversion is required at each grid cell to update 𝜌𝑘 and 𝜌𝜔. This difference 

arises from the fact that the expression of the turbulent viscosity of the former model is 

obtained by setting 𝐹2 = 0 in Eqn. (2.23). This operation results in the relationship 𝑘/𝜈𝑇 = 𝜔, 

which can be used to remove the dependence of the equation for updating 𝜌𝜔 on k. By 

performing this substitution, the bottom right partition of each block of A becomes: 



3.2.3 time-dependent problems 

54 

 𝐴𝑖(5: 6,5: 6) = 𝐴𝐾−𝜔 = [
Δ+ + 𝛽⋆𝜔 𝛽⋆𝑘

0 𝛾Δ+ + 2𝛽𝜔
] (3.21) 

In general, when using the SST turbulence model, one would adopt Eqn. (3.20) rather than 

Eqn. (3.21). Numerical experiments, however, reveal that the results computed with either 

approach present fairly small differences of solutions for low-speed flow problems, such as 

those analysed in this thesis. Due to the lower computational cost associated with the use of 

Eqn. (3.21) when solving the HB equations (see below), all analyses presented in this thesis 

are based on the use of this equation. 

 

3.2.3 time-dependent problems 
 

The physical time-derivative of system (2.41) is discretised with a second order backward 

finite-difference. At each new physical time-level n+1, the sought flow solution is computed 

by solving the set of nonlinear algebraic equations resulting from the space- and time-

discretization of system (2.41) with the same integration method used for steady problems. 

This procedure corresponds to Jameson’s dual-time-stepping approach to the integration of 

TD problems. The smoother (3.19) is used for computing the sought flow solution 𝑄𝑛+1 by 

solving the system of algebraic equations: 

 𝑹𝑔(𝑸
𝑛+1) =

3𝑸𝑛+1 − 4𝑸𝑛 + 𝑸𝑛−1

2Δ𝑡
𝑉 + 𝑹𝜙(𝑸) = 0 (3.22) 

where 𝑹𝑔 denotes the residual vector which also includes the source terms associated with 

the discretization of the physical time-derivative 𝜕𝑼/𝜕𝑡 of Eqn. (2.41), and Δ𝑡 indicates the 

user-given physical time-step. Also for TD problems with moving bodies, the matrix V is 

independent of the physical time-level because in this report only rigid-body grid motion is 

considered. This solution procedure may become unstable when the physical time-step Δ𝑡 is 

significantly smaller than the pseudo-time-step Δ𝜏. This instability was reported in (Liou et 

al., 1993), and investigated in (Melson et al., 1993). The latter study elegantly solved the 

stability problem by treating implicitly the 𝑄𝑛+1 term of the physical time-derivative within 

the RK integration process. This strategy has also been implemented in COSA for the fully 

coupled integration of the TD RANS and SST equations. The TD counterpart of the turbulent 

steady smoother (3.19) is: 
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𝑾0 = 𝑸𝑙  

           [𝐼 + 𝛼𝑘(𝛽𝑇𝐷𝐼 + Δ𝜏𝐴)]𝑾
𝑘      

= 𝑾0 + 𝛼𝑘(𝛽𝑇𝐷𝐼 + Δ𝜏𝐴)𝑾
𝑘−1 − 𝛼𝑘Δ𝜏𝑉

−1𝐿𝐼𝑅𝑆[𝑹g(𝑾
𝑘−1) + 𝒇𝑀𝐺] 

𝑸𝑙+1 = 𝑾
𝑁𝑆 

(3.23) 

where 𝛽𝑇𝐷 = 1.5Δ𝜏/∆𝑡 , and 𝑄𝑙  is shorthand for 𝑄𝑙
𝑛+1 . The matrix multiplying 𝑊𝑘  in 

Algorithm (3.23) is block-diagonal with 𝑁𝑐𝑒𝑙𝑙 blocks. In each (𝑁𝑃𝐷𝐸 × 𝑁𝑃𝐷𝐸) block the top 

left (4×4) partition is proportional to the identity matrix through the coefficient (1 + 𝛼𝑘𝛽𝑇𝐷), 

the bottom right (2×2) partition is given by the sum of the (2×2) identity matrix multiplied by 

(1 + 𝛼𝑘𝛽𝑇𝐷) and a non-diagonal (2×2) matrix given by Eqn. (3.20) or Eqn. (3.21), depending 

on whether the exact or approximate update of 𝜌𝜔 is used, and all other entries are zero. 

Similarly to the case of the integration of the steady equations, this structure of the matrix 

premultiplying 𝑊𝑘 results in the coupling of the update process of the turbulent variables, 

whereas it still enables the four mean flow variables to be updated without any actual matrix 

inversion. Due to the fact that the 𝑄𝑛+1 term arising from the backward finite-difference of 

the physical time-derivative is evaluated at stage k, algorithm (3.23) is said to be based a 

point-implicit Runge-Kutta (PIRK) integration of the TD RANS and turbulence equations. 

The standard fully explicit Runge-Kutta (FERK) integration method is retrieved by setting 

𝛽𝑇𝐷 = 0  in this algorithm. Several numerical tests (Campobasso et al., 2013) have 

highlighted that the turbulent PIRK integration significantly improves the stability of the fully 

coupled integration, enabling stable pseudo-time-marching with larger CFL numbers than 

with the standard FERK integration. This yields significant reductions of runtimes, due to the 

reduction of the overall number of MG cycles required to achieve a user-given reduction of 

the flow residual. 

 

3.2.4 harmonic balance problems 
 

At the differential level, the only difference between system (2.41) and system (2.54) is that 

the physical time-derivative of the former system is replaced by a volumetric source term 

proportional to 𝜔 in the latter system. The set of nonlinear algebraic equations resulting from 

the space discretization of system (2.54) can thus be solved with the same technique used for 
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steady problems. The introduction of the derivative with respect to the fictitious time 𝜏 yields 

the system of ordinary differential equations shown as below: 

 𝑉𝐻
𝑑𝑄𝐻
𝑑𝜏

+ 𝑅𝑔,𝐻(𝑄𝐻) = 0 (3.24) 

The smoother (3.19) is used for computing the sought HB flow solution 𝑸𝐻 by solving the 

system of algebraic equations: 

 𝑹𝑔𝐻(𝑸𝐻 ) = 𝜔𝑉𝐻𝐷𝐻𝑸𝐻 +𝑹𝜙𝐻(𝑸𝐻) (3.25) 

The array 𝑄𝐻 is made up of 𝑁𝑐𝑒𝑙𝑙 sets of (2𝑁𝐻 + 1) flow states, with each state referring to 

the physical times defined by Eqn. (2.55). Therefore 𝑄𝐻 = [𝑄1
′ , 𝑄2

′ , … , 𝑄′𝑁𝑐𝑒𝑙𝑙]′, where 𝑄𝑖 , 

with 𝑖 = 1,… ,𝑁𝑐𝑒𝑙𝑙, is an array of length [𝑁𝑃𝐷𝐸 × (2𝑁𝐻 + 1)]. The first 𝑁𝑃𝐷𝐸 elements of 𝑄𝑖 

contain the flow state at 𝑡 = 𝑡0, the next 𝑁𝑃𝐷𝐸 elements contain the flow state at 𝑡 = 𝑡1, and 

the last 𝑁𝑃𝐷𝐸 elements contain the flow state at 𝑡 = 𝑡2𝑁𝐻. The arrays 𝑅𝑔𝐻 and 𝑅ΦH have the 

same structure of 𝑄𝐻 . The 2𝑁𝐻 + 1  states of a subarray (𝑅𝜙)𝑖
 contain the cell residuals 

associated with the convective fluxes, the diffusive fluxes and the turbulent source terms at 

the physical times defined by Eqn. (2.55). The residual subarray (𝑅g)𝑖
 includes also the 

source term 𝜔𝑉𝑖𝐷𝑄𝑖, where 𝑉𝑖 is the product of the volume of the 𝑖𝑡ℎ grid cell and 𝐼𝑁𝑒𝑞𝑠 , the 

identity matrix of size (𝑁𝑒𝑞𝑠 × 𝑁𝑒𝑞𝑠) with 𝑁𝑒𝑞𝑠 = [𝑁𝑃𝐷𝐸 × (2𝑁𝐻 + 1)]. The diagonal matrix 

𝑉𝐻 is a block-diagonal matrix with blocks given by the matrices 𝑉𝑖 defined above, and the 

block-diagonal matrix 𝐷𝐻 is defined as 𝐷𝐻 = 𝐼𝑁𝑐𝑒𝑙𝑙⨂𝐷.  

It is found that the use of the non-turbulent counterpart of the smoother (3.19) for solving the 

HB equations describing certain periodic Euler and laminar flows results in numerical 

instabilities of the solver that prevent its convergence, unless unacceptably low CFL numbers 

are used. The aforementioned flows include the periodic transonic flow fields past an 

oscillating aerofoil reported in (Da Ronch et al., 2013), analysed with the COSA HB solver 

and the implicit HB solver of the PMB CFD code. This instability is likely to be the FD 

counterpart of the TD problem, discussed in the preceding subsection. A stabilised point-

implicit HB smoother was therefore developed and implemented in the COSA HB solver 

(Campobasso and Baba-Ahmadi, 2012), and this allowed the calculation of the transonic 

flows reported in (Da Ronch et al., 2013) with the typical maximum CFL values of the 

numerical scheme used by COSA. The stabilization process can be generalised and extended 

to the turbulent case, and used to improve the numerical stability of the turbulent HB MG 
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solver. The fundamental step of the stabilization process requires treating implicitly the 

source term of Eqn.(3.25) within each RK stage. By doing so, one obtains the following HB-

counterpart of the turbulent TD smoother (3.23):  

 

𝑾𝐻
0 = (𝑸𝐻)𝑙 

[𝐼 + 𝛼𝑘(𝛽𝐻𝐷𝐻 + Δ𝜏𝐻𝐴𝐻)]𝑾𝐻
𝑘 = 𝑾𝐻

0 + 

𝛼𝑘(𝛽𝐻DH + Δ𝜏𝐻𝐴𝐻)𝑊𝐻
𝑘−1 − 𝛼𝑘Δ𝜏𝐻𝑉𝐻

−1𝐿𝐼𝑅𝑆,𝐻[𝑹gH(𝑊𝐻
𝑘−1) + 𝒇𝑀𝐺,𝐻] 

(𝑸𝐻 )𝑙+1 = 𝑾𝐻
𝑁𝑆 

(3.26) 

where the 𝑁𝑐𝑒𝑙𝑙  subarrays of ∆𝜏𝐻  have length (2𝑁𝐻 + 1). Each subarray contain the local 

time steps for the 2𝑁𝐻 + 1 flow states. One also has 𝛽𝐻 = 𝜔∆𝜏𝐻. The array of the HB MG 

forcing term 𝒇𝑀𝐺,𝐻 has the same structure as 𝑄𝐻. The matrix 𝐴𝐻 can be viewed as a (𝑁𝑐𝑒𝑙𝑙 ×

𝑁𝑐𝑒𝑙𝑙)  block-diagonal matrix. Each block𝐴𝐻,𝑖 of size (𝑁𝑒𝑞𝑠 × 𝑁𝑒𝑞𝑠)  with𝑁𝑒𝑞𝑠 = [𝑁𝑃𝐷𝐸 ×

(2𝑁𝐻 + 1)] , also has a block-diagonal structure. Its (2𝑁𝐻 + 1)  nonzero (𝑁𝑃𝐷𝐸 × 𝑁𝑃𝐷𝐸) 

blocks provide the matrices 𝐴𝑖’s for the flow states referring to the times defined by Eqn. 

(2.55). The HB IRS operator has the same block structure of 𝐴𝐻. The use of the turbulent 

PIRK HB smoother (3.26) enables the use of significantly larger CFL numbers than the use 

of its FERK counterpart. Moreover, the higher stability achieved by PIRK with respect to the 

FERK iteration increases significantly with 𝑁𝐻. 

When using the approximation provided by Eqn. (3.21) for updating 𝜌𝑘 and 𝜌𝜔, the structure 

of the matrix premultiplying 𝑊𝐻
𝑘 at the second line of Algorithm (3.26) is such that, for each 

grid cell, the update of the [𝑁𝑃𝐷𝐸 × (2𝑁𝐻 + 1)]  unknowns requires the inversion of 

3[(2𝑁𝐻 + 1) × (2𝑁𝐻 + 1)] subblock of [𝐼 + 𝛼𝑘(𝛽𝐻𝐷𝐻 + Δ𝜏𝐻𝐴𝐻)]. Such overhead results in 

the computational cost of the HB analysis growing in a moderately superlinear fashion with 

𝑁𝐻. Despite this feature, the computational cost of the HB analysis remains competitive with 

that of the TD analysis. If the exact update of the turbulent variables provided by Eqn. (3.20) 

were used, the computational cost of the turbulent PIRK smoother would be significantly 

higher than the cost incurred by using Eqn. (3.21). As a matter of fact, the update of the four 

RANS variables in the former case would require the same inversion of a [(2𝑁𝐻 + 1) ×

(2𝑁𝐻 + 1)] matrix as in the latter case, but the update of the two turbulence variables would 

require an inversion of a [2(2𝑁𝐻 + 1) × 2(2𝑁𝐻 + 1)]  matrix, because of the equation 

coupling due to all entries of 𝐴𝑆𝑆𝑇  being not zero. Since these matrices are dense and 

unstructured, Gaussian elimination is used for their inversion, and the computational cost of 
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such inversions is proportional to the third power of the matrix size. Therefore, the use of Eqn. 

(3.21) rather than Eqn. (3.20) for updating the harmonics of the SST turbulence variables 

with the turbulent PIRK HB smoother yields a reduction of the computational cost of eight 

times. For highly nonlinear periodic flows, requiring values of 𝑁𝐻  of at least five for a 

satisfactory time-resolution, this cost reduction would turn out to be even more significant.  

 

3.3 Farfield boundary conditions 
 

For numerical simulation of aerodynamic problems, the implementation of the farfield 

Boundary Conditions (BCs) plays an essential role. The standard implementation of the 

farfield BCs can be based either on the multi-dimensional compatibility equations and 

differential form of the characteristic variables, or the one-dimensional Riemann invariants. 

The reason why we have considered herein these two different formulations of the farfield 

BC is that the first one based on characteristic variables is the only formulation amenable to 

the straightforward integration into LSP framework, while the other one using Riemann 

invariants is more widespread and has been already implemented in the previous research. 

Based on the differential form of the 2D characteristic variables, the 2D compatibility 

equations in the absence of source terms yield: 

 

𝛿𝑊1 = 𝛿𝜌 −
1

𝑐2
𝛿𝑝 = 0             𝑎𝑙𝑜𝑛𝑔 𝐶1:

𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

𝛿𝑊2 = 𝜌𝑛𝑦𝛿𝑢 − 𝜌𝑛𝑥𝛿𝑣 = 0     𝑎𝑙𝑜𝑛𝑔 𝐶2:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

       𝛿𝑊3 =
𝛿𝑝

2𝑐2
+
𝜌𝛿𝑈𝑛
2𝑐

= 0         𝑎𝑙𝑜𝑛𝑔 𝐶3:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 + 𝑐 

       𝛿𝑊4 =
𝛿𝑝

2𝑐2
−
𝜌𝛿𝑈𝑛
2𝑐

= 0         𝑎𝑙𝑜𝑛𝑔 𝐶4:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 − 𝑐 

𝛿𝑊5 = 𝜌𝛿𝐾 = 0                       𝑎𝑙𝑜𝑛𝑔 𝐶5:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

𝛿𝑊6 = 𝜌𝛿𝜔 = 0                        𝑎𝑙𝑜𝑛𝑔 𝐶6:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

(3.27) 

where l denotes the curvilinear coordinate along the 'trajectory' of each characteristic. Here it 

is assumed that the unit vector 𝑛̂𝑏 normal to the farfield boundary points outside the domain. 

Given this choice of the orientation of 𝑛̂𝑏, inflow boundaries are characterised by negative 
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values of 𝑈𝑛𝑏, the flow velocity component normal to the farfield boundary, whereas outflow 

boundaries are characterised by positive values of 𝑈𝑛𝑏. Therefore, in the case of subsonic 

flow conditions at the farfield boundary, the acoustic characteristic with speed 𝑈𝑛 + 𝑐 always 

leaves the domain, whereas the acoustic characteristic with speed 𝑈𝑛 − 𝑐 always enters the 

domain. In the following two sections, the subscript b denotes sought flowfield values at the 

farfield boundary, the subscript i denotes computed flow field values extrapolated from the 

interior of the physical domain (the cells adjacent to the boundary of the computational 

domain in the discretised representation of the problem), and the subscript ∞ denotes given 

farfield values. A sketch of the farfield boundary for both subsonic inflow and outflow is 

depicted in Figure 3.1. 

 

Figure 3.1 A SKETCH OF THE FARFIELD BOUNDARY  

 

3.3.1 BCs based on multi-dimensional compatibility 

equations 
 

Taking into account the direction of propagation, and imposing the compatibility constraint 

of the outgoing and incoming acoustic characteristics across the farfield boundary yields: 

 (𝑈𝑛𝑏 − 𝑈𝑛𝑖) +
1

𝜌𝑐
(𝑝𝑏 − 𝑝𝑖) = 0 (3.28) 

and 
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 (𝑈𝑛𝑏 − 𝑈𝑛∞) −
1

𝜌𝑐
(𝑝𝑏 − 𝑝∞) = 0 (3.29) 

Adding and subtracting Equations (3.28) and (3.29) yield respectively 

 𝑈𝑛𝑏 =
𝑈𝑛𝑖 + 𝑈𝑛∞

2
+
1

𝜌𝑐
(
𝑝𝑖 − 𝑝∞
2

) (3.30) 

 

 𝑝𝑏 =
𝑝𝑖 + 𝑝∞
2

+ 𝜌𝑐 (
𝑈𝑛𝑖 − 𝑈𝑛∞

2
) (3.31) 

which can be used to determine the normal velocity component and the static pressure at the 

farfield boundaries. The product 𝜌𝑐 appearing in these two equations can be approximated 

with the value at the interior point adjacent to the boundary 𝜌𝑐 ≈ 𝜌𝑖𝑐𝑖 or using the given 

farfield data 𝜌𝑐 ≈ 𝜌∞𝑐∞ . Eqn. (3.30) and (3.31) can be used both at inflow and outflow 

boundaries. 

In the case of a subsonic inflow, the characteristics 𝑊1  and 𝑊2  enter the computational 

domain, and therefore two additional conditions must be prescribed using the given farfield 

data. One condition is that the entropy at the farfield boundary should be the prescribed 

freestream value, and the other condition is that the tangential component of the given 

freestream velocity is equal to that of the flow velocity at the farfield boundary. Imposing the 

freestream entropy conditions yields: 

 
𝑝∞

𝜌∞
𝛾 = 𝑆∞ =

𝑝𝑏

𝜌𝑏
𝛾  (3.32) 

The density at the boundary is thus 

 𝜌𝑏 = 𝜌∞ (
𝑝𝑏
𝑝∞
)

1
𝛾
 (3.33) 

Denoting by 𝑈̂𝑏  the flow velocity vector at the farfield boundary and by 𝑈̂∞  the given 

freestream velocity, the constraint on the tangential velocity component can be written as: 

 𝑈̂𝑏 − (𝑈̂𝑏 ⋅ 𝑛̂) 𝑛̂ = 𝑈̂∞ − (𝑈̂∞ ⋅ 𝑛̂) 𝑛̂ (3.34) 

which yields: 

 𝑈̂𝑏 = 𝑈̂∞ + (𝑈𝑛𝑏 − 𝑈𝑛∞) 𝑛̂ (3.35) 
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The two sought Cartesian components of the flow velocity vector at the farfield boundary are 

thus: 

 𝑢𝑏 = 𝑢∞ + (𝑈𝑛𝑏 − 𝑈𝑛∞) 𝑛𝑥,            𝑣𝑏 = 𝑣∞ + (𝑈𝑛𝑏 − 𝑈𝑛∞) 𝑛𝑦 (3.36) 

Since also the characteristics associated with the two turbulent variables enter the domain, the 

values of these two variables at the boundary are taken to be the given freestream values: 

 𝑘𝑏 = 𝑘∞,            𝜔𝑏 = 𝜔∞ (3.37) 

In the case of a subsonic outflow, the characteristics 𝑊1  and 𝑊2  leave the computational 

domain, and therefore two additional conditions must be prescribed extrapolating the 

computed data from the interior point adjacent to the farfield boundary. One condition is that 

the entropy at the farfield boundary is extrapolated from the interior of the domain, and the 

other condition is that the tangential velocity component extrapolated from the interior is 

equal to that of the flow velocity at the farfield boundary. Imposing the extrapolated entropy 

conditions yields: 

 
𝑝𝑖

𝜌𝑖
𝛾 = 𝑆𝑖 =

𝑝𝑏

𝜌𝑏
𝛾  (3.38) 

The density at the boundary if thus 

 𝜌𝑏 = 𝜌𝑖 (
𝑝𝑏
𝑝𝑖
)

1
𝛾
 (3.39) 

The procedure to impose the constraint on the tangential velocity component is the same as 

shown in the subsonic inflow case. Denoting by 𝑈𝑛𝑖 the tangential component of the flow 

velocity vector extrapolated from the interior, the sought Cartesian components of the flow 

velocity vector at the farfield boundary are: 

 𝑢𝑏 = 𝑢𝑖 + (𝑈𝑛𝑏 − 𝑈𝑛𝑖) 𝑛𝑥,            𝑣𝑏 = 𝑣𝑖 + (𝑈𝑛𝑏 − 𝑈𝑛𝑖) 𝑛𝑦 (3.40) 

Since also the characteristics associated with the two turbulent variables leave the domain, 

the values of these two variables at the boundary are taken to be extrapolated values too: 

 𝑘𝑏 = 𝑘𝑖,            𝜔𝑏 = 𝜔𝑖 (3.41) 
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3.3.2 BCs based on one-dimensional Riemann 

invariants 
 

Integrating the 1-D compatibility equations of the entropy characteristic (𝑊1 ), the two 

acoustic characteristics (𝑊3  and 𝑊4 ), and the two characteristics associated with the 

convection of the turbulence variables (𝑊5  and 𝑊6 ), one obtains the so-called Riemann 

invariants. The expression of the 1-D Riemann invariants is found to be: 

 𝑅1 = 𝑆,       𝑅3 = 𝑈𝑛 +
2𝑐

𝛾 − 1
,     𝑅4 = 𝑈𝑛 −

2𝑐

𝛾 − 1
,    𝑅5 = 𝑘,    𝑅6 = 𝜔 (3.42) 

Computing the value of the outgoing invariant 𝑅3 using extrapolated flow data, and the value 

of the incoming invariant 𝑅4 using given farfield flow data, the unknown values of 𝑈𝑛𝑏 and 

the sound speed 𝑐𝑏 at the farfield boundary can be obtained by combining the expressions of 

𝑅3 and 𝑅4: 

 𝑈𝑛𝑏 =
𝑅3𝑖 + 𝑅4∞

2
,    𝑐𝑏 =

𝑅3𝑖 − 𝑅4∞
4(𝛾 − 1)

 (3.43) 

These two equations are valid both for the inflow and the outflow cases, and the sign of the 

computed value of 𝑈𝑛𝑏 can be used to determine if an inflow or outflow condition occurs. 

In the inflow case (𝑈𝑛𝑏  < 0), two additional constraints must be enforced using given 

freestream data. One is the freestream entropy, and the other is the tangential component of 

the freestream velocity. The freestream entropy constraint is expressed by Eqn. (3.32), and it 

yields a constant entropy: 

 𝑆∞ =
𝑝∞

𝜌∞
𝛾  (3.44) 

noting that the nondimensionalised equation of state used by COSA is 𝑝𝛾 = 𝜌𝑇, one gets: 

 𝜌𝑏 = (
𝑇

𝛾𝑆∞
)

1
𝛾−1

= (
𝑐𝑏
2

𝛾𝑆∞
)

1
𝛾−1

 (3.45) 

The static pressure at the farfield boundary is instead given by: 

 𝑝𝑏 =
𝜌𝑏𝑐𝑏

2

𝛾
 (3.46) 
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The velocity components and turbulence variables at the inflow farfield boundary are 

determined with the same approach adopted in the case of BCs based on the differential form 

of the compatibility equations. Therefore the flow velocity components and the turbulent 

flow variables at the farfield boundary are given by Equations (3.36) and (3.37) respectively. 

For the case of subsonic outflow (𝑈𝑛𝑏  > 0), the entropy and the tangential velocity 

component to be imposed at the farfield boundary are extrapolated from the interior. 

Following the same procedure adopted in the inflow case, one finds: 

 𝜌𝑏 = (
𝑇

𝛾𝑆𝑖
)

1
𝛾−1

= (
𝑐𝑏
2

𝛾𝑆𝑖
)

1
𝛾−1

 (3.47) 

where the extrapolated entropy constant is defined as 

 𝑆𝑖 =
𝑝𝑖

𝜌𝑖
𝛾 (3.48) 

The static pressure at the farfield boundary is defined in the same way as Eqn. (3.46), and the 

flow velocity components and the turbulent flow variables at the farfield boundary are given 

by Equations (3.40) and (3.41) respectively. 
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Chapter 4  

Low Speed Preconditioning 

 

4.1 Low-speed preconditioner 
 

In the past decades, the amount of research on low speed preconditioning has seen a dramatic 

growth since the method is an effective means to ensuring that time-marching algorithms 

remain well-conditioned in terms of both accuracy and efficiency in a wide range of flow 

speeds (Turkel, 1999, Weiss and Smith, 1995). In the case of a steady flow problem, a 

pseudo-time derivative is usually added to the time-marching system, while for unsteady or 

time-dependent analyses, one often adopts the algorithm called the dual-time-stepping, which 

is firstly suggested by (Jameson, 1991) and later developed and incorporated into the 

preconditioning system (Venkateswaran and Merkle, 1995). In this strategy, the physical 

transient process is modelled by means of time marching the physical time derivatives, 

whereas pseudo-time-derivatives or fictitious time-derivatives are used to perform an inner 

iteration to determine the flow field at each physical time. As explained in more details below, 

in the case of time-dependent problems the LSP (or the preconditioning matrix) is only 

applied to the fictitious time derivative in order to remain the time accuracy. The 

performance of the preconditioned algorithm is thus predominated by the choice of such a 

matrix in particular, which directly affects the numerical solution procedure in terms of the 

convergence optimisation and the accuracy improvement.  

Among all the efforts devoted to developing the LSP algorithm, some have extended the 

preconditioning method in a more generalised sense for all Mach number range, while others 

concentrate on the problems of low speed flows. Concerning the former case, Turkel (1987) 

had discussed the application of preconditioning to both incompressible and compressible 

flows and mathematically proven (Turkel et al., 1993) that the limit of the compressible 

equations for Mach number approaching to zero is the incompressible equations. van Leer et 

al. (1992) had applied the preconditioning into multistage scheme for multigrid computations. 

Turkel (1987) and van Leer et al. (1992) primarily discuss the method from a purely 

theoretical point of view without providing detailed systematic studies of the effectiveness of 
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the preconditioning in solving realistic problems, while Choi and Merkle (1993) has dealt 

with a series of low Mach number restricted issues by using the preconditioning approach and 

proceeds primarily from an implementation point of view.  

The first published work on using low-speed preconditioning is presented in (Briley et al., 

1983), in which a constant diagonal preconditioning matrix is employed to alter the time-

marching scheme and demonstrated to improve the convergence for a low Mach number case. 

It is followed by a large amount of study on developing the structure of low speed 

preconditioning matrix for inviscid flow problems by different researchers. Turkel (1987) 

used the entropy as the primitive variable to derive the system and introduces additional 

parameters to reduce the condition number. The generalised preconditioning matrix which 

depends on the local flow velocity is built on the basis of the artificial compressibility 

proposed by Chorin (1967). A 2-D system of the preconditioned equations using Turkel’s 

approach is shown below, 

   
Γ
𝜕𝑄

𝜕𝑡
+ 𝐴

𝜕𝑄

𝜕𝑥
+ 𝐵

𝜕𝑄

𝜕𝑦
= 0 

Q = [𝑝, 𝑢, 𝑣, 𝑆]𝑇 

(4.1) 

where A and B are the flux Jacobian matrix in x- and y- directions respectively, p, u, v, and S 

denote the pressure, x- and y- components of the flow velocity and entropy. The 

preconditioner Γ is defined as 

   Γ =

[
 
 
 
 
 
 
𝑐2

𝛽2
0 0 𝛿

𝛼𝑢

𝜌𝛽2
1 0 0

𝛼𝑣

𝜌𝛽2
0 1 0

0 0 0 1]
 
 
 
 
 
 

 (4.2) 

In which 𝛽 is known as the artificial compressibility parameter while 𝛼 and 𝛿 are two free 

parameters. The parameter 𝛿  has no effect on the eigenvalues of the system thus the 

optimisation of the condition number and convergence rate is independent of 𝛿, and it can be 

usually neglected only except a particular requirement for determining the eigenvectors. 

When the local Mach number approaches zero, a singularity problem occurs due to the 

standard definition of 𝛽2 = min[𝑐2, 𝑢2 + 𝑣2], therefore a cutoff value must be introduced in 

order to circumvent the issue. The optimal condition number of such preconditioned system 

can be achieved with 𝛼 = 1. 
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In contrast to the approach proposed by Turkel, other researchers have chosen to base the 

preconditioning matrices on the temperature as the dependent variable. Choi and Merkle 

(1993), for example, had adopted a similar form of the preconditioner as Briley et al. (1983) 

and enhanced the convergence by using the local velocity, which can expressed in a 2-D 

preconditioned system as below, 

   
Γ
𝜕𝑄

𝜕𝑡
+ 𝐴

𝜕𝑄

𝜕𝑥
+ 𝐵

𝜕𝑄

𝜕𝑦
= 0 

Q = [𝑝, 𝑢, 𝑣, 𝑇]𝑇 

(4.3) 

with 

   Γ =

[
 
 
 
 
 
 
 

1

𝑎𝑐2
0 0 0

𝑢

𝑎𝑐2
𝜌 0 0

1

𝑎𝑐2
0 𝜌 0

𝐻

𝑎𝑐2
− 1 𝜌𝑢 𝜌𝑣 𝜌𝐶𝑝]

 
 
 
 
 
 
 

 (4.4) 

where 𝑎 is the only parameter used in the preconditioner. It is noted that the preconditioning 

matrix (4.4) is derived from the Jacobian matrix 𝜕𝑈/𝜕𝑄 between conservative variables 𝑈 

and primitive variables 𝑄, by replacing the term 𝜌𝑝 in the first column of the latter matrix 

with 1/𝑎𝑐2 through which the acoustic wave can be modified to travel at the speeds of the 

same order of magnitude with respect to the particle wave, and also by neglecting the term 𝜌𝑇 

in the fourth column.  

On the other hand, though Weiss and Smith (1995) had adopted the same procedure as that of 

Choi and Merkle (1993), they chose to keep the 𝜌𝑇  term instead while replacing the 

preconditioning parameter 1/𝑎𝑐2  with a more complex term, shown in the following 2-D 

example (the system of the preconditioned governing equations can be referred to Eqn. (4.3)), 

   Γ = [

Θ 0 0 𝜌𝑇
Θ𝑢 𝜌 0 𝜌𝑇𝑢
Θ𝑣 0 𝜌 𝜌𝑇𝑣

Θ𝐻 − 1 𝜌𝑢 𝜌𝑣 𝜌𝑇𝐻 + 𝜌𝐶𝑝

] (4.5) 

where parameter Θ is defined as Θ = (
1

𝑈𝑟
2 −

𝜌𝑇

𝜌𝐶𝑝
), and 𝑈𝑟  is the reference velocity with the 

definition depending on the specific flow region, 
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   𝑈𝑟 = {
𝜖𝑐,              |𝑣| < 𝜖𝑐 
|𝑣|,      𝜖𝑐 < |𝑣| < 𝑐
𝑐,              |𝑣| > 𝑐

 (4.6) 

The coefficient 𝜖 is usually a small constant and prevents 𝑈𝑟 from becoming zero (singularity) 

at the stagnation points. They also claim that with retaining the 𝜌𝑇 term in the matrix, the 

definition of Θ can simplify the eigenvalues of the system with respect to those in the case of 

Choi and Merkle (1993). 

In addition to the above methods, Van Leer et al. (1991) had developed another symmetric 

preconditioning matrix or the so-called Van Leer-Lee-Roe (VLR) preconditioner which is 

often referred to as optimal since it equalises eigenvalues across all Mach numbers and yields 

an optimal reduction of the condition number. Based on the flow variables 𝑑𝑈 denoted below, 

they derived the preconditioning matrix from the Euler equations and set the system 

coordinate align to the local flow velocity.  

   𝑑𝑈 =

(

 
 

𝑑𝑝

𝜌𝑐
𝑑𝑢
𝑑𝑣

𝑑𝑝 − 𝑎2𝑑𝜌)

 
 

 (4.7) 

The expression of the preconditioning matrix is, 

   Γ =

[
 
 
 
 
 
𝜏

𝛽2
𝑀2 −

𝜏

𝛽2
𝑀2 0 0

−
𝜏

𝛽2
𝑀2

𝜏

𝛽2
+ 1 0 0

0 0 𝜏 0
0 0 0 1]

 
 
 
 
 

 (4.8) 

where 𝛽 and 𝜏 are defined as, 

   

𝛽 = {
√1 −𝑀2,     𝑀 < 1

√𝑀2 − 1,     𝑀 ≥ 1
 

𝜏 = {
√1 −𝑀2,     𝑀 < 1

√1 −𝑀−2,    𝑀 ≥ 1
 

(4.9) 

An investigation and review of these preconditioners has been reported in the work of Choi 

(1989) primarily for the Euler equations, and detailed analyses for Navier-Stokes equations 

are presented in (Lee, 1996) and (Turkel, 1999). Brief comparisons between the above 

proposed preconditioning matrices can be made in assessing three numerical aspects: 
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convergence: as the VLR preconditioner yields the lowest condition number in theory, it 

thus ensures the most optimal convergence rate among all choices, which has been 

demonstrated in the numerical analyses (Hejranfar and Kamali-Moghadam, 2012) of two 

inviscid aerofoil flow problems. In this study, the preconditioning matrix proposed by Turkel 

is used to replace the VLR preconditioner since it gives the same optimal condition number 

of unity as that of the latter when the parameter 𝛼 equals 1. However, the numerical analyses 

highlight that though Turkel’s preconditioner has demonstrated a better convergence rate of 

the solution compared to all the other studied approaches, its performance shows a large 

dependence on 𝛼 of which the optimal value is determined by the specific problem at hand, 

thereby it increases the complexity when one applies the knowledge obtained in the 

theoretical study to a realistic application. 

accuracy: despite the different derivation procedures of the preconditioning matrices, all 

these approaches have shown an almost equivalent effect on improving the accuracy as 

presented in the study of Hejranfar and Kamali-Moghadam (2012), primarily because the 

eigenvalues in all preconditioned systems are correctly rescaled in the same level, which 

results in comparable effects on the accuracy preservation of the numerical dissipation and 

final solutions obtained. 

robustness: although the VLR preconditioner is devoted to optimising the wave speeds 

for all Mach numbers, it suffers a severe robustness issue due to the strong dependence on the 

flow angle. On the contrary, the one proposed by Weiss and Smith only suffers from the 

singularity of the stagnation point, which can be simply eliminated by imposing the 

restriction on the preconditioning parameter in these regions. Moreover, it also demonstrates 

high robustness while analysing the sensitivity to flow angle and outer boundary or resolving 

problems with sonic point regions.   

Besides low speed preconditioning, another method based on the perturbed form of the 

equations can also be used to eliminate the eigenvalue stiffness problem. In references (Choi, 

1989, Merkle and Choi, 1988), by using an expansion of the flow variables in terms of the 

Mach number squared, the authors manage to replace the physical acoustic wave with a set of 

pseudo acoustic mode whose magnitude is comparable to the particle wave speed. The 

method is effective for both inviscid and viscous flow problems and has been widely applied 

to many areas of engineering. However, despite the fact that this perturbation method is fairly 

robust in calculation, its use is limited by the nature of perturbation to subsonic flow regime 
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only. Specifically, the method is inadequate for solving transonic flow problems, which 

makes it less competitive compared to the preconditioning method when dealing with a 

general flow problem with multispeed flows involved. Choi and Merkle (1993) and 

Venkateswaran and Merkle (1999) have thus worked on developing the preconditioning 

matrix taking advantage of the robustness exhibited by the perturbation expansion approach, 

and extended its application to transonic flows. To be more specific, a small parameter 𝜖 

obtained from the non-dimensionalisation of the governing equations is used to expand the 

pressure in its power series, where the zeroth order component 𝑝0 can be demonstrated as 

constant and is usually the reference pressure, while the perturbation pressure, on the other 

hand, which is orders of magnitude smaller than the thermodynamic pressure 𝑝0, is the only 

solved pressure field. By modifying the partial derivative of density with respect to the 

pressure taking into account the effect of the small parameter 𝜖, one can equalise the time 

derivative of pressure and all the other terms in the continuity equation to the same order of 

magnitude and thus be able to update the pressure field even for very low Mach number. 

A comprehensive study of the low-speed preconditioning approach for inviscid flows has 

been conducted by Choi (1989) for Euler equations, and the attempt of its extension to the 

case of viscous flows was made firstly by Choi and Merkle (1993), although only the study of 

the effects on convergence rate is reported in details. Regarding the extension of the 

preconditioning to the Navier-Stokes equations, a new parameter, Reynolds number, appears 

in the equations, which in its discretised form, is one of the key quantities in the system 

called cell Reynolds number 𝑅𝑒ℎ. However, the extension procedure is not straightforward, 

since the wave speeds become complex as a result of the dissipative terms. To further 

investigate this problem, a dispersion relation analysis between the complex frequency 𝜔 and 

wave number 𝑘 has been provided in (Venkateswaran and Merkle, 1999) for the analytical 

solution of the Navier-Stokes equations. Based on the roots (𝜔/𝑘) calculated for the complex 

frequency, it is found that in the case of a high Reynolds number (𝑅𝑒 ≫ 1), the values of 

these roots become to the same particle and acoustic eigenvalues of the Euler equations, 

whereas in the viscous-dominated flow (𝑅𝑒 ≪ 1), at least one of the above three roots yields 

an imaginary value depending on another parameter called the ‘acoustic’ Reynolds number 

(𝑅𝑒𝑐 = 𝑐/𝜈𝑘 = 𝑅𝑒/𝑀), which directly links to the damping mode of the corresponding wave 

and is apparently due to the viscous terms of the momentum and energy equations. Therefore, 

determined by the Mach number and the ‘acoustic’ Reynolds number, the Navier-Stokes 

equations shows a much more complex physical process compared with the Euler equations, 
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which has also pointed to the fact that for high values of 𝑅𝑒ℎ, there is less concern about 

designing new preconditioning approach rather than for low values of 𝑅𝑒ℎ where the original 

‘Euler approach’ would fail.  

A summary of preconditioning methods used for different flow models (inviscid, laminar, 

turbulent) has been made by Lee (1996) focusing on theoretical aspect with only a limited 

number of numerical tests of validation. In Refs. (Lee et al., 1997, Lee, 1998) the authors 

have proposed an optimised preconditioning matrix in order to circumvent the singularity 

issues near the stagnation point as well as two specific methods for extending the local Euler 

preconditioning matrix to the Navier-Stokes equations, namely by adding the viscous entries 

arising in block-Jacobi preconditioning to deal with the stiff source terms and large cell 

aspect ratios, and introducing cell-Reynolds-number dependence in the entries of the Euler 

preconditioner based on the Navier-Stokes dispersion analysis. Meanwhile various types of 

improved preconditioning approaches have been proposed by different researchers (Fiterman 

et al., 1995, Venkateswaran and Merkle, 2000, Venkateswaran and Merkle, 1999, Weiss et al., 

1999) and been successfully applied to solve complex viscous problems. HAKIMI (1997) has 

investigated and compared the preconditioning methods developed by Turkel (1987) and 

Choi and Merkle (1993), and also proposed the extension form of the preconditioning matrix 

to 𝑘 − 𝜖 turbulence model. Jespersen et al. (1997) made the enhancement to a compressible 

solver with the low Mach preconditioning algorithm aimed at the improvement of the 

numerical dissipation (solution accuracy) and the convergence rate, and the implementation 

of the preconditioned Roe-scheme is validated in both inviscid and high Reynolds number 

turbulent cases. Such modification of the artificial dissipation has indeed resulted in the 

beneficial effect of accuracy enhancement brought by the preconditioning. Recently, Li et al. 

(2009) have derived an all-speed Roe-scheme which results from the combination of the 

‘classical’ Roe-scheme and Low-Speed-Roe scheme through a function of local Mach 

number. With theoretical analyses of its improvement achieved over the traditional 

preconditioned-Roe scheme and the above two counterparts in terms of the robustness and 

convergence acceleration, it is demonstrated with an all speed flow predictive capability of 

capturing shocks and simulating low speed flows.   

However, despite the fact that significant progress on LSP research has been done in terms of 

the inviscid and viscous laminar flow problems, there still remains a large unexplored area 

regarding its application to high-Reynolds turbulent problems, particularly when using the 

Reynolds-averaged Navier-Stokes equations in conjunction with two-equation turbulence 
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models, such as Wilcox’s 𝑘 − 𝜔 model (Wilcox, 1993) or Menter’s Shear-Stress-Transport 

(SST) model (Menter, 1994). Regarding the analysis of the implementation of LSP in RANS 

solvers augmented with turbulence models, two important features require to be emphasised. 

The first one is the method called the fully coupled integration approach (Liu and Zheng, 

1996), which solves the RANS equations and turbulence model equations simultaneously, 

and has shown a significant improvement compared to the loosely couple counterpart in 

terms of the computational efficiency (see Section 3.2 for the theory). Venkateswaran and 

Merkle (1999) have analysed the important influence of this fully coupled integration scheme 

on preconditioned equations. The other one is to derive the preconditioning matrix applied to 

both the flow equations and turbulence model equations, which is due to the fact that the 

RANS and turbulence equations have already been coupled at the mathematical level through 

the turbulence kinetic energy in the total energy (with reference to Eqn. (2.10)), which results 

in the necessity of obtaining a single convective flux Jacobian for both RANS and turbulence 

equations and implementing the LSP to the whole system uniformly. The detailed analysis of 

this turbulence preconditioning matrix are first given in Ref. (Venkateswaran and Merkle, 

1999), but in a purely theoretical point of view and no numerical results have been provided 

to validate the assumption. One essential reason for implementing the fully coupled method 

when solving the preconditioned Navier-Stokes and turbulence system is that it is important 

to consider the effect of the turbulence kinetic energy term in the pressure gradient of the 

momentum equation (2.9) as well as in the total energy of the energy equation (2.10). To be 

more specific, it is not the comparison of the magnitude of the pressure and turbulent kinetic 

energy that matters, but rather the comparison of the gradient of both variables. Particularly 

for low speed flows in some cases, the gradient of the turbulent kinetic energy can be of the 

same order or even larger than that of the pressure. Therefore, with the turbulent kinetic 

energy terms in the fluid equations (momentum and energy equations), the coupling of the 

RANS and the turbulence equations becomes straightforward and imperative, which as a 

consequence has resulted in the generation of the specific form of the preconditioning matrix 

for the turbulent flows. 

Unfortunately, no more study seems to be found thereafter on the incorporation of the fully 

coupled multigrid integration into the system where both the flow and turbulence equations 

are preconditioned. For example, Zheng et al. (1997) and Liu et al. (1998) solve the 

incompressible RANS equations by using the pseudo-compressibility approach of Chorin 

(1967), and only precondition the RANS equations, although the fully coupled approach is 
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used to solve the systems of RANS and turbulence equations of 𝑘 − 𝜔 model, which may 

only be applicable to incompressible solvers, as the momentum and energy equations are 

decoupled, and the latter one is not solved in this reference. Therefore unlike in the 

compressible case, no contribution of turbulent kinetic energy to the numerical dissipation of 

the momentum equation has been taken into account, which allows the fully coupled 

integration approach to be used without the need to precondition the turbulence equations. 

They claim no preconditioning is needed for the turbulence equations since the wave speed of 

the two characteristics associated with the two turbulence equations is already equal to the 

convective velocity, which is lack of strict theoretical demonstration and would require 

further analysis. Similar simplified implementation of the preconditioning method with two-

equation turbulence models have also been found in (Gleize and Costes, 2003, Le Pape and 

Gleize, 2006), where the authors choose the preconditioning method of Choi and Merkle 

(1993) and incorporate its original form into various turbulence models (for example, two-

equation 𝑘 − 𝑙 model suggested by Brian (1994), two-equation 𝑘 − 𝜖 model of Launder and 

Sharma and the 𝑘 − 𝜔 model of Wilcox), and solve the turbulence flow equations apart from 

the Navier-Stokes system.  

Therefore, based on the above findings, one can conclude that almost no validated 

implementation of the preconditioning method for both the Navier-Stokes system and two-

equation turbulence model equations in the framework of the strongly coupled integration 

approach has been made or published. More importantly, according to the research progress 

achieved by Buelow (2014), it has been confirmed that in the analysis of the combustion 

problem where large areas of mixed high speed and low speed flows can often occur, the 

turbulence kinetic energy has exerted a significant effect on the solution, providing us a 

strong evidence of validating the Venkateswaran and Merkle (1999)’s theory.  

 

4.2 LSP in Implicit and explicit CFD 
 

In order to solve the system of non-linear algebraic equations resulting from the space-

discretisation of the convective and diffusive terms of the steady RANS and SST equations, 

and the source terms of the SST equations, one can adopt either an implicit or explicit time-

marching scheme. The type of time-marching method is determined by how the time-
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derivative of the unknown flow variables is re-introduced into the system of the above 

algebraic equations, which, often through a suitable time discretisation of the time derivative, 

yields a system of ODEs. A convenient initial solution is required at the beginning of the 

time-marching method to achieve the steady sought solution. Denoting the space-discretised 

system of the N-unknown flow equations by 𝑓(𝑄̂), and 𝑄̂ represents the array storing N 

unknowns 𝑄1, 𝑄2, …𝑄𝑁, the solution of the steady equations can thus be obtained by time-

marching the following system of ODEs: 

   Δ𝑄̂

Δ𝑡
+ 𝑓(𝑄̂) = 0 (4.10) 

The sought steady solution can be obtained when 𝑓(𝑄̂), the residual of the steady equations, 

equals to zero. 

An explicit time-marching method can be implemented by solving the ODEs and evaluating 

the residual term 𝑓(𝑄̂) at time level 𝑛, and approximating the time-derivative with a first 

order finite difference scheme: 

   𝑄̂𝑛+1 = 𝑄̂𝑛 − Δ𝑡 𝑓(𝑄̂𝑛) (4.11) 

where 𝑄̂𝑛 is the value of 𝑄̂ computed at time level 𝑛 (𝑡 = 𝑛𝛥𝑡).  

Whereas regarding the implicit time-marching method, the residual term is instead evaluated 

at the time level 𝑛 + 1 , and the time derivative is discretised using a backward finite 

difference. Referring to the ODE system (4.10), the implicit time-marching approach yields, 

   𝑄̂𝑛+1 = 𝑄̂𝑛 − Δ𝑡 𝑓(𝑄̂𝑛+1) (4.12) 

thus computing the solution of 𝑓(𝑄̂) = 0 requires to solve a system of equations at time level 

𝑛 + 1. 

Before proceeding to the further discussion on the implicit and explicit time-marching 

approaches, an introduction of the iteration methods used in a single time level is provided 

first, which are usually classified as the so-called non-iterative and iterative methods, 

whereby the latter one can degenerate to the non-iterative time-marching method if only one 

iteration is performed at each time step. However, the non-iterative time marching method is 

subject to the loss of temporal accuracy unless extremely small physical time steps are used, 

particularly analysing the complex flow problems involving strong non-linear behaviour such 
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as shock waves or combustion problems (Venkateswaran and Merkle, 1995). Worse still, its 

physical time step size also suffers a sever limitation due to stability issues associated with 

stretched grids (Buelow et al., 1997) and errors associated with the approximate-inversion 

methods that are typically used in the implicit scheme. Therefore iterative procedure are 

usually adopted and applied at each physical time-level, which, in case of the implicit 

schemes, greatly eliminates the linearization and approximate factorization errors and ensures 

a good temporal accuracy.  

The approximate-Newton iterative procedure (Rai, 1993) and the dual-time-stepping 

approach (Jameson, 1991, Shuen et al., 1992) are the two iterative methods commonly used 

in the unsteady calculation. Both methods feature ‘inner’ or ‘sub’ iterations at each physical 

time step, and the dual time stepping approach which is more general, introduces an 

additional ‘pseudo’ time derivative to drive out errors in the physical transient and ensure 

well converged solutions in the inner iterations. One advantage of dual time stepping lies in 

the fact that the pseudo time derivative terms can be optimised to improve the convergence of 

the inner iteration, for example with the implementation of the preconditioning technique for 

low Mach number flow problems. The other benefit (Buelow et al., 1997) is that the physical 

time step can be chosen independently of the iterative method. The dual-time stepping 

method can be applied to both explicit (Jameson, 1991, Weiss and Smith, 1995) and implicit 

(Shuen et al., 1992, Venkateswaran and Merkle, 1995) time-marching schemes. A potential 

drawback of using the explicit integration is that it suffers an instability issue in the presence 

of highly stretched grids, thereby causing poor convergence in the inner iteration. The 

implicit methods, on the other hand, have shown a good capability of dealing with the 

stretched grids (Buelow et al., 1994) and produce satisfactory convergence results 

(Venkateswaran and Merkle, 1995). Hence, to solve Eqn. (4.12) iteratively using an implicit 

time-marching method, requires the update of the solution of a large system of equations at 

time level 𝑛 + 1, which is apparently a disadvantage with respect to the explicit methods, 

however, it still possesses a significant attractiveness to many researches by the fact that the 

maximum time step size ℎ available in the implicit time-marching method is substantially 

higher than that of the explicit case demonstrated in the stability analysis. Therefore, a largely 

reduced number of time-steps is required in the implicit method, yielding a comparable 

computational cost with respect to the explicit approach. 

To illustrate in more details the steady solution obtained with the implicit time-marching 

method, a linearised form of the equation (4.12) is given as, 
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   (
𝐼

ℎ
+ 𝐴)  Δ 𝑄̂ = −𝑓(𝑄̂𝑛) (4.13) 

where 

   Δ𝑄̂ = 𝑄̂𝑛+1 − 𝑄̂𝑛  (4.14) 

and the Jacobian matrix 𝐴 is defined as, 

   𝐴 =
𝜕𝑓(𝑄̂𝑛)

𝜕 𝑄̂𝑛 
  (4.15) 

To solve the above system (4.15), one needs to solve the system of linear equations at the time 

step 𝑛 + 1 using an effective linear solver, and the solution can thus be updated as: 

   𝑄̂𝑛+1 = 𝑄̂𝑛 + Δ𝑄̂   (4.16) 

It should be noted that, with a very large time step ℎ  chosen in this approach, the term 

proportional to 1/ℎ in (4.13) is thus neglected and it becomes the Newton’s method, the 

convergence of which is quadratic and therefore extremely favourable. However, the 

Newton’s method usually requires a fairly close initial solution to the final sought steady 

solution, making it difficult to develop a stable solution procedure. Therefore, a relatively 

small time step ℎ has to be adopted in the starting procedure of the implicit time march by 

most CFD codes based on the Newton’s method.  

Another implicit time-marching strategy often adopted for solving the RANS and turbulence 

model equations denoted by (4.13) is the so-called Approximate Factorisation Alternating 

Direction Implicit technique (AF-ADI), which approximates the matrix operator on LHS of 

equation (4.13) by the product of 2 (two-dimensional) or 3 (three-dimensional) simple 

matrices (e.g. tridiagonal matrices), and solves iteratively these 2 (or 3) simple systems at 

each iteration. At the end of each iteration, the residual term 𝑓(𝑄̂𝑛) on the RHS of equation 

(4.13) is updated using the obtained solution of 𝑄̂𝑛+1. 

As for the implementation of the LSP in the above implicit methods, Venkateswaran and 

Merkle (1995) conducted a von Neumann stability analysis and found that in the two extreme 

cases of small and large physical time steps, different choices of preconditioning matrix are 

required to ensure an optimal CFL number and convergence, and none of them is appropriate 

to be used in the intermediate choice of time-step. Therefore a wavenumber-dependent 

preconditioning parameter is suggested to overcome the damping issues for a wide range of 
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physical time steps as well as the most difficult - low wavenumber region. Buelow et al. 

(1997) have made a more detailed analysis of the preconditioning approach in implicit time-

marching schemes. A diagonalised form of ADI method (Pulliam and Chaussee, 1981) is 

introduced aimed at reducing the computational cost by simplifying the block inversion of the 

left hand side to the scalar tri-diagonal inversion and matrix multiplication and extended to 

include the time-derivative preconditioning. To resolve the challenge of properly treating the 

inverted physical time term on the left hand side while implementing the preconditioning in 

the diagonalised ADI algorithm, they replace the traditional way of applying the inversion of 

a block penta-diagonal system with the ADI factorisation which leads to one dimensional 

implicit sweeps in the computational domain and a more efficient block tri-diagonal inversion. 

While taking into account the preconditioning matrix in the inversion of LHS, the additional 

term associated with the physical time derivative can hinder a straightforward diagonalisation, 

and one effective way is to group the pseudo- and physical- time derivatives in a single term 

before applying factorisation and diagonalisation methods. Another point to be noted is the 

way of diagonalising the linearized viscous term, whereby the authors replace the LHS 

viscous coefficient matrices with their spectral radii times the identity matrix, though such 

simplified treatment may have negative effect on the convergence for low Reynolds number 

flow. They also claim that despite an inconsistent modal analysis between the LHS and RHS 

after performing the diagonalisation of the above resulting LHS, it is demonstrated to work 

well in the preconditioned system. A further analysis of the implicit iterative method and the 

above modified ADI factorisation used in dual-time stepping can be found in (Venkateswaran 

and Merkle, 1999) with more details and its implementation of solving practical problems 

(such as a round-jet in a low-Mach number cross-flow with ground-effect) is presented by 

Pandya et al. (2003). 

Despite the stability benefits achieved by using the implicit scheme, it is also found that in 

order to achieve the purpose of using ADI technique, a mixed-second derivative term of the 

variable difference has to be dropped yielding a potential stability issue (Lerat et al., 1982), 

and the associated approximate-factorisation error, which relates to the size of the physical 

time step or the CFL number, may have dominating effect on the convergence particularly 

when the CFL number becomes way larger than unity. On the contrary, though the marching 

time step size ℎ  of the explicit integration is bounded with the scheme-dependent and 

problem-dependent threshold due to the stability concern, no additional complex matrix is 

required to be built or stored with respect to the implicit method within each step of its time 
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marching procedure, which saves a great amount of floating points operations (FLOPs) and is 

thereby more convenient in terms of the memory usage.  

Therefore using the explicit method, the equation (4.11) can be solved in an iterative fashion 

by updating 𝑄̂𝑛+1 until the procedure converges and the obtained value of 𝑄̂𝑛+1 is regarded 

as the sought steady solution. One widely adopted explicit time-marching strategy is the 

explicit multi-stage Runge-Kutta strategy, which is first proposed by Jameson et al. (1981) to 

solve the Euler equations. The extension of the method has been later made to solve the 

Navier-Stokes equations (Belov et al., 1995) as well as the RANS equations augmented with 

various turbulence models (Mavriplis and Martinelli, 1994, Liu and Zheng, 1996, Lin and 

Sotiropoulos, 1997). However, due to the previously mentioned stability limitation on the 

CFL number, the iteration numbers required to assure the converged sought solution may 

become very large. In order to improve the computational efficiency, certain kinds of 

accelerating techniques are imperative to be introduced, such as implicit residual smoothing 

(Jameson, 1983, Blazek et al., 1991, Blazek et al., 1993, Swanson and Rossow, 2009) and full 

approximation storage (FAS) multigrid method (Douglas, 1996, Wesseling, 1995, Briggs and 

McCormick, 2000). Therefore with the above techniques implemented, the overall amount of 

FLOPs required to obtain a steady flow solution can be comparable or even smaller than 

implicit methods, although the overall number of FLOPs and/or the run-time required by 

explicit and implicit time-marching methods for a user defined reduction of the residual are 

still case-dependent in general. However, the fact of particular interest to our research is that 

the implementation of the explicit integration scheme in the preconditioned system tends to 

be more straightforward and convenient than the implicit one, which consequently makes it 

attractive to be adopted by many commercial (such as NUMECA etc.,) or research CFD 

codes (Gleize and Costes, 2003, Campobasso et al., 2014a, Coutier-Delgosha et al., 2005, 

Weiss and Smith, 1995, Turkel and Vatsa, 2003, Heinrich and Schwarze, 2014) implemented 

with LSP. 

To be noted that, the true benefits of low speed preconditioning can only be fully achieved 

with a well modified Runge-Kutta multistage scheme adapted to the numerical dissipation 

and space discretisation terms of a specific flow solver. In (Liu et al., 1998) the authors have 

devised a new update formula with implementing the preconditioner and treating implicitly 

the unsteady physical time-dependent terms, namely by introducing an intermediate step, the 

update of the solution at a given stage can be achieved with the yielded intermediate value. In 

terms of optimising the multistage coefficients, most attempts have been made with empirical 
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model, or geometric methods, or based on questionably defined functions for classical 

Runge-Kutta methods instead of a more advantageous modified version. Hosseini and Alonso 

(2004) have performed the numerical and analytical optimisation of different parameters and 

coefficients to achieve the optimum convergence for preconditioned Euler equations and 

aimed to find out the limitation and correlation of using both methods. Darmofal and Siu 

(1999) on the other hand choose to include a cell residual preconditioner in the multi-stage 

integration, thus to guarantee the good damping of high frequency errors for the semi-

coarsening multigrid algorithm. The extension of the same kind of treatment is made by 

Moinier and Giles (2002) to solve the 3D compressible RANS equations with Spalart-

Allmaras turbulence model, and the matrix preconditioner will have contributions from both 

inviscid and viscous flux terms, as well as the linearised source terms of the turbulence model. 

Turkel and Vatsa (2003) have conducted detailed analyses of the impact of variable choices 

on the preconditioned explicit Runge-Kutta scheme, through comparing the results obtained 

with implementing the conservation variables, primitive variables and a mixed combination 

of the two. In the recent published work of Campobasso et al. (2014a), the preconditioned 

turbulence equations with SST model is solved with the explicit Runge-Kutta time-marching 

algorithm in a strongly coupled integration manner, which will be detailed in Chapter 5. 

 

4.3 Preconditioning parameter analysis 
 

For the low speed preconditioning approach, apart from a well-defined matrix and associated 

numerical integration scheme, another crucial problem lies in the definition of 

preconditioning velocity scale applied in building the matrix. In Euler computations, 

preconditioning schemes often suffer severe robustness issues, which is due to the fact that 

local Mach number would approach zero near a stagnation point, therefore Venkateswaran 

and Merkle (1999) and Darmofal and Siu (1999) suggest a pressure-gradient based velocity 

scale at a specific cell in defining the preconditioning parameter.  

A 2-D example of the preconditioning parameter (Venkateswaran and Merkle, 1999) used in 

the preconditioned equations is illustrated as below (based on the primitive variable 𝑄𝑝 =

[𝑝, 𝑢, 𝑣, 𝑇]𝑇), 
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   Γ =

[
 
 
 
 

𝜌𝑝′ 0 0 𝜌𝑇′

𝑢𝜌𝑝′ 𝜌 0 𝑢𝜌𝑇′

𝑣𝜌𝑝′ 0 𝜌 𝑣𝜌𝑇′

ℎ0𝜌𝑝
′ − (1 − 𝜌ℎ𝑝) 𝜌𝑢 𝜌𝑣 ℎ𝑜𝜌𝑇

′ + 𝜌ℎ𝑇]
 
 
 
 

 (4.17) 

where the entry (1,1) is crucially important to control the performance of the whole 

preconditioning system based on the perturbation analyses and therefore requires particular 

attention when determining the preconditioning parameters for this term. It is scaled by 1/𝑉𝑝
2 

and 𝑉𝑝 = 𝑀𝑖𝑛(𝑉𝑖𝑛𝑣, 𝑐) , where 𝑉𝑖𝑛𝑣 = √𝑢2 + 𝑣2 , and it turns out that the preconditioned 

artificial speed equals the particle wave speed for subsonic flow and the acoustic wave speed 

for supersonic flow. With the implementation of the pressure gradient based velocity scale 

𝑉𝑝𝑔𝑟 , it becomes 𝑉𝑝 = 𝑀𝑖𝑛[𝑀𝑎𝑥(𝑉𝑖𝑛𝑣, 𝑉𝑝𝑔𝑟), 𝑐] , where 𝑉𝑝𝑔𝑟 = √|Δ𝑝|/𝜌 , and the pressure 

variation can be determined as either the maximum or the average values across each of the 

cell faces, |Δ𝑝| = 𝑀𝑎𝑥(|𝑃𝑅 − 𝑃𝐿|) 𝑜𝑟 𝐴𝑣𝑔(|𝑃𝑅 − 𝑃𝐿|). 

For high Reynolds number turbulent problems, the lack of robustness arises in low Reynolds 

number regions, which is because the preconditioning technique is designed to eliminate the 

stiffness issue related to the propagative disparities in the low Mach region, while in terms of 

the viscous flow, the diffusion process acts a dominating role in the boundary layer, and the 

basic unmodified preconditioning parameter would result in a large number of time steps 

required to resolve these regions. Therefore a local diffusion velocity scale 𝑉𝑣𝑖𝑠 is introduced 

in (Venkateswaran and Merkle, 1999) and the new preconditioning parameter is given as 

𝑉𝑝 = 𝑀𝑖𝑛[𝑀𝑎𝑥(𝑉𝑖𝑛𝑣, 𝑉𝑝𝑔𝑟 , 𝑉𝑣𝑖𝑠), 𝑐]. The viscous velocity scale 𝑉𝑣𝑖𝑠 is defined as below 

   𝑉𝑣𝑖𝑠 = 𝑀𝑎𝑥 [
𝑀𝑥
2 (

1
𝑅𝑒Δx

− 1)

𝑅𝑒Δ𝑥 [1 + 𝑀𝑥
2 (

1
𝑅𝑒Δ𝑥

− 1)]
,

𝑀𝑦
2 (

1
𝑅𝑒Δy

− 1)

𝑅𝑒Δ𝑦 [1 + 𝑀𝑦
2 (

1
𝑅𝑒Δ𝑦

− 1)]
 ] ⋅ 𝑐 (4.18) 

Where 𝑀𝑥 and 𝑀𝑦 are the Mach number based on the x- and y- component of the velocity 

respectively, and 𝑅𝑒Δx  and 𝑅𝑒Δ𝑦  are respectively the cell Reynolds numbers 𝑢Δ𝑥/𝜈  and 

𝑣Δ𝑦/𝜈 based on the cell length Δ𝑥 and Δ𝑦 in the x- and y- directions. However, it is found 

that such modification appears to be insufficient and produce divergent solutions for intake 

separation computations. One robust formulation is suggested by Turkel (1999), whereas it is 

still subject to difficult prescription of the reference Mach number value used in defining this 

restriction, as the crosswind inlet flow develops at speed varying significantly from the 

boundary layer to the intake region. Therefore another isentropic Mach number based 
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cutoff/restriction approach (Colin et al., 2011) is introduced to account for a wide range of 

complex turbulent applications. 

Venkateswaran et al. (2003) have later performed a systematic numerical analyses of various 

steady preconditioning velocity scales: 1) the global preconditioning simply based on the 

multiple of free stream velocity, 2) local velocity based preconditioning, the one using the 

maximum value of the velocity in the neighbourhood of cells of concern. In order to 

overcome the singularity problem near the stagnation point, additional cutoff values of 

different types (pressure gradient or free stream velocity based) have been applied to the 

specific preconditioning method. The analysis focuses on the inviscid situations and results 

have shown an advantage of the local maximum preconditioning over the others in terms of 

the straightforward implementation, robustness and efficiency.  

Turkel (2002) claims that the cut-off to prevent the stagnation-point singularity would be 

large and problem-dependent in difficult cases to ensure the robustness, which coincides with 

what we have found in our research. Besides, to take into account the viscous effect, they 

have not chosen the same manner as Venkateswaran et al. (2003) of incorporating a viscous 

correction into the local Mach number, but only make the corrections after calculating an 

inviscid value including all cut-offs. Followed by another published work (Turkel and Vatsa, 

2005), in which they consider the use of two separate preconditioning parameters aiming to 

improve the convergence rate and accuracy of the artificial dissipation. The former one used 

in the update stage does not affect accuracy and can be chosen only to improve the 

convergence rate, while the latter one is designed ideally to be as small as possible without 

destroying convergence so as to gain accuracy. As a consequence, the positive effect on 

accuracy improvement will deteriorate as the physical time step increases. Besides, a 

parametric study (Unrau et al., 1997) on the implementation of Weiss-Smith preconditioner, 

has revealed that the optimal value of lower limit(or cutoff as mentioned before) used to 

prevent the preconditioning parameter from becoming zero in stagnation region is dependent 

on the angle of attack and the grid. 

In cases of the unsteady computations, Venkateswaran and Merkle (1999) introduce a 

characteristic length 𝑙𝑥 and 𝑙𝑦 in multi directions determining the unsteady preconditioning 

velocity scale 𝑉𝑢𝑛𝑠 , therefore the preconditioned velocity is now defined as 𝑉𝑝 =

𝑀𝑖𝑛[𝑀𝑎𝑥(𝑉𝑖𝑛𝑠, 𝑉𝑝𝑔𝑟 , 𝑉𝑣𝑖𝑠, 𝑉𝑢𝑛𝑠), 𝑐], and 𝑉𝑢𝑛𝑠 is given as, 
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   𝑉𝑢𝑛𝑠 = 𝑀𝑎𝑥 [
𝑙𝑥
𝜋Δ𝑡

,
𝑙𝑦

𝜋Δ𝑡
] (4.19) 

where 𝑙𝑥 and 𝑙𝑦 are usually chosen as the physical dimensions of the modelled geometrical 

configurations.  

As for problems involved of moving objects, different treatment of defining the 

preconditioning parameters as well as the associated approach has been suggested. Liu et al. 

(1998) has modified the general preconditioning matrix of Chorin, Turkel and van Leer used 

to solve unsteady incompressible equations to the form taking into account the moving grid 

velocity, and the absolute velocity term in the preconditioning parameter is replaced by the 

relative velocity.  Similar modification has also been found in (Gleize and Le Pape, 2006), 

where the selected preconditioning method of Choi and Merkle (1993) is changed in the same 

manner by replacing the velocity terms. Moreover, detailed analyses of reference Mach used 

in preconditioning parameter are provided for different cases (helicopter rotors in forward 

flight or wind turbine), and a ratio between the free stream and the rotating Mach number is 

introduced to assess the effect of the variation of the reference section on the local Mach 

considered. However, the modification of the preconditioning matrix by Gleize and Le Pape 

(2006) is not mathematically correct and motivated, provided that the velocity components in 

the flow variables are denoted in the absolute frame of reference. Particularly when adopting 

the approach of Choi and Merkle (1993), the preconditioning matrix is in fact the variation 

form of the Jacobian matrix of the primitive and conservative variables after performing the 

pressure perturbation analysis, therefore all velocity related entries in the matrix are only 

determined by these two sets of flow variables implemented in the governing equations, 

regardless of the type of the flows. Supporting evidence of the above statement is found in 

(Wang et al., 2005, Sheng, 2011), where the governing equations are cast in the relative 

frame of reference to solve the rotating flow problems and a constant diagonal 

preconditioning matrix (Briley et al., 2003) is introduced with its original form. However due 

to the instability issues encountered in cases where a high rotating speed occurs, a rotating 

Mach number based on the characteristic rotating speed and reference length scale is 

employed as part of the reference Mach number to equivalently account for both flow and 

rotational speeds in determining the preconditioning parameter, which yields a good re-scale 

of the eigenvalues and reduces the characteristic condition number of rotating flows. Similar 

finding is also reported by Xiao et al. (2007), who has implemented the preconditioning 

matrix of Weiss and Smith (1995) to the unsteady Navier-Stokes equations, while a modified 



4.3 Preconditioning parameter analysis 

82 

preconditioning parameter based on Venkateswaran et al. (2003) is suggested to adapt to the 

moving grid problem. 
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Chapter 5  

Preconditioning of Fully Coupled 

RANS and SST Equations 
 

In the case of inviscid steady low-speed flows, a large disparity between the convective and 

acoustic eigenvalues of the flux Jacobian 𝜕Φ𝑖,𝑓/𝜕𝑈 exists. This results in unbalanced 

amounts of numerical dissipation (Turkel et al., 1993, Venkateswaran and Merkle, 1999), and 

this occurrence spoils the accuracy of the solution. When using explicit time-marching 

methods, the local time-step also depends on the eigenvalues of the flux Jacobian, and the 

abovesaid eigenvalue disparity impairs the convergence rate of the solver. An analogous 

disparity among the eigenvalues of the Jacobian of the governing equations also occurs in the 

case of viscous steady and unsteady low-speed problems. These issues can be circumvented 

by using low-speed preconditioning (Turkel et al., 1997, Venkateswaran and Merkle, 1999). 

The LSP approach reported in Venkateswaran and Merkle (1999) is implemented in the 

COSA code, and the analyses of this method for laminar steady and TD problems has been 

reported in Campobasso and Baba-Ahmadi (2012). The extension of this preconditioning 

approach to steady and TD turbulent flow problems solved with the fully coupled multigrid 

integration is reported here. 

 

5.1 Governing equations (2D) 
 

To build the COSA LSP-solver, we introduce a new set of primitive variables defined as 𝑉𝑝 =

[𝑝, 𝑢, 𝑣, 𝑇, 𝑘, 𝜔]𝑇. Eqn. (2.33) becomes 

   Γ𝑝̅
−1 𝜕𝑽𝒑

𝜕𝑡 
+
𝜕(𝑬𝑐 − 𝑬𝑑)

𝜕𝑥
+
𝜕(𝑭𝑐 − 𝑭𝑑)

𝜕𝑦
= 𝑺 (5.1) 

with Γ𝑝̅
−1

 being the Jacobian matrix 
𝜕𝑈

𝜕𝑉𝑝
. Replacing this Jacobian matrix by the 

preconditioning matrix Γ𝑝
−1 one obtains 
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   Γ𝑝
−1
𝜕𝑽𝒑

𝜕𝑡 
+
𝜕(𝑬𝑐 − 𝑬𝑑)

𝜕𝑥
+
𝜕(𝑭𝑐 − 𝑭𝑑)

𝜕𝑦
= 𝑺 (5.2) 

Reverting to conservative variables, the pseudo time derivative 𝑑𝑼/𝑑𝑡 is premultiplied by a 

preconditioning matrix P𝑐
−1, where 𝑃𝑐

−1 = Γ𝑝
−1 Γ𝑝̅. 

   P𝑐
−1
𝜕𝑼

𝜕𝑡 
+
𝜕(𝑬𝑐 − 𝑬𝑑)

𝜕𝑥
+
𝜕(𝑭𝑐 − 𝑭𝑑)

𝜕𝑦
= 𝑺 (5.3) 

This results in a rescaling of the eigenvalues of the preconditioned sum of the convective and 

viscous flux Jacobians which restores the correct levels of numerical dissipation and allows 

one to maintain high convergence rates even in low-speed problems. The preconditioner P𝑐 

for inviscid/laminar steady and TD flows has dimension [(2 + 𝑝𝑑) × (2 + 𝑝𝑑)] (pd = 2 in 

two- and pd = 3 in three-dimensional problems), and is reported in Venkateswaran and 

Merkle (1999). When using the fully coupled integration of the RANS and SST equations, it 

is not possible to apply the LSP only to the RANS equations without the introduction of 

questionable approximations in the mathematical form of the governing equations. One of the 

most important reasons is that restricting the use of LSP to the RANS equations only when 

using the fully coupled integration is prohibited by the presence of the turbulent kinetic 

energy term k in the definition of the total energy. Due to such term, the numerical dissipation 

of the momentum and energy equations features contributions of the turbulent kinetic energy 

even without LSP, which thereby forms a strong coupling of the RANS and SST equations in 

calculating the numerical dissipations and leads them to be treated as a single system when 

implementing the LSP. On the other hand, using a (𝑁𝑃𝐷𝐸 ×𝑁𝑃𝐷𝐸) preconditioning matrix 

having the [(2 + 𝑝𝑑) × (2 + 𝑝𝑑)]  laminar preconditioner in the top left and the (2 × 2) 

identity matrix in the bottom right corner (which corresponds to the case that no 

preconditioning is applied to the SST equations) yields complex eigenmodes of the 

preconditioned (𝑁𝑃𝐷𝐸 × 𝑁𝑃𝐷𝐸) convective flux Jacobian unless the turbulent kinetic energy 

is removed from the definition of the total energy, which means changing the original set-up 

of the RANS SST turbulence model and would cause significant accuracy uncertainty for 

complex flow problems. In order to demonstrate the necessity of the full preconditioning 

approach whereby both RANS and SST equations are applied with the LSP through the 

coupling of the turbulent kinetic energy, we have also tested two simplified preconditioning 

counterparts, both of which remove the turbulent kinetic energy in the total energy yielding 

the decoupling of the two systems of equations. One simplified version only preconditions 

the flow equations whereas the other one follows a rigorous mathematical derivation process 
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and applies the LSP to both systems (however with a different preconditioning matrix 𝑃𝑐 with 

respect to that of the full preconditioning approach). The expression of the preconditioner P𝑐 

used by the fully coupled integration of COSA and the two simplified approaches are both 

reported in the Appendix C, and the comparative analyses of the computational results among 

the above choices are performed for the applications of the horizontal axis wind turbine blade 

and vertical axis wind turbine shown in Chapter 7. 

Based on the above statement, LSP must be applied equally to the two systems of the 

equations and the dimension of the preconditioning matrix P𝑐  increases to (𝑁𝑃𝐷𝐸 × 𝑁𝑃𝐷𝐸) 

with 𝑁𝑃𝐷𝐸 = 4 + 𝑝𝑑. The matrix 𝑃𝑐  depends on a parameter 𝑀𝑝. For low speed flows, the 

parameter 𝑀𝑝 is, 

   𝑀𝑝 = min(max(𝑀,𝑀𝑝𝑔, 𝑀𝑣𝑖𝑠, 𝜖), 1) (5.4) 

where 𝑀 is the actual local Mach number, 𝑀𝑝𝑔 is a cut-off value based on the local pressure 

gradient (Weiss et al., 1999, Darmofal and Siu, 1999), and 𝑀𝑣𝑖𝑠 is the viscous cut-off value 

proposed by Buelow (1995). The parameter 𝜖 is a small cut-off parameter that prevents the 

preconditioner from becoming singular at stagnation points. The choice 𝑀𝑝 = 1 yields no 

preconditioning, and it allows us to make a very strict validation of the LSP implementation 

against the default solver without LSP. Based on the derivation process of LSP presented in 

this chapter and the preconditioning parameter 𝑀𝑝 set to 1, we can assess individually each 

part of the code affected by LSP, such as the eigenvectors required for numerical dissipation, 

the preconditioned characteristics, eigenvalues and residual, the farfield boundary conditions 

and the numerical integration, therefore it can be regarded as one crucially important 

algorithmic feature of the way we derive and validate the LSP implementation in our research. 

 

5.2 Artificial dissipation 
 

Artificial dissipation is one of the most essential elements to CFD algorithm which aims to 

damp out the high order frequency errors during the solution process. Artificial dissipation 

models can be generalised into two categories: the first one is the central difference scheme 

wherein the dissipation is introduced as a higher order derivative terms through an explicit 

step; the second one is the so-called upwind scheme, whereby the dissipation is an inherent 
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part of the space discretisation. As the upwind flux difference scheme is the one adopted in 

our research, the low speed preconditioning analysis presented in the section is based on this 

scheme only. Given an explicit form of the matrix dissipation of upwind scheme, it has been 

demonstrated (Venkateswaran and Merkle, 1999) that with the implementation of LSP, some 

of the dissipation terms can be properly modified yielding all the terms of the dissipation 

matrix to the same order of magnitude and well-proportioned, thus guarantying a good 

accuracy at all Mach numbers.   

For simplicity reason, the steady inviscid formulation is considered. Multiplying Eqn. (5.3) by 

𝑃𝑐 yields 

   
𝜕𝑼

𝜕𝑡 
+ 𝑃𝑐 (

𝜕𝐸

𝜕𝑥
+
𝜕𝐹

𝜕𝑦
) = 0 (5.5) 

and the associated integral form reads 

   ∫
𝜕𝑈

𝜕𝑡 
𝑑𝑉 +∮𝑃𝑐 (𝐹̂ ⋅ 𝑑𝑆̂) = ∫

𝜕𝑈

𝜕𝑡
𝑑𝑉 + ∮𝑃𝑐ℱ𝑑𝑆 =0 (5.6) 

where 

   𝐹̂ = 𝐸𝑖̂ + 𝐹𝑗̂,    ℱ = 𝐸𝑘𝑥 + 𝐹𝑘𝑦,    𝑑𝑆̂ = (𝑘𝑥𝑖̂ + 𝑘𝑦𝑗̂)𝑑𝑆 (5.7) 

and  

   𝑘𝑥
2 + 𝑘𝑦

2 = 1 (5.8) 

The use of Roe's scheme yields the numerical flux 

   ℱ⋆ =
1

2
𝑃𝑐(ℱ𝐿 +ℱ𝑅) −

1

2
|𝑃𝑐𝐾|𝛿𝑈   (5.9) 

with  

   𝐾 =
𝜕ℱ

𝜕𝑈
=
𝜕𝐸

𝜕𝑈
𝑘𝑥 +

𝜕𝐹

𝜕𝑈
𝑘𝑦  (5.10) 

The finite volume space-discretised version of Eqn. (5.6) becomes: 

   ∫
𝜕𝑈

𝜕𝑡 
𝑑𝑉 +∑

1

2
[𝑃𝑐(ℱ𝐿 + ℱ𝑅) − |𝑃𝑐𝐾|𝛿𝑈] 𝑑𝑆 = 0 (5.11) 

Premultiplying equation (5.11) by 𝑃 𝑐
−1 yields 

   ∫𝑃𝑐
−1
𝜕𝑈

𝜕𝑡 
𝑑𝑉 +∑

1

2
[(ℱ𝐿 + ℱ𝑅) − 𝑃𝑐

−1|𝑃𝑐𝐾|𝛿𝑈] 𝑑𝑆 = 0 (5.12) 
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Therefore the numerical dissipation term that needs to be calculated is 

   1

2
𝑃𝑐
−1|𝑃𝑐𝐾|𝛿𝑈 (5.13) 

In order to implement the preconditioned numerical dissipation given by Eqn. (5.13), one 

would need to compute the eigenmodes of 𝑃𝑐𝐾. It turns out, however, that it is simpler to 

work with the eigenmodes of Γ𝑝
𝜕ℱ

𝜕𝑉𝑝
, and Γ𝑝  is the preconditioning matrix related to the 

primitive variables 𝑉𝑝. 

Rewritten in terms of the above preconditioned Jacobian, it becomes as 

   |𝑃𝑐𝐾| = |(
𝜕𝑈

𝜕𝑉𝑝
Γ𝑝)(

𝜕ℱ

𝜕𝑉𝑝

𝜕𝑉𝑝

𝜕𝑈
)| = |(Γ𝑝̅)

−1
Γ𝑝 (

𝜕ℱ

𝜕𝑉𝑝
Γ𝑝̅)| (5.14) 

where Γ𝑝̅ is the Jacobian matrix between primitive variable 𝑉𝑝 and conservative variable 𝑈. 

As proved in the Appendix D, Eqn. (5.14) can be written as, 

   |𝑃𝑐𝐾| = (Γ𝑝̅)
−1
|Γ𝑝

𝜕ℱ

𝜕𝑉𝑝
| Γ𝑝̅ (5.15) 

which leads to the sought expression of the numerical dissipation 

   
1

2
𝑃𝑐
−1|𝑃𝑐𝐾|𝛿𝑈 =

1

2
Γ𝑝
−1 Γ𝑝̅(Γ𝑝̅)

−1
|Γ𝑝

𝜕ℱ

𝜕𝑉𝑝
| Γ𝑝̅𝛿𝑈 =

1

2
Γ𝑝
−1 |Γ𝑝

𝜕ℱ

𝜕𝑉𝑝
| Γ𝑝̅ 𝛿𝑈 (5.16) 

 

5.2.1 construction of numerical dissipation 
 

The first step consists of diagonalising the Jacobian matrix Γ𝑝
𝜕ℱ

𝜕𝑉𝑝
, 

   |Γ𝑝
𝜕ℱ

𝜕𝑉𝑝
| = 𝑅̂ |Λ| 𝑅̂−1 = 𝐿̂ |Λ| 𝐿̂−1 (5.17) 

where 𝑅̂ and 𝐿̂−1 are respectively the matrix of right and left eigenvectors of Γ𝑝
𝜕ℱ

𝜕𝑉𝑝
. Note that 

𝑅̂ = 𝐿̂. From Eqn. (5.16) it follows that 

   1

2
𝑃𝑐
−1|𝑃𝑐𝐾|𝛿𝑈 =

1

2
Γ𝑝
−1𝑅̂ |Λ| 𝑅̂−1Γ𝑝̅ 𝛿𝑈 =

1

2
Γ𝑝
−1𝐿̂ |Λ| 𝐿̂−1Γ𝑝̅ 𝛿𝑈 (5.18) 

This term can be rewritten as: 
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   1

2
𝑃𝑐
−1|𝑃𝑐𝐾|𝛿𝑈 =

1

2
ℛ |Λ| ℒ−1 𝛿𝑈 (5.19) 

where 

   ℛ = Γ𝑝
−1𝑅̂,    ℒ−1 = 𝐿̂−1Γ𝑝̅ (5.20) 

When the Mach number M tends to 1, then ℛ → ℒ. For 𝑀 < 1, ℛ ≠ ℒ, because Γ𝑝 ≠ Γ𝑝̅.  

Let us now consider the 𝑖𝑡ℎ flux difference (𝑖 = 1 corresponds to the continuity equation, 𝑖 =

2  and 𝑖 = 3  correspond to the x- and y-component of the momentum equation, 𝑖 = 4 

corresponds to the energy equation, 𝑖 = 5 and 𝑖 = 6 correspond to the two SST turbulence 

model equations with respect to turbulent kinetic energy and dissipation rate). The 𝑖𝑡ℎ flux 

difference 𝛿𝑓𝑖 is given by 

   𝛿𝑓𝑖 =∑𝑟𝑖𝑗𝛼𝑗|λ𝑗|

𝑗

 (5.21) 

where 𝑟̂𝑗 is the 𝑗𝑡ℎ column of ℛ and 𝜆𝑗 is the 𝑗𝑡ℎ entry of Λ. The scalars 𝛼𝑗( 𝑗 = 1,6) are given 

by 𝛼𝑗 = 𝛿𝑊 = (𝐿⋆
−1)𝑗𝛿𝑉 , where 𝛿𝑉  is the array of the standard primitive variables 

𝛿[𝜌, 𝑢, 𝑣, 𝑝, 𝐾, 𝜔]𝑇 and (𝐿⋆
−1)𝑗 is the 𝑗𝑡ℎ row of the matrix 𝐿⋆

−1, which is defined as 

   𝐿⋆
−1 = ℒ−1𝑀  (5.22) 

in which M is the Jacobian matrix 𝑀 =
𝜕𝑈

𝜕𝑉
. 

Expressions of all the above matrices are provided in details in the Appendix B.  

 

5.3 Farfield BCs (2D) 
 

Although the standard nonpreconditioned form of the farfield boundary conditions can be 

based both on the multi-dimensional compatibility equations and differential form of the 

characteristic variables, or the one-dimensional Riemann invariants, the preconditioned 

characteristic-based farfield BCs can be built only by using the differential form of the 

preconditioned characteristics, obtained by considering the multi-dimensional preconditioned 

compatibility equations. 
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5.3.1 mathematical model 
 

The preconditioned characteristic variables for the turbulent NS equations coupled to the SST 

turbulence model equations have been derived in Appendix B. Based on Eqn. (B.17), the 

preconditioned compatibility equations for turbulent problems are: 

   

𝛿𝑊1 = 𝛿𝜌 −
1

𝑐2
𝛿𝑝 = 0             𝑎𝑙𝑜𝑛𝑔 𝐶1:

𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

𝛿𝑊2 = 𝜌𝑛𝑦𝛿𝑢 − 𝜌𝑛𝑥𝛿𝑣 = 0        𝑎𝑙𝑜𝑛𝑔 𝐶2:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

𝛿𝑊3 =
𝛿𝑝 − 𝜌𝛿𝑈𝑛(𝜆4 − 𝑈𝑛)

𝑐(𝜆3 − 𝜆4)
= 0   𝑎𝑙𝑜𝑛𝑔 𝐶3:

𝑑𝑙

𝑑𝑡
= 𝑈𝑛

′ + 𝑐′ 

𝛿𝑊4 =
𝛿𝑝 − 𝜌𝛿𝑈𝑛(𝜆3 − 𝑈𝑛)

𝑐(𝜆3 − 𝜆4)
= 0    𝑎𝑙𝑜𝑛𝑔 𝐶4:

𝑑𝑙

𝑑𝑡
= 𝑈𝑛

′ − 𝑐′ 

𝛿𝑊5 = 𝜌𝛿𝑘 = 0                          𝑎𝑙𝑜𝑛𝑔 𝐶5:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

𝛿𝑊6 = 𝜌𝛿𝜔 = 0                           𝑎𝑙𝑜𝑛𝑔 𝐶6:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

(5.23) 

where 𝜆3 = 𝑈𝑛
′ + 𝑐′ , 𝜆4 = 𝑈𝑛

′ − 𝑐′ , 𝑈𝑛
′ =

(1+𝑀𝑝
2)

2
𝑈𝑛 , 𝑐′ = √𝑐2𝑀𝑝

2 + 𝑎𝑚2 𝑈𝑛2 , 𝑎𝑚 =
(1−𝑀𝑝

2)

2
. 𝑐 

stands for the sound speed while 𝑐′ is the artificial sound speed. 

Inserting the expressions of 𝜆3 and 𝜆4 into the compatibility equations of 𝑊3 and 𝑊4 yields: 

   

𝛿𝑊1 = 𝛿𝜌 −
1

𝑐2
𝛿𝑝 = 0             𝑎𝑙𝑜𝑛𝑔 𝐶1:

𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

𝛿𝑊2 = 𝜌𝑛𝑦𝛿𝑢 − 𝜌𝑛𝑥𝛿𝑣 = 0        𝑎𝑙𝑜𝑛𝑔 𝐶2:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

𝛿𝑊3 =
𝜌(𝑎𝑚𝑈𝑛 + 𝑐

′)

2𝑐𝑐′
(𝛿𝑈𝑛 +

𝑐′ − 𝑎𝑚𝑈𝑛
𝜌𝑐2𝑀𝑝

2
𝛿𝑝) = 0   𝑎𝑙𝑜𝑛𝑔 𝐶3:

𝑑𝑙

𝑑𝑡
= 𝑈𝑛

′ + 𝑐′ 

𝛿𝑊4 = −
𝜌(𝑎𝑚𝑈𝑛 + 𝑐

′)

2𝑐𝑐′
(𝛿𝑈𝑛 −

𝑐′ + 𝑎𝑚𝑈𝑛
𝜌𝑐2𝑀𝑝

2
𝛿𝑝) = 0  𝑎𝑙𝑜𝑛𝑔 𝐶4:

𝑑𝑙

𝑑𝑡
= 𝑈𝑛

′ − 𝑐′ 

𝛿𝑊5 = 𝜌𝛿𝑘 = 0                          𝑎𝑙𝑜𝑛𝑔 𝐶5:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

𝛿𝑊6 = 𝜌𝛿𝜔 = 0                           𝑎𝑙𝑜𝑛𝑔 𝐶6:
𝑑𝑙

𝑑𝑡
= 𝑈𝑛 

(5.24) 

Taking into account the direction of propagation, and imposing the compatibility constraint 

of the outgoing 𝑊3 and incoming 𝑊4 acoustic characteristics across the farfield boundary (the 
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definitions of the incoming the outgoing flows and all the related subscripts, ′𝑛′, ′𝑏′, ′𝑖′, ′∞′ 

appearing in the following equations can be found in Section 3.3 of Chapter 3) yields: 

   𝛿𝑈𝑛 +
𝑐′ − 𝑎𝑚𝑈𝑛
𝜌𝑐2𝑀𝑝

2
𝛿𝑝 = (𝑈𝑛𝑏 − 𝑈𝑛𝑖) +

𝑐′ − 𝑎𝑚𝑈𝑛
𝜌𝑐2𝑀𝑝

2
(𝑝𝑏 − 𝑝𝑖) = 0 (5.25) 

and 

   𝛿𝑈𝑛 −
𝑐′ + 𝑎𝑚𝑈𝑛
𝜌𝑐2𝑀𝑝

2
𝛿𝑝 = (𝑈𝑛𝑏 − 𝑈𝑛∞) −

𝑐′ + 𝑎𝑚𝑈𝑛
𝜌𝑐2𝑀𝑝

2
(𝑝𝑏 − 𝑝∞) = 0  (5.26) 

Adding and subtracting Eqn. (5.25) and (5.26) yield respectively 

   𝑈𝑛𝑏 =
𝑈𝑛𝑖 + 𝑈𝑛∞

2
+
1

𝜌𝑐′

𝑝𝑖 − 𝑝∞
2

+
𝑎𝑚𝑈𝑛
𝑐′

𝑈𝑛𝑖 − 𝑈𝑛∞
2

 (5.27) 

 

   𝑝𝑏 =
𝑝𝑖 + 𝑝∞
2

+
𝜌𝑀𝑝

2𝑐2

𝑐′

𝑈𝑛𝑖 − 𝑈𝑛∞
2

−
𝑎𝑚𝑈𝑛
𝑐′

𝑝𝑖 − 𝑝∞
2

 (5.28) 

which can be used to determine the normal velocity component and the static pressure at the 

farfield boundaries. The density 𝜌  and the sound speed 𝑐  appearing in the two equations 

above can be approximated with the value at the interior point adjacent to the boundary 

(𝜌 ≈ 𝜌𝑖  & 𝑐 ≈ 𝑐𝑖) or the given farfield data (𝜌 ≈ 𝜌∞ & 𝑐 ≈ 𝑐∞). As for the artificial sound 

speed 𝑐′, the estimate of this variable also requires the approximation of 𝑈𝑛. Equations (5.27) 

and (5.28) can be used both at inflow and outflow boundaries. The density, all velocity 

components, and two turbulence variables at the farfield boundary are determined using the 

same expressions and equations reported in subsection 3.3.1. 

 

5.3.2 validation 
 

In order to validate the implementation of the preconditioned characteristic-based farfield 

boundary conditions, we have considered here an inviscid flow past the NACA0012 aerofoil 

at the AoA of 1°, and three free stream Mach numbers are specified, namely 0.1, 0.01 and 

0.001 respectively. The steady inviscid flow analyses have also been performed using the 

MIT incompressible panel code XFOIL (Drela, 1989). This code also uses a Karman-Tsien 

compressibility correction that allows good compressible flow predictions all the way from 

incompressible (𝑀∞ = 0)  to sonic (𝑀∞ ≈ 1)  conditions. A layout of the boundary 
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conditions imposed in the simulations is displayed in Figure 5.1. Aiming to demonstrate the 

beneficial effect of the preconditioned farfield boundary condition on the solution accuracy 

particularly for a small size of computational domain, a fairly small distance of 20 chords and 

large distance of 50 chords have been chosen between the aerofoil and farfield boundary in 

the simulations. Both preconditioned and non-preconditioned characteristic farfield BCs are 

implemented and compared, while an inviscid slip wall condition is specified on the aerofoil 

surface. 

 

Figure 5.1 IMPOSED BOUNDARY CONDITIONS FOR NACA0012 AEROFOIL CASE (20 CHORDS)  

 

A 2D C-type structured grid is adopted here for all flow simulations. The grid is stretched in 

the normal wall direction, and the clustering is maintained in the wake region. An over view 

of the adopted grid is given in Figure 5.2 (since we have applied the same mesh size and 

clustering for grids of both farfield boundary distances, only the one with 20 chords of 

farfield boundary distance is displayed herein for clarity), where stretched grid spacing can be 

seen in the wall-normal direction and the wake. Figure 5.3, on the other hand, provides an 
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enlarged view in the aerofoil region, of which 176 mesh intervals are along the aerofoil 

surface, 40 intervals are along the wake from the aerofoil trailing edge to the outflow 

boundary, and 160 intervals are in the normal-like direction, giving a total number of cells of 

40960. A preliminary mesh refinement analysis has been made and no significant difference 

is observed between the solutions obtained with a finer mesh and the one shown here, thus 

the latter one has been adopted in all the simulations presented in the section. 

 

Figure 5.2 GRID VIEW IN FARFIELD REGION FOR NACA0012 AEROFOIL CASE (20 CHORDS) 

 

Figure 5.3 GRID VIEW IN NEAR AEROFOIL REGION (20 CHORDS) 
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The analysed variable of interest in this validation is the static pressure coefficient on the 

aerofoil surface, a profile comparison of which is shown in Figure 5.4 regarding the solutions 

obtained with the grid of 20 chords. The left subplot of the figure reports the comparisons of 

XFOIL and three LSP estimates of the static pressure coefficient 𝑐𝑝 along the chord obtained 

in the simulations with preconditioned farfield characteristic BCs, whereas the same 

comparative analysis of XFOIL and LSP estimated values obtained with non-preconditioned 

BCs are depicted in the right subplot. Inspection of the 𝑐𝑝 profiles in the left subplot yields 

that unnoticeable differences exist in both the leading edge (LE) and trailing edge (TE) 

between the XFOIL 𝑀∞ = 0.1 profile and those obtained by fully preconditioned approach 

associated with the three values of 𝑀∞. More importantly, the feature emerging from the 𝑐𝑝 

profiles obtained without preconditioned farfield BCs is that the results for the two lower 

values of 𝑀∞ display significant non-physical oscillations at both LE and TE with respect to 

the solution of XFOIL, which on the other hand is successfully removed in the full LSP 

calculations as a result of the optimised farfield boundary condition. Figure 5.5, on the other 

hand, depicts the comparison of 𝑐𝑝  profiles obtained with the larger mesh of 50 chords. 

Through the comparative analysis of both figures, it can be noticed that increasing the farfield 

distance or the size of the domain can improve slightly the accuracy of the solution obtained 

without the preconditioned farfield BCs for low speed flow problem (i.e. the solution near the 

LE of 𝑀∞ = 0.001), which, however, results in a significantly higher computational expense. 

The preconditioned farfield boundary conditions, on the other hand, have demonstrated 

equivalent benefits of preserving the solution accuracy in both cases and are thus less 

sensitive to the variation of the farfield boundary distance than the non-preconditioned 

counterpart, which provides us a strong evidence of the enhanced accuracy of the solution to 

the low speed flow problems by using the preconditioned farfield BCs, particularly with a 

relatively small computational domain. 
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Figure 5.4 COMPARISON OF PRESSURE COEFFICIENT 𝑐𝑝 AT THREE VALUES OF 𝑀∞ 0.1, 0.01, 

0.001, OBTAINED BY XFOIL AND COSA LSP-ENHANCED SOLVER WITH AND WITHOUT 
PRECONDITIONED FARFIELD BCS (GRID OF 20 CHORDS). RIGHT SUBPLOT: 𝑐𝑝 OBTAINED WITH 

XFOIL AND PRECONDITIONED FARFIELD BCS. LEFT SUBPLOT:  𝑐𝑝 OBTAINED WITH XFOIL AND 

NON-PRECONDITIONED FARFIELD BCS  

 

5  

Figure 5.5 COMPARISON OF PRESSURE COEFFICIENT 𝑐𝑝 AT THREE VALUES OF 𝑀∞ 0.1, 0.01, 

0.001, OBTAINED BY XFOIL AND COSA LSP-ENHANCED SOLVER WITH AND WITHOUT 
PRECONDITIONED FARFIELD BCS (GRID OF 50 CHORDS).  
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5.4 Numerical integration 
 

Starting from the standard numerical integration methods provided in the previous chapter for 

non-preconditioned analyses, we have made a brief description of their counterparts for the 

integration of the steady, time-dependent and harmonic balance preconditioned systems. 

 

5.4.1 time-dependent problems 
 

The general form of the point-implicit Runge-Kutta (PIRK) MG iteration to solve low-speed 

TD problems, obtained by premultiplying the fictitious time-derivative 𝑑𝑄/𝑑𝜏 by 𝑃𝑐
−1 and 

applying the stabilization process of Melson et al. (1993), is: 

   

𝑾0 = 𝑸𝑙 

           (𝐼 + 𝑃𝑐𝛼𝑘(𝛽𝑇𝐷𝐼 + Δ𝜏𝐴))𝑾
𝑘      

= 𝑾0 + 𝛼𝑘𝑃𝑐(𝛽𝑇𝐷𝐼 + Δ𝜏𝐴)𝑾
𝑘−1 − 𝛼𝑘Δ𝜏𝑉

−1𝑃𝑐𝐿𝐼𝑅𝑆[𝑹g(𝑾
𝑘−1) + 𝒇𝑀𝐺] 

𝑸𝑙+1 = 𝑾𝑁𝑆 

(5.29) 

The matrix premultiplying 𝑊𝑘 is block-diagonal, but its blocks are not diagonal because of 

the preconditioner 𝑃𝑐, which is a fully populated matrix, and also because of the off-diagonal 

terms of A. Therefore the update process requires the inversion of an 𝑁𝑃𝐷𝐸 × 𝑁𝑃𝐷𝐸-matrix for 

each cell of the computational domain. The standard fully explicit Runge-Kutta (FERK) 

integration algorithm of the TD equations is retrieved by setting 𝛽𝑇𝐷 = 0 in Algorithm (5.29). 

The integration scheme of the steady equations is instead obtained by also replacing 𝑅𝑔 with 

𝑅Φ in Algorithm (5.29). 

 

5.4.2 harmonic balance problems 
 

In the case of frequency-domain problems, the pseudo-time derivative of Eqn. (3.24) is 

premultiplied by a [(2𝑁𝐻 + 1) × (2𝑁𝐻 + 1)]-diagonal-block-matrix 𝑃𝑐,𝐻
−1 , and the nonzero 

blocks 𝑃𝑐,𝑛
−1 with 𝑛 = 0,1, … ,2𝑁𝐻 are simply instantiations of the preconditioning matrix 𝑃𝑐

−1 
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discussed above at the times defined by Eqn. (2.55). The use of the same stabilization process 

of the RK cycle used in the TD problems yields the following PIRK MG iteration scheme for 

HB cases: 

   

𝑾𝐻
0 = (𝑸𝐻)𝑙 

[𝐼 + 𝛼𝑘𝑃𝑐,𝐻(𝛽𝐻𝐷𝐻 + Δ𝜏𝐻𝐴𝐻)]𝑾𝐻
𝑘 = 𝑾𝐻

0 + 

𝛼𝑘𝑃𝑐,𝐻(𝛽𝐻DH + Δ𝜏𝐻𝐴𝐻)𝑊𝐻
𝑘−1 − 𝛼𝑘Δ𝜏𝐻𝑉𝐻

−1𝑃𝑐,𝐻𝐿𝐼𝑅𝑆,𝐻[𝑹gH(𝑊𝐻
𝑘−1) + 𝒇𝑀𝐺,𝐻] 

(𝑸𝐻 )𝑙+1 = 𝑾𝐻
𝑁𝑆 

(5.30) 

The matrix pre-multiplying 𝑾𝐻
𝑘  is block-diagonal, but its blocks are not diagonal because the 

preconditioner 𝑃𝑐, the matrix D and the matrix A are not diagonal. Each of these 𝑁𝑐𝑒𝑙𝑙 blocks 

has size of ((2𝑁𝐻 + 1) × 𝑁𝑃𝐷𝐸)
2
, and the update process of the whole solution requires the 

inversion of all such blocks. Due to this feature, the computational cost of HB analyses is 

moderately superlinear with respect to 𝑁𝐻 . All numerical analyses carried out thus far, 

however, show that the computational speed of the HB analysis remains significantly higher 

than that of the TD despite the abovesaid overhead. The standard fully FERK integration 

algorithm of the HB equations can be retrieved by setting 𝛽𝐻 = 0 in Algorithm (5.30).  

 

5.5 Preconditioning parameter for moving grid 

problem 
 

For time-dependent moving grid problems, the definition of the preconditioning parameter 

𝑀𝑝 in Eqn.(5.4) should be treated differently from the steady cases by taking into account the 

grid moving velocity. Analyses and implementations of such modified parameters based on 

the relative flow velocity have been given in (Xiao et al., 2007) and (Liu et al., 1998) for 

general unsteady compressible and incompressible flow problems, while Gleize and Le Pape 

(2006) have provided a detailed numerical analysis with particular emphasis on the horizontal 

axis wind turbine application. As a consequence, the preconditioning parameter is defined as, 

   𝑀𝑝 = min(max(𝑀𝑟𝑒𝑓, 𝑀𝑝𝑔, 𝑀𝑣𝑖𝑠, 𝜖), 1) (5.31) 

where 𝑀𝑟𝑒𝑓 = |𝑉̂ − 𝑉𝑔̂|/𝑐  is the relative local Mach number, and 𝑉̂  and 𝑉𝑔̂  are the flow 

velocity and moving grid velocity in vector forms respectively.  
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In the analysis of the vertical axis wind turbine application (see Section 7.3), we have found a 

noticeable improvement achieved in the solution of the torque coefficient by using the 

relative preconditioning parameter. However, based on the experience obtained in our study, 

the cutoff value 𝜖 should be always set fairly high (i.e. 3 to 5 times the free stream Mach 

number) for the complex turbulent problems in order to get rid of the stability issue often 

occurring in the low Mach flow region (a similar conclusion has also been reported in the 

work of Turkel (2002)), which, to some extent, results in all the other preconditioning 

parameters less ‘active’, thus yielding a potential problem that the nice factors in the 

definition of the preconditioning parameter only work well for simpler test case of the same 

type as those used to develop them, while regarding the real flows (high Reynolds number, 

stretched grids, significant separations) which are substantially more complex than the simple 

idealised flows often used for developing elegant algorithms, the various variables appearing 

in the definition of the preconditioning parameters tend to be less important and beneficial. 

Therefore, to work out an approach that can properly balance the stability and accuracy for 

solving turbulent problems would still require further analyses in our future research. 
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Chapter 6  

Validation 
 

This chapter outlines numerical results computed for various internal and external flow 

problems. These test cases are considered to validate all aspects of the developed fully-

coupled low-speed preconditioning technology  

Firstly a steady turbulent flat plate boundary layer is considered: the numerical solution of 

COSA is compared with available theoretical results for three different Mach numbers. In the 

second case the flow separation and reattachment caused by a backward facing step is 

analysed and the simulated results of COSA are compared with both the solution of a well-

established American CFD code (CFL3D) and the available experiment data. This is 

followed by the numerical analyses of a NASA 2D wall-Mounted hump experiment where a 

Glauert-Goldschmied type body is mounted in the lower wall. Experimental data and CFL3D 

results are used as benchmarks to assess the low speed flow predictive ability of the COSA 

LSP solver. The last internal flow problem is the 2D convex curvature boundary layer in a 

duct in which we primarily analyse the flow characteristics near the convex wall curvature. 

The first external flow problem considered in the chapter is the flow past a so-called Model-

A aerofoil in a low Mach number turbulent flow for which measured velocity profiles in the 

wake are available for an angle-of-attack of 0 degree. The last test case is the NACA4412 

aerofoil in a subsonic turbulent flow featuring a flow reversal in the rear portion of the 

suction side. The COSA solutions have been compared to available detailed hot-wire 

boundary layer measurements.  

In all test cases, comparisons of the numerical solutions of COSA with and without LSP 

implementation, the experiment data and results of CFL3D analyses are presented. 

Additionally, for each test case two simulations with lower Mach numbers with respect to the 

original value are included to further challenge the flow predicting capability of the LSP-

enhanced code in terms of solution accuracy and stability. It is highlighted that despite the 

compressibility effect in specific aerofoil cases, the solutions of the LSP solver have 

demonstrated an independence on the variation of Mach numbers, and also feature higher 

numerical accuracy in the normal subsonic flow problems due to the correct scaling of the 

artificial dissipation terms. 
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6.1 Steady turbulent flat plate boundary layer 
 

The turbulent flow over a flat plate leading to the formation of a turbulent boundary layer is 

considered. The computational domain is rectangular and the flat plate lies on the lower 

horizontal boundary. The leading edge (LE) of the flat plate is in the origin of the Cartesian 

system, and its trailing edge (TE) is at 𝑥 = 1 , where the (vertical) outlet boundary is 

positioned. The inlet boundary is at 𝑥 = −1/3, and the upper horizontal side is a farfield 

boundary positioned at 𝑦 = 1. The computational mesh is shown in Figure 6.1 and only every 

second line is plotted for clarity. 

 

Figure 6.1: Grid for turbulent flat plate 

The adopted Cartesian grid has 384 mesh intervals along y, and the size of these intervals 

increases from the lower horizontal boundary to the upper horizontal boundary starting from 

a minimum value of 2.5 ⋅ 10−7 yielding a non-dimensionalised wall distance 𝑦+ less than 1. 

The grid has 256 equal mesh intervals along x; 192 are on the flat plate and 64 in the space 

between the LE and the inlet boundary. The freestream Reynolds number 𝑅𝑒 is 6 ⋅ 106. A 
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mesh refinement analysis has revealed that the solution computed with the grid defined above 

presents negligible differences from the solution computed by using grids with substantially 

higher spatial refinement. All simulations discussed below have been performed using the so-

called improved auxiliary state farfield BCs for internal flows (Campobasso and Baba-

Ahmadi, 2011) on the vertical left and right boundaries of the computational domain, and a 

standard external-flow characteristic based farfield condition on the top horizontal boundary. 

Symmetry conditions are imposed on the portion of the lower horizontal boundary between 

the inlet boundary and the LE of the flat plate, and a no-slip condition is applied on the flat 

plate. 

From a physical standpoint, the effects of compressibility are expected to be negligible for 

𝑀∞ of order 0.1 or less. When using the compressible formulation without LSP, however, 

both the convergence rate of explicit solvers and the accuracy of the solution are expected to 

worsen as the Mach number decreases. To assess the effectiveness of the developed turbulent 

LSP technique, this test case has been solved for three values of 𝑀∞, namely 0.1, 0.01 and 

0.001, and for each value a simulation with LSP and one without have been performed. All 

simulations have been run for 3,000 MG cycles with three grid levels and 𝐶𝐹𝐿 = 3. The three 

profiles of the nondimensionalised velocity component parallel to the flat plate on a line 

orthogonal to the flat plate itself at 𝑥 = 0.5, computed with and without LSP are reported in 

the left and right subplot of Figure 6.2 respectively (the label ‘NP’ in the top left corner of the 

right subplot denotes simulations performed without LSP).  
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Figure 6.2  COMPARISON OF SPALDING’S VELOCITY PROFILE AND FLAT PLATE VELOCITY 
PROFILES EXTRACTED FROM FLAT PLATE FLOW SIMULATIONS FOR 𝑀∞ = 0.1, 𝑀∞ = 0.01, 

AND 𝑀∞ = 0.001. LEFT SUBPLOT: CFD SOLUTIONS WITH LSP. RIGHT SUBPLOT: CFD 
SOLUTIONS WITHOUT LSP. 

The variable on the x-axis is the logarithm in base 10 of 𝑦+, the nondimensionalised wall 

distance, and its expression is 𝑦+ = (𝑢𝜏𝑑)/𝑣𝑤 . The variable on the 𝑦 −axis is 𝑢+ , the 

nondimensionalised velocity component 𝑢|| parallel to the wall, which, in this case, is the 

𝑥 −component of the velocity vector. Its expression is 𝑢+ = 𝑢||/𝑢𝜏. Both subplots also report 

Spalding’s profile, which is a power-series interpolation of experimental data joining the 

linear sublayer to the logarithmic region of the turbulent boundary layer occurring on a flat 

plate in the absence of a streamwise pressure gradient. The left subplot of Figure 6.2 shows 

that the LSP solutions associated with the three values of 𝑀∞ are superimposed, as expected 

on the basis of physical evidence, and in very good agreement with Spalding’s velocity 

profile. The right subplot of Figure 6.2 shows that the CFD solutions without LSP are not 

independent of the Mach number, as the solution associated with 𝑀∞ = 0.001 differs both 

from the other two CFD results and Spalding’s estimate. The theoretical value of the drag 

coefficient 𝑐𝐷  for the considered configuration is 3.14 ⋅ 10−3 , whereas the values of 𝑐𝐷 

obtained with the three LSP simulations and the three simulations not using LSP are reported 

in the second and third columns of Table 6.1, respectively. These data emphasise that the 𝑐𝐷 

predicted by the LSP analysis remains constant as 𝑀∞  decreases, and is equal to the 

theoretical value. Conversely, the drag coefficient estimate of the analysis without LSP 

deviates substantially from the theoretical prediction as 𝑀∞ is reduced, due to the numerical 
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errors associated with the use of the compressible solver without LSP at low Mach number 

levels. 

𝑀∞ LSP NP 

1 ⋅ 10−1 3.14 ⋅ 10−3 3.14 ⋅ 10−3 

1 ⋅ 10−2 3.14 ⋅ 10−3 3.24 ⋅ 10−3 

1 ⋅ 10−3 3.14 ⋅ 10−3 6.87 ⋅ 10−3 

Table 6.1    COMPARISON OF DRAG COEFFICIENTS EXTRACTED FROM FLAT PLATE 
FLOWSIMULATIONS FOR 𝑀∞ = 0.1, 𝑀∞ = 0.01 AND 𝑀∞ = 0.001 WITH AND WITHOUT LSP. 

The results of Table 6.1 and Figure 6.2 point to the necessity of using LSP to preserve the 

accuracy of the solution when solving low-speed flows with the compressible equations. The 

improvements of the convergence properties of the explicit multigrid compressible solver 

featuring LSP is highlighted in Figure 6.3. Its six subplots report the convergence histories of 

the continuity equation (subplot labelled 𝜌), the 𝑥 −component of the momentum equation 

(subplot labelled 𝜌𝑢), the 𝑦 − component of the momentum equation (subplot labelled 𝜌𝑣), 

the energy equation (subplot labelled 𝜌𝐸 ), the turbulent kinetic energy equation (subplot 

labelled 𝜌𝑘), and the specific dissipation rate equation (subplot labelled 𝜌𝜔). In all plots, the 

variable on the 𝑥 −axis is the number of multigrid iterations, and the variable Δ𝑙𝑟  on the 

𝑦 −axis is the logarithm in base 10 of the root mean square of all cell-residuals for the 

considered conservation equation normalised by the residual of the 1st iteration. Each subplot 

reports the convergence history of the CFD runs with and without LSP for the three selected 

values of 𝑀∞.  
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Figure 6.3   CONVERGENCE HISTORIES OF FLAT PLATE FLOW SIMULATIONS WITH AND 
WITHOUT LSP 𝑀∞ = 0.1, 𝑀∞ = 0.01 AND 𝑀∞ = 0.001. TOP LEFT SUBPLOT: CONTINUITY 

EQUATION. TOP RIGHT SUBPLOT: x-COMPONENT OF MOMENTUM EQUATION. MIDDLE LEFT 
SUBPLOT: y-COMPONENT OF MOMENTUM EQUATION. MIDDLE RIGHT SUBPLOT: ENERGY 
EQUATION. BOTTOM LEFT SUBPLOT: TURBULENT KINETIC ENERGY EQUATION. BOTTOM 

RIGHT SUBPLOT: SPECIFIC DISSIPATION RATE EQUATION. 

Inspection of the residual histories of the RANS and the 𝜔 equations highlights that both the 

convergence rate and the overall residual drop of all three LSP simulations is independent of 

𝑀∞, as expected on the basis of theoretical analyses. The general pattern of the convergence 

history of the k- equation of the three LSP simulations also shows an independent overall 
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drop of the residuals of this equations as 𝑀∞  decreases, however the smaller order of 

magnitude of the drop of residuals compared with other flow variables is seen as a common 

problem for this turbulence model and noticed by many researchers. Figure 6.3 also shows 

that both the convergence rate and the overall drop of all residual histories of the three 

simulations without LSP vary significantly with 𝑀∞ , denoting an increasing disparity 

between the characteristic acoustic and convective speeds as 𝑀∞ decreases. 

 

6.2 2D Backward facing step 
 

In this case, a turbulent boundary layer encounters a sudden back step, causing flow 

separation. The flow then reattaches and recovers downstream of the step. The Reynolds 

number based on boundary layer momentum thickness prior to the step is 5000. This 

corresponds to a Reynolds number of approximately 36,000 based on step height H. The 

boundary layer thickness prior to the step is approximately 1.5H. The boundary conditions 

adopted for the simulation of this problem are shown in Figure 6.4. Other than a short region 

with symmetry conditions imposed (to avoid possible incompatibilities between freestream 

inflow and wall BCs), both bottom and top walls are treated as viscous walls. In this case, the 

inflow length prior to the area of interest (near x=0) has been adjusted so that the naturally 

developing turbulent boundary layer on the lower wall in the CFD solution grows to 

approximately the correct thickness and yields approximately the correct wall skin friction 

coefficient prior to the step. The back pressure is adjusted to yield approximately the correct 

Mach number (M=0.128) upstream of the step. 
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Figure 6.4 IMPOSED BOUNDARY CONDITIONS FOR BACKWARD FACING STEP 

A series of 5 nested 2-D grids, non-dimensionalised by the step height H, are provided on 

NASA Research Centre website (http://turbmodels.larc.nasa.gov/backstep_grids.html). Each 

coarser grid is exactly every-other-point of the next finer grid. As shown in the figure above, 

the computational domain is made up of two rectangular subdomains and the backward 

facing step is placed at 𝑥 = 0 on the lower wall. Figure 6.5 provides an enlarged view of the 

grid portion in the middle region. For visual clarity, only every second line of both grid line 

sets is plotted. The structured grid comprises 4 different zones, which are connected in a one 

to one fashion (for example, zone 1 and 2 prior to the step can easily be combined into one 

zone as they share the same number of cells in the normal direction; and zone 3 and 4 after 

the step can be combined into one zone for the same reason). Each zone of the grid has 

different number of cells, namely zone 1 with 129 grid points in both directions, zone 2 with 

129 grid points in the normal direction and 49 points in the horizontal direction respectively, 

zone 3 with 225 and 193 grid points in the normal and horizontal directions and zone 4 with 

http://turbmodels.larc.nasa.gov/backstep_grids.html
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225 and 65 grid points in the normal and horizontal directions respectively. The grid is 

stretched from both top and bottom walls to the centre of the domain in the normal wall 

direction and the clustering is maintained in both wall regions. 

A preliminary mesh refinement analysis has revealed that the solution computed with the grid 

defined above presents negligible differences from the solution computed by using grids with 

higher spatial refinement. It should be noted that, the CFD results of CFL3D presented below 

is obtained by using the grid which is finer than that used in COSA (or the grid used in 

COSA simulations is exactly every-other-point of that in CFL3D), and no significant 

difference can be observed in the first case analysis of 𝑀∞ = 0.128, which can be regarded 

as an advantage of the COSA solver to achieve a higher computational efficiency without any 

accuracy penalty. 

 

Figure 6.5 GRID VIEW IN BACKWARD FACING STEP REGION. 
(http://turbmodels.larc.nasa.gov/backstep_grids.htm) 
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Figure 6.6 and Figure 6.7 show the velocity profiles, skin friction coefficient and pressure 

coefficient of interest chosen at the following x/H locations, upstream of step x/H=-4, and 

downstream of the step x/H=1, 4, 6, 10. All the results compared in this section are obtained 

by CFL3D (Krist et al., 1998), a Navier-Stokes compressible CFD code developed at NASA 

Langley Research Centre for solving 2-D or 3-D flows on structured grids, by COSA with 

and without LSP and the experimental data provided by Driver and Seegmiller (1985) 

respectively. The 𝑈𝑟𝑒𝑓 , used to nondimensionalise the velocity profiles, is the reference 

velocity at the centre-channel near location x/H=-4, therefore velocity profile with respect to 

this particular location has been plotted in Figure 6.6 being a critical assessment of yielding 

the proper flow field while the back pressure is adjusted. The skin friction coefficient and 

pressure coefficient data are also measured and analysed with respect to conditions near this 

location. Note that all the plotted pressure coefficient data (experiment and CFD results) have 

been shifted so that 𝑐𝑝 is 0 near the position x/H=40, and same modification is also done by 

Eça and Hoekstra (2008). Another important reason for shifting the plotted 𝑐𝑝 profiles, which 

also applies to the other two internal flow problem analyses, is that the static pressure 

coefficient defined as 𝑐𝑝 = (𝑝 − 𝑝𝑟𝑒𝑓)/(0.5𝜌𝑀∞
2 ), is in fact the pressure difference divided 

by a constant head, however the reference pressure value 𝑝𝑟𝑒𝑓 is somehow dependent on the 

imposed subsonic inflow and outflow conditions and may be different from the one used in 

the experiment, therefore we have shifted uniformly all the computed 𝑐𝑝 profiles and achieve 

the same values as the experiment data for a specific location, thus ensuring a better 

presentation and analysis of the results. 

The simulation results of COSA depicted in top, middle, and bottom subplot rows of Figure 

6.6 refer to the value of 𝑀∞ of 0.128, 0.0128 and 0.00128 respectively, and each subplot 

provides the velocity profile of the simulations with and without LSP, while the experiment 

data and CFL3D results are always with respect to the value of 𝑀∞ of 0.128. The term ‘SST’ 

appearing in the legend stands for the turbulence model applied in both CFL3D and COSA 

solver, while 129 × 129  and 256 × 256  represent the grid size of the 1𝑠𝑡ZONE in two 

adopted meshes used by both solvers. This figure highlights that the velocity profile chosen at 

the locations of interest predicted by the compressible analysis without LSP starts being 

affected by significant errors already at 𝑀∞ = 0.0128. The LSP-enhanced solver, however, 

has demonstrated a highly accurate predictive ability of the velocity profile compared with 

the two benchmark data in case 𝑀∞ 0.128 regardless of the variation of the Mach number.  
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A similar conclusion can also be drawn by analysing the plots of skin friction coefficient 𝑐𝑓 

and pressure coefficient 𝑐𝑝 shown in Figure 6.7, where results obtained using COSA with and 

without LSP at three different Mach numbers are displayed in the top, middle and bottom 

rows respectively. More importantly, as one key measure of success for this flow field is the 

prediction of reattachment point downstream of the step, which is determined (by laser oil-

flow interferometer measurements of skin-friction and interpolation of the zero skin-friction 

location) to be: 𝑥 𝐻𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ⁄ = 6.26 ± 0.10 in the experiment, an accurate prediction of the 

reattachment point has shown to be well maintained for a wide range of Mach numbers with 

implementing the LSP approach. 
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Figure 6.6 COMPARISON OF VELOCITY PROFILE NEAR THE BOUNDARY LAYER NORMALISED 
BY THE REFERENCE VELOCITY AT THREE VALUES OF 𝑀∞ OBTAINED BY CFL3D, COSA WITH 

AND WITHOUT LSP AND EXPERIMENT DATA. TOP LEFT SUBPLOT: VELOCITY PROFILE AT 
X/H=-4, 𝑀∞ = 0.128. MIDDLE LEFT SUBPLOT: VELOCITY PROFILE AT X/H=-4, 𝑀∞ = 0.0128. 

BOTTOM LEFT SUBPLOT: VELOCITY PROFILE AT X/H=-4, 𝑀∞ = 0.00128.  TOP RIGHT 
SUBPLOT: VELOCITY PROFILE AT X/H=1,4,6,10, 𝑀∞ = 0.128. MIDDLE RIGHT SUBPLOT: 

VELOCITY PROFILE AT X/H=1,4,6,10, 𝑀∞ = 0.0128. BOTTOM RIGHT SUBPLOT: VELOCITY 
PROFILE AT X/H=1,4,6,10, 𝑀∞ = 0.00128. 
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Figure 6.7 COMPARISON OF SKIN FRICTION COEFFICIENT 𝑐𝑓 AND PRESSURE COEFFICIENT 𝑐𝑝 

AT THREE VALUES OF 𝑀∞ OBTAINED BY CFL3D, COSA WITH AND WITHOUT LSP AND 
EXPERIMENT DATA. TOP LEFT SUBPLOT: SKIN FRICTION COEFFICIENT 𝑐𝑓, 𝑀∞ = 0.128. 

MIDDLE LEFT SUBPLOT: SKIN FRICTION COEFFICIENT 𝑐𝑓, 𝑀∞ = 0.0128. BOTTOM LEFT 

SUBPLOT: SKIN FRICTION COEFFICIENT 𝑐𝑓, 𝑀∞ = 0.00128. TOP RIGHT SUBPLOT: PRESSURE 

COEFFICIENT 𝑐𝑝, 𝑀∞ = 0.128. MIDDLE RIGHT SUBPLOT: PRESSURE COEFFICIENT 𝑐𝑝, 𝑀∞ =

0.0128. BOTTOM RIGHT SUBPLOT: PRESSURE COEFFICIENT 𝑐𝑝, 𝑀∞ = 0.00128 
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6.3 2D NASA wall-mounted hump 
 

A NASA wall-Mounted hump experiment is considered here for validating the ability of the 

LSP implementation of our CFD solver to predict separated 2D flows. A Glauert-

Goldschmied type body is mounted in the lower wall, and the whole model is fixed between 

two glass endplate frames, of which both the leading and trailing edges are faired smoothly 

with a wind tunnel splitter plate, such that it can be treated as a two-dimensional experiment 

for CFD validation. A more detailed description of the experiment is provided in NASA 

(2004). This test case focuses primarily on assessing the ability of turbulence models to 

predict 2-D separation from a smooth body caused by adverse pressure gradient as well as 

subsequent reattachment and boundary layer recovery, moreover, the validation of the LSP 

capability is also performed by analysing the test cases of extremely low Mach numbers.  

The reference freestream velocity in this case is taken at the position x/c=-2.14, which is 

approximately 34.6 m/s (𝑀∞ = 0.1) and the incoming fully turbulent boundary layer is 

regarded to develop fully at the same position with thickness of approximately 35 mm, or 

about 8%c (the bump "chord" is 420 mm). The back pressure has been adjusted to yield the 

above desired flow. A sufficient upstream length is chosen to ensure the natural development 

of the fully turbulent boundary layer as well as the correct boundary layer thickness achieved 

approximately upstream of the hump. In Figure 6.8, an overview of the adopted BCs is shown 

for the case, while Figure 6.9 provides the detailed layout near the slot. A small contour is 

included in the upper wall surface to approximately account for the blockage caused by the 

end plates in the experiment. In terms of the inlet and outlet boundary conditions, "Pt" stands 

for the total pressure, "P" refers to the static pressure, and "Tt" represents the total 

temperature. The Reynolds number based on the bump chord for this case is determined to be 

936000. To be noted that, the test case can be run either with or without the plenum/chamber 

(the plenum was present in the experiment and only for the no-flow-control purpose). 

Although it is not crucial to include the plenum in the numerical analysis, we have chosen to 

adopt the same mesh with such structure by which the simulation results of CFL3D is 

obtained. 
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Figure 6.8 IMPOSED BOUNDARY CONDITIONS FOR NASA WALL-MOUNTED HUMP CASE 

 

Figure 6.9 IMPOSED BOUNDARY CONDITIONS NEAR THE SLOT FOR NASA WALL-MOUNTED 
HUMP CASE  
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There are two computational meshes supplied by NASA workshop (NASA, 2004) for the 

wall-mounted hump case, which are called the "fine" and "medium" levels of structured grid, 

containing 210,060 grid points and 52,952 grid points respectively (the ‘medium’ one is 

obtained by taking exactly every other point from the fine grid in each coordinate direction).. 

The finest grid has minimum wall distance of approximately 𝑦 = 8 ⋅ 10−6,  yielding an 

approximate average 𝑦+ between 0.1 and 0.2 over the hump. A general description is given in 

Figure 6.10 for the coarser “medium” grid, where stretched grid spacing can be seen in the 

wall-normal direction. Figure 6.11 and Figure 6.12, on the other hand, show the local view of 

the grid near the chamber and slot. Same as in the backward facing step case, negligible 

difference is found between the solutions computed with the two levels of grid mentioned 

above through a mesh refinement analysis. Therefore, the medium grid is adopted for all 

calculations performed by COSA in purpose of higher computational efficiency. 

 

Figure 6.10 OVERALL GRID VIEW FOR MEDIUM NASA HUMP GRID (NASA, 2004) 
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Figure 6.11 GRID VIEW NEAR CHAMBER FOR MEDIUM NASA HUMP GRID 

 

Figure 6.12 GRID VIEW NEAR SLOT FOR MEDIUM NASA HUMP GRID 
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Comparisons of the CFD results (COSA and CFL3D) and experiment data (Greenblatt et al., 

2004) are displayed in Figure 6.13 and Figure 6.14, in terms of the velocity profiles, skin 

friction coefficient and pressure coefficient chosen at the following x/c locations of interest, 

upstream of hump x/c=-2.14, and downstream of x/c=0.65, 0.9, 1.1, 1.3. Note that all the 

CFD pressure coefficient data have been plotted being shifted uniformly so that 𝑐𝑝 can better 

match the experiment reference value of the upstream. 

The simulated results of COSA depicted in top, middle, and bottom subplot rows of Figure 

6.13 refer to the value of 𝑀∞ of 0.1, 0.01 and 0.001 respectively, and each subplot provides 

the velocity profile of the simulations with and without LSP, while the experiment data and 

CFL3D results are always with respect to the value of 𝑀∞ of 0.1. The term ‘SST’ appearing 

in the legend stands for the turbulence model applied in both CFL3D and COSA solver, while 

52𝑘 and 210𝑘 represent the grid size or grid points of the two different levels of meshes 

adopted by each solver. The figure again highlights that the velocity profile chosen at the 

locations of interest predicted by the compressible analysis without LSP starts being affected 

by significant errors already at 𝑀∞ = 0.01 . The LSP-enhanced solver, however, has 

demonstrated a highly accurate predictive ability of the velocity profile compared with the 

two benchmark data of 𝑀∞ 0.1, particularly in the most difficult case of the lowest Mach 

number of 0.001, no significant difference can be spotted. The same conclusion is also 

achieved after analysing the plots of skin friction coefficient 𝑐𝑓 and pressure coefficient 𝑐𝑝 

shown in Figure 6.14, where results obtained using COSA with and without LSP at three 

different Mach numbers are displayed in the top, middle and bottom rows respectively. 

Regardless of the variation of the Mach number, the skin friction coefficient and pressure 

coefficient are both accurately predicted using the LSP-enhanced solver, which has 

demonstrated an independent flow predictive ability of free stream Mach number being 

consistent with the theoretical analyses (the LSP approach should yield the same solutions 

regardless of the change of flow velocity). 
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Figure 6.13 COMPARISON OF VELOCITY PROFILE NEAR THE BOUNDARY LAYER NORMALISED 
BY THE REFERENCE VELOCITY OBTAINED BY CFL3D, COSA WITH AND WITHOUT LSP AND 

EXPERIMENT DATA. TOP LEFT SUBPLOT: VELOCITY PROFILE AT X/C=-2.14, 𝑀∞ = 0.1. 
MIDDLE LEFT SUBPLOT: VELOCITY PROFILE AT X/C=-2.14, 𝑀∞ = 0.01. BOTTOM LEFT 

SUBPLOT: VELOCITY PROFILE AT X/C=-2.14, 𝑀∞ = 0.001. TOP RIGHT SUBPLOT: VELOCITY 
PROFILE AT X/C=0.65, 0.9, 1.1, 1.3, 𝑀∞ = 0.1. MIDDLE RIGHT SUBPLOT: VELOCITY PROFILE 

AT X/C=0.65, 0.9, 1.1, 1.3, 𝑀∞ = 0.01. BOTTOM RIGHT SUBPLOT: VELOCITY PROFILE AT 
X/C=0.65, 0.9, 1.1, 1.3, 𝑀∞ = 0.001 
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Figure 6.14 COMPARISON OF SKIN FRICTION COEFFICIENT 𝑐𝑓 AND PRESSURE COEFFICIENT 𝑐𝑝 

OBTAINED BY CFL3D, COSA WITH AND WITHOUT LSP AND EXPERIMENT DATA. TOP LEFT 
SUBPLOT: SKIN FRICTION COEFFICIENT 𝑐𝑓, 𝑀∞ = 0.1. MIDDLE LEFT SUBPLOT: SKIN FRICTION 

COEFFICIENT 𝑐𝑓, 𝑀∞ = 0.01. BOTTOM LEFT SUBPLOT: SKIN FRICTION COEFFICIENT 𝑐𝑓, 𝑀∞ =

0.001. TOP RIGHT SUBPLOT: PRESSURE COEFFICIENT 𝑐𝑝, 𝑀∞ = 0.1. MIDDLE RIGHT SUBPLOT: 

PRESSURE COEFFICIENT 𝑐𝑝, 𝑀∞ = 0.01. BOTTOM RIGHT SUBPLOT: PRESSURE COEFFICIENT 

𝑐𝑝, 𝑀∞ = 0.001.
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6.4 2D Convex Curvature Boundary Layer 
 

The 2D convex curvature boundary layer case considered here refers to the experiment 

carried out by Smits et al. (1979), which utilises a constant area square duct of height 0.127m 

with a 30 degree bend in the middle section of the duct (inner radius of curvature is 0.127 m). 

The primary focus of the original case is to assess turbulence models for convex wall 

curvature (the lower wall in this case), in addition to this purpose we also aim to validate the 

implementation of LSP for solving problems of lower Mach numbers. The challenge of this 

case is that the turbulence level and the thickness of the boundary layer will increase as a 

result of the destabilised boundary layer near the concave wall. The quasi-stable Gortler 

vortices generally formed in concave curvature can lead to steady or slowly varying large-

scale spanwise variations in the boundary layer, which has been verified by significant 

spanwise variations of the skin friction measured in experiment of Smits et al. (1979). 

Considering the nature of streamwise flow in concave curvature, the differences noticed 

between the CFD solution and experiment data in this region should be interpreted by 

accounting for both the uncertainty in the test results and the impossibility of capturing the 

effects of Gortler vortices in a 2D steady state simulation. The reference freestream velocity 

(𝑈𝑟𝑒𝑓) in this case is taken near the inlet, which is approximately 31.9 m/s (𝑀∞ = 0.093). 

The back pressure has been adjusted to yield the above desired flow. A sufficient upstream 

length is chosen to ensure the natural development of the fully turbulent boundary layer as 

well as the correct boundary layer thickness achieved approximately upstream of the bend. 

Both upper and lower boundaries are modelled as adiabatic solid walls.  

An overview of the adopted BCs is shown for the case in Figure 6.15. In terms of the inlet 

and outlet boundary conditions, "Pt" stands for the total pressure, "P" refers to the static 

pressure, and "Tt" represents the total temperature. The Reynolds number based on the grid 

unit length for this case is determined to be 2.1 ⋅ 106. Since all simulation results shown 

below are plotted against the x-axis value in a Cartesian coordinate rather than the distance 

value 𝒔 along the curved duct wall, a formulation used to translate the two types of distances 

can be derived based on the coordinate system given in Figure 6.16:  

 𝑖𝑓 𝑠 < −0.066497, 𝑥 = −0.0635 + (𝑠 + 0.0665) cos 30 (6.1) 
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Figure 6.15 IMPOSED BOUNDARY CONDITIONS FOR 2D CONVEX CURVATURE BOUNDARY 
LAYER CASE 
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Figure 6.16 COORDINATE SYSTEM VIEW NEAR THE BEND 

A series of 5 nested 2D grids are provided on NASA Langley Research Centre website 

(http://turbmodels.larc.nasa.gov/smitscurve_grids.html) for the Convex Curvature case. Each 

coarser grid is obtained by maintaining exactly every-other-point of the current finer grid, 

ranging from the finest 1025 × 385 (defined by the product of the grid point number in the 

streamwise direction times that in the normal wall direction) to the coarsest 65 × 25 grid. 

The finest grid has minimum wall distance of about 𝑦 = 1.1 ⋅ 10−6, giving an approximate 

average 𝑦+ of less than 0.1 at the Reynolds number specified. The grid is stretched from both 

walls in the wall-normal direction, and there is some stream-wise clustering near the bend. A 

mesh refinement analysis has yielded an insignificant difference between the solutions 

computed with the finest grid 1025 × 385 and the grid of the second coarser level 513 ×

193, therefore both CFL3D and COSA have adopted the coarser mesh in all simulations, and 

a near-field view is shown in Figure 6.17 for the particular bend section of this grid.  

http://turbmodels.larc.nasa.gov/smitscurve_grids.html
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Figure 6.17 GRID VIEW FOR CONVEX CURVATURE BOUNDARY LAYER CASE NEAR THE BEND 
(http://turbmodels.larc.nasa.gov/smitscurve_grids.html) 

Comparisons of the CFD results (COSA and CFL3D) and experiment data (Smits et al., 1979) 

are displayed in Figure 6.18 and Figure 6.19, in terms of the velocity profiles chosen at the 

following locations of interest, upstream of the bend x=-0.166124m (all distance values 

presented in this section are in the unit of meters), and downstream of x=0.030m, 0.183m, 

0.335m, 0.635m, 1.25m and skin friction coefficient and pressure coefficient along the wall. 

For the velocity profile plotted upstream of the bend where x=-0.166124 m, particular 

attention should be paid to the velocity component 𝑢𝑝 which is parallel to the wall and canted 

at 30 degree relative to x-axis in Cartesian coordinates, therefore a formulation to compute 

this variable 𝑢𝑝 using the velocities in the Cartesian system is given as below, 

 𝑢𝑝 = 𝑢 cos 𝜃 + 𝑣 sin 𝜃 (6.2) 
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where 𝜃  is the inflow angle (30 degree in this case). The distance 𝑑  appearing as the y-

component is measured in the normal wall direction across the channel at the upstream 

location.  

Note that all CFD results of the pressure coefficient have been plotted being uniformly 

shifted so that 𝑐𝑝  can better match the experiment reference value of the upstream. The 

simulated results of COSA depicted in top, middle, and bottom subplot rows of Figure 6.18 

refer to the value of 𝑀∞  of 0.093, 0.0093 and 0.00093 respectively, and each subplot 

provides the velocity profile of the simulations with and without LSP, while the experiment 

data and CFL3D results are always with respect to the value of 𝑀∞ of 0.093. The term “SST” 

appearing in the legend stands for the turbulence model applied in both CFL3D and COSA 

solver, while “513X193” represent the grid size of the mesh adopted by the two solvers. The 

figure again highlights that the velocity profile chosen at the locations of interest predicted by 

the compressible analysis without LSP starts being affected by significant errors already at 

𝑀∞ = 0.0093 . The LSP-enhanced solver, however, has demonstrated a highly accurate 

predictive ability of the velocity profile compared with the two benchmark data of 𝑀∞ =

0.093, particularly in the case of the lowest Mach number of 0.00093, indistinguishable 

difference is found between the solutions of COSA-LSP solver and those of CFL3D and the 

experiment data for 𝑀∞ = 0.093. The same conclusion is also verified by analysing the plots 

of the skin friction coefficient 𝑐𝑓 and the pressure coefficient 𝑐𝑝 shown in Figure 6.19, where 

results obtained using COSA with and without LSP at three different Mach numbers are 

displayed in the top, middle and bottom rows respectively. Regardless of the variation of the 

Mach number, the skin friction coefficient and pressure coefficient are both accurately 

predicted using the LSP-enhanced solver, which has demonstrated an independent flow 

predictive ability of free stream Mach number consistent with the theoretical analyses. 
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Figure 6.18 COMPARISON OF VELOCITY PROFILE NEAR THE BOUNDARY LAYER AT THREE 
VALUES OF 𝑀∞ OBTAINED BY CFL3D, COSA WITH AND WITHOUT LSP AND EXPERIMENT 

DATA. TOP LEFT SUBPLOT: VELOCITY PROFILE AT X=-0.166124m, 𝑀∞ = 0.093. MIDDLE LEFT 
SUBPLOT: VELOCITY PROFILE X=-0.166124m, 𝑀∞ = 0.0093. BOTTOM LEFT SUBPLOT: 

VELOCITY PROFILE X=-0.166124m, 𝑀∞ = 0.00093. TOP RIGHT SUBPLOT: VELOCITY PROFILE 
AT X=0.030, 0.183, 0.335, 0.635, 1.25m, 𝑀∞ = 0.093. MIDDLE RIGHT SUBPLOT: VELOCITY 
PROFILE AT X=0.030, 0.183, 0.335, 0.635, 1.25m, 𝑀∞ = 0.0093. BOTTOM RIGHT SUBPLOT: 

VELOCITY PROFILE AT X=0.030, 0.183, 0.335, 0.635, 1.25m, 𝑀∞ = 0.00093. 
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Figure 6.19 COMPARISON OF SKIN FRICTION COEFFICIENT 𝑐𝑓 AND PRESSURE COEFFICIENT 𝑐𝑝 

AT THREE VALUES OF 𝑀∞ OBTAINED BY CFL3D, COSA WITH AND WITHOUT LSP AND 
EXPERIMENT DATA. TOP LEFT SUBPLOT: 𝑐𝑓 at 𝑀∞ = 0.093. MIDDLE LEFT SUBPLOT: 𝑐𝑓 at 

𝑀∞ = 0.0093. BOTTOM LEFT SUBPLOT: 𝑐𝑓 at 𝑀∞ = 0.00093. TOP RIGHT SUBPLOT: 𝑐𝑝 at 

𝑀∞ = 0.093. MIDDLE RIGHT SUBPLOT: 𝑐𝑝 at 𝑀∞ = 0.0093. BOTTOM RIGHT SUBPLOT: 𝑐𝑝 at 

𝑀∞ = 0.00093. 
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6.5 2D Nakayama Model-A aerofoil case 
 

A non-symmetric 10%-thick conventional aerofoil (referred to as the "Model-A aerofoil") is 

involved in this 2D experiment (Nakayama, 1985) considered here. Wake characteristics (of 

velocity profiles) are measured at an angle-of-attack of 0 degree. The Reynolds number was 

1.2 million per aerofoil chord based on a freestream Mach number 𝑀∞ of 0.088. Both the 

upper and lower boundary layers were tripped in the experiment (16%c upper surface and 

5%c lower surface). However, the fully turbulence boundary layer is employed in all CFD 

simulations due to the fact that this may yield better results than forcing laminar flow 

upstream of the trip locations (Rumsey, 2013). It should be noted that in the experiment the 

trailing edge of the original aerofoil has a thickness of approximately 0.001c, while the 

aerofoil definition has been modified slightly in CFD computations so it closes at chord=1 

with a sharp trailing edge instead. Figure 6.20 shows the layout of the boundary conditions 

adopted in the simulation, where the farfield boundary is placed at about 20 chords from the 

aerofoil and the characteristic-based farfield boundary conditions are imposed (see Section 

5.3 for the related theory).  
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Figure 6.20 IMPOSED BOUNDARY CONDITIONS FOR MODEL-A AERFOIL CASE 

5 nested 2D grids are provided on NASA Langley Research Centre website 

(http://turbmodels.larc.nasa.gov/airfoilwake_grids.html) for the Nakayama Model-A aerofoil case 

(with sharpened trailing edge). A so-call ‘C-grid’ topology is adopted for each grid, whereby 

the grid wraps around the aerofoil starting from the downstream farfield, passing around the 

lower aerofoil surface to the upper, and back to the downstream farfield again, thus the grid 

connects to itself in a 1-to-1 fashion in the cut. 

Each coarser grid is obtained by maintaining exactly every-other-point of the current finer 

grid, ranging from the finest 2241×385 (defined by the product of the total grid point number 

on the aerofoil and grid cut times that in the normal-like direction) to the coarsest 141×25 

grid. The finest grid has minimum wall distance of 2.5 ⋅ 10−6, giving an approximate average 

𝑦+  between 0.1 and 0.2 over the aerofoil at the Reynolds number specified. The grid is 

stretched in the normal wall direction, and the clustering is maintained in the wake region. A 

http://turbmodels.larc.nasa.gov/airfoilwake_grids.html
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mesh refinement analysis has yielded an insignificant difference between the solutions 

computed with the second finest grid 1121×193 and grid of the coarser level 561×97 for 

COSA, therefore despite the fact that the CFL3D results to be compared are obtained with the 

finer grid, we adopt the coarser grid in all simulations performed by COSA to achieve higher 

computational efficiency. A general description is given in Figure 6.21 for the coarser 

561×97 grid, where stretched grid spacing can be seen in the wall-normal direction and the 

wake. Figure 6.22, on the other hand, provides an enlarged view of the adopted grid in the 

aerofoil region, of which 256 mesh intervals are along the aerofoil surface, 152 intervals are 

along the wake from the aerofoil trailing edge to the outflow boundary, and 96 intervals are 

in the normal-like direction. 

 

Figure 6.21 GRID VIEW IN FARFIELD REGION FOR MODEL-A AERFOIL CASE 
(http://turbmodels.larc.nasa.gov/airfoilwake_grids.html) 
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Figure 6.22 GRID VIEW IN AEROFOIL REGION  

The second and third columns of Table 6.2 report respectively the lift coefficient 𝐶𝑙 and the 

drag coefficient 𝐶𝑑 computed with the LSP analysis for the three values of 𝑀∞. The fourth 

and fifth columns report instead the estimates of the same force coefficients obtained by the 

analysis without LSP. Several interesting observations can be made by cross-comparing the 

data of this table. Firstly, one notes that the difference between the LSP lift force estimates 

for 𝑀∞ = 8.8 ⋅ 10−3  and 𝑀∞ = 8.8 ⋅ 10−4  is significantly smaller than the difference 

estimates for 𝑀∞ = 8.8 ⋅ 10−2 and 𝑀∞ = 8.8 ⋅ 10−3. This occurrence points to the existence 

of slight compressibility effects in the flow field considered herein. The comparison of the 

LSP- and the NP-estimate of a given force component for the same 𝑀∞ highlights that the 

difference between LSP and NP predictions increases significantly as 𝑀∞  decreases, as 

expected. It is also noted that, though relatively small, the difference between the LSP- and 

the NP estimate of the two force coefficients at 𝑀∞ = 8.8 ⋅ 10−2 is larger than the difference 

between the LSP- and the NP-estimate of the flat plate drag coefficient at 𝑀∞ = 0.1. This is 
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presumably due to the higher complexity of the aerofoil flow field with respect to the zero-

pressure gradient flat plate boundary layer. In the aerofoil problem, a rapid growth of the 

boundary layer on the aerofoil suction side (SS) occurs between the peak-velocity point and 

the TE. The accuracy of the LSP simulation in this low-speed and low-Reynolds number 

boundary layer region is likely to be higher than the solver without LSP due to the optimised 

LSP numerical dissipation. The same phenomenon is also reported in (Vatsa and Turkel, 

2004), which compares the viscous drag of the RAE aerofoil for an angle of attack of 2.79° at 

𝑀∞ = 0.2  and 𝑅𝑒 = 6.5 ⋅ 106  obtained from the compressible RANS analyses with and 

without LSP. The steady flow analyses commented above of 𝑀∞ = 8.8 ⋅ 10−2 have also been 

performed using two NASA compressible codes, CFL3D and another fully unstructured 

Navier-Stokes research code FUN3D (Langley, 2015). Like the COSA simulations reported 

above, the two NASA analyses have been performed assuming fully turbulent boundary layer. 

The force coefficients computed by both codes for the considered values of 𝑀∞ are provided 

in Table 6.3. A fairly closer agreement of the force coefficients is found between COSA-LSP 

solver and the two NASA codes with respect to its NP counterpart, which has further 

demonstrated the above conclusion of better accuracy yielded by the LSP optimised 

numerical dissipation. Based on the results presented in the two tables, one can conclude that 

the force coefficients predicted by the LSP analysis almost remain constant as 𝑀∞ decreases, 

and shows a good agreement with the solutions of other well-developed CFD research codes. 

Conversely, the force coefficient estimates of the analysis without LSP deviates substantially 

from the reference values as 𝑀∞ is reduced, due to the numerical errors associated with the 

use of the compressible solver without LSP at low Mach number levels, which points to the 

necessity of using LSP to preserve the accuracy of the solution when solving low-speed flows 

with the compressible equations even for 𝑀∞  of order 0.1. 

 COSA-LSP COSA-NP 

𝑀∞ 𝐶𝑙 𝐶𝑑 𝐶𝑙 𝐶𝑑 

8.8 ⋅ 10−2 0.1541 0.01033 0.1596 0.01061 

8.8 ⋅ 10−3 0.1536 0.01036 0.1699 0.01548 

8.8 ⋅ 10−4 0.1535 0.01052 0.1435 0.06550 

Table 6.2 COMPARISONS OF LIFT COEFFICIENT 𝐶𝑙 AND DRAG COEEFICIENT 𝐶𝑑 FOR 𝑀∞ =
8.8 ⋅ 10−2, 𝑀∞ = 8.8 ⋅ 10−3, AND 𝑀∞ = 8.8 ⋅ 10−4 OBTAINED WITH AND WITHOUT LSP. 
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 CFL3D FUN3D 

𝑀∞ 𝐶𝑙 𝐶𝑑 𝐶𝑙 𝐶𝑑 

8.8 ⋅ 10−2 0.1574 0.01011 0.1556 0.01015 

Table 6.3 COMPARISONS OF LIFT COEFFICIENT 𝐶𝑙 AND DRAG COEEFICIENT 𝐶𝑑 FOR 𝑀∞ =
8.8 ⋅ 10−2 OBTAINED BY CFL3D AND FUN3D 

Comparisons of the CFD results (COSA and CFL3D) and experiment data (Nakayama, 1985) 

are displayed in Figure 6.23, in terms of the velocity profiles chosen at the following 

locations in the wake, x/c=1.01, 1.05, 1.20, 1.40, 1.80, 2.19. The simulated results of COSA 

depicted in top, middle, and bottom subplot rows of Figure 6.23 refer to the value of 𝑀∞ of 

0.088, 0.0088 and 0.00088 respectively, and each subplot provides the velocity profile of the 

simulations with and without LSP, while the experimental data and CFL3D results are always 

with respect to the value of 𝑀∞ of 0.088. The term “SST” appearing in the legend stands for 

the turbulence model applied in both CFL3D and COSA solver, while “561 × 97” and 

“1121 × 193” represent the size of the two different meshes adopted by COSA and CFL3D 

respectively. The figure highlights that the velocity profile chosen at the locations of interest 

predicted by the compressible analysis without LSP starts being affected by significant errors 

already at 𝑀∞ = 0.0088. The LSP-enhanced solver, however, has demonstrated a highly 

accurate predictive ability of the velocity profile compared with the two benchmark data of 

𝑀∞ = 0.088, particularly in the most difficult case of the lowest Mach number of 0.00088, 

no significant difference is spotted. 
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Figure 6.23 COMPARISON OF VELOCITY PROFILE IN THE WAKE NORMALISED BY THE 
FREESTREAM VELOCITY AT THREE VALUES OF 𝑀∞ OBTAINED BY CFL3D, COSA WITH AND 

WITHOUT LSP AND EXPERIMENT DATA. TOP SUBPLOT: VELOCITY PROFILE AT X/C=1.01, 1.05, 
1.20, 1.40, 1.80, 2.19, 𝑀∞ = 0.088. MIDDLE SUBPLOT: VELOCITY PROFILE AT 𝑀∞ = 0.0088. 

BOTTOM SUBPLOT: VELOCITY PROFILE AT 𝑀∞ = 0.00088 
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6.6 NACA4412 aerofoil case 
 

In contrast to the relatively simple aerofoil case with an angle of attack of zero degree 

discussed in the previous section, we have considered herein the turbulent flow field past the 

NACA4412 aerofoil at the AoA of 13.87° where a maximum lift force is achieved and a 

large separation area is generated in the trailing edge. The free-stream Mach number 𝑀∞ is 

0.2, and the Reynolds number based on the aerofoil chord and the free-stream velocity is 

1.52 ⋅ 106. The experimental data we refer to in this section is from the hot-wire boundary 

layer measurements performed by Coles and Wadcock (1979) at NASA Ames. Similar 

numerical analyses can also be found in the work of Moryossef and Levy (2006) and Menter 

(1994). In all our CFD simulations, a fully turbulent boundary layer is enforced, which 

corresponds to the turbulent intensity at the far-field boundary equal to 1% and the ratio 

between turbulent viscosity and laminar viscosity 𝜇𝑇/𝜇 of 10−4. A layout of the boundary 

conditions adopted in the simulation is displayed in Figure 6.24, where the farfield boundary 

is placed at about 20 chords from the aerofoil and the characteristic farfield boundary 

condition is specified.  
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Figure 6.24 IMPOSED BOUNDARY CONDITIONS FOR NACA4412 AEROFOIL CASE 

A 2D C-type structured grid is provided on the website of NASA CFD code - CFL3D 

(Rumsey, 2013) and is thus adopted here for all our numerical simulations in order to provide 

better comparison of the solutions obtained with different codes. The grid has a minimum 

wall distance (defined by the distance of the first grid points off the aerofoil surface) of 4 ⋅

10−5𝑐, yielding an approximate average 𝑦+ of less than 1 over the aerofoil at the Reynolds 

number specified. The grid is stretched in the normal wall direction, and the clustering is 

maintained in the wake region. A overview of the adopted grid is given in Figure 6.25, where 

stretched grid spacing can be seen in the wall-normal direction and the wake. Figure 6.26, on 

the other hand, provides an enlarged view in the aerofoil region, of which 176 mesh intervals 

are along the aerofoil surface, 40 intervals are along the wake from the aerofoil trailing edge 

to the outflow boundary, and 80 intervals are in the normal-like direction, giving a total 

number of cells of 20480. 



6.5 2D Nakayama Model-A aerofoil case 

134 

 

 

Figure 6.25 GRID VIEW IN FARFIELD REGION FOR NACA4412 AEROFOIL CASE (Rumsey, 2013) 

 

Figure 6.26 GRID VIEW IN NEAR AEROFOIL REGION 
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The second and third columns of Table 6.4 report the lift coefficient 𝐶𝑙  and the drag 

coefficient 𝐶𝑑 computed with the LSP analysis for the three values of 𝑀∞, while the fourth 

and fifth columns report instead the estimates of the same force coefficients obtained by the 

analysis without LSP and the last column represents the experiment data of 𝐶𝑙 at 𝑀∞ = 0.2.  

Through cross-comparing the lift coefficient 𝐶𝑙 obtained by COSA LSP-solver, NP-solvers 

and the experiment value for 𝑀∞ 0.2, a closer and better agreement is found between the 

LSP-estimate and measured data with respect to the NP-estimate value, and we can therefore 

demonstrate that better prediction of the flow properties can be provided with the LSP-

enhanced solver even for a relatively high Mach number. Secondly, one finds that the 

difference between the LSP 𝐶𝑑  estimates for 𝑀∞ = 0.02  and 𝑀∞ = 0.002  is significantly 

smaller than the difference estimates for 𝑀∞ = 0.2 and 𝑀∞ = 0.02. This phenomenon relates 

to the existence of compressibility effects in the flow field at 𝑀∞ = 0.2. The comparison of 

the LSP- and the NP-estimate of a given force component for the same 𝑀∞ particularly the 

𝐶𝑑, highlights that the difference between LSP and NP predictions increases significantly as 

𝑀∞  decreases, as expected. Therefore these data emphasise that the force coefficients 

predicted by the LSP analysis remains almost as a constant as 𝑀∞ decreases, and is equal to 

the experiment data. Conversely, the force coefficient estimates of the analysis without LSP 

deviates substantially from the measured data as 𝑀∞ is reduced, due to the numerical errors 

associated with the use of the compressible solver without LSP at low Mach number levels, 

and it points again to the necessity of using LSP to preserve the accuracy of the solution 

when solving low-speed flows with the compressible equations even for levels of 𝑀∞ above 

0.1.  

 COSA-LSP COSA-NP EXP 

𝑀∞ 𝐶𝑙 𝐶𝑑 𝐶𝑙 𝐶𝑑 𝐶𝑙 

2 ⋅ 10−1 1.670 0.0390 1.698 0.0369 1.669 

2 ⋅ 10−2 1.666 0.0362 1.694 0.0566  

2 ⋅ 10−3 1.670 0.0371 1.791 0.163  

Table 6.4 COMPARISONS OF LIFT COEFFICIENT 𝐶𝑙 AND DRAG COEEFICIENT 𝐶𝑑 FOR 𝑀∞ = 2 ⋅
10−1, 2 ⋅ 10−2, 2 ⋅ 10−3 OBTAINED WITH AND WITHOUT LSP AND EXPERIMENT DATA 

Comparisons of the COSA NP- and LSP- estimate results and experiment data (Coles and 

Wadcock, 1979) are displayed in Figure 6.27 and Figure 6.28 respectively, in terms of the 

velocity profiles chosen at the following six locations near the trailing edge, x/c=0.62, 0.731, 
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0.786, 0.842, 0.897, 0.953. The simulated results of COSA depicted in top, middle, and 

bottom subplot rows of Figure 6.27 refer to the value of 𝑀∞ of 0.2, 0.02 and 0.002 at the first 

three locations mentioned above respectively, and velocity profiles of the simulations with 

and without LSP are provided in the left and right columns. The experiment data are always 

with respect to the value of 𝑀∞ of 0.2. Comparisons of the velocity profiles for the other 

three locations are shown in Figure 6.28. Analysing the two figures shows that the velocity 

profile at the specified locations predicted by the compressible analysis without LSP starts 

being affected by significant errors already at 𝑀∞ = 0.02 . The LSP-enhanced solver, 

however, has demonstrated a highly accurate predictive ability of the flow characteristics 

compared with the experiment data of 𝑀∞ = 0.2, by displaying the accurate velocity profile 

even at an extremely low Mach number of 0.002. Despite the fact that differences can be still 

spotted between the two LSP results of 𝑀∞ below 0.02, its significantly smaller magnitude 

compared to that between the two higher Mach numbers has demonstrated again the 

previously mentioned compressibility effect in force coefficient analyses.  
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Figure 6.27 COMPARISON OF VELOCITY PROFILE NEAR THE TRAILING EDGE NORMALISED BY 
THE FREESTREAM VELOCITY AT THREE VALUES OF 𝑀∞, 0.2, 0.02, 0.002, OBTAINED BY COSA 
WITH AND WITHOUT LSP AND EXPERIMENT DATA. TOP LEFT SUBPLOT: VELOCITY PROFILE 

WITH LSP AT X/C=0.620. MIDDLE LEFT SUBPLOT: VELOCITY PROFILE WITH LSP AT X/C=0.731. 
BOTTOM LEFT SUBPLOT: VELOCITY PROFILE WITH LSP AT X/C=0.786. TOP RIGHT SUBPLOT: 

VELOCITY PROFILE WITHOUT LSP AT X/C=0.620. MIDDLE RIGHT SUBPLOT: VELOCITY PROFILE 
WITHOUT LSP AT X/C=0.731. BOTTOM RIGHT SUBPLOT: VELOCITY PROFILE WITHOUT LSP AT 

X/C=0.786. 
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Figure 6.28 COMPARISON OF VELOCITY PROFILE NEAR THE TRAILING EDGE NORMALISED BY 
THE FREESTREAM VELOCITY AT THREE VALUES OF 𝑀∞, 0.2, 0.02, 0.002, OBTAINED BY COSA 
WITH AND WITHOUT LSP AND EXPERIMENT DATA. TOP LEFT SUBPLOT: VELOCITY PROFILE 

WITH LSP AT X/C=0.842. MIDDLE LEFT SUBPLOT: VELOCITY PROFILE WITH LSP AT X/C=0.897. 
BOTTOM LEFT SUBPLOT: VELOCITY PROFILE WITH LSP AT X/C=0.953. TOP RIGHT SUBPLOT: 

VELOCITY PROFILE WITHOUT LSP AT X/C=0.842. MIDDLE RIGHT SUBPLOT: VELOCITY PROFILE 
WITHOUT LSP AT X/C=0.897. BOTTOM RIGHT SUBPLOT: VELOCITY PROFILE WITHOUT LSP AT 

X/C=0.953. 
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The left subplot of Figure 6.29 reports the three LSP estimates of the static pressure 

coefficient 𝐶𝑝 along the chord, whereas the estimates obtained without LSP are depicted in 

the right subplot. Inspection of the LSP 𝐶𝑝 profiles confirms that significant differences exist 

between the 𝑀∞ = 0.2 profiles and those associated with the other two values of 𝑀∞, and 

also that the profiles associated with the two lower values are indistinguishable. This finding 

has also provided evidence for this problem that compressibility effects are fairly significant 

at the Mach number considered herein. Another main feature emerging from the 𝐶𝑝 profiles 

obtained without LSP is that the result for the lowest value of 𝑀∞ = 0.002  features 

significant non-physical oscillations at both the LE and the TE, which is successfully 

removed in the LSP calculations as a result of the optimised numerical dissipation. 

 

Figure 6.29 COMPARISON OF PRESSURE COEFFICIENT 𝑐𝑝 AT THREE VALUES OF 𝑀∞ 0.2, 0.02, 

0.002, OBTAINED BY COSA WITH AND WITHOUT LSP AND EXPERIMENT DATA. RIGHT 
SUBPLOT: PRESSURE COEFFICIENT 𝑐𝑝 OBTAINED WITH LSP. LEFT SUBPLOT: PRESSURE 

COEFFICIENT 𝑐𝑝 OBTAINED WITHOUT LSP 
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6.7 Summary 
 

The predictive capabilities of the CFD compressible solver - COSA using the presented 

turbulent preconditioning strategy are assessed by computing the turbulent flows for different 

values of 𝑀∞ in various challenging test cases, and has shown a highly reliable accuracy of 

the solutions regardless of the variation of Mach number, thereby demonstrating a great 

advantage over its non-preconditioned (standard) compressible solver while dealing with the 

low speed flow problems. Based on the above successful demonstration and validation of the 

predictive capability of the LSP solver, we can thus be able to proceed to solve more realistic 

engineering problems, such as those involved in the wind turbine applications presented in 

Chapter 7. 
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Chapter 7  

Results 
 

HAWT and VAWT are the two representatives of the modern energy engineering problems. 

This chapter therefore provides the main computational results regarding to these two 

substantially different energy applications of our research. The first case is a comparative 

analysis of specific blade sections of a VESTAS multi-megawatt HAWT working in various 

regimes (i.e. steady problem where the wind direction is orthogonal to the rotor plane and the 

unsteady yawed wind condition). The CFD simulations are performed in three different 

freestream Mach numbers, namely the one corresponding to the rated wind speed and two 

lower Mach numbers for which the flow is required to be treated as incompressible, and the 

results obtained in various Mach numbers are used to compare and assess the compressibility 

effect by using LSP to approximate the incompressible solution. Presented results highlight 

the inaccurate solutions obtained by the non-preconditioned solver for low Mach number 

flow problems and hence demonstrate the predictive capabilities of the LSP approach for 

solving low-speed problems with different formulations (steady, time-domain and frequency-

domain) and the computational benefits achieved by using the harmonic balance method of 

the RANS and SST equations rather than the conventional time-domain method through 

comparing the numerical solutions obtained by these two approaches. The second application 

is the steady inviscid flow analysis of a NREL multi-megawatt HAWT working in the 

operating conditions corresponding to both the rated wind speed and fairly low Mach number 

flow. This type of subsonic problem is used to analyse both the aerodynamic characteristics 

of particular blade sections and of the whole rotor. The main motivation of carrying out this 

research is to demonstrate the accurate solution achieved by using LSP in analysing the entire 

wind turbine application in a realistic flow condition. The last application is the time-domain 

turbulent aerodynamics analysis of the VAWT. We firstly demonstrate the necessity of 

applying the preconditioning method to solve such a flow problem by comparing the results 

obtained with and without LSP technology, and secondly the comparative analysis of 

different kinds of implementation of the preconditioning approaches is performed by 
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neglecting the turbulent kinetic energy term in the total energy, thereby verifying the essential 

part of the turbulent kinetic energy in the coupling of the RANS and SST equations of the 

preconditioned system. Last but not the least, two sets of preconditioning parameters have 

been selected to analyse to the aim of demonstrating a proper implementation of the 

preconditioning parameter in solving an unsteady moving grid problem.  

 

7.1 Horizontal axis wind turbine aerodynamics (2D) 
 

Large-scale electricity production from the wind is primarily based on the use of multi-

megawatt horizontal axis wind turbines (HAWTs). The dimensions of these machines keep 

increasing, and one of the them having already become operational in 2014 has a rotor radius 

of about 82 m. HAWT rotor design is an inherently multidisciplinary task as it involves fluid 

dynamics, structural mechanics, aeroelasticity and also aeroacoustics. The aerodynamic 

module of modern industrial systems for HAWT aeromechanical design (Hansen et al., 2006) 

is often still based on the blade element momentum (BEM) theory. BEM codes are very fast, 

but unfortunately their results may be affected by significant level of uncertainty due to the 

use of several semi-empirical and correlation-based models, and also because these codes are 

also used for flow regimes which violate the underlying assumptions of the BEM theory (i.e. 

yawed flows). Moreover, BEM codes rely on the availability of reliable two-dimensional (2D) 

aerofoil force data for a wide range of Reynolds number and angle of attack (AoA). This 

feature limits the exploration of the design space, possibly preventing the adoption of new 

and more efficient HAWT configurations. Conversely, the use of computational fluid 

dynamics (CFD) solvers based on the Navier-Stokes (NS) equations allows the 

aforementioned limitations to be greatly reduced and often removed. These codes can use any 

user-given three-dimensional (3D) blade geometry and solve the 3D aerodynamic flow field 

around the entire turbine (Mo et al., 2013, Gómez-Iradi et al., 2009). NS solvers require 

substantially higher run-times with respect to BEM solvers, but the present rapid growth of 

novel high-performance computing devices, such as Graphics Processing Units, the 

development of faster methods for the integration of periodic flows (Campobasso et al., 

2014b, Campobasso and Baba-Ahmadi, 2012) and progress on how best to exploit modern 

multi-core processors (Jackson and Campobasso, 2011) are making the NS technology for 

HAWT design increasingly affordable.  
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When using the NS CFD technology for HAWT rotor aerodynamics, one can use either the 

incompressible (Bechmann et al., 2011, Sørensen et al., 2002) or the compressible (Gómez-

Iradi et al., 2009, Le Pape and Gleize, 2006) formulation of the conservation laws. Newest 

multi-megawatt HAWT rotors can feature rotor radii in excess of 80 m, and blade tip speeds 

in the region of 0.3, which is the conventional threshold at which compressibility effects start 

becoming significant. Therefore, one may wonder whether the use of compressible NS 

solvers for multi-megawatt rotor aerodynamics may yield more reliable answers. Preliminary 

tests for this type and size of turbine point to the fact that compressibility effects produce 

differences of less than 1% between the annual energy production (AEP) estimated using a 

compressible or an incompressible flow analysis. Fairly small differences between the 

aerodynamic loads estimated with either approach are also found. The differences arising 

from using either the compressible or the incompressible flow analysis, however, are likely to 

be more significant when analysing HAWT aeroacoustic noise generation and propagation. 

One popular approach consists of using the blade static pressure distribution predicted by a 

Reynolds-averaged Navier-Stokes solver (RANS) as an input for an aeroacoustic code based 

on the acoustic analogy (Williams and Hawkings, 1969) that predicts the spatial noise 

propagation around the turbine (Ranft et al., 2010). Using this approach, an inaccurate blade 

static pressure prediction due to the use of an incompressible rather than a compressible 

solver, may yield significant errors in the prediction of the propagated noise. Furthermore, a 

NS code may also be used for directly simulating the near-field aeroacoustics of the turbine 

(Arakawa et al., 2005). A review of HAWT aeroacoustic noise propagation and generation, a 

fairly comprehensive review of high-fidelity simulation technologies for HAWT noise 

analysis and further considerations on the use of compressible or incompressible NS CFD for 

HAWT aeroacoustics can be found in Morris et al. (2004).  

The discussion above points to the appropriateness of using compressible NS solvers for the 

analysis of new multi-megawatt HAWT rotor aeroacoustics. The relative Mach number 

perceived by the blades, however, decreases in a nearly linear fashion from the tip to the root 

of the blade, where it reaches values of order 0.01 or less. At these low speeds, unfortunately, 

a large disparity between acoustic and convective speeds arises, and this results in a reduction 

of the solution accuracy of compressible NS solvers. When an explicit integration approach is 

used, a significant reduction of the convergence rate is also experienced. Low-speed 

preconditioning (LSP) (Venkateswaran and Merkle, 1999, Turkel et al., 1997) is a 

mathematical method that allows both problems to be solved or greatly reduced. The use of 
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LSP allows the nominal accuracy of the compressible solver to be maintained also at very 

low flow speeds. Moreover, based on theoretical analysis and numerical solution of relatively 

simple test cases, the convergence rate of compressible NS solvers using LSP is independent 

of the freestream Mach number 𝑀∞. In view of their use for HAWT aeroacoustics, one of the 

main objectives of this analysis is to quantify the differences between the compressible and 

the incompressible solution of HAWT aerodynamic flows based on the NS technology. To 

this aim, the compressible RANS research code COSA (Campobasso and Baba-Ahmadi, 

2012, Campobasso et al., 2013, Campobasso and Drofelnik, 2012) featuring the 𝑘 − 𝜔 shear 

stress transport (SST) turbulence model of Menter (Menter, 1994) is used. The compressible 

and incompressible solutions of realistic steady and time-dependent HAWT flows featuring a 

compressible Mach number are compared with an emphasis on the prediction of the blade 

and near field static pressure. Since the incompressible flow equations have been shown to be 

the limit of the compressible flow equations as the Mach number tends to zero (Turkel et al., 

1993), the incompressible flow solution is here approximated with that of the compressible 

LSP-enhanced solver obtained by reducing the actual value of 𝑀∞ by a factor 100. 

 

7.1.1 yawed wind modelling 
 

The TD and HB analyses reported in this section refer to the yawed flow past the blades of a 

large HAWT rotor. The periodic flow regime experienced by the aerofoils of a HAWT blade 

in yawed wind depends on the freestream wind speed 𝑉𝑓𝑠, the turbine rotational speed 𝜔, the 

angle 𝛿 between 𝑉𝑓𝑠 and the normal to the rotor plane (yaw angle), the chord 𝑐 of the aerofoil 

and its distance 𝑅 from the rotational axis. The left and right plots of Figure 7.1 respectively 

depict the top and front views of a HAWT in yawed wind, and highlight some of the 

aforementioned parameters. The circumferential position of a blade is defined by the angle 𝜃, 

which is taken to be zero when the blade is vertical and descending (position A). The four 

plots of Figure 7.2 report the velocity triangles associated with a blade aerofoil for the 

positions labelled A to D in the right plot of Figure 7.1. The modulus of the axial velocity 

component is 𝑉𝑓𝑠 cos 𝛿 , and is the same for all radial and circumferential positions. The 

modulus of the entrainment velocity 𝜔 × 𝑅 varies linearly with 𝑅, and is therefore the same 

in all four triangles of Figure 7.2. The velocity 𝑊𝑖 and the angle 𝛼𝑖 (𝑖 = 𝐴, 𝐵, 𝐶, 𝐷) denote 
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respectively the freestream velocity and inflow angle observed by the blade section at radius 

𝑅, and both parameters vary with the circumferential position 𝜃 = 𝜔𝑡. Each velocity triangle 

is contained in the plane tangent to the cylinder of radius 𝑅 centred on the rotational axis, and 

therefore it neglects any radial (i.e. along the blade axis) velocity component. The magnitude 

of the discarded radial component varies with 𝜃: no component is discarded when the blade is 

vertical (positions A and C), as the entire vector 𝑉𝑓𝑠 is contained in the tangent plane; the 

entire radial component 𝑉𝑓𝑠 sin 𝛿 is instead neglected when the blade is horizontal (positions 

B and D), as the radial component of 𝑉𝑓𝑠 is orthogonal to the tangent plane. 

 

Figure 7.1 SCHEMATIC VIEWS OF HAWT IN YAWED WIND. LEFT PLOT: TOP VIEW; RIGHT 
PLOT: FRONT VIEW. 

 



7.1.1 yawed wind modelling 

146 

 

Figure 7.2 VELOCITY TRIANGLES OF HAWT BLADE SECTION FOR POSITIONS LABELED A TO D 
IN Figure 7.1. 

Within the limits of these approximations, the axial and circumferential components of the 

freestream velocity perceived by each blade section are respectively: 

 𝑊𝑥 = 𝑉𝑓𝑠 cos(𝛿),            𝑊𝜃 = 𝜔𝑅 − 𝑉𝑓𝑠 sin(𝛿) cos(𝜃) (7.1) 

which define a time-dependent velocity vector 𝑊̂. The angle 𝛼 formed by 𝑊̂ and the rotor 

plane is: 

 𝛼 = arctan(𝑊𝑥/𝑊𝜃) (7.2) 

The 2D simulation of the unsteady flow past the blade aerofoil of the HAWT in yawed wind 

could be performed by using a motionless domain and enforcing the time-dependent 

freestream velocity defined by conditions (7.1). Alternatively, one could also use a moving-

grid simulation with steady farfield freestream conditions and suitably defined grid motion. 

The modulus 𝑊∞ and the orientation 𝛼∞ of the uniform freestream are obtained by removing 

the time-dependent term of Eqn. (7.1), and their expressions are respectively: 
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 𝑊∞ = √(𝑉𝑓𝑠 cos 𝛿)
2
+ (𝜔𝑅)2 (7.3) 

 

 𝛼∞ = arctan[((𝑉𝑓𝑠cos𝛿 ))/𝜔𝑅] (7.4) 

When using steady farfield boundary conditions, the variability of the inflow state associated 

with the case of motionless domain can be replaced by the conditions such that the aerofoil 

and the grid experience a horizontal sinusoidal motion with time-dependent displacement 

ℎ(𝑡) defined by 

 
ℎ(𝑡) = ℎ0 sin(𝜃)     𝑤𝑖𝑡ℎ       𝜃 = 𝜔𝑡 

ℎ0 = 𝑉𝑓𝑠 sin 𝛿/𝜔 
(7.5) 

where 𝜃 denotes the azimuthal position of the blade. 

The moving domain model has been adopted for the analyses presented in the section, and it 

could also be used to perform 2D experimental measurements aimed at studying the 

aerodynamic characteristics of HWAT aerofoils in yawed wind. A typical HAWT aerofoil 

twisted by an angle 𝛾 is depicted in the left plot of Figure 7.3 along with an indication of the 

harmonic motion. The right plot provides a representation of Eqn. (7.5) and the four positions 

A to D correspond to those labelled with the same symbols in Figure 7.1 and Figure 7.2. 

 

Figure 7.3 HARMONIC MOTION OF HAWT BLADE SECTION CORRESPONDING TO YAWED 
WIND CONDITION.
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The sectional force coefficients considered herein are made up of the horizontal force 

coefficient 𝐶𝑥 , the vertical force coefficient 𝐶𝑦 , and the constant-head pitching moment 

coefficient 𝐶𝑚′ defined respectively as: 

 𝐶𝑥 =
𝐹𝑥

0.5𝜌∞𝑊∞2𝑐
,        𝐶𝑦 =

𝐹𝑦

0.5𝜌𝑊∞2𝑐
,         𝐶𝑚

′ =
𝑀

0.5𝜌𝑊∞2𝑐2
 (7.6) 

To be noted, the x- and y- directions appearing in the force coefficients are defined differently 

from those in the velocity components: they are both regarding the system of 2D simulations, 

and x- corresponds to the direction orthogonal to the rotation axis in the rotation plane, 

whereas y- corresponds to the direction parallel to the rotation axis. The horizontal force per 

unit blade length 𝐹𝑥 is the tangential force component that results in useful torque; the vertical 

force per unit blade length 𝐹𝑦 is the axial force component that results in rotor thrust; the 

pitching moment 𝑀 per unit blade length results in a torsional load on the blade.  

 

7.1.2 simulation set-up 
 

The 2D steady and TD turbulent flow fields past the aerofoil of a rotating HAWT blade are 

considered in this section. The steady analysis refers to the case in which the wind direction 

is orthogonal to the rotor plane, and the TD analysis refers to a yawed wind condition. The 

rotor radius is 82.0m, the freestream wind velocity 𝑉∞  is 13m/s, and the rotor speed is 

12.0RPM, which corresponds to a value of 𝜔 of about 1.26𝑟𝑎𝑑/𝑠. The considered blade 

section is at 93.5% rotor radius, and features a NACA64-618 aerofoil with a chord c of 2.41m 

and a twist 𝛾𝑝 of 0.37° on the rotor plane. 

The inflow angle 𝛼∞ = 7.68° of the steady regime is obtained from Eqn. (7.4) using 𝛿 = 0° 

and the values of 𝑉∞, 𝜔 and 𝑅 provided above. The relative AoA Φ∞ = 7.31° for the 2D 

simulations is instead obtained by subtracting the twist 𝛾𝑝 to the inflow angle 𝛼∞. Using the 

value of 𝑊∞  obtained by inserting the required data into Eqn. (7.3) and the standard 

temperature of 288K, yields a freestream Mach number 𝑀∞ = 0.286. The Reynolds number 

based on the standard density of 1.22𝑘𝑔/𝑚3, the velocity 𝑊∞, the aerofoil chord and the air 

viscosity at standard temperature is 1.6 ⋅ 107. 
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In the unsteady regime associated with yawed wind, a yaw angle 𝛿 of 45° is assumed. Eqn. 

(7.4) yields 𝛼∞ = 5.45° , and therefore,Φ∞ = 𝛼∞ − 𝛾𝑝 = 5.08°.Using the value of 𝑊∞ 

obtained by inserting the required data into Eqn. (7.3) and the standard temperature of 288K, 

yields a freestream Mach number 𝑀∞ = 0.285. The Reynolds number, calculated as in the 

steady case, is still 1.6 ⋅ 107 . The reduced frequency 𝜆 = 𝜔𝑐/𝑊∞  is 0.0313. The main 

physical parameters of the steady and TD simulations analysed in this section are reported in 

Table 7.1. 

Yaw(𝛿) Mode 𝑀∞ AoA(Φ∞) 𝜆 𝑅𝑒 

0° Steady 0.286 7.31° 0 1.6 ⋅ 107 

45° TD 0.285 5.08° 0.0313 1.6 ⋅ 107 

Table 7.1 MAIN PHYSICAL PARAMETERS OF STEADY AND TD FLOW SIMULATIONS OF HAWT 
BLADE SECTION AT 93.5% RADIUS. 

The 524,288-cell C-grid adopted for all simulations has 512 mesh intervals along the aerofoil, 

256 intervals in the grid cut, and 512 intervals in the normal-like direction. The farfield 

boundary is placed at about 50 chords from the aerofoil, and the distance 𝑑𝑤 of the first grid 

points off the aerofoil surface from the surface itself is about 10−6𝑐. The non-dimensional 

minimum distance from the wall is 𝑦𝑤
+ = (𝑢𝜏𝑑𝑤)/𝜈𝑤, where 𝑢𝜏 is the friction velocity and 

𝜈𝑤 is the kinematic viscosity at the wall. In all the simulations reported below, the maximum 

value of 𝑦𝑤
+ was always smaller than 1. Figure 7.4 provides an enlarged view of the adopted 

grid in the aerofoil region. The aerofoil and the whole grid are inclined by the twist angle 𝛾𝑝 

on the horizontal direction in both the steady and the TD simulations. In the latter case, the 

whole grid also undergoes a sinusoidal motion defined by Eqn. (7.5), with amplitude ℎ0 equal 

to 3.03𝑐. All TD analyses reported below have been performed using 128 time-intervals per 

period or rotor revolution. These TD simulations have been run until the maximum 𝐶𝑥, 𝐶𝑦 

and 𝐶𝑚′ differences over two consecutive oscillation cycles became less than 0.1% of their 

maxima over the latter cycle of the cycle pair. 
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Figure 7.4 GRID VIEW IN AEROFOIL REGION. (Campobasso et al., 2014a) 

 

7.1.3 steady flow analysis 
 

In order to assess the effects of compressibility on the steady flow field past the considered 

HAWT section, such a flow field has been computed with the LSP-enhanced solver for three 

values of 𝑀∞, namely the value of 2.86 ⋅ 10−1 corresponding to the real flow conditions, and 

the lower values of 2.86 ⋅ 10−2 and 2.86 ⋅ 10−3. All other physical control parameters of the 

three simulations are instead those given before. One of objectives of the comparative 

analysis of these three simulations is to highlight the differences between the prediction of 

compressible CFD solvers, namely that for𝑀∞ = 2.86 ⋅ 10−1 , and that of incompressible 

CFD solvers, here taken to correspond to the limit of the LSP-enhanced solution of COSA for 

𝑀∞ → 0. Moreover, in order to further assess the benefits of LSP on the solution accuracy, 
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the simulations for the three values of 𝑀∞  have also been performed without LSP and 

compared to their LSP counterparts.  

 LSP NP 

𝑀∞ 𝐶𝑙 𝐶𝑑 𝐶𝑚
′  𝐶𝑙 𝐶𝑑 𝐶𝑚

′  

2.86 ⋅ 10−1 1.350  0.01380  0.1283  1.355  0.01330  0.1289 

2.86 ⋅ 10−2 1.301  0.01292  0.1261  1.336  0.01220  0.1327 

2.86 ⋅ 10−3 1.298  0.01306  0.1256  1.312  0.03382  0.1379 

Table 7.2 COMPARISON OF FORCE COEFFICIENTS OF BLADE SECTION AT 93.5% RADIUS IN 
STEADY REGIME FOR 𝑀∞ = 2.86 ⋅ 10−1, 𝑀∞ = 2.86 ⋅ 10−2, AND 𝑀∞ = 2.86 ⋅ 10−3 WITH 

AND WITHOUT LSP. 

 

𝑀∞ 𝐶𝑙 𝐶𝑑 𝐶𝑚
′  

2.86 ⋅ 10−1 1.334 0.01206 0.1143 

2.86 ⋅ 10−2 1.299 0.01130 0.1187 

2.86 ⋅ 10−3 1.298 0.01129 0.1187 

Table 7.3   FORCE COEFFICIENTS OF BLADE SECTION AT 93.5% RADIUS IN STEADY REGIME 
FOR 𝑀∞ = 2.86 ⋅ 10−1, 𝑀∞ = 2.86 ⋅ 10−2, AND 𝑀∞ = 2.86 ⋅ 10−3 COMPUTED BY XFOIL 

The second, third and fourth columns of Table 7.2 report respectively the lift coefficient 𝐶𝑙, 

the drag coefficient 𝐶𝑑  and the pitching moment coefficient 𝐶𝑚
′  computed with the LSP 

analysis for the three values of 𝑀∞. The fifth, sixth and seventh columns report instead the 

estimates of the same force coefficients obtained by the analysis without LSP. Several 

interesting observations can be made by cross-comparing the data of this table. Firstly, one 

notes that the difference between the LSP force estimates for 𝑀∞ = 2.86 ⋅ 10−2 and 𝑀∞ =

2.86 ⋅ 10−3 is significantly smaller than the difference of the LSP force estimates for 𝑀∞ =

2.86 ⋅ 10−1  and 𝑀∞ = 2.86 ⋅ 10−2 . This occurrence points to the existence of significant 

compressibility effects in the outboard regions of large HAWT rotors of the type considered 

herein. Based on the LSP predictions for the highest and lowest values of 𝑀∞, it emerges that 

the use of an incompressible CFD solver is likely to underestimate by nearly 4% of its real 

value the lift force on the blade section. The comparison of the LSP- and the NP-estimate of a 

given force component for the same 𝑀∞ highlights that the difference between LSP and NP 

predictions increases significantly as 𝑀∞ decreases, as expected. This points to the necessity 

of using LSP even for levels of 𝑀∞ of order 0.01, which is representative of the relative 

speeds observed at the roots of HAWT blades. It is also noted that, though relatively small, 
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the difference between the LSP- and the NP estimate of the three force coefficients at 𝑀∞ =

2.86 ⋅ 10−1 is larger than the difference between the LSP- and the NP-estimate of the flat 

plate drag coefficient at 𝑀∞ = 0.1. This is presumably due to the higher complexity of the 

aerofoil flow field with respect to the zero-pressure gradient flat plate boundary layer. In the 

aerofoil problem, a rapid growth of the boundary layer on the aerofoil suction side (SS) 

occurs between the peak-velocity point and the TE. The accuracy of the LSP simulation in 

this low-speed and low-Reynolds number boundary layer region is likely to be higher than 

the solver without LSP due to the optimised LSP numerical dissipation. The same 

phenomenon is also reported in Vatsa and Turkel (2004), which compares the viscous drag of 

the RAE aerofoil for an AoA of 2.79° at 𝑀∞ = 0.2 and 𝑅𝑒 = 6.5 ⋅ 106  obtained from the 

compressible RANS analyses with and without LSP. We have also performed the 𝑀∞ =

2.86 ⋅ 10−1 turbulent simulation with and without LSP replacing the NACA64- 618 with the 

thinner NACA0012 aerofoil. By doing so, it has been found that the difference between the 

LSP- and the NP estimates of the force coefficients become substantially smaller than in the 

NACA64-618 aerofoil case, which corroborates the above assumptions of low-speed effects 

even for relatively high freestream Mach numbers.  

The steady flow analyses commented above have also been performed using the MIT 

incompressible panel code XFOIL (Drela, 1989). This code also uses a Karman-Tsien 

compressibility correction that, for steady and attached laminar, viscous and transitional 

regimes, allows good compressible flow predictions all the way from incompressible (𝑀∞ =

0)  to sonic (𝑀∞ ≈ 1)  conditions. Like the COSA simulations reported above, the three 

XFOIL analyses have been performed assuming fully turbulent boundary layer. The force 

coefficients computed by XFOIL for the three considered values of 𝑀∞ are provided in Table 

7.3. These results highlight sensitivities of the force coefficients to variations of 𝑀∞ of the 

same order of those obtained from the COSA results. Moreover, a fairly good agreement of 

the force coefficients predicted by the two codes is observed.  

The profiles of the skin friction coefficients 𝑐𝑓 along the aerofoil chord obtained with the LSP 

analysis for the three values of 𝑀∞ are reported in the top left subplot of Figure 7.5 whereas 

those obtained with the analysis without LSP are provided in the top right subplot. The 

bottom left subplot reports the three LSP estimates of the static pressure coefficient 𝑐𝑝 along 

the chord, whereas the estimates obtained without LSP are depicted in the bottom right 

subplot of Figure 7.5. Inspection of the LSP 𝑐𝑓  and 𝑐𝑝  profiles confirms that significant 
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differences exist between the 𝑀∞ = 2.86 ⋅ 10−1 profiles and those associated with the other 

two values of 𝑀∞ , and also that the profiles associated with the two lower values are 

indistinguishable. This confirms that, for this problem, compressibility effects exist at the real 

operating conditions. The top right subplot of Figure 7.5 highlights that the 𝑐𝑓 profile for the 

lowest freestream Mach number is wrong, whereas those for 𝑀∞ = 2.86 ⋅ 10−2 and 𝑀∞ =

2.86 ⋅ 10−1 appear to be closer than observed in the LSP results. The main feature emerging 

from the 𝑐𝑝  profiles obtained without LSP is that the result for the lowest value of 𝑀∞ 

features significant non-physical oscillations at both the LE and the TE.  

 

Figure 7.5 COMPARISON OF SKIN FRICTION COEFFICIENT (𝑐𝑓) AND PRESSURE COEFFICIENT 

(𝑐𝑝) OF BLADE SECTION AT 93.5% RADIUS IN STEADY REGIME FOR 𝑀∞ = 2.86 ⋅ 10−1, 𝑀∞ =

2.86 ⋅ 10−2, AND 𝑀∞ = 2.86 ⋅ 10−3. TOP LEFT SUBPLOT: 𝑐𝑓 PROFILES FROM SIMULATIONS 

WITH LSP. BOTTOM LEFT SUBPLOT: 𝑐𝑝 PROFILES FROM SIMULATIONS WITH LSP. TOP RIGHT 

SUBPLOT: 𝑐𝑓 PROFILES FROM SIMULATIONS WITHOUT LSP. BOTTOM RIGHT SUBPLOT: 𝑐𝑝 

PROFILES FROM SIMULATIONS WITHOUT LSP. 

It should be noted that the improvements of the solution accuracy achievable by using LSP in 

the compressible flow analysis of HAWT flows are even higher than reported above and in 

the next subsection when separated flow regions exist. The compressible 𝑀∞ 0.044 RANS 
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analyses of the S809 aerofoil reported in work of Le Pape and Lecanu (2004), for example, 

point to the fact that significant improvements of the prediction of the stall characteristics can 

be achieved by using LSP in the compressible solver. 

 

7.1.4 yawed wind analysis with time-domain 

approach 
 

In order to assess the effects of compressibility on the time dependent flow field past the 

considered HAWT section caused by the assumed yaw error of 45°, also such a flow field 

has been computed with the LSP-enhanced solver for three values of 𝑀∞, namely the value 

of 2.85 ⋅ 10−1 corresponding to the real flow conditions, and the lower values of 2.85 ⋅ 10−2 

and 2.85 ⋅ 10−3. All other physical control parameters of the three simulations are instead 

those given at the beginning of this section. As in the steady case, one of the objectives of 

comparing these three simulations is to highlight the differences between the prediction of 

compressible CFD solvers, namely that for 𝑀∞ = 2.85 ⋅ 10−1, and that of incompressible 

CFD solvers, here taken to correspond to the limit of the LSP-enhanced solution of COSA for 

𝑀∞ → 0. Moreover, in order to further assess the benefits of LSP on the solution accuracy, 

the simulations for the three values of 𝑀∞  have also been performed without LSP and 

compared to their LSP counterparts.  

The hysteresis loops of the horizontal force coefficients 𝐶𝑥, the vertical force coefficient 𝐶𝑦 

and the pitching moment coefficient 𝐶𝑚′ predicted by the three LSP simulations are depicted 

in the top left, middle left and bottom left subplots of Figure 7.6 respectively. The variable 

along the horizontal axis of these subplots is the angle Φ  between the time-dependent 

freestream velocity 𝑊̂ defined by Eqn. (7.1) and the chord over one period. One has Φ = 𝛼 −

𝛾𝑝, with 𝛼 defined by Eqn. (7.2). The 𝐶𝑥, 𝐶𝑦 and 𝐶𝑚′ hysteresis loops predicted by the three 

simulations without LSP are instead reported in the top right, middle right and bottom right 

subplots respectively. Examination of the hysteresis loops obtained with the LSP analyses 

point to significant compressibility effects for the real operating conditions of 𝑀∞ = 2.85 ⋅

10−1, since the force loops for this value of the freestream Mach number differ significantly 

from those corresponding to the two lower values of 𝑀∞ . Such effects are particularly 

noticeable in the 𝐶𝑥 loops, which highlight an increment of about 5% of the mean tangential 
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force acting on the blade section caused by compressibility effects. The 𝐶𝑦  loops also 

highlight increments of about 5% of the mean axial thrust coefficient due to compressibility 

effects. These results underline the importance of including compressibility effects in the 

unsteady analysis of HAWT rotor aerodynamics, particularly in view of estimating the 

energy production and the structural loads on the turbine in yawed flow conditions. Cross 

comparison of the left and right subplots of Figure 7.6 also reveals that, while the force loops 

for the highest value of 𝑀∞  computed with and without LSP are in reasonably good 

agreement, the analyses without LSP fail to predict the correct trend of the hysteresis cycles 

as 𝑀∞ decreases. 
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Figure 7.6 HYSTERESIS LOOPS OF HORIZONTAL FORCE COEFFICIENT (𝐶𝑥), VERTICAL FORCE 
COEFFICIENT (𝐶𝑦), AND CONSTANTHEAD PITCHING MOMENT COEFFICIENT (𝐶𝑚′) OF BLADE 

SECTION AT 93.5 % RADIUS IN YAWED FLOW FOR 𝑀∞ = 2.85 ⋅ 10−1, 𝑀∞ = 2.85 ⋅ 10−2, 
AND 𝑀∞ = 2.85 ⋅ 10−3 TOP LEFT SUBPLOT: 𝐶𝑥 LOOP WITH LSP. MIDDLE LEFT SUBPLOT: 𝐶𝑦 

LOOP WITH LSP. BOTTOM LEFT SUBPLOT: 𝐶𝑚′ LOOP WITH LSP. TOP RIGHT SUBPLOT: 𝐶𝑥 
LOOP WITHOUT LSP. MIDDLE RIGHT SUBPLOT: 𝐶𝑦 LOOP WITHOUT LSP. BOTTOM RIGHT 

SUBPLOT: 𝐶𝑚′ LOOP WITHOUT LSP. 
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Figure 7.7 reports the 𝐶𝑦 and 𝐶𝑚′ force coefficients, and the freestream AoA Φ against the 

percentage time of the rotor revolution 𝑡/𝑇. The values 𝑡/𝑇 = 0 and 𝑡/𝑇 = 0.5 correspond to 

the blade at its highest and lowest point respectively. It is therefore observed that the 

maximum value of both force coefficients occurs when the blade is at its lowest position, 

whereas the minimum value occurs when the blade is at its highest position. It has been 

shown in Campobasso et al. (2014b) that, for the considered blade section, the maximum and 

the minimum of the 𝐶𝑦  and 𝐶𝑚′ force coefficients occur, respectively, when the blade is 

vertical and rotates against the circumferential yawed wind component, and when the blade is 

vertical and rotates with the circumferential yawed wind component.  

 

Figure 7.7 TIME-EVOLUTION OF FORCE COEFFICIENTS OF BLADE SECTION AT 93.5% RADIUS 
IN YAWED FLOW (LSP SIMULATION FOR 𝑀∞ = 2.85 ⋅ 10−1). LEFT PLOT: VERTICAL FORCE 
COEFFICIENT (𝐶𝑦) RIGHT PLOT: CONSTANT-HEAD PITCHING MOMENT COEFFICIENT (𝐶𝑚′). 

The contours of the static pressure coefficient past the aerofoil LE and TE computed for 

𝑀∞ = 2.85 ⋅ 10−1  and 𝑀∞ = 2.85 ⋅ 10−3  using the LSP-enhanced solver are depicted in 

Figure 7.8. Both snapshots refer to the beginning of the periodic motion defined by Eqn. (7.5) 

(0% of the period). The left subplot shows the portion of the aerofoil from the LE to its 25% 

chord, whereas the right subplot shows the portion of the aerofoil from 75% chord to the TE. 

The noticeable differences between the constant pressure lines of the two solutions visible in 

both subplots confirm the significant compressibility effects highlighted by the cross 

comparison of the hysteresis loops above.  
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Figure 7.8 COMPARISON OF STATIC PRESSURE COEFFICIENT 𝑐𝑝 CONTOURS AT 𝑀∞ = 2.85 ⋅

10−1, AND 𝑀∞ = 2.85 ⋅ 10−3 OBTAINED WITH LSP-ENHANCED CFD SOLVER. 

The 𝑐𝑝 contours past the aerofoil LE and TE computed for all three values of 𝑀∞ with and 

without LSP are depicted in Figure 7.9. Also these snapshots refer to the beginning of the 

periodic motion defined by Eqn.(7.5). The top, middle and bottom subplot rows refer to the 

values of 𝑀∞  of 2.85 ⋅ 10−1 , 2.85 ⋅ 10−2  and 2.85 ⋅ 10−3  respectively, and each subplot 

provides the 𝑐𝑝 contours of the simulations with and without LSP. This figure highlights that 

the local static pressure around the aerofoil edges predicted by the compressible analysis 

without LSP starts being affected by significant errors already at 𝑀∞ = 2.85 ⋅ 10−2. A very 

accurate prediction of the near-aerofoil static pressure field is an essential requirement for 

accurate predictions of the noise generated by the blades. Hence, these results emphasise the 

necessity of using compressible solvers with LSP for accurately predicting the blade noise 

generation along the entire span of the blades. A significant amount of noise generation is 

typically ascribed to the outboard part of the blade, where relative speeds are fairly high. 

Nevertheless, off-design conditions and very high wind speeds may result in significant 

amount of flow separations also on the outboard part of the blade. In these circumstances, 

both the aerodynamic loads and the accurate prediction of noise generation are very likely to 

require the use of LSP when performing these analyses by means of a compressible RANS 

solver. 
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Figure 7.9 COMPARISON OF STATIC PRESSURE COEFFICIENT 𝑐𝑝 CONTOURS OF BLADE 

SECTION AT 93.5% RADIUS IN YAWED FLOW AT THREE VALUES OF 𝑀∞ OBTAINED WITH AND 
WITHOUT LSP. TOP LEFT SUBPLOT: LE AREA, 𝑀∞ = 2.85 ⋅ 10−1. MIDDLE LEFT SUBPLOT: LE 
AREA, 𝑀∞ = 2.85 ⋅ 10−2. BOTTOM LEFT SUBPLOT: LE AREA, 𝑀∞ = 2.85 ⋅ 10−3. TOP RIGHT 

SUBPLOT: TE AREA, 𝑀∞ = 2.85 ⋅ 10−1. MIDDLE RIGHT SUBPLOT: TE AREA, 𝑀∞ = 2.85 ⋅
10−2. BOTTOMRIGHT SUBPLOT: TE AREA, 𝑀∞ = 2.85 ⋅ 10−3.
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7.1.5 yawed wind analysis with frequency-domain 

approach 
 

Based on the successful demonstration of the use of the turbulent HB RANS technology for 

unsteady HAWT aerodynamics in the non-preconditioned study reported in the paper of 

Campobasso et al. (2014b), we have considered herein a periodic flow past the blade section 

that is analysed in that paper, namely that at 30% blade length of the same blade to which the 

section analysed in the previous section belongs. This has been done to validate the harmonic 

balance LSP implementation of the COSA code developed in this research. The operating 

conditions of the wind turbine periodic flow simulated with the LSP harmonic balance 

analysis are similar to those of the time-dependent problem discussed in the previous section 

(rotor speed 12RPM or 𝜔 = 1.26 𝑟𝑎𝑑/𝑠, freestream wind speed 𝑉𝑓𝑠 = 13𝑚 𝑠⁄ , yaw angle 

𝛿 = 45°). However, here we consider the blade section at 30% blade length, which features a 

DU99W350 aerofoil with a chord 𝑐 of 5.2m and a twist angle 𝛾𝑝  of 10.4°. Therefore, the 

relative angle of attack Φ∞(= 𝛼∞ − 𝛾𝑝 = 6.12°)  for the 2D simulations is obtained by 

subtracting the twist 𝛾𝑝 to the inflow angle 𝛼∞ = 16.56° obtained from Eqn.(7.4). Using the 

value of 𝑊∞  obtained by inserting the required data into Eqn. (7.3) and the standard 

temperature of 288K, yields a freestream Mach number 𝑀∞ = 0.095. The Reynolds number 

based on the standard density of 1.22𝑘𝑔/𝑚3, the velocity 𝑊∞, the aerofoil chord and the air 

viscosity at standard temperature is 1.15 ⋅ 107 , and the reduced frequency 𝜆 = 𝜔𝑐/𝑊∞  is 

0.203.  

The 524,288-cell C-grid adopted for all simulations has 512 mesh intervals along the aerofoil, 

256 intervals in the grid cut, and 512 intervals in the normal-like direction. The farfield 

boundary is placed at about 50 chords from the aerofoil, and the distance 𝑑𝑤 of the first grid 

points off the aerofoil surface from the surface itself is about 10−6𝑐 , which yields the 

maximum value of the non-dimensional minimum wall distance 𝑦𝑤
+ always smaller than 1in 

all simulations reported below. Figure 7.10 provides an enlarged view of the adopted grid in 

the aerofoil region. The aerofoil and the whole grid are inclined by the twist angle 𝛾𝑝 on the 

horizontal direction. The whole grid also undergoes a sinusoidal motion defined by Eqn. (7.5) 

with amplitude ℎ0 equal to 1.4𝑐. The only TD analyses reported below have been performed 

using 128 time-intervals per period or rotor revolution, which, according to the time-

refinement aerodynamic analysis (Campobasso et al., 2014b), is the minimum number of 
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time-intervals required to accurately predict the lift, drag and pitching moment coefficients 

without a further increment of the time resolution, and the simulation has been run until the 

maximum 𝐶𝑥 , 𝐶𝑦  and 𝐶𝑚′ differences over two consecutive oscillation cycles become less 

than 0.1% of their maxima over the latter cycle of the cycle pair.  

 

 

Figure 7.10 GRID VIEW IN AEROFOIL REGION.(Campobasso et al., 2014b) 

Having established the reference time-domain analysis as a term of comparison, the next 

important step is to determine the minimum harmonic number necessary to capture the flow 

unsteady characteristics with the harmonic balance solver and provide a comparable solution 

to the above TD 128 solution. Thus four HB simulations have been performed. The number 

of harmonics 𝑁𝐻 for the simulations are 1, 2, 3 and 4, and they are denoted by the acronym 

HB followed by the value of 𝑁𝐻. All HB analyses have been run for 10,000 MG iterations, 

since this is the minimum value required for the convergence of all force components of all 

harmonics retained by the four HB analyses. Each physical time-step of the TD 128 analysis 

has instead used 3,000 MG iterations, as this value has been sufficient for the convergence of 
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all force components. In order to reduce the periodicity error below the 0.1 % threshold 

defined at the beginning, five periods have to be simulated starting from a freestream initial 

condition. The hysteresis loops of the force coefficients of 𝐶𝑥, 𝐶𝑦 and 𝐶𝑚′ computed by the 

four HB LSP analyses and one TD LSP analyses are plotted against Φ𝑓𝑠 in the three subplots 

of Figure 7.11. Same conclusion is discovered in these results as in the reference that at least 

3 complex harmonics are required to achieve a frequency-domain resolution of all force 

components comparable to that of the TD 128 simulation, since only negligible differences is 

found between the HB 3 and the HB 4 force loops, whereas the loops of 𝐶𝑥 and 𝐶𝑦 computed 

with the HB 2 and HB 3 analyses present some discrepancies for the highest values of Φ𝑓𝑠.  

 

 

a) 
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b) 

    

c) 

Figure 7.11 HYSTERESIS FORCE LOOPS OF BLADE SECTION AT 30 % RADIUS IN YAWED FLOW 
FOR 𝑀∞ = 9.5 ⋅ 10−2, COMPUTED WITH TD LSP SOLVERS AND FOUR HB LSP ANALYSES: a) 

HORIZONTAL FORCE COEFFICIENT (𝑐𝑥), b) VERTICAL FORCE COEFFICIENT (𝑐𝑦), c) CONSTANT-

HEAD PITCHING MOMENT COEFFICIENT (𝑐𝑚′). 
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Before proceeding to the results of LSP HB simulations for more challenging problems, a 

computational efficiency analyses is provided below. Since all the HB analyses reported 

herein could be performed with the FERK MG iteration rather than the PIRK algorithm given 

by Eqn.(5.30), the computational time of one HB MG iteration increases in a moderately 

superlinear fashion with 𝑁𝐻, resulting in the cost of one MG cycle for a HB-𝑁𝐻 simulation 

being higher than 2𝑁𝐻 + 1 times the cost of the same MG cycle in the steady simulation. 

This overhead is due to the calculation of the HB source term 𝜔𝑉𝐻𝐷𝐻𝑄𝐻 appearing in Eqn. 

(3.25), and is proportional to (2𝑁𝐻 + 1)
2. By calculating the ratio of measured CPU-time per 

MG iteration between the HB 𝑁𝐻 analysis and the steady analysis and dividing it by 2𝑁𝐻 + 1, 

one can quantify this overhead which is labelled 𝐶𝑀𝐺  below. This variable has been reported 

in the second row of Table 7.4. It is concluded that the overhead for the calculation of the HB 

source term with the HB-3 analysis makes the average CPU time of one HB MG cycle for 

calculating one HB snapshot about 80% higher than that of one steady MG cycle. The sixth 

column of Table 7.4 reports 𝐶𝑀𝐺  for the TD simulation, and the small overhead of 9% is that 

required for the calculation of the source term 1.5𝑄𝑛+1/Δ𝑡 appearing in Eqn. (3.22). 

The HB speed-up parameter, defined as the ratio between the wallclock time of the TD 128 

simulation and that of the four HB analyses is reported in the third row of Table 7.4. It is seen 

that a fairly accurate estimate of the time dependent loads associated with the considered 

yawed condition can be obtained with HB 3 analysis while only at the cost of as low as 6% of 

the CPU-time required in the TD 128 analysis. 

 HB 1 HB 2 HB 3 HB 4 TD 128 steady 

𝐶𝑀𝐺  1.25 1.74 1.81 1.82 1.09 1.00 

speed-up 54.3 24.1 16.5 12.7 1  

Table 7.4 ACCELERATION FACTORS OF HB ANALYSES WITH RESPECT TO TIME-DOMAIN 
ANALYSIS FOR THE 30% BLADE SECTION. 

In order to further assess the benefits of LSP on the accuracy of the HB analysis, two 

additional simulations at lower Mach numbers M∞ = 9.5 ⋅ 10
−3𝑎𝑛𝑑 9.5 ⋅ 10−4 have been 

performed with and without LSP and compared to the results obtained at the highest Mach 

number. The hysteresis loops of the horizontal force coefficients 𝐶𝑥 , the vertical force 

coefficient 𝐶𝑦 and the constant-head pitching moment coefficient 𝐶𝑚′ predicted by the three 

LSP simulations are plotted against the angle of attack Φ𝑓𝑠  and depicted in the top left, 

middle left and bottom left subplots of Figure 7.12 respectively, whereas the estimates of 
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three force coefficients without LSP are instead reported in the top right, middle right and 

bottom right subplots respectively. Cross comparisons of the hysteresis loops obtained with 

and without the LSP analyses in the left and right subplots of Figure 7.12 show that while the 

force loops for the highest value of 𝑀∞ computed with and without LSP are in reasonably 

good agreement, the analyses without LSP fail to predict the correct trend of the hysteresis 

cycles as 𝑀∞ decreases, and more importantly negligible differences are noticed between the 

results of three LSP simulations, which points to the fact that a Mach-independent solution to 

a non-linear flow problem can be provided using HB LSP analysis and satisfactory accuracy 

is thus well maintained even in the region of extremely low Mach number. 
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Figure 7.12 HYSTERESIS LOOPS OF HORIZONTAL FORCE COEFFICIENT (𝐶𝑥), VERTICAL FORCE 
COEFFICIENT (𝐶𝑦), AND CONSTANTHEAD PITCHING MOMENT COEFFICIENT (𝐶𝑚′) OF BLADE 

SECTION AT 30 % RADIUS IN YAWED FLOW FOR 𝑀∞ = 9.5 ⋅ 10−2, 𝑀∞ = 9.5 ⋅ 10−3, AND 
𝑀∞ = 9.5 ⋅ 10−4 TOP LEFT SUBPLOT: 𝐶𝑥 LOOP WITH LSP. MIDDLE LEFT SUBPLOT: 𝐶𝑦 LOOP 

WITH LSP. BOTTOM LEFT SUBPLOT: 𝐶𝑚′ LOOP WITH LSP. TOP RIGHT SUBPLOT: 𝐶𝑥 LOOP 
WITHOUT LSP. MIDDLE RIGHT SUBPLOT: 𝐶𝑦 LOOP WITHOUT LSP. BOTTOM RIGHT SUBPLOT: 

𝐶𝑚′ LOOP WITHOUT LSP.
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7.2 Horizontal axis wind turbine aerodynamics (3D) 
 

The aerodynamic analyses reported in this section refer to the steady inviscid flow field past 

the rotating NREL 5MW HAWT. The steady analysis refers to the case in which the wind 

direction is orthogonal to the rotor plane. The rotor radius R is 63.0m, the freestream wind 

velocity 𝑉∞  is 11.4m/s, yielding a freestream Mach number 𝑀∞ = 0.0335  based on the 

standard temperature 288K, and the rotor speed is 12.1RPM, which corresponds to a value of 

𝜔 of about 1.27rad/s and a Mach number at the blade tip equal to 0.235. The tip speed ratio 

(𝑇𝑆𝑅 = 𝜔𝑅/𝑀∞) is hence calculated as 7.015. The results to be analysed and compared 

corresponds to the blade sections of 25% and 89% of the whole rotor blade respectively. The 

main physical parameters of the steady simulations analysed in this case are reported in Table 

7.5. 

Yaw(𝛿) Mode 𝑀∞ 𝑇𝑆𝑅 

0° Steady 0.335 7.015 

Table 7.5 MAIN PHYSICAL PARAMETERS OF THE STEADY FLOW SIMULATION OF NREL 5MW 
HAWT 

The adopted structured mesh for all simulations has a multi-block C–H topology with 

1473751 cells in total. It represents one azimuthal sector around a single blade. Thanks to the 

implementation of the periodicity boundary condition, the computational domain can be 

restricted to one 120° azimuthal sector as shown in Figure 7.13. The configuration considered 

in this work is the blade without the root which is also presented in Figure 7.13. The grid 

extension in the wind direction is ±20𝑅 upstream and downstream of the wind turbine and 

6R in the spanwise direction, ensuring an undisturbed flow field near the domain boundaries. 

Due to the fact that this is our first attempt to analyse a 3D wind turbine test case, the flow 

field is assumed to be inviscid and therefore no particular requirement has been specified 

when defining the wall distance of the first grid points off the wall. The TD solutions 

reported below have been obtained using 360 time-intervals per period or rotor revolution. 

These TD simulations have been run until the maximum lift and momentum coefficient 

differences over two consecutive oscillation cycles became less than 0.1% of their maxima 

over the latter cycle of the cycle pair.  



7.2 Horizontal axis wind turbine aerodynamics (3D) 

168 

 

Figure 7.13 C-H GRID OF A SINGLE BLADE OF WIND TURBINE 

In order to demonstrate the necessity of using LSP-enhanced solver to predict the flow field 

past the HAWT, the simulations have been performed for two values of 𝑀∞, namely the 

value of 3.35 ⋅ 10−2 corresponding to the real flow conditions, and the lower value of 3.35 ⋅

10−3. One primary objective of the comparative analysis of the simulations with and without 

LSP is to assess the benefits of LSP to the solution accuracy by highlighting its solution 

independence of the variation of freestream Mach number 𝑀∞ . Moreover, the effects of 

compressibility on the steady flow field past the outbound section (89% in our case) of the 

blade can be assessed by analysing the differences between the prediction of compressible 

CFD solver, namely that for 𝑀∞ = 3.35 ⋅ 10−2  (note that the relative local Mach in this 

section can be as high as 0.238), and that of incompressible CFD solvers, here taken to 

correspond to the limit of the LSP-enhanced solution of COSA for 𝑀∞ → 0. 
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The 𝑐𝑝 contours past the LE and TE of the aerofoil at 25% blade length computed with and 

without LSP for the two indicated values of 𝑀∞ are depicted in Figure 7.14. The left subplots 

show the portion of the aerofoil from the LE to its 25% chord, whereas the right subplots 

show the portion of the aerofoil from 75% chord to the TE. The top and middle subplot rows 

refer to the 𝑐𝑝 contours of the simulations with and without LSP for the values of 𝑀∞ of 

3.35 ⋅ 10−2and 3.35 ⋅ 10−3respectively, and the bottom subplot rows depict the contours of 

static pressure coefficient computed for 𝑀∞ = 3.35 ⋅ 10−2 and 𝑀∞ = 3.35 ⋅ 10−3 using the 

LSP-enhanced solver only. Similar comparisons of the 𝑐𝑝 contours past the aerofoil at 89% 

blade length are depicted in Figure 7.15. These two figures highlight that even for the 

outbound blade section where the local Mach number is relatively high, the local static 

pressure around the aerofoil edges predicted by the compressible analysis without LSP starts 

being affected by noticeable errors already at 𝑀∞ = 3.35 ⋅ 10−2, which corresponds to the 

normal operating condition for the wind turbine. A very accurate prediction of the near-

aerofoil static pressure field is an essential requirement for accurate predictions of the noise 

generated by the blades. Hence, these results emphasise the necessity of using compressible 

solvers with LSP for accurately predicting the blade noise generation along the entire span of 

the blades. Moreover, a significant amount of noise generation and flow separations is 

typically ascribed to the outboard part of the blade as a result of the fairly high relative speeds. 

In these circumstances, both the aerodynamic loads and the accurate prediction of noise 

generation are very likely to require the use of LSP when performing these analyses by 

means of a compressible RANS solver. On the other hand, the noticeable differences between 

the constant static pressure lines of the two LSP solutions at 89% blade section visible in the 

bottom subplots of Figure 7.15 is due to the compressibility effect in the real operating 

condition at 𝑀∞ = 3.35 ⋅ 10−2 as the maximum local Mach number is found to be above the 

compressibility threshold of 0.3. 
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Figure 7.14 COMPARISON OF STATIC PRESSURE COEFFICIENT 𝑐𝑝 CONTOURS OF BLADE 

SECTION AT 25% RADIUS IN STEADY REGIME AT TWO VALUES OF 𝑀∞ OBTAINED WITH AND 
WITHOUT LSP. TOP LEFT SUBPLOT: LE AREA, 𝑀∞ = 3.35 ⋅ 10−2. MIDDLE LEFT SUBPLOT: LE 

AREA, 𝑀∞ = 3.35 ⋅ 10−3. BOTTOM LEFT SUBPLOT: 𝑐𝑝 AT LE AREA OBTAINED WITH LSP, 

𝑀∞ = 3.35 ⋅ 10−2 & 3.35 ⋅ 10−3. TOP RIGHT SUBPLOT: TE AREA, 𝑀∞ = 3.35 ⋅ 10−2. 
MIDDLE RIGHT SUBPLOT: TE AREA, 𝑀∞ = 3.35 ⋅ 10−3. BOTTOM RIGHT SUBPLOT: 𝑐𝑝 AT TE 

AREA OBTAINED WITH LSP, 𝑀∞ = 3.35 ⋅ 10−2 & 3.35 ⋅ 10−3. 
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Figure 7.15 COMPARISON OF STATIC PRESSURE COEFFICIENT 𝑐𝑝 CONTOURS OF BLADE 

SECTION AT 89% RADIUS IN STEADY REGIME AT TWO VALUES OF 𝑀∞ OBTAINED WITH AND 
WITHOUT LSP. TOP LEFT SUBPLOT: LE AREA, 𝑀∞ = 3.35 ⋅ 10−2. MIDDLE LEFT SUBPLOT: LE 

AREA, 𝑀∞ = 3.35 ⋅ 10−3. BOTTOM LEFT SUBPLOT: 𝑐𝑝 AT LE AREA OBTAINED WITH LSP, 

𝑀∞ = 3.35 ⋅ 10−2 & 3.35 ⋅ 10−3. TOP RIGHT SUBPLOT: TE AREA, 𝑀∞ = 3.35 ⋅ 10−2. 
MIDDLE RIGHT SUBPLOT: TE AREA, 𝑀∞ = 3.35 ⋅ 10−3. BOTTOM RIGHT SUBPLOT: 𝑐𝑝 AT TE 

AREA OBTAINED WITH LSP, 𝑀∞ = 3.35 ⋅ 10−2 & 3.35 ⋅ 10−3. 
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The profile comparisons of the static pressure coefficient 𝑐𝑝 along the aerofoil chord obtained 

with both NP and LSP solvers for blade sections of 25% and 89% at 𝑀∞ = 3.35 ⋅ 10−2 are 

reported in the top left and right subplots of Figure 7.16 respectively, and the two subplots in 

the middle present the comparison of results obtained at lower Mach number of M∞ = 3.35 ⋅

10−3. The bottom left subplot reports the estimates of static pressure coefficient 𝑐𝑝 obtained 

with the LSP analysis for two Mach numbers along the aerofoil of 25% blade section, 

whereas the estimates for blade section of 89% are depicted in the bottom right subplot of 

Figure 7.16. Inspection of the results presented in the two top subplots corresponding to the 

real flow condition confirms the necessity of using LSP in the portion of the blade close to 

the root, where the flow field can be regarded as incompressible and the accuracy of the 

estimates of 𝑐𝑝 obtained with the compressible NP solver is severely impaired, as highlighted 

by the significant non-physical oscillations at both leading and trailing edges. However, the 

flow analysis of the 89% blade section, where a relatively high local Mach number always 

exists, highlights that only while solving such a high-speed flow problem, the NP calculation 

can yield the solution of a comparable accuracy with respect to that obtained with the LSP 

solver. As the free stream Mach number decreases (see two middle subplots of Figure 7.16), 

the significant non-physical oscillations appearing in the NP-estimate of 𝑐𝑝 profile around the 

whole aerofoil features a more severely impaired accuracy of the solution computed by the 

compressible NP solver, even regarding the outer blade section near the tip, whereas the 

computations with preconditioning have demonstrated a well preserved accuracy of the 

solution by successfully removing such oscillations and pointed to the necessity of applying 

the LSP to solve the incompressible flow problems. Through the cross-comparison of the two 

bottom subplots of Figure 7.16, the only small difference between the two 𝑐𝑝  profiles 

obtained with LSP for two Mach numbers at 89% section confirms the noticeable 

compressibility effects highlighted in the previous analyses of the static pressure coefficient 

contours. 
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Figure 7.16 COMPARISON OF PRESSURE COEFFICIENT (𝑐𝑝) ALONG THE AEROFOIL OF BLADE 

SECTION AT 25% AND 89% RADIUS IN STEADY REGIME FOR 𝑀∞ = 3.35 ⋅ 10−2 AND 𝑀∞ =
3.35 ⋅ 10−3. TOP LEFT SUBPLOT: 𝑐𝑝 PROFILES AT 25% FROM BOTH SIMULATIONS, 𝑀∞ =

3.35 ⋅ 10−2. MIDDLE LEFT SUBPLOT: 𝑐𝑝 PROFILES AT 25% FROM BOTH SIMULATIONS, 𝑀∞ =

3.35 ⋅ 10−3, BOTTOM LEFT SUBPLOT: 𝑐𝑝 PROFILES AT 25% FROM SIMULATIONS WITH LSP, 

𝑀∞ = 3.35 ⋅ 10−2 & 3.35 ⋅ 10−3. TOP RIGHT SUBPLOT: 𝑐𝑝 AT 89% 𝑀∞ = 3.35 ⋅ 10−2. 

MIDDLE LEFT SUBPLOT: 𝑐𝑝 AT 89% 𝑀∞ = 3.35 ⋅ 10−3, BOTTOM LEFT SUBPLOT: 𝑐𝑝 AT 89% 

FROM SIMULATIONS WITH LSP, 𝑀∞ = 3.35 ⋅ 10−2 & 3.35 ⋅ 10−3 
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 Shaft Torque (𝑁 ∙ 𝑚) 

𝑀∞ 𝐿𝑆𝑃 𝑁𝑃 

3.35 ⋅ 10−2 4.45 ∙ 106 4.20 ⋅ 106 

3.35 ⋅ 10−3 4.52 ⋅ 106 3.71 ⋅ 106 

Table 7.6 COMPARISON OF THE COMPUTED SHAFT TORQUE FOR TWO DIFFERENT 𝑀∞ WITH 
AND WITHOUT LSP 

On the basis of the above comparative analyses of the sectional aerodynamic characteristics, 

the computed shaft torque of the whole rotor is reported in Table 7.6 for two different values 

of 𝑀∞, where the second and third columns represent the results obtained with and without 

LSP. The noticeable difference between the two computed solutions with respect to the rated 

wind speed (𝑀∞ = 0.0335) can be accounted for by the incorrect prediction of the NP 

compressible solver in the inboard blade section close to the hub. To be more specific, in 

terms of the outer bound of the whole blade, where the relative wind speed perceived by the 

blade section is relatively high and the compressibility effect is by no means negligible, the 

NP solver can provide the solutions of comparable accuracy with respect to those computed 

with the LSP-enhanced solver, same as the case of 89% blade section demonstrated in the 

previous analysis; however, such small difference will grow dramatically as one moves the 

considered section towards the root, where the relative local Mach number is fairly small due 

to the decreased radius in a linear fashion and the flow field becomes incompressible, and the 

NP-estimate of the solution suffers a severe accuracy issue while solving such low-speed 

problems as shown in the analysis of 25% blade section, which, as a consequence, makes a 

major contribution to the difference of the computed solution compared to that of the LSP 

solver for the whole blade. Although no measured data or reference solution is provided 

herein to demonstrate the accuracy preserved by the LSP solver, the underestimation of the 

computed shaft torque without LSP noticed in our research is found to be consistent and 

proved in the flow analysis of the NREL phase VI wind turbine by Le Pape and Gleize 

(2006), where a good agreement of the shaft torque is achieved between the experiment data 

and the results obtained with LSP approach, whereas the computations without LSP 

underestimate the torque almost in the whole range of the tested wind speeds. The cross 
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comparison of the data, on the other hand, finds that the difference between the LSP 

estimates for 𝑀∞ = 3.35 ⋅ 10−2 and 𝑀∞ = 3.35 ⋅ 10−3 is significantly smaller than that of its 

NP counterparts, which is again due to the optimisation of the numerical dissipation achieved 

by the LSP solver. 

 

 

 

 

7.3 Vertical axis wind turbine aerodynamics (2D) 
 

Besides the analyses of HAWT applications, a well-developed and universally-applied 

Navier-Stokes CFD code is also expected to provide a reliable solution to the flow problem in 

vertical-axis wind turbine analyses. In the recent published work of Balduzzi et al. (2015), a 

comparative assessment of the predictive capability of COSA and another commercial RANS 

code FLUENT is presented. The study concerns the flow analysis of a Darrieus turbine, a 

popular type of VAWT. A very good agreement is achieved between the solutions of two 

CFD codes and the available experiment data. Therefore we would carry out our low speed 

preconditioning analysis of this VAWT application on the basis of their work. One important 

fact to be noted is that the solution of FLUENT simulation to be compared is obtained by a 

pressure-based solver, which, due to the nature of its formulation, is aimed to solve the low-

speed incompressible flow problems (Rhie, 1989, Tamamidis et al., 1996), therefore no LSP 

is required in the FLUENT simulation for this low Mach test case and taking its solution as 

the reference correct value is a legitimate choice.  

The turbine considered here is a 3-blade H-Darrieus, and its main characteristics are reported 

in Table 7.7. An operating condition of tip speed ratio (TSR) of 2.637 (corresponding to a 

revolution speed of 440 rpm and a free stream Mach number 𝑀∞ 0.0265) is chosen for our 

comparative analysis. The Reynolds number based on the standard density of 1.22𝑘𝑔/𝑚3, 

the inlet velocity, the blade chord and the air viscosity at standard temperature 288K is 

calculated as 52800. 
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Blades Number (𝑁) 3 

Blades Shape  Straight 

Blades Aerofoil  NACA0021 

Radius (𝑅) [m]  0.5150 

Chord (𝑐) [m]  0.0858 

𝑐/𝑅 ratio  0.166 

Table 7.7 MAIN FEATURES OF THE ANALYSED ROTOR 

Based on the conclusion obtained in the parametric sensitivity analyses (Balduzzi et al., 2015) 

of computed solutions to various numerical aspects (i.e. the level of mesh refinement, the far 

field boundary distance specified from the rotor centre, the wall boundary condition and the 

size of physical time-step), we have decided to apply the same numerical set-up that has been 

used in the reported COSA analyses of the reference to all simulations presented herein. The 

grid adopted in the analyses has 729,600 quadrilateral cells and consists of two subdomains: a 

522,240-cell circular region with radius 3.5D enclosing all three blades, and another 207,360-

cell annular region of inner radius 3.5D and outer radius 120D. It has 448 mesh intervals 

along the surface of each blade and the distance of the first grid points off the aerofoil surface 

from the surface itself is about 10−4 chords. Figure 7.17 presents the physical domain of the 

simulation in a schematic view, while local views of the grid around the rotor and the leading 

edge of the blade are depicted in Figure 7.18 and Figure 7.19 respectively.  
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Figure 7.17 PHYSICAL DOMAIN OF COSA SIMULATION (Balduzzi et al., 2015) 

 

 

Figure 7.18 ADOPTED MESH AROUND THE ROTOR (ONLY EVERY SECOND GRID LINE IN BOTH 
DIRECTIONS IS PLOTTED FOR CLARITY) (Balduzzi et al., 2015) 
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Figure 7.19 ENLARGED VIEW OF GRID IN THE LEADING EDGE AREA (ONLY EVERY SECOND 
GRID LINE IN BOTH DIRECTIONS IS PLOTTED FOR CLARITY) (Balduzzi et al., 2015) 

The output parameter we aim to analyse in this application is the torque coefficients (𝐶𝑡) 

defined in Eqn.(7.7), and both the calculations with and without LSP have been performed 

and compared with the numerical result computed by FLUENT provided by Dr. Balduzzi, Dr. 

Bianchini and Dr. Ferrari, in order to assess the influence of the implementation of the 

preconditioning method on the final solutions. In order to obtain the converged solutions to 

compare, the periodicity error threshold (with the same definition as in previous sections) is 

set to approximately 1% due to the complexity of the flow problem considered herein, which 

requires between 30 and 50 revolutions to achieve a periodic state for all simulations.  

 𝐶𝑡 =
𝑇

1
2𝜌∞2𝑅

2𝑈∞2
 (7.7) 

The comparison of the blade torque coefficients obtained with the above two COSA 

simulations and FLUENT result is depicted in Figure 7.20. Inspection of the three curves has 

discovered significant difference between the COSA-NP and the other two simulation results, 

namely COSA-LSP and FLUENT, occurring when the rotor rotates at the angular position of 

𝜃 = 135° , where the curve of the preconditioned solutions tend to be closer to that of 

FLUENT with a better and smoother sinusoidal profile. Moreover at the position around 𝜃 =

210°, the COSA-LSP and FLUENT calculations have displayed undistinguished difference 
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with respect to each other, and both of them have successfully removed the small abnormal 

oscillations which appears in the COSA-NP result. Through the above findings of the 

improved accuracy in the preconditioned simulations, one can confirm that the predictive 

capability of the VAWT application can be enhanced by using the low speed preconditioning 

technology, and demonstrate the necessity of using LSP for solving such a particular energy 

engineering problem in a realistic flow condition. 

 

Figure 7.20 BLADE TORQUE COEFFICIENT PREDICTED BY FLUENT, COSA SOLVER WITH AND 
WITHOUT LSP  

Having demonstrated the benefit of improving the solution accuracy by using the LSP solver, 

the next important objective is to assess the effect of the different implementation forms of 

low speed preconditioning approach on the calculation, both in terms of the solution accuracy 

and convergence rate. To this aim, three options have been analysed in this case, namely the 

one which applies the LSP to both RANS and SST equations and is the default option we 

have used in all simulations reported in this thesis (denoted as ‘default’), one which only 

applies the LSP to RANS equations and excludes the turbulent kinetic energy in the 

definition of total energy (labelled as ‘simplified 1’) and one which removes the turbulent 

kinetic energy in the total energy and preconditions the two systems of the equations as well, 

(‘simplified 2’). All the associated matrices and flux dissipation terms regarding these two 

simplified preconditioning methods are presented in Appendix C.     
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The convergence properties of the three LSP calculations in one specific time step is 

presented in Figure 7.21. Its six subplots report the convergence histories of the continuity 

equation (subplot labelled 𝜌), the 𝑥 −component of the momentum equation (subplot labelled 

𝜌𝑢 ), the 𝑦 −  component of the momentum equation (subplot labelled 𝜌𝑣 ), the energy 

equation (subplot labelled 𝜌𝐸), the turbulent kinetic energy equation (subplot labelled 𝜌𝐾), 

and the specific dissipation rate equation (subplot labelled 𝜌𝜔). In all plots, the variable on 

the 𝑥 −axis is the number of multigrid iterations, and the variable ∆𝑙𝑟 on the 𝑦 −axis is the 

logarithm in base 10 of the RMS of all cell-residuals for the considered conservation equation.  
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Figure 7.21 CONVERGENCE HISTORIES OF VAWT SIMULATIONS WITH THREE DIFFERENT LSP 
APPROACHES WITHIN ONE TIME STEP. TOP LEFT SUBPLOT: CONTINUITY EQUATION. TOP 
RIGHT SUBPLOT: x-COMPONENT OF MOMENTUM EQUATION. MIDDLE LEFT SUBPLOT: y-
COMPONENT OF MOMENTUM EQUATION. MIDDLE RIGHT SUBPLOT: ENERGY EQUATION. 

BOTTOM LEFT SUBPLOT: TURBULENT KINETIC ENERGY EQUATION. BOTTOM RIGHT SUBPLOT: 
SPECIFIC DISSIPATION RATE EQUATION. 
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Inspection of the residual histories of the RANS and the 𝐾 equations shows that the three 

LSP approaches yield comparable convergence rates for almost all these flow variables, 

except that a significant difference is spotted in the residual history of the 𝜔 equation, where 

the two methods both applying the preconditioning to the turbulence equations have achieved 

to drop one more order of magnitude than the one using its non-preconditioned form, 

pointing to the necessity of applying the LSP to both mean flow and turbulence equations.  

The solutions of the torque coefficient predicted by the three different LSP solvers are 

displayed in Figure 7.22. A better agreement of the computed torque coefficients is noticed 

between the results of FLUENT and COSA solver with the default LSP approach, whereas 

the solutions computed with the other two simplified approaches have shown larger 

discrepancy with respect to the reference solution, which is consistent with their slower 

convergence rate of certain flow variable (LSP simplified 1) discussed above, and may be 

also due to the ignorance of the turbulent kinetic energy in the total energy and the simplified 

LSP methods, thus we have demonstrated both the necessity of the full preconditioning 

approach to both the RANS and turbulence equations, and the essential role of the turbulent 

kinetic energy while solving such unsteady flow problem.  

 

Figure 7.22 BLADE TORQUE COEFFICIENTS PREDICTED BY FLUENT AND COSA LSP-SOLVERS 
WITH THREE DIFFERENT FORMS OF LSP IMPLEMENTATIONS 

The two LSP approaches using the preconditioning parameters based on the absolute and 

relative velocities (see Section 5.5 for the theoretical analysis) have also been assessed and 
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analysed in this application. The comparison of the blade torque coefficients obtained with 

two COSA simulations using different preconditioners and the FLUENT result is depicted in 

Figure 7.23. Inspection of the three curves has discovered that the two COSA results are 

almost undistinguishable in the whole period, except only at the position around θ=210°, 

where noticeable difference is found between the two curves, and the one obtained with the 

preconditioning parameter based on the relative velocity has shown a better agreement with 

the FLUENT result compared with its counterpart using absolute velocity.  

Therefore on the basis of the above findings, we have verified that the predictive capability 

for low-TSR VAWT flow can be enhanced by using the low speed preconditioning 

technology and maintaining the turbulent kinetic energy term in the total energy. Moreover 

the convergence rate can be improved by applying the LSP to the SST turbulence equations, 

and the preconditioning parameter based on the relative velocity has demonstrated a better 

suitability for simulating the unsteady moving grid problems with a noticeable improvement 

of the solution accuracy. 

 

Figure 7.23 BLADE TORQUE COEFFICIENT PREDICTED BY FLUENT AND COSA LSP SOLVER 
USING THE PRECONDITIONING PARAMETERS BASED ON ABSOLUTE AND RELATIVE VELOCITY 
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7.4 Summary 
 

Three different wind turbine application problems have been analysed and solved using the 

previously validated turbulent preconditioning method. Through comparing the solutions 

obtained with and without the implementation of LSP for either the whole wind turbine rotor 

or a specific blade section at different values of 𝑀∞, we have seen a great improvement of the 

solution accuracy achieved by the preconditioning strategy, particular at the blade section 

close to the hub where the local Mach number is quite small and the compressibility effect 

can thus become negligible. Moreover, the computational efficiency of the frequency-domain 

harmonic balance method has also been assessed and compared with that of the conventional 

time-domain method. Based on our numerical results, a significant reduction of the wall-

clock CPU time is achieved with the HB method, meanwhile a comparable accuracy of the 

solution is also obtained with respect to the time-domain solution when solving the non-linear 

periodic flow problems.  
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Chapter 8  

Conclusion 
 

8.1 Summary and concluding remarks 
 

A rigorous novel approach to low-speed preconditioning for the multigrid fully coupled 

integration of the steady, time-domain and harmonic balance Reynolds-Average Navier-

Stokes equations coupled to two-equation shear stress transport turbulence models has been 

developed, successfully validated and used for the aerodynamics analyses of complex real 

engineering applications presented herein. 

 

8.1.1 algorithmic conclusions 
 

Thorough analyses of all the developed algorithms are demonstrated in this thesis on both 

theoretical and numerical aspects. The key features of the fully-coupled turbulent integration 

approach to low speed preconditioning include: 

the adopted strongly coupled fully preconditioned strategy of the RANS and turbulence 

equations, which conforms to the fully-coupled integration of the base-line solvers, 

the implementation of the low-speed preconditioned frequency domain method enabling 

to solve the periodic nonlinear flow problems in a rapid fashion with respect to the classical 

time-domain counterparts also at low speed regimes, 

the full preconditioning approach applied to both RANS and SST turbulence equations,  

the definition of the total energy taking into account the turbulent kinetic energy,  

the implementation of the preconditioned farfield boundary conditions based on the 

characteristic variables,  
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the use of the preconditioning parameter based on relative flow velocity in the unsteady 

moving-grid problem. 

It is unavoidable to apply low-speed preconditioning to the two turbulence equations due to 

the fact that the numerical dissipation of the RANS equations depends on the gradient of the 

turbulent kinetic energy also before the LSP is applied, and it is discovered that by 

preconditioning the turbulence equations, a faster convergence rate can be achieved. The 

additional coupling through the numerical dissipation of the system resulting from the 

coupled solution of the fluid and turbulence equations is caused by the presence of the 

turbulent kinetic energy in the total energy, the importance of which has therefore been 

verified in the analysis of the VAWT application.  

The presented analyses also highlight that a significant reduction of the CPU run-time is 

obtained by using the frequency-domain harmonic balance solver, whereas negligible 

influence on the accuracy of the computed solution is noticed compared to that of the time-

domain solver for various low-speed flow problems.  

It is found that the implementation of the preconditioned farfield boundary conditions plays 

an essential role in the enhancement of the accuracy of the solution to a low speed problem 

using the computational mesh of a small size.  

An additional algorithmic aspect addressed in this thesis is the impact on the numerical 

simulation of using the preconditioning parameters based on either the absolute velocity or 

relative velocity for solving moving-grid problems in terms of the analyses of solution 

accuracy. Most published literature reveals that former approach is regularly adopted, 

however a strict motivation of such studies for using either approach is often unfortunately 

unclear. In the analysis of the vertical axis wind turbine application, it is found that, an 

improvement of the solution accuracy is obtained in the LSP simulation using the 

preconditioner based on the relative velocity rather than the absolute velocity, by comparing 

the results of the above two simulations with the reference solution computed by a state-of-

the-art commercial package used by both the industry and the academia worldwide. 

.
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8.1.2 fluid dynamics conclusions 
 

The main computational results of this research consist of the analyses of two horizontal axis 

wind turbine applications and one vertical axis wind turbine application. The first one is 

thorough comparative analyses of steady and unsteady aerodynamics of both 30% and 93.5% 

blade sections of a VESTAS multi-megawatt HAWT working in various regimes. The main 

motivation for analysing this problem has been to highlight: 

the predictive capabilities and the numerical robustness of the developed LSP-enhanced 

turbulent steady, time-domain and frequency domain flow solvers for realistic complex and 

even more challenging engineering problems, and  

to quantify the effects of flow compressibility on the steady and yawed wind-induced 

unsteady aerodynamics of the tip region of a 82-m HAWT blade close to rated operating 

conditions, and  

to assess the computational benefits achieved by using the harmonic balance method of 

the RANS and SST equations rather than the conventional time-domain method. 

The comparative steady aerodynamics analysis reveals that compressibility effects result in 

the actual (compressible) lift coefficients being about 4% higher than its incompressible 

counterpart. Increments of the same order of magnitude due to flow compressibility effects 

are also observed for the axial and circumferential force coefficients of the considered tip 

section. The differences between the compressible and the incompressible load predictions 

decrease with the rotor radius. Hence, relatively small differences between overall load 

characteristics and annual energy production (AEP) predicted using either the compressible 

or the incompressible NS equations are expected. However, the reported differences 

correspond to variations of the blade surface static pressure that may significantly affect the 

aeroacoustic analysis of HAWTs.   

Regarding the numerical analyses of the lower blade section where the compressibility effect 

is fairly insignificant, the comparison of the run-time associated with the COSA LSP time-

domain and harmonic balance solvers highlights that  



8.1.2 fluid dynamics conclusions 

188 

using the latter approach reduces by at least one order of magnitude the run-time 

required to achieve the periodic flow solution with respect to the run-time required by the 

time-domain analysis. 

The second application is the comparative aerodynamics analysis of a three-dimensional 

NREL multi-megawatt HAWT working in the inviscid steady flow condition. The main 

motivation of carrying out this analysis is to demonstrate the accurate solution achieved by 

using LSP in analysing the entire wind turbine application. Detailed comparisons of the 

COSA LSP- and NP- steady solutions have confirmed the reliable flow predictive capabilities 

possessed by COSA solver with LSP technology for solving a three-dimensional low speed 

engineering problems. 

The last application is the time-domain turbulent flow analysis of a VAWT, where 

simulations with and without LSP technology have been performed and their results are 

compared with the numerical solution of FLUENT to the aim of demonstrating the necessity 

of applying the LSP approach to accurately predict the low-TSR VAWT flows with large 

separation regions, the importance of preconditioning both RANS and turbulence equations 

and maintaining the turbulent kinetic energy in the definition of total energy in terms of the 

implementation aspect of the LSP method, and also to highlight a proper implementation of 

the preconditioning parameter in solving an unsteady moving grid problem. Through the 

comparative analysis of the solutions obtained by different solvers, it has been found that  

the solution accuracy is greatly improved by using the LSP technology; 

a better convergence rate is achieved by means of preconditioning the turbulence 

equations; 

the turbulent kinetic energy in the total energy has shown a large positive impact on the 

solution accuracy and thus cannot be neglected. 

the use of preconditioner based on the relative velocity results in an enhancement of the 

solution accuracy with respect to the case using the absolute velocity. 
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8.2 Future work 
 

On the numerical side, with the three-dimensional inviscid flow predictive capability 

demonstrated in the analysis of the NREL horizontal axis wind turbine, future extensions of 

this work include the development of three-dimensional turbulent flow capability with the 

implementation of the LSP technology and the harmonic balance method. 

 

On the application side, the forthcoming applications of the harmonic balance LSP solver is 

the solution to the unsteady periodic turbulent flow problems of a three-dimensional 

horizontal axis wind turbine working in a realistic operating condition, a gas turbine 

compressor or the helicopter rotors. 
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Appendices 
 

A Space discretisation (standard form) 
 

In this section, the matrices and all other related terms associated with the space discretisation, 

particularly the convective fluxes and numerical dissipation, will be provided herein in details. 

As highlighted by Eqn. (3.4), the numerical dissipation 𝛿𝚽 is proportional to 𝐾𝑈, and this 

term can also be written as: 

𝐾𝑈 =

|

|

0 𝑛𝑥 𝑛𝑦

𝜓𝑞2𝑛𝑥/2 − 𝑢𝑈𝑛 𝑈𝑛 − 𝜙𝑛𝑥𝑢 𝑛𝑦𝑢 − 𝜓𝑛𝑥𝜓𝑣

𝜓𝑞2𝑛𝑦 − 𝑣𝑈𝑛 𝑛𝑥𝑣 − 𝜓𝑛𝑦𝑢 𝑈𝑛 − 𝜙𝑛𝑦𝑣

0 0 0
𝜓𝑛𝑥 −𝜓𝑛𝑥 0
𝜓𝑛𝑦 −𝜓𝑛𝑦 0

𝜓𝑞2𝑈𝑛 − 𝑈𝑛𝐻 𝑛𝑥𝐻 − 𝜓𝑢𝑈𝑛 𝑛𝑦𝐻 − 𝜓𝑣𝑈𝑛
−𝑈𝑛𝐾 𝑛𝑥𝐾 𝑛𝑦𝐾

−𝑈𝑛𝜔 𝑛𝑥𝜔 𝑛𝑦𝜔

𝛾𝑈𝑛 −𝜓𝑈𝑛 0
0 𝑈𝑛 0
0 0 𝑈𝑛

|

|

 

where 𝑞2 = 𝑢2 + 𝑣2,  𝜓 = 𝛾 − 1,  𝜙 = 𝛾 − 2,  and 𝑈𝑛  denote the component of the flow 

velocity along the outwards face normal vector 𝑛̂ defined by: 

 𝑈𝑛 = 𝑢𝑛𝑥 + 𝑣𝑛𝑦 (A.1)   

The convective terms expressed with respect to the variables V are: 

 𝐴̃
𝜕𝑽

𝜕𝑥
+ 𝐵̃

𝜕𝑽

𝜕𝑦
 (A.2)   

with 

 𝐴̃ =
|

|

𝑢 𝜌 0 0 0 0
0 𝑢 0 1/𝜌 0 0
0 0 𝑢 0 0 0
0 𝜌𝑐2 0 𝑢 0 0
0 0 0 0 𝑢 0
0 0 0 0 0 𝑢

|

|
,   𝐵̃ =

|

|

𝑣 0 𝜌 0 0 0
0 𝑣 0 0 0 0
0 0 𝑣 1/𝜌 0 0

0 0 𝜌𝑐2 𝑣 0 0
0 0 0 0 𝑣 0
0 0 0 0 0 𝑣

|

|
  (A.3)   

where 𝑐2 denotes the square of the sound speed, which is related to the static temperature 

through the equation 𝑐2 = 𝑇. The process of constructing the required numerical dissipation 

can be simplified by considering the Jacobian 𝐾𝑉 = 𝐴̃𝑛𝑥 + 𝐵̃𝑛𝑦, given by 
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 𝐾𝑉 =

|

|

𝑈𝑛 𝜌𝑛𝑥 𝜌𝑛𝑦 0 0 0

0 𝑈𝑛 0 𝑛𝑥/𝜌 0 0
0 0 𝑈𝑛 𝑛𝑦/𝜌 0 0

0 𝜌𝑐2𝑛𝑥 𝜌𝑐2𝑛𝑦 𝑈𝑛 0 0

0 0 0 0 𝑈𝑛 0
0 0 0 0 0 𝑈𝑛

|

|

  (A.4)   

It can be shown that 𝐾𝑈 = 𝑀𝐾𝑣𝑀
−1, with 

 𝑀 =
𝜕𝑈

𝜕𝑉
=

|

|

1 0 0 0 0 0
𝑢 𝜌 0 0 0 0
𝑣 0 𝜌 0 0 0

𝑞2

2
+ 𝐾 𝜌𝑢 𝜌𝑣

1

𝛾−1
𝜌 0

𝐾 0 0 0 𝜌 0
𝜔 0 0 0 0 𝜌

|

|

  (A.5)   

 

 𝑀−1  =
𝜕𝑉

𝜕𝑈
=

|

|

|

1 0 0 0 0 0

−
𝑢

𝜌

1

𝜌
0 0 0 0

−
𝑣

𝜌
0

1

𝜌
0 0 0

(𝛾−1) 𝑞2

2
−𝑢(𝛾 − 1) −𝑣(𝛾 − 1) 𝛾 − 1 −(𝛾 − 1) 0

−
𝐾

𝜌
0 0 0

1

𝜌
0

−
𝜔

𝜌
0 0 0 0

1

𝜌

|

|

|

  (A.6)   

The eigenvalues of 𝐾𝑈 and 𝐾𝑉 are: 

 

                         𝜆1 = 𝜆2 = 𝜆5 = 𝜆6 = 𝑈𝑛                   

 𝜆3 = 𝑈𝑛 + 𝑐   

𝜆4 = 𝑈𝑛 − 𝑐 

(A.7)   

The matrix of left eigenvectors of 𝐾𝑉 can be determined as, 

 𝐿−1 =

|

|

|

1 0 0 −
1

𝑐2
0 0

0 𝜌𝑛𝑦 𝜌𝑛𝑥 0 0 0

0
𝜌𝑛𝑥

2𝑐

𝜌𝑛𝑦

2𝑐

1

2𝑐2
0 0

0 −
𝜌𝑛𝑥

2𝑐
−
𝜌𝑛𝑦

2𝑐

1

2𝑐2
0 0

0 0 0 0 𝜌 0
0 0 0 0 0 𝜌

|

|

|

  (A.8)   

and its inverse, the matrix of right eigenvectors: 
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 𝐿 =

|

|

|

1 0 1 1 0 0

0
𝑛𝑦

𝜌

𝑛𝑥𝑐

𝜌
−
𝑛𝑥𝑐

𝜌
0 0

0 −
𝑛𝑥

𝜌

𝑛𝑦𝑐

𝜌
−
𝑛𝑦𝑐

𝜌
0 0

0 0 𝑐2 𝑐2 0 0

0 0 0 0
1

𝜌
0

0 0 0 0 0
1

𝜌

|

|

|

  (A.9)   

The matrix P with the right eigenvectors of 𝐾𝑈 is computed by Eqn. (3.9) shown as, 

 𝑃 = 𝑀𝐿 =

|

|

1 0 1 1 0 0
𝑢 𝑛𝑦 𝑢 + 𝑐𝑛𝑥 𝑢 − 𝑐𝑛𝑥 0 0

𝑣 −𝑛𝑥 𝑣 + 𝑐𝑛𝑦 𝑣 − 𝑐𝑛𝑦 0 0

𝑞2

2
+ 𝐾 𝑈𝑡 𝐻 + 𝑈𝑛𝑐 𝐻 − 𝑈𝑛𝑐 1 0

𝐾 0 𝐾 𝐾 1 0
𝜔 0 𝜔 𝜔 0 1

|

|

  (A.10)   

where 𝑈𝑡 = 𝑢𝑛𝑦 − 𝑣𝑛𝑥 .The characteristic variables can be computed by means of Eqn. 

(3.10). Their expressions are: 

 

𝛿𝑊1 = 𝛿𝜌 −
1

𝑐2
𝛿𝑝                                                     

𝛿𝑊2 = 𝜌𝑛𝑦𝛿𝑢 − 𝜌𝑛𝑥𝛿𝑣 = 𝜌𝑈𝑡                               

𝛿𝑊3 =
𝜌𝑛𝑥
2𝑐

𝛿𝑢 +
𝜌𝑛𝑦

2𝑐
𝛿𝑣 +

𝛿𝑝

2𝑐2
=
𝛿𝑝

2𝑐2
+
𝜌𝛿𝑈𝑛
2𝑐

 

       𝛿𝑊4 = −
𝜌𝑛𝑥
2𝑐

𝛿𝑢 −
𝜌𝑛𝑦

2𝑐
𝛿𝑣 +

𝛿𝑝

2𝑐2
=
𝛿𝑝

2𝑐2
−
𝜌𝛿𝑈𝑛
2𝑐

    

𝛿𝑊5 = 𝜌𝛿𝐾                                                                 

𝛿𝑊6 = 𝜌𝛿𝜔                                                                 

(A.11)   

The sought flux differences computed by Eqn. (3.12) can be expanded as, 

 

𝛿𝚽 = |𝜆1|𝛿𝑊1

|

|

1
𝑢
𝑣

𝑞2

2
+ 𝐾

𝐾
𝜔

|

|

+ |𝜆2|𝛿𝑊2
|

|

0
𝑛𝑦
−𝑛𝑥
𝑈𝑡
0
0

|

|
+|𝜆3|𝛿𝑊3

|

|

1
𝑢 + 𝑐𝑛𝑥
𝑣 + 𝑐𝑛𝑦
𝐻 + 𝑈𝑛𝑐

𝐾
𝜔

|

|
 

+|𝜆4|𝛿𝑊4
|

|

1
𝑢 − 𝑐𝑛𝑥
𝑣 + 𝑐𝑛𝑦
𝐻 − 𝑈𝑛𝑐

𝐾
𝜔

|

|
+|𝜆5|𝛿𝑊5

|

|

0
0
0
1
1
0

|

|
+ |𝜆6|𝛿𝑊6

|

|

0
0
0
0
0
1

|

|
 

(A.12)   
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In order to maximise the computational efficiency of the numerical implementation, the flux 

differences provided by Eqn. (A.12) are computed as described below. First, one computes a 

set of intermediate variables defined as 

 

𝛼1 = |𝜆1| (𝛿𝜌 −
1

𝑐2
𝛿𝑝)      

𝛼2 = |𝜆2|𝜌                              

𝛼3 = |𝜆3| (
𝛿𝑝

𝑐2
+
𝜌𝛿𝑈𝑛
𝑐

) /2 

       𝛼4 = |𝜆4| (
𝛿𝑝

𝑐2
−
𝜌𝛿𝑈𝑛
𝑐

 ) /2       

(A.13)   

 

The component of 𝛿Φ are then computed by means of the expressions:  

 

𝛿Φ1 = 𝛼1 + 𝛼3 + 𝛼4     

𝛿Φ2 = 𝛼1𝑢 + 𝛼2𝛿𝑈𝑡𝑛𝑦 + 𝛼3(𝑢 + 𝑐𝑛𝑥) + 𝛼4(𝑢 − 𝑐𝑛𝑥)    

𝛿Φ3 = 𝛼1𝑣 − 𝛼2𝛿𝑈𝑡𝑛𝑥 + 𝛼3(𝑣 + 𝑐𝑛𝑦) + 𝛼4(𝑣 − 𝑐𝑛𝑦)   

𝛿Φ4 = 𝛼1 (
𝑞2

2
+ 𝐾) + 𝛼2𝑈𝑡𝛿𝑈𝑡 + 𝛼3(𝐻 + 𝑐𝑈𝑛) + 𝛼4(𝐻 − 𝑐𝑈𝑛) + 𝛼2𝛿𝐾  

𝛿Φ5 = 𝛼1𝐾 + 𝛼3𝐾 + 𝛼4𝐾 + 𝛼2𝛿𝐾 

𝛿Φ6 = 𝛼1𝜔 + 𝛼3𝜔 + 𝛼4𝜔 + 𝛼2𝛿𝜔 

(A.14)   

 

B Space discretisation (preconditioned form) 
 

The preconditioning matrix 𝑃𝑐  is the preconditioner which appears in the flow equations 

written with respect to the conservative variables. Denote by 𝑀𝑝  the local Mach number 

parameter on which the low-speed preconditioning strategy is based, the structure of 𝑃𝑐  is 

reported as below, 

 𝑃𝑐 =
|

|

𝑃𝑐11 𝑃𝑐12 𝑃𝑐13 𝑃𝑐14 𝑃𝑐15 0
𝑃𝑐21 𝑃𝑐22 𝑃𝑐23 𝑃𝑐24 𝑃𝑐25 0
𝑃𝑐31 𝑃𝑐32 𝑃𝑐33 𝑃𝑐34 𝑃𝑐35 0
𝑃𝑐41 𝑃𝑐42 𝑃𝑐43 𝑃𝑐44 𝑃𝑐45 0
𝑃𝑐51 𝑃𝑐52 𝑃𝑐53 𝑃𝑐54 𝑃𝑐55 0
𝑃𝑐61 𝑃𝑐62 𝑃𝑐63 𝑃𝑐64 𝑃𝑐65 1

|

|
  (B.1)   

with the individual entries shown as  
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𝑃𝑐11 = 1 +
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)

2𝑎2
  

𝑃𝑐12 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢

𝑎2
 

𝑃𝑐13 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣

𝑎2
 

𝑃𝑐14 =
(𝛾 − 1)(𝑀𝑝

2 − 1)

𝑎2
 

𝑃𝑐15 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)

𝑎2
 

𝑃𝑐21 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝑢

2𝑎2
  

𝑃𝑐22 = 1 −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢2

𝑎2
 

𝑃𝑐23 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝑣

𝑎2
 

𝑃𝑐24 =
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢

𝑎2
 

𝑃𝑐25 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢

𝑎2
 

𝑃𝑐31 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝑣

2𝑎2
  

𝑃𝑐32 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝑣

𝑎2
 

𝑃𝑐33 = 1 −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣2

𝑎2
 

𝑃𝑐34 =
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣

𝑎2
 

𝑃𝑐35 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣

𝑎2
 

𝑃𝑐41 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝐻

2𝑎2
  

𝑃𝑐42 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝐻

𝑎2
 

𝑃𝑐43 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣𝐻

𝑎2
 

𝑃𝑐44 = 1 +
(𝛾 − 1)(𝑀𝑝

2 − 1)𝐻

𝑎2
 

𝑃𝑐45 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝐻

𝑎2
 

𝑃𝑐51 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝐾

2𝑎2
  

𝑃𝑐52 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝐾

𝑎2
 

𝑃𝑐53 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣𝐾

𝑎2
 

(B.2)   
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𝑃𝑐54 =
(𝛾 − 1)(𝑀𝑝

2 − 1)𝐾

𝑎2
 

𝑃𝑐55 = 1 −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝐾

𝑎2
 

𝑃𝑐61 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝜔

2𝑎2
  

𝑃𝑐62 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝜔

𝑎2
 

𝑃𝑐63 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣𝜔

𝑎2
 

𝑃𝑐64 =
(𝛾 − 1)(𝑀𝑝

2 − 1)𝜔

𝑎2
 

𝑃𝑐65 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝜔

𝑎2
 

where H represents the total enthalpy, 𝐻 =
𝑢2+𝑣2

2
+

𝑎2

𝛾−1
+ 𝐾. 

Denoting by 𝑃𝑐
𝑖 the inverse of 𝑃𝑐, and taking the structure of such an inverse as that reported 

below 

 𝑃𝑐
𝑖 =

|

|

𝑃𝑐11
𝑖 𝑃𝑐12

𝑖 𝑃𝑐13
𝑖 𝑃𝑐14

𝑖 𝑃𝑐15
𝑖 0

𝑃𝑐21
𝑖 𝑃𝑐22

𝑖 𝑃𝑐23
𝑖 𝑃𝑐24

𝑖 𝑃𝑐25
𝑖 0

𝑃𝑐31
𝑖 𝑃𝑐32

𝑖 𝑃𝑐33
𝑖 𝑃𝑐34

𝑖 𝑃𝑐35
𝑖 0

𝑃𝑐41
𝑖 𝑃𝑐42

𝑖 𝑃𝑐43
𝑖 𝑃𝑐44

𝑖 𝑃𝑐45
𝑖 0

𝑃𝑐51
𝑖 𝑃𝑐52

𝑖 𝑃𝑐53
𝑖 𝑃𝑐54

𝑖 𝑃𝑐55
𝑖 0

𝑃𝑐61
𝑖 𝑃𝑐62

𝑖 𝑃𝑐63
𝑖 𝑃𝑐64

𝑖 𝑃𝑐65
𝑖 1

|

|

  (B.3)   

and the sought entries are: 

 

𝑃𝑐11
𝑖 = 1 −

(𝛾 − 1)(𝑀𝑝
2 − 1)(𝑢2 + 𝑣2)

2𝑎2𝑀𝑝
2

  

𝑃𝑐12
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑢

𝑎2𝑀𝑝
2

 

𝑃𝑐13
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑣

𝑎2𝑀𝑝
2

 

𝑃𝑐14
𝑖 = −

(𝛾 − 1)(𝑀𝑝
2 − 1)

𝑎2𝑀𝑝
2

 

𝑃𝑐15
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)

𝑎2𝑀𝑝
2

 

𝑃𝑐21
𝑖 = −

(𝛾 − 1)(𝑀𝑝
2 − 1)(𝑢2 + 𝑣2)𝑢

2𝑎2𝑀𝑝
2

  

𝑃𝑐22
𝑖 = 1 +

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑢2

𝑎2𝑀𝑝
2

 

(B.4)   
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𝑃𝑐23
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑢𝑣

𝑎2𝑀𝑝
2

 

𝑃𝑐24
𝑖 = −

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑢

𝑎2𝑀𝑝
2

 

𝑃𝑐25
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑢

𝑎2𝑀𝑝
2

 

𝑃𝑐31
𝑖 = −

(𝛾 − 1)(𝑀𝑝
2 − 1)(𝑢2 + 𝑣2)𝑣

2𝑎2𝑀𝑝
2

  

𝑃𝑐32
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑢𝑣

𝑎2𝑀𝑝
2

 

𝑃𝑐33
𝑖 = 1 +

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑣2

𝑎2𝑀𝑝
2

 

𝑃𝑐34
𝑖 = −

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑣

𝑎2𝑀𝑝
2

 

𝑃𝑐35
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑣

𝑎2𝑀𝑝
2

 

𝑃𝑐41
𝑖 = −

(𝛾 − 1)(𝑀𝑝
2 − 1)(𝑢2 + 𝑣2)𝐻

2𝑎2𝑀𝑝
2

  

𝑃𝑐42
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑢𝐻

𝑎2𝑀𝑝
2

 

𝑃𝑐43
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑣𝐻

𝑎2𝑀𝑝
2

 

𝑃𝑐44
𝑖 = 1 −

(𝛾 − 1)(𝑀𝑝
2 − 1)𝐻

𝑎2𝑀𝑝
2

 

𝑃𝑐45
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝐻

𝑎2𝑀𝑝
2

 

𝑃𝑐51
𝑖 = −

(𝛾 − 1)(𝑀𝑝
2 − 1)(𝑢2 + 𝑣2)𝐾

2𝑎2𝑀𝑝
2

  

𝑃𝑐52
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑢𝐾

𝑎2𝑀𝑝
2

 

𝑃𝑐53
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑣𝐾

𝑎2𝑀𝑝
2

 

𝑃𝑐54
𝑖 = −

(𝛾 − 1)(𝑀𝑝
2 − 1)𝐾

𝑎2𝑀𝑝
2

 

𝑃𝑐55
𝑖 = 1 +

(𝛾 − 1)(𝑀𝑝
2 − 1)𝐾

𝑎2𝑀𝑝
2

 

𝑃𝑐61
𝑖 = −

(𝛾 − 1)(𝑀𝑝
2 − 1)(𝑢2 + 𝑣2)𝜔

2𝑎2𝑀𝑝
2

  

𝑃𝑐62
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑢𝜔

𝑎2𝑀𝑝
2
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𝑃𝑐63
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝑣𝜔

𝑎2𝑀𝑝
2

 

𝑃𝑐64
𝑖 = −

(𝛾 − 1)(𝑀𝑝
2 − 1)𝜔

𝑎2𝑀𝑝
2

 

𝑃𝑐65
𝑖 =

(𝛾 − 1)(𝑀𝑝
2 − 1)𝜔

𝑎2𝑀𝑝
2

 

The preconditioning matrix Γ𝑝 is written with respect to the primitive variables 𝑉𝑝 

 Γ𝑝 =

|

|

|

Γ𝑝11 Γ𝑝12 Γ𝑝13 Γ𝑝14 Γ𝑝15 0

−
𝑢

𝜌

1

𝜌
0 0 0 0

−
𝑣

𝜌
0

1

𝜌
0 0 0

Γ𝑝41 Γ𝑝42 Γ𝑝43 Γ𝑝44 Γ𝑝45 0

−
𝐾

𝜌
0 0 0

1

𝜌
0

−
𝜔

𝜌
0 0 0 0 1

|

|

|

  (B.5)   

with 

 

Γ𝑝11 =
1

2
𝛾(𝛾 − 1)𝑀𝑝

2(𝑢2 + 𝑣2)  

Γ𝑝12 = −𝛾(𝛾 − 1)𝑀𝑝
2𝑢  

Γ𝑝13 = −𝛾(𝛾 − 1)𝑀𝑝
2𝑣  

Γ𝑝14 = 𝛾(𝛾 − 1)𝑀𝑝
2 

Γ𝑝15 = −𝛾(𝛾 − 1)𝑀𝑝
2  

Γ𝑝41 =
−2𝑎2 + (𝛾 − 1)(1 + (𝛾 − 1)𝑀𝑝

2)(𝑢2 + 𝑣2)

2𝜌
  

Γ𝑝42 = −
(𝛾 − 1)(1 + (𝛾 − 1)𝑀𝑝

2)𝑢

𝜌
 

Γ𝑝43 = −
(𝛾 − 1)(1 + (𝛾 − 1)𝑀𝑝

2)𝑣

𝜌
 

Γ𝑝44 =
(𝛾 − 1)(1 + (𝛾 − 1)𝑀𝑝

2)

𝜌
 

Γ𝑝45 = −
(𝛾 − 1)(1 + (𝛾 − 1)𝑀𝑝

2)

𝜌
 

(B.6)   

The inverse of Γ𝑝
𝑖  is, 
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 Γ𝑝
𝑖 =

|

|

|

Γ𝑝11
𝑖 0 0 −

𝜌

𝑎2
0 0

Γ𝑝21
𝑖 𝜌 0 −

𝜌𝑢

𝑎2
0 0

Γ𝑝31
𝑖 0 𝜌 −

𝜌𝑣

𝑎2
0 0

Γ𝑝41
𝑖 𝜌𝑢 𝜌𝑣 −

𝜌

𝑎2
(
𝑢2+𝑣2

2
+ 𝐾) 𝜌 0

Γ𝑝51
𝑖 0 0 −

𝜌𝐾

𝑎2
𝜌 0

Γ𝑝61
𝑖 0 0 −

𝜌𝜔

𝑎2
0 𝜌

|

|

|

  (B.7)   

with 

 

Γ𝑝11
𝑖 =

1 + (𝛾 − 1)𝑀𝑝
2

𝑎2𝛾𝑀𝑝
2

  

Γ𝑝21
𝑖 =

(1 + (𝛾 − 1)𝑀𝑝
2)𝑢

𝑎2𝛾𝑀𝑝
2

  

Γ𝑝31
𝑖 =

(1 + (𝛾 − 1)𝑀𝑝
2)𝑣

𝑎2𝛾𝑀𝑝
2

 

Γ𝑝41
𝑖 =

2𝑎2 + (𝛾 − 1)(1 + (𝛾 − 1)𝑀𝑝
2)(𝑢2 + 𝑣2 + 2𝐾)

2𝑎2𝛾(𝛾 − 1)𝑀𝑝
2

 

Γ𝑝51
𝑖 =

(1 + (𝛾 − 1)𝑀𝑝
2)𝐾

𝑎2𝛾𝑀𝑝
2

 

Γ𝑝61
𝑖 =

(1 + (𝛾 − 1)𝑀𝑝
2)𝜔

𝑎2𝛾𝑀𝑝
2

 

(B.8)   

The eigenvalues of matrix (5.17) are: 

 

                         𝜆1 = 𝜆2 = 𝜆5 = 𝜆6 = 𝑈𝑛                   

 𝜆3 =
1

2
[𝑈𝑛(1 +𝑀𝑝

2) + √4𝑎2𝑀𝑝
2 + (𝑀𝑝

2 − 1)
2
𝑈𝑛
2]   

𝜆4 =
1

2
[𝑈𝑛(1 +𝑀𝑝

2) − √4𝑎2𝑀𝑝
2 + (𝑀𝑝

2 − 1)
2
𝑈𝑛2] 

(B.9)   

where 𝑈𝑛  is the velocity component normal to the face being considered and is given by 

𝑈𝑛 = 𝑢𝑘𝑥 + 𝑣𝑘𝑦, and 𝑎2 = (𝛾 − 1) [𝐻 −
𝑢2+𝑣2

2
− 𝐾]. 

The matrix of right eigenvectors 𝑅̂ is 
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 𝑅̂ =

|

|

|

0 0 𝛾𝑎(𝜆3 − 𝑈𝑛) −𝛾𝑎(𝜆4 − 𝑈𝑛) 0 0

0
𝑘𝑦

𝜌

𝑎𝑘𝑥

𝜌
−
𝑎𝑘𝑥

𝜌
0 0

0 −
𝑘𝑥

𝜌

𝑎𝑘𝑦

𝜌
−
𝑎𝑘𝑦

𝜌
0 0

−
𝑎2

𝜌
0

𝑎(𝛾−1)(𝜆3−𝑈𝑛)

𝜌
−
𝑎(𝛾−1)(𝜆4−𝑈𝑛)

𝜌
0 0

0 0 0 0
1

𝜌
0

0 0 0 0 0
1

𝜌

|

|

|

  (B.10)   

whereas its inverse 𝑅̂−1 is 

 𝑅̂−1 =

|

|

|

𝛾−1

𝑎2𝛾
0 0 −

𝜌

𝑎2
0 0

0 𝜌𝑘𝑦 −𝜌𝑘𝑥 0 0 0
1

𝑎𝛾(𝜆3−𝜆4)

−𝜌𝑘𝑥(𝜆4−𝑈𝑛)

𝑎(𝜆3−𝜆4)

−𝜌𝑘𝑦(𝜆4−𝑈𝑛)

𝑎(𝜆3−𝜆4)
0 0 0

1

𝑎𝛾(𝜆3−𝜆4)

−𝜌𝑘𝑥(𝜆3−𝑈𝑛)

𝑎(𝜆3−𝜆4)

−𝜌𝑘𝑦(𝜆3−𝑈𝑛)

𝑎(𝜆3−𝜆4)
0 0 0

0 0 0 0 𝜌 0
0 0 0 0 0 𝜌

|

|

|

  (B.11)   

The matrix ℛ: 

 ℛ =

|

|

|

1 0
𝜆3−𝑈𝑛

𝑎𝑀𝑝
2 −

𝜆4−𝑈𝑛

𝑎𝑀𝑝
2 0 0

𝑢 𝑘𝑦 ℛ23 ℛ24 0 0

𝑣 −𝑘𝑥 ℛ33 ℛ34 0 0
1

2
(𝑢2 + 𝑣2) + 𝐾 𝑢𝑘𝑦 − 𝑣𝑘𝑥 ℛ43 ℛ44 1 0

𝐾 0 𝐾
𝜆3−𝑈𝑛

𝑎𝑀𝑝
2 −𝐾

𝜆4−𝑈𝑛

𝑎𝑀𝑝
2 1 0

𝜔 0 𝜔
𝜆3−𝑈𝑛

𝑎𝑀𝑝
2 −𝜔

𝜆4−𝑈𝑛

𝑎𝑀𝑝
2 0 1

|

|

|

  (B.12)   

with 

 

ℛ23 = 𝑎𝑘𝑥 +
𝑢(𝜆3 −𝑈𝑛)

𝑎𝑀𝑝
2

 

ℛ24 = −𝑎𝑘𝑥 −
𝑢(𝜆4 − 𝑈𝑛)

𝑎𝑀𝑝
2

 

ℛ33 = 𝑎𝑘𝑦 +
𝑣(𝜆3 − 𝑈𝑛)

𝑎𝑀𝑝
2

 

ℛ34 = −𝑎𝑘𝑦 −
𝑣(𝜆4 − 𝑈𝑛)

𝑎𝑀𝑝
2

 

ℛ43 = 𝑎𝑈𝑛 +
(𝜆3 − 𝑈𝑛)𝐻

𝑎𝑀𝑝
2

 

ℛ44 = −𝑎𝑈𝑛 +
(𝜆4 − 𝑈𝑛)𝐻

𝑎𝑀𝑝
2

 

(B.13)   

The matrix ℒ−1 = ℒ𝑖 is 
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 ℒ𝑖 =

|

|

1 −
(𝛾−1)(𝑢2+𝑣2)

2𝑎2

(𝛾−1)𝑢

𝑎2

(𝛾−1)𝑣

𝑎2
−
(𝛾−1)

𝑎2

(𝛾−1)

𝑎2
0

−𝑢𝑘𝑦 + 𝑣𝑘𝑥 𝑘𝑦 −𝑘𝑥 0 0 0

ℒ31
𝑖 ℒ32

𝑖 ℒ33
𝑖 ℒ34

𝑖 ℒ35
𝑖 0

ℒ41
𝑖 ℒ42

𝑖 ℒ43
𝑖 ℒ44

𝑖 ℒ45
𝑖 0

−𝐾 0 0 0 1 0
−𝜔 0 0 0 0 1

|

|

  (B.14)   

with 

 

ℒ31
𝑖 =

2(𝑢𝑘𝑥 + 𝑣𝑘𝑦)(𝜆4 − 𝑈𝑛) + (𝛾 − 1)(𝑢
2 + 𝑣2)

2𝑎(𝜆3 − 𝜆4)
 

ℒ32
𝑖 = −

(𝜆4 − 𝑈𝑛)𝑘𝑥 + (𝛾 − 1)𝑢

𝑎(𝜆3 − 𝜆4)
 

ℒ33
𝑖 = −

(𝜆4 − 𝑈𝑛)𝑘𝑥 + (𝛾 − 1)𝑣

𝑎(𝜆3 − 𝜆4)
 

ℒ34
𝑖 =

𝛾 − 1

𝑎(𝜆3 − 𝜆4)
 

ℒ35
𝑖 = −

𝛾 − 1

𝑎(𝜆3 − 𝜆4)
 

ℒ41
𝑖 =

2(𝑢𝑘𝑥 + 𝑣𝑘𝑦)(𝜆3 − 𝑈𝑛) + (𝛾 − 1)(𝑢
2 + 𝑣2)

2𝑎(𝜆3 − 𝜆4)
 

ℒ42
𝑖 = −

(𝜆3 − 𝑈𝑛)𝑘𝑥 + (𝛾 − 1)𝑢

𝑎(𝜆3 − 𝜆4)
 

ℒ43
𝑖 = −

(𝜆3 − 𝑈𝑛)𝑘𝑥 + (𝛾 − 1)𝑣

𝑎(𝜆3 − 𝜆4)
 

ℒ44
𝑖 =

𝛾 − 1

𝑎(𝜆3 − 𝜆4)
 

ℒ45
𝑖 = −

𝛾 − 1

𝑎(𝜆3 − 𝜆4)
 

(B.15)   

The matrix 𝐿⋆
−1 is given by: 

 𝐿⋆
−1 =

|

|

|

1 0 0 −
1

𝑎2
0 0

0 𝜌𝑘𝑦 −𝜌𝑘𝑥 0 0 0

0 −
𝜌𝑘𝑥(𝜆4−𝑈𝑛)

𝑎(𝜆3−𝜆4)
−
𝜌𝑘𝑦(𝜆4−𝑈𝑛)

𝑎(𝜆3−𝜆4)

1

𝑎(𝜆3−𝜆4)
0 0

0 −
𝜌𝑘𝑥(𝜆3−𝑈𝑛)

𝑎(𝜆3−𝜆4)
−
𝜌𝑘𝑦(𝜆3−𝑈𝑛)

𝑎(𝜆3−𝜆4)

1

𝑎(𝜆3−𝜆4)
0 0

0 0 0 0 𝜌 0
0 0 0 0 0 𝜌

|

|

|

  (B.16)   

 

The preconditioned characteristic variables defined by 𝛼𝑗 = 𝛿𝑊 = (𝐿⋆
−1)𝑗𝛿𝑉 are, 
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𝛼1 = 𝛿𝜌 −
𝛿𝑝

𝑎2
 

𝛼2 = 𝜌(𝛿𝑢𝑘𝑦 − 𝛿𝑣𝑘𝑥) 

𝛼3 =
𝛿𝑝 − 𝜌(𝛿𝑢𝑘𝑥 + 𝛿𝑣𝑘𝑦)(𝜆4 − 𝑈𝑛)

𝑎(𝜆3 − 𝜆4)
 

𝛼4 =
𝛿𝑝 − 𝜌(𝛿𝑢𝑘𝑥 + 𝛿𝑣𝑘𝑦)(𝜆3 − 𝑈𝑛)

𝑎(𝜆3 − 𝜆4)
 

𝛼5 = 𝜌𝛿𝐾 

𝛼6 = 𝜌𝛿𝜔 

(B.17)   

The flux differences are 

 

𝛿𝑓1 = 𝛼1𝜆1 +
𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛)

𝑎𝑀𝑝
2

 

𝛿𝑓2 = 𝛼1𝜆1𝑢 + 𝛼2𝜆2𝑘𝑦 + 𝑎𝑘𝑥(𝛼3𝜆3 − 𝛼4𝜆4)

+
(𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛))𝑢

𝑎𝑀𝑝
2

 

𝛿𝑓3 = 𝛼1𝜆1𝑣 − 𝛼2𝜆2𝑘𝑥 + 𝑎𝑘𝑦(𝛼3𝜆3 − 𝛼4𝜆4)

+
(𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛))𝑣

𝑎𝑀𝑝
2

 

𝛿𝑓4 = 𝛼1𝜆1 (
1

2
(𝑢2 + 𝑣2) + 𝐾) + 𝛼2𝜆2(𝑢𝑘𝑦 − 𝑣𝑘𝑥)  

+(
𝜆3 − 𝑈𝑛
𝑎𝑀𝑝

2
𝐻 + 𝑎𝑈𝑛)𝛼3𝜆3 − (

𝜆4 − 𝑈𝑛
𝑎𝑀𝑝

2
𝐻 + 𝑎𝑈𝑛)𝛼4𝜆4 + 𝛼5𝜆5 

𝛿𝑓5 = 𝛼1𝜆1𝐾 +
𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛)

𝑎𝑀𝑝
2

𝐾 + 𝛼5𝜆5 

𝛿𝑓6 = 𝛼1𝜆1𝜔 +
𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛)

𝑎𝑀𝑝
2

𝜔 + 𝛼6𝜆6 

(B.18)   

The Jacobian matrix Γ𝑝̅ =
𝜕𝑉𝑝

𝜕𝑈
 with 𝑈 = [𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝐸, 𝜌𝐾, 𝜌𝜔]𝑇 and 𝑉𝑝 = [𝛾𝑝, 𝑢, 𝑣, 𝑇, 𝐾, 𝜔]

𝑇 

is, 



B. Space discretisation (preconditioned form) 

 

202 

 Γ𝑝̅ =

|

|

|

Γ𝑝̅11 Γ𝑝̅12 Γ𝑝̅13 Γ𝑝̅14 Γ𝑝̅15 0

−
𝑢

𝜌

1

𝜌
0 0 0 0

−
𝑣

𝜌
0

1

𝜌
0 0 0

Γ𝑝̅41 Γ𝑝̅42 Γ𝑝̅43 Γ𝑝̅44 Γ𝑝̅45 0

−
𝐾

𝜌
0 0 0

1

𝜌
0

−
𝜔

𝜌
0 0 0 0 1

|

|

|

  (B.19)   

with 

 

Γ𝑝̅11 =
1

2
𝛾(𝛾 − 1)(𝑢2 + 𝑣2)  

Γ𝑝̅12 = −𝛾
(𝛾 − 1)𝑢  

Γ𝑝̅13 = −𝛾
(𝛾 − 1)𝑣  

Γ𝑝̅14 = 𝛾
(𝛾 − 1) 

Γ𝑝̅15 = −𝛾
(𝛾 − 1)  

Γ𝑝̅41 =
−2𝑎2 + 𝛾(𝛾 − 1)(𝑢2 + 𝑣2)

2𝜌
  

Γ𝑝̅42 = −
𝛾(𝛾 − 1)𝑢

𝜌
 

Γ𝑝̅43 = −
𝛾(𝛾 − 1)𝑣

𝜌
 

Γ𝑝̅44 =
(𝛾 − 1)(1 + (𝛾 − 1)𝑀𝑝

2)

𝜌
 

Γ𝑝̅45 = −
𝛾(𝛾 − 1)

𝜌
 

(B.20)   

The inverse of Γ𝑝̅ is, 

 Γ𝑝̅
−1
=

|

|

|

1

𝑎2
0 0 −

𝜌

𝑎2
0 0

𝑢

𝑎2
𝜌 0 −

𝜌𝑢

𝑎2
0 0

𝑣

𝑎2
0 𝜌 −

𝜌𝑣

𝑎2
0 0

1

𝛾(𝛾−1)
+ (

𝑢2+𝑣2

2
+𝐾) /𝑎2 𝜌𝑢 𝜌𝑣 −

𝜌

𝑎2
(
𝑢2+𝑣2

2
+ 𝐾) 𝜌 0

𝐾

𝑎2
0 0 −

𝜌𝐾

𝑎2
𝜌 0

𝜔

𝑎2
0 0 −

𝜌𝜔

𝑎2
0 𝜌

|

|

|

  (B.21)   
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C Space discretisation (simplified preconditioned 

form) 
 

In the section, two simplified preconditioned forms are provided herein. The governing 

equations that they are based on are the same as those presented in Chapter 2, while the only 

difference lies in the definition of total energy and total enthalpy which have both excluded 

the turbulent kinetic energy.  

 

(C.1) simplified form No. 1 
 

The first choice being tested in the research is developed by enforcing no preconditioning to 

be applied in the SST equations, through a less strict mathematical derivation process. All the 

matrices and flux dissipation terms related to this preconditioned system are shown as below. 

 𝑃𝑐 =
|

|

𝑃𝑐11 𝑃𝑐12 𝑃𝑐13 𝑃𝑐14 0 0
𝑃𝑐21 𝑃𝑐22 𝑃𝑐23 𝑃𝑐24 0 0
𝑃𝑐31 𝑃𝑐32 𝑃𝑐33 𝑃𝑐34 0 0
𝑃𝑐41 𝑃𝑐42 𝑃𝑐43 𝑃𝑐44 0 0
0 0 0 0 1 0
0 0 0 0 0 1

|

|
  (C.1)   

with the individual entries shown as  

 

𝑃𝑐11 = 1 +
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)

2𝑎2
  

𝑃𝑐12 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢

𝑎2
 

𝑃𝑐13 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣

𝑎2
 

𝑃𝑐14 =
(𝛾 − 1)(𝑀𝑝

2 − 1)

𝑎2
 

𝑃𝑐21 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝑢

2𝑎2
  

𝑃𝑐22 = 1 −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢2

𝑎2
 

𝑃𝑐23 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝑣

𝑎2
 

𝑃𝑐24 =
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢

𝑎2
 

(C.2)   
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𝑃𝑐31 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝑣

2𝑎2
  

𝑃𝑐32 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝑣

𝑎2
 

𝑃𝑐33 = 1 −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣2

𝑎2
 

𝑃𝑐34 =
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣

𝑎2
 

𝑃𝑐41 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝐻

2𝑎2
  

𝑃𝑐42 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝐻

𝑎2
 

𝑃𝑐43 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣𝐻

𝑎2
 

𝑃𝑐44 = 1 +
(𝛾 − 1)(𝑀𝑝

2 − 1)𝐻

𝑎2
 

where H represents the total enthalpy 𝐻 =
𝑢2+𝑣2

2
+

𝑎2

𝛾−1
. 

The eigenvalues of preconditioned system are: 

 

                         𝜆1 = 𝜆2 = 𝜆5 = 𝜆6 = 𝑈𝑛                   

 𝜆3 =
1

2
[𝑈𝑛(1 +𝑀𝑝

2) + √4𝑎2𝑀𝑝
2 + (𝑀𝑝

2 − 1)
2
𝑈𝑛2]   

𝜆4 =
1

2
[𝑈𝑛(1 +𝑀𝑝

2) − √4𝑎2𝑀𝑝
2 + (𝑀𝑝

2 − 1)
2
𝑈𝑛2] 

(C.3)   

where 𝑈𝑛  is the velocity component normal to the face being considered and is given by 

𝑈𝑛 = 𝑢𝑘𝑥 + 𝑣𝑘𝑦, and 𝑎2 = (𝛾 − 1) [𝐻 −
𝑢2+𝑣2

2
]. 

The preconditioned characteristic variables defined by 𝛼𝑗 = 𝛿𝑊 = (𝐿⋆
−1)𝑗𝛿𝑉 are, 

 

𝛼1 = 𝛿𝜌 −
𝛿𝑝

𝑎2
 

𝛼2 = 𝜌(𝛿𝑢𝑘𝑦 − 𝛿𝑣𝑘𝑥) 

𝛼3 =
𝛿𝑝 − 𝜌(𝛿𝑢𝑘𝑥 + 𝛿𝑣𝑘𝑦)(𝜆4 − 𝑈𝑛)

𝑎(𝜆3 − 𝜆4)
 

𝛼4 =
𝛿𝑝 − 𝜌(𝛿𝑢𝑘𝑥 + 𝛿𝑣𝑘𝑦)(𝜆3 − 𝑈𝑛)

𝑎(𝜆3 − 𝜆4)
 

𝛼5 = 𝜌𝛿𝐾 

𝛼6 = 𝜌𝛿𝜔 

(C.4)   

The flux differences are 
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𝛿𝑓1 = 𝛼1𝜆1 +
𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛)

𝑎𝑀𝑝
2

 

𝛿𝑓2 = 𝛼1𝜆1𝑢 + 𝛼2𝜆2𝑘𝑦 + 𝑎𝑘𝑥(𝛼3𝜆3 − 𝛼4𝜆4)

+
(𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛))𝑢

𝑎𝑀𝑝
2

 

𝛿𝑓3 = 𝛼1𝜆1𝑣 − 𝛼2𝜆2𝑘𝑥 + 𝑎𝑘𝑦(𝛼3𝜆3 − 𝛼4𝜆4)

+
(𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛))𝑣

𝑎𝑀𝑝
2

 

𝛿𝑓4 = 𝛼1𝜆1 (
1

2
(𝑢2 + 𝑣2)) + 𝛼2𝜆2(𝑢𝑘𝑦 − 𝑣𝑘𝑥)  

+(
𝜆3 − 𝑈𝑛
𝑎𝑀𝑝

2
𝐻 + 𝑎𝑈𝑛)𝛼3𝜆3 − (

𝜆4 − 𝑈𝑛
𝑎𝑀𝑝

2
𝐻 + 𝑎𝑈𝑛)𝛼4𝜆4 

𝛿𝑓5 = 𝛼1𝜆1𝐾 +
|𝑈𝑛 + 𝑐| (

𝛿𝑝
𝑐2
+
𝜌𝛿𝑈𝑛
𝑐 )

2
𝐾 +

|𝑈𝑛 − 𝑐| (
𝛿𝑝
𝑐2
−
𝜌𝛿𝑈𝑛
𝑐 )

2
𝐾 + 𝛼5𝜆5 

𝛿𝑓6 = 𝛼1𝜆1𝜔 +
|𝑈𝑛 + 𝑐| (

𝛿𝑝
𝑐2
+
𝜌𝛿𝑈𝑛
𝑐 )

2
𝜔 +

|𝑈𝑛 − 𝑐| (
𝛿𝑝
𝑐2
−
𝜌𝛿𝑈𝑛
𝑐 )

2
𝜔 + 𝛼6𝜆6 

(C.5)   

 

(C.2) simplified form No. 2 
 

The second choice being tested in the research is derived through a rigorous mathematical 

process as what is shown in the full preconditioned algorithm. All the matrices and flux 

dissipation terms related to this preconditioned system are shown as below. 

 𝑃𝑐 =
|

|

𝑃𝑐11 𝑃𝑐12 𝑃𝑐13 𝑃𝑐14 0 0
𝑃𝑐21 𝑃𝑐22 𝑃𝑐23 𝑃𝑐24 0 0
𝑃𝑐31 𝑃𝑐32 𝑃𝑐33 𝑃𝑐34 0 0
𝑃𝑐41 𝑃𝑐42 𝑃𝑐43 𝑃𝑐44 0 0
𝑃𝑐51 𝑃𝑐52 𝑃𝑐53 𝑃𝑐54 1 0
𝑃𝑐61 𝑃𝑐62 𝑃𝑐63 𝑃𝑐64 0 1

|

|
  (C.6)   

with the individual entries shown as  

 

𝑃𝑐11 = 1 +
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)

2𝑎2
  

𝑃𝑐12 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢

𝑎2
 

𝑃𝑐13 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣

𝑎2
 

(C.7)   
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𝑃𝑐14 =
(𝛾 − 1)(𝑀𝑝

2 − 1)

𝑎2
 

𝑃𝑐21 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝑢

2𝑎2
  

𝑃𝑐22 = 1 −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢2

𝑎2
 

𝑃𝑐23 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝑣

𝑎2
 

𝑃𝑐24 =
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢

𝑎2
 

𝑃𝑐31 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝑣

2𝑎2
  

𝑃𝑐32 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝑣

𝑎2
 

𝑃𝑐33 = 1 −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣2

𝑎2
 

𝑃𝑐34 =
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣

𝑎2
 

𝑃𝑐41 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝐻

2𝑎2
  

𝑃𝑐42 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝐻

𝑎2
 

𝑃𝑐43 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣𝐻

𝑎2
 

𝑃𝑐44 = 1 +
(𝛾 − 1)(𝑀𝑝

2 − 1)𝐻

𝑎2
 

𝑃𝑐51 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝐾

2𝑎2
  

𝑃𝑐52 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝐾

𝑎2
 

𝑃𝑐53 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣𝐾

𝑎2
 

𝑃𝑐54 =
(𝛾 − 1)(𝑀𝑝

2 − 1)𝐾

𝑎2
 

𝑃𝑐61 =
(𝛾 − 1)(𝑀𝑝

2 − 1)(𝑢2 + 𝑣2)𝜔

2𝑎2
  

𝑃𝑐62 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑢𝜔

𝑎2
 

𝑃𝑐63 = −
(𝛾 − 1)(𝑀𝑝

2 − 1)𝑣𝜔

𝑎2
 

𝑃𝑐64 =
(𝛾 − 1)(𝑀𝑝

2 − 1)𝜔

𝑎2
 

where H represents the total enthalpy 𝐻 =
𝑢2+𝑣2

2
+

𝑎2

𝛾−1
. 

The eigenvalues of preconditioned system are: 
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                         𝜆1 = 𝜆2 = 𝜆5 = 𝜆6 = 𝑈𝑛                   

 𝜆3 =
1

2
[𝑈𝑛(1 +𝑀𝑝

2) + √4𝑎2𝑀𝑝
2 + (𝑀𝑝

2 − 1)
2
𝑈𝑛2]   

𝜆4 =
1

2
[𝑈𝑛(1 +𝑀𝑝

2) − √4𝑎2𝑀𝑝
2 + (𝑀𝑝

2 − 1)
2
𝑈𝑛2] 

(C.8)   

where 𝑈𝑛  is the velocity component normal to the face being considered and is given by 

𝑈𝑛 = 𝑢𝑘𝑥 + 𝑣𝑘𝑦, and 𝑎2 = (𝛾 − 1) [𝐻 −
𝑢2+𝑣2

2
] 

The preconditioned characteristic variables defined by 𝛼𝑗 = 𝛿𝑊 = (𝐿⋆
−1)𝑗𝛿𝑉 are, 

 

𝛼1 = 𝛿𝜌 −
𝛿𝑝

𝑎2
 

𝛼2 = 𝜌(𝛿𝑢𝑘𝑦 − 𝛿𝑣𝑘𝑥) 

𝛼3 =
𝛿𝑝 − 𝜌(𝛿𝑢𝑘𝑥 + 𝛿𝑣𝑘𝑦)(𝜆4 − 𝑈𝑛)

𝑎(𝜆3 − 𝜆4)
 

𝛼4 =
𝛿𝑝 − 𝜌(𝛿𝑢𝑘𝑥 + 𝛿𝑣𝑘𝑦)(𝜆3 − 𝑈𝑛)

𝑎(𝜆3 − 𝜆4)
 

𝛼5 = 𝜌𝛿𝐾 

𝛼6 = 𝜌𝛿𝜔 

(C.9)   

The flux differences are  

 

𝛿𝑓1 = 𝛼1𝜆1 +
𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛)

𝑎𝑀𝑝
2

 

𝛿𝑓2 = 𝛼1𝜆1𝑢 + 𝛼2𝜆2𝑘𝑦 + 𝑎𝑘𝑥(𝛼3𝜆3 − 𝛼4𝜆4)

+
(𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛))𝑢

𝑎𝑀𝑝
2

 

𝛿𝑓3 = 𝛼1𝜆1𝑣 − 𝛼2𝜆2𝑘𝑥 + 𝑎𝑘𝑦(𝛼3𝜆3 − 𝛼4𝜆4)

+
(𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛))𝑣

𝑎𝑀𝑝
2

 

𝛿𝑓4 = 𝛼1𝜆1 (
1

2
(𝑢2 + 𝑣2)) + 𝛼2𝜆2(𝑢𝑘𝑦 − 𝑣𝑘𝑥)  

+(
𝜆3 − 𝑈𝑛
𝑎𝑀𝑝

2
𝐻 + 𝑎𝑈𝑛)𝛼3𝜆3 − (

𝜆4 − 𝑈𝑛
𝑎𝑀𝑝

2
𝐻 + 𝑎𝑈𝑛)𝛼4𝜆4 

𝛿𝑓5 = 𝛼1𝜆1𝐾 +
𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛)

𝑎𝑀𝑝
2

𝐾 + 𝛼5𝜆5 

(C.10)   
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𝛿𝑓6 = 𝛼1𝜆1𝜔 +
𝛼3𝜆3(𝜆3 − 𝑈𝑛) − 𝛼4𝜆4(𝜆4 − 𝑈𝑛)

𝑎𝑀𝑝
2

𝜔 + 𝛼6𝜆6 

 

D Similarity transformation 
 

Suppose that the square matrix 𝐴1 has the eigenvalue decomposition 𝐴1 = 𝑉1
−1Λ1𝑉1, and 𝐴2 

is similar to 𝐴1 through X, 𝐴2 = 𝑋
−1𝐴1𝑋, then 𝐴2 = 𝑋

−1𝑉1
−1Λ1𝑉1𝑋 = 𝑉2

−1Λ2𝑉2.  

Since 𝐴1 and 𝐴2 have the same eigenvalues, the relationship between their eigenvectors is 

 𝑉2 = 𝑉1𝑋 (D.1)   

Now if we consider the similarity transformation case of Eqn. (5.14) to (5.15), on one hand 

one has, 

 |(Γ𝑝̅)
−1
Γ𝑝 (

𝜕𝐹

𝜕𝑉𝑝
Γ𝑝̅)| = 𝑉1

−1|Λ1|𝑉1 (D.2)   

and on the other hand, 

 |Γ𝑝
𝜕𝐹

𝜕𝑉𝑝
| = 𝑉2

−1|Λ2|𝑉2 (D.3)   

The two matrices above have the same eigenvalues Λ1 = Λ2 because they are similar. The 

equality of Eqns. (5.14) and (5.15)is true if and only if 

 𝑉2Γ𝑝̅ = 𝑉1 (D.4)   

This is true because Γ𝑝̅ is the similarity transformation that links the matrices in the LHS of 

Eqn. (D.2) and (D.3). 

 

E Non-dimensionalisation 
 

Before the implementation in the CFD solver, the governing equations are 

nondimensionalised. By doing so, the order of magnitude of the variables appearing in the 

URANS equations become of order 1, and this occurrence contributes to the reduction of 

round-off errors. However, even by using the nondimensionalised equations, it is not possible 

to achieve comparable order of magnitudes of all flow variables for flows with very low 
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Mach number. Additionally, for all flow regimens, the variable 𝜔  is several orders of 

magnitude larger than all other variables.  

The adopted basis of reference variables is: 

 [𝑎∞, 𝜌∞,  𝑇∞,  𝜇∞, 𝑙] (E.1)   

where 𝑎∞ is the freestream sound speed, 𝜌∞ is the freestream density, 𝑇∞ is the freestream 

temperature, l is a reference length, and 𝜇∞  is the freestream molecular viscosity. All 

dimensional variables appearing in the (dimensional) governing equations are then expressed 

as the product of a reference dimensional quantity and the nondimensionalised variables. 

The reference dimensional variables resulting from the choice of basis (E.1) are: 

 𝜌𝑟𝑒𝑓 = 𝜌∞,        𝑢𝑟𝑒𝑓 = 𝑎∞,     𝑙𝑟𝑒𝑓 = 𝑙, 𝑅𝑒𝑟𝑒𝑓 =
𝜌∞𝑎∞𝑙

𝜇∞
 (E.2)   

 

 𝑝𝑟𝑒𝑓 = 𝜌∞𝑎∞
2 = 𝛾𝑝∞,        𝑡𝑟𝑒𝑓 =

𝑙

𝑎∞
,      𝜏𝑟𝑒𝑓 = 𝜇∞

𝑎∞
𝑙

 (E.3)   

 

 𝑥𝑟𝑒𝑓 = 𝑙,        𝑘𝑟𝑒𝑓 = 𝑎∞
2 ,       𝜔𝑟𝑒𝑓 =

𝑎∞
𝑙
, 𝜇𝑟𝑒𝑓 = 𝜇∞ (E.4)   

Based on the Mach number defined at infinity 𝑀∞ =
𝑢∞

𝑎∞
, the nondimensionalised Reynolds 

number can be written as  

 𝑅𝑒𝑟𝑒𝑓 =
𝑅𝑒

𝑀∞
 (E.5)   

where 𝑅𝑒 is the Reynolds number based on the freestream velocity. 

Using the reference variables (E.1) to perform the nondimensionalisation of the dimensional 

URANS equations provided by Eqn. (2.8), (2.9) and (2.10) yields the following 

nondimensional equations: 

 
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗) = 0 (E.6)   
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𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑢𝑖) = −

𝜕𝑝

𝜕𝑥𝑖
+
𝑀∞

𝑅𝑒∞

𝜕𝜏̂𝑗𝑖  

𝜕𝑥𝑗
 (E.7)   

 

 
𝜕

𝜕𝑡
(𝜌𝐸) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝐻) =

𝑀∞

𝑅𝑒∞

𝜕

𝜕𝑥𝑗
[𝑢𝑖 𝜏̂𝑖𝑗 + (𝜇 + 𝜎𝐾𝜇𝑇)

𝜕𝐾

𝜕𝑥𝑗
− 𝑞̂𝑗] (E.8)   

The nondimensionalised Reynolds stress tensor is: 

 𝜏𝑖𝑗
𝑅 = 2𝜇𝑇 [𝑆𝑖𝑗 −

1

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗] −
𝑅𝑒∞
𝑀∞

2

3
𝜌𝑘𝛿𝑖𝑗 (E.9)   

and the nondimensionalised stress tensor 𝜏̂𝑖𝑗, which is the sum of the molecular 𝜏𝑖𝑗 and the 

Reynolds stress tensor 𝜏̂𝑖𝑗, is: 

 𝜏̂𝑖𝑗 = (𝜇 + 𝜇𝑇) [(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗] −
𝑅𝑒∞
𝑀∞

2

3
𝜌𝑘𝛿𝑖𝑗 (E.10)   

Where the nondimensionalised eddy viscosity is 

 𝜇𝑇 =
𝑅𝑒∞
𝑀∞

𝛼1𝜌𝐾

max(𝛼1𝜔, Ω𝐹2)
  (E.11)   

 

 𝐹2 = tanh(arg2
2  )  (E.12)   

 

 arg2  = max (
2√𝐾 

𝛽⋆𝜔 𝑑
,
500 𝜇

𝜌 𝜔 𝑑2
𝑀∞

𝑅𝑒∞
 )  (E.13)   

and the nondimensionalised molecular viscosity 𝜇 is computed with the nondimensionalised 

Sutherland's law: 

 𝜇 = 𝑇3/2
1 + 𝑆/𝑇𝑟𝑒𝑓

𝑇 + 𝑆/𝑇𝑟𝑒𝑓
 (E.14)   

The nondimensionalised 𝑗𝑡ℎ component of the heat flux vector is: 

 𝑞̂𝑗 = −
1

𝛾 − 1
[
𝜇

𝑃𝑟
+
𝜇𝑇
𝑃𝑟𝑇

]
𝜕𝑇

𝜕𝑥𝑗
 (E.15)   

Given that the nondimensionalised equation of state is 𝛾𝑝 = 𝜌𝑇, the nondimensionalised total 

energy per unit mass is: 
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 𝐸 =
𝑇

𝛾(𝛾 − 1)
+
𝑢𝑖𝑢𝑖
2

+ 𝐾 =
𝑝

𝜌(𝛾 − 1)
+
𝑢𝑖𝑢𝑖
2

+ 𝐾 (E.16)   

and the total enthalpy per unit mass is: 

 𝐻 =
𝑇

(𝛾 − 1)
+
𝑢𝑖𝑢𝑖
2

+ 𝐾 =
𝛾𝑝

𝜌(𝛾 − 1)
+
𝑢𝑖𝑢𝑖
2

+ 𝐾 (E.17)   

Having assumed a perfect gas, the definitions above leads to: 

 𝑝 = (𝛾 − 1) [𝜌𝐸 −
1

2
𝜌(𝑢𝑖𝑢𝑖) − 𝜌𝐾]  (E.18)   

And this equation is formally identical to its dimensional counterpart. 

The nondimensionalised equations of the 𝐾 − 𝜔 SST turbulence model are: 

 
𝜕

𝜕𝑡
(𝜌𝐾) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝐾) =

𝑀∞

𝑅𝑒∞
𝜏𝑖𝑗
𝑅
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝜔𝐾 +
𝑀∞

𝑅𝑒∞

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝐾𝜇𝑇)

𝜕𝑘

𝜕𝑥𝑗
]  (E.19)   

 

 

𝜕

𝜕𝑡
(𝜌𝜔) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝜔)

=
𝛾

𝜈𝑡
𝜏𝑖𝑗
𝑅
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽𝜌𝜔2 +
𝑀∞

𝑅𝑒∞

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑇)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐶𝐷𝑡𝑒𝑟𝑚   

(E.20)   

 

F Compact differential form of the URANS and SST 

equations 
 

The nondimensionalised URANS equations (E.6), (E.7) and (E.8), and the 𝐾 − 𝜔  SST 

equations (E.19) and (E.20) can be written in a compact vector form as follows: 

   
𝜕𝑼

𝜕𝑡 
+
𝜕(𝑬𝑐 − 𝑬𝑑)

𝜕𝑥
+
𝜕(𝑭𝑐 − 𝑭𝑑)

𝜕𝑦
= 𝑺 (F.1)  

where the array U collects the conservative flow variables of all transport equations, the 

arrays 𝑬𝑐 and 𝑭𝑐 collect respectively the x- and y- components of the convective fluxes of all 

equations, the arrays 𝑬𝑣 and 𝑭𝑣 collect respectively the 𝑥- and 𝑦- components of the diffusive 

fluxes of all equations, and the array S contains the source terms of the 𝑆𝑆𝑇 equations. The 

definitions of the arrays U, 𝑬𝑐 and 𝑭𝑐 are respectively: 
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   𝑼 =

[
 
 
 
 
 
𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸
𝜌𝐾
𝜌𝜔]
 
 
 
 
 

 ,      𝑬𝑐 =

[
 
 
 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝐸
𝜌𝑢𝐾
𝜌𝑢𝜔 ]

 
 
 
 
 

 ,     𝑭𝑐 =

[
 
 
 
 
 

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑝
𝜌𝑣𝐸
𝜌𝑣𝐾
𝜌𝑣𝜔 ]

 
 
 
 
 

 (F.2)  

where the total energy E per unit mass and the total enthalpy H per unit mass are defined by 

Eqn. (E.16) and (E.17). The definitions of the diffusive flux vectors 𝑬𝑑  and 𝑭𝑑  are 

respectively:  

   𝑬𝑑 =
𝑀∞

𝑅𝑒∞

[
 
 
 
 
 
 
 
 
 

0
𝜏𝑥𝑥
𝜏𝑥𝑦

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + (𝜇 + 𝜎𝐾 𝜇𝑇)
𝜕𝐾

𝜕𝑥
− 𝑞𝑥

(𝜇 + 𝜎𝐾 𝜇𝑇)
𝜕𝐾

𝜕𝑥

(𝜇 + 𝜎𝜔 𝜇𝑇)
𝜕𝜔

𝜕𝑥 ]
 
 
 
 
 
 
 
 
 

 (F.3)  

 

   𝑭𝑑 =
𝑀∞

𝑅𝑒∞

[
 
 
 
 
 
 
 
 
 

0
𝜏𝑥𝑦
𝜏𝑦𝑦

𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 + (𝜇 + 𝜎𝐾 𝜇𝑇)
𝜕𝐾

𝜕𝑦
− 𝑞𝑦

(𝜇 + 𝜎𝐾 𝜇𝑇)
𝜕𝐾

𝜕𝑦

(𝜇 + 𝜎𝜔 𝜇𝑇)
𝜕𝜔

𝜕𝑦 ]
 
 
 
 
 
 
 
 
 

 (F.4)  

The definition of the array S is: 

   𝑺 =

[
 
 
 
 
 

0
0
0
0

𝑃𝐾 − 𝐷𝐾
𝑃𝜔 − 𝐷𝜔 + 𝐶𝐷𝑡𝑒𝑟𝑚]

 
 
 
 
 

 (F.5)  

where 

   𝑃𝐾 =
𝑀∞

𝑅𝑒∞
𝜏𝑖𝑗
𝑅
𝜕𝑢𝑖
𝜕𝑥𝑗

  (F.6)  

 

   𝐷𝐾 = 𝛽
⋆𝜌𝜔𝐾 (F.7)  
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   𝑃𝜔 =
𝛾𝜌

𝜇𝑇
𝜏𝑖𝑗
𝑅
𝜕𝑢𝑖
𝜕𝑥𝑗

   (F.8)  

 

   𝐷𝐾 = 𝛽𝜌𝜔
2  (F.9)  

 

   𝐶𝐷𝑡𝑒𝑟𝑚 = 2𝜌(1 − 𝐹1)𝜎𝜔2
1

𝜔

𝜕𝐾

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
   (F.10)  
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