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Abstract

Aims

Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful car-

dioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling

(AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics.

This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics.

Methods and Results

A 3D electromechanical model of the human atria was developed to investigate the effects

of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4

states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3

months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological

properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condi-

tion for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF

condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results

indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and

reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of

the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as

compared to the control condition (states 1 & 2). Consequently at the whole organ level,

atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF

condition (state 4) atrial contraction was almost abolished.
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Conclusions

This study provides novel insights into understanding atrial electro-mechanics illustrating

that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients.

Introduction
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia [1,2] and has an
increase in incidence and prevalence with each decade of adult life [3,4]. AF may be precipi-
tated by a variety of cardiac or non-cardiac diseases which cause abnormalities in cardiac
electrophysiology and in turn act as a substrate for the development of the arrhythmia [5]. Cur-
rent treatments for atrial fibrillation to restore sinus rhythm include external and internal
Direct Current (DC) cardioversion, chemical cardioversion (pharmacological intervention),
and radiofrequency ablation [1–4].

Atrial stunning is the loss of mechanical atrial contraction following a successful cardiover-
sion, which is maximal immediately after cardioversion and can take up to 6 weeks for normal
atrial contraction to re-establish [6]. A long period of atrial stunning may cause an increased
risk of thromboembolism.

Atrial stunning occurs rarely following spontaneous cardioversion in paroxysmal arrhyth-
mias. Previous studies have also shown that factors delaying return of normal atrial mechanical
function include duration of atrial fibrillation, presence of structural heart disease, atrial pres-
sures and atrial size [6–8]. However, the exact mechanisms causing impaired atrial mechanics,
as occurs in atrial stunning are unknown. Some postulated mechanisms include tachycardia
induced atrial cardiomyopathy, accumulation of cytosolic calcium and atrial hibernation [6–8].

It is unknown why atrial stunning occurs frequently for chronic AF but rarely for paroxys-
mal AF patients [6–8]. The intrinsic electrophysiological properties of the atria are altered dur-
ing chronic AF due to the atrial fibrillation induced electrical remodelling (AFER) [9–13].
Multiple clinical electrophysiological and experimental studies have shown that electrical
remodelling is characterised by an abbreviated atrial action potential (AP) morphology, which
is associated with underlying changes to the density and kinetics of some membrane ionic cur-
rents and to cellular Ca2+ handling processes [10–12,14–16]. Chronic atrial fibrillation can also
cause atrial structural remodelling, which is characterised by down-regulation and heteroge-
neous expression of connexin proteins that form intercellular gap junctions (responsible for
the AP conduction), as well as the presence of severe fibrosis, accumulation of fatty deposits
and fibre disorganisation [9,10,13,17–19]. All of these factors may contribute to decreases in
the AP conduction velocity and increases in conduction anisotropy and heterogeneity.

We hypothesised that the impaired atrial mechanics as seen in atrial stunning after a suc-
cessful cardioversion to chronic atrial fibrillation might be due to AFER during chronic fibrilla-
tion, which impairs the mechanical contraction of the human atria. However, due to the
complexity of the atrial system, the functional impact of AFER on atrial electro-mechanical
dynamics has not yet been investigated in such a way that the ionic mechanisms underlying
atrial stunning can be elucidated. Though previous electrophysiological studies have identified
some cellular and sub-cellular changes associated with chronic AF, such as abbreviated action
potential duration (APD) and reduced amplitude of the intracellular Ca2+ transient [10–12,14–
16], changes at the whole organ level emerge from both cellular (i.e, single cell behaviours) and
intercellular (i.e., cell-to-cell interactions) dynamic processes.
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Computational models provide a powerful tool to study cardiac function [20–23]. Being
constructed from and validated against experimental data, they provide a means for quantita-
tively predicting the functional roles of altered molecular dynamics and ionic channels on car-
diac functions in a systematic fashion that is difficult to achieve in an experimental setting.
Therefore, in this study, we developed a novel 3D anatomical model of the human atria with
coupled electrical and mechanical dynamics at cellular and tissue levels. Using the multi-scale
models we investigated the functional impact of AFER on atrial electrical and mechanical activ-
ities in order to elucidate the mechanism underlying atrial stunning. The principal contribu-
tions of this study are: (i) the development of a new family of biophysically detailed, electrical-
mechanically coupled models of the human atrium at cellular and 3D anatomical levels; (ii)
investigation of the functional impacts of AFER on the electrical and mechanical dynamics of
the atria; and (iii) elucidation of possible mechanisms underlying the impaired mechanical
contraction as seen in atrial stunning in patients with persistent atrial fibrillation.

Materials and Methods

Regional Single Cell Models
The atria are composed of several electrically distinct regions (Fig 1A). This regional electrical
heterogeneity is thought to play a large role in the genesis and maintenance of atrial arrhyth-
mias [24–26]. Data for human atrial electrophysiology are scarce, particularly for action poten-
tial variations in the different regions within the atria. Most studies involving the investigation
of the ionic mechanisms underlying regional action potential variations in the atria have been
carried out on other mammals, mainly dog [27–30].

In this study, we modified the well established Courtemanche-Ramirez-Nattel (CRN)
model [31] of the human atrial cell to couple electrophysiology to mechanics. As the CRN
model provides detailed descriptions of cellular electrical APs in the right atrium (RA), the
model was first modified to incorporate experimental data from the literature [27–29] on the
heterogeneous ionic currents across the atria as implemented in previous modelling studies
[32,33]. Relative changes in maximum ion current conductances for the different regions of the
atria are listed in Table 1.

Specifically, the conductances of the following ion channel currents were rescaled based on
experimental data [27,29,34,35] to reproduce AP morphologies in various parts of the atria: L-
type Ca2+ current (ICaL), transient outward K

+ current (Ito), rapidly-activated potassium cur-
rent (IKr), ultra rapid delayed rectifier current (IKur) and the fast Na

+ current (INa). The scale
factors of the conductances in the RA and left atrium (LA), Bachmann’s bundle (BB), crista ter-
minalis (CT), pectinate muscles (PM), right and left atrial appendages (RAA and LAA respec-
tively), tricuspid and mitral valve rings (TVR and MVR respectively) and atrial septum are
summarised in Table 1.

Then the CRN model was modified to incorporate the electrical-mechanical coupling. Due
to the lack of detailed experimental data on which to base the development of biophysically
detailed equations for the electrical-mechanical coupling of the human atrial myocytes, this
was done by coupling the CRN electrophysiological model to the Rice et al. myocyte contrac-
tion model [36], which describes the mechanics of a cardiac myocyte. This model was chosen
as it is based on the cross-bridge cycling model of cardiac muscle contraction and is able to rep-
licate a wide range of experimental data including steady-state force-sarcomere length (F-SL),
force-calcium and sarcomere length-calcium relations [36]. The Rice et al. myocyte contraction
model [36] was developed for guinea-pig myocytes. In order to validate its use for human atrial
myocytes, we followed our previous studies [20,37–39] to simulate the force-calcium relation-
ship in the modified CRN model with incorporation of the Rice et al. electrical-mechanical
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Fig 1. 3D anatomical atrial geometry. (A) Segmented atria from two different views (left: top view and right: view into the atrial cavities). All regions are
labelled. (B) Fibre orientations of the atria from two different views (left: top view and right: view into the atrial cavities). SAN: Sinoatrial Node, PV: Pulmonary
Vein, CT: Crista Terminalis, IAS: Inter-atrial Septum, TVR: Tricuspid Valve Ring, MVR: Mitral Valve Ring, BB: Bachmann’s Bundle, PM: Pectinate Muscle,
RS (Right Superior), RI (Right Inferior), LS (Left Superior), LI (Left Inferior).

doi:10.1371/journal.pone.0142397.g001
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coupling equations. The simulated data replicated the experimental data on the force-calcium
relationship from human atrial myocytes [40].

As in our previous studies [20,37–39], the intracellular calcium concentration [Ca2+]i from
the single cell electrophysiology models (EP) was used as the coupling link to the myofilament
mechanics model (MM). [Ca2+]i produced as dynamic output from the EP models during the
AP served as input to the MMmodel from which the amount of calcium bound to troponin is
calculated. The resulting formulation of the myoplasmic Ca2+ concentration in the electrome-
chanically coupled model is:

dCai
dt

¼

�Cm � ðICaL þ IbCa þ IpCa � 2INaCaÞ
2VmyoF

þ�Vnsr � ðIleak � IupÞ þ 0:5IrelVjsr

Vmyo

� dTroptotCa
dt

� 1

1000

1þ ½CMDN�maxKm;CMDN

ð½Ca2þ�i þ Km;CMDNÞ2
ð1Þ

where Cm is the membrane cell capacitance per unit surface area, Vnsr is the network sarcoplas-
mic reticulum (SR) volume, Vjsr is the junctional SR volume, Vmyo is the cytoplasmic volume,
Ileak is the SR Ca2+ leak current, Iup is the Ca

2+ uptake current into the NSR, IbCa is the back-
ground Ca2+ current, IpCa is the sarcoplasmic Ca2+ pump current, INaCa is the Na

+/Ca2+

exchanger current, ICaL is the L-type inward Ca
2+ current, Irel is the Ca

2+ release current from
the JSR, F is the Faraday constant, [CMDN]max is the total calmodulin concentration in the

myoplasm, Km,CMDN is the Ca2+ half-saturation constant for calmodulin and
dTroptoCa

dt
is the

rate of Ca2+ binding to troponin.
To model the effect of electrophysiological remodelling associated with AF, we followed the

work of Colman et al. [41], which was based on an extensive review of the available experimen-
tal data regarding AF remodelling of the main ion channels and sarcoplasmic reticulum pro-
cesses. Table 2 summarises the modifications made to the control/healthy electromechanical
single cell models to generate a family of AF-remodelled single cell models.

Table 1. Scale factors ion channel conductivities for the different regions of the atria relative to the basemodel of [31]. Modified from [32].

Heterogeneity Source GNa Gto GCaL GKr GKur

RA/PM Base model 1.00 1.00 1.00 1.00 1.00

CT upper endo [29] 1.00 1.00 1.67 1.00 1.00

CT upper epi [27] 1.00 0.50 1.67 1.00 1.00

CT lower endo [27] 1.00 0.68 1.67 1.00 1.00

CT lower epi [27] 1.00 0.34 1.67 1.00 1.00

BB (RA part) [27,29] 1.00 1.00 1.67 1.00 1.00

TVR [29] 1.00 1.00 0.67 1.53 1.00

MVR [29,34] 1.00 1.00 0.67 2.44 1.00

RAA [29] 1.00 0.68 1.06 1.00 1.00

LAA [29,34] 1.00 0.68 1.06 1.60 1.00

LA [34] 1.00 1.00 1.00 1.60 1.00

SEP [35] 1.50 1.00 0.25 1.00 0.67

RA: Right Atrium PM: Pectinate Muscle, CT: Crista Terminalis, endo: endocardium, epi: epicardium, BB: Bachmann’s Bundle, TVR:Tricuspid Valve Ring

doi:10.1371/journal.pone.0142397.t001
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3D tissue model of electro-mechanical coupling
3D anatomical model: The 3D anatomical model was reconstructed and segmented based on
anatomical features from the Visible Female dataset [42] (Fig 1A). As the intrinsic heterogene-
ity of electrophysiological properties of atrial tissue plays an important role in ensuring the
right timing sequences of depolarization and repolarization pattern in the atria, the 3D model
considers different electrical properties for different regions of the atria: the sinoatrial node
(SAN), left atrium (LA), right atrium (RA), crista terminalis (CT), pectinate muscles (PM), lim-
bus fossa ovalis, Bachmann’s bundle (BB), right inferior isthmus, pulmonary veins (PV), right
atrial appendage (RAA), left atrial appendage (LAA), inter-atrial septum (SEP), tricuspid valve
ring (TVR) and mitral valve ring (MVR). Fibre orientation was incorporated using a novel
semi-automatic rule-based approach and was validated against patient-specific volumetric
models derived from CT, MRI and photographic data [43,44] (Fig 1B).

3D electrophysiological model: Electrical excitation wave propagation in the 3D human
atria was modeled by a monodomain representation [20,45–47] of cardiac tissue with a modifi-
cation (i.e., the incorporation of the Right Cauchy Green deformation tensor, C) to take into
account the effect of the deforming atrial tissue, similar to previous studies [20,37,48–50].

Cm

dV
dt

¼ �ðIion þ IstimÞ þ r � ðDC�1rVÞ ð2Þ

where Cm is the cell capacitance per unit surface area, V is the membrane potential, Iion is the
sum of all transmembrane ionic currents from the electromechanics single cell model, Istim is
an externally applied stimulus and D is the diffusion tensor. The tissue conductivities that
make up the diffusion tensor, D, were chosen so that the activation time and conduction veloci-
ties of the atria matched those of well established atrial models [26,32,51]. The conductivity
ratio (parallel to fibre direction:transverse direction) was set to 3:1. The longitudinal (along the
fibres) and transverse conductivities were 1.26 mm2 ms-1 and 0.42 mm2 ms-1 respectively
reproducing the heterogeneous conduction velocities of well established atrial models [32,51]
and human experimental data [52].

3D electro-mechanical coupling model: To develop a 3D electromechanical model of the
human atria, the family of electromechanically coupled single cell atrial models developed in
this study was incorporated into a 3D atrial geometry.

Table 2. Implementation of AF remodelling.

Process Model

ICaL -70%

IKur -50%

Ito -65%

IK1 +100%

IKs +100%

IKAch No change

INaCa +55%

IKr No change

SERCA +50%

RyR +300%

SR Ca2+ leak +25%

Maximum channel conductances of the control model were changed based on an extensive review of

available experimental data following the work of [41]. SERCA = Sarco/endoplasmic Ca2+-ATPase.

doi:10.1371/journal.pone.0142397.t002
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We modelled cardiac tissue mechanics within the theoretical framework of nonlinear elas-
ticity [53,54] as an inhomogeneous, anisotropic, nearly incompressible material similar to pre-
vious studies [49,55–60]. The coupling between cardiac mechanics and electrical excitation
propagation is addressed in a framework in which the electrical action potential dictates the
active strain of the muscle [58–60]. We adopted an active strain approach in this study as
opposed to the active stress approach [48,49,61]. Unlike the active stress approach, the active
strain approach requires no tuning to provide the observed deformation when fibre contrac-
tion is included in the equations. In addition, frame invariance and rank-one ellipticity are
inherited from the corresponding properties of the standard strain energy of the material
[58,60,62] whereas rank-one ellipticity cannot be ensured when large deformations occur for a
specific active stress form [60,63].

We used a two-field variational principle with the deformation u and the hydrostatic pres-
sure p as the two fields [54,64,65]. p is utilized as the Lagrange multiplier to enforce the near
incompressibility constraint. Thus, the total potential energy functionP for the mechanics
problem is formulated as:

Pðu; pÞ ¼ Pintðu; pÞ þPextðuÞ ð3Þ

wherePint(u,p) is the internal potential energy or total strain energy of the body andPint(u) is
the external potential energy or potential energy of the external loading of the body.

The deformation gradient F is a tensor that maps elements from the undeformed configura-
tion to the deformed configuration [53,54]. Following [58,66], we multiplicatively decompose
F into a microscopic (active) component and a macroscopic elastic (passive) component:

F ¼ FeFo ð4Þ

The active component Fomeasures the length change of the tissue due to muscle contraction
while the passive component Fe accounts for the passive mechanical response of the tissue and
possible tension due to external loads.

With the vector field f denoting the unique direction of the fibres in the undeformed state of
the atria, the microscopic active component of the deformation tensor F takes the form:

Fo ¼ I þ gðSLÞf � f ð5Þ

where I is the identity tensor, SL is the sarcomere length of the electromechanical single cell, γ
is a scalar field that represents the intensity of the contraction, i.e., the active strain:

g ¼ SL� SL0

SL0

ð6Þ

where SL0 is the resting sarcomere length. Thus, γ>0 denotes elongation, and γ<0 denotes
contraction.

The elastic component Fe is formulated as:

Fe ¼ FF�1
o ð7Þ

and the corresponding Right Cauchy-Green strain tensor is:

Ce ¼ FT
e Fe ð8Þ
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The associated Green-Lagrange strain tensor is:

Ee ¼
1

2
ðCe � IÞ ð9Þ

To characterise the constitutive behaviour of cardiac tissue, for the strain energy function
W, we used the Guccione constitutive law [67] given by:

W ¼ WðFeÞ ¼ C1e
Q ð10Þ

where:

Q ¼ C2E
2
11 þ C3ðE2

22 þ E2
33 þ E2

23Þ þ 2C4ðE12E21 þ E13E31Þ ð11Þ

following previous modelling studies [20,68]. C1 = 0.831 kPa, C2 = 14.31, C3 = 4.49 and C4 =
10. Eij are the components of the Green-Lagrange strain tensor.

We applied a constant pressure boundary condition of 1.07 kPa on the endocardial surface
of the atria (Γendo) and to prevent rigid body rotations, we set the displacement u = 0 on the
subset of the epicardial surface (Γepi) in the left atria, which is normally in close proximity to
the thoracic spine and between the RIPV and the RSPV (Fig 1).

Solving the 3D electromechanics model: The electromechanics problem consists of two sub-
problems: the electrophysiology problem (Eq 2) and the mechanics problem (Eq 3). The
electrophysiology problem (Eq 2) was solved with a Strang splitting method [69] ensuring that
the solution is second-order accurate. It was discretized in time using the Crank-Nicholson
method [70], which is also second-order accurate and discretized in space with Finite Elements
[70–73]. Iion in (Eq 2) represents the single cell electromechanics model from which the active
strain (Eq 6) input to the 3D mechanics model for contraction was obtained. This was done via
an L2 projection from the finite element space of the electrophysiology mesh to the finite ele-
ment space of the mechanics mesh. The system of ordinary differential equations (ODE) com-
posing Iion was solved with a combination of the Rush-Larsen scheme [74] and the CVODE
solver [75,76].

The mechanics problem (Eq 3) was also solved using the Finite element Method using the
automated scientific computing library, FEniCS [77]. The resulting non-linear system of equa-
tions was solved iteratively using the Newton-Raphson method to determine the equilibrium
configuration of the system. FEniCS [77], which is a problem-solving environment for auto-
mated solution of finite element computations allows a close relation between the mathemati-
cal notation and the source code, and automated differentiation of both the constitutive law
and the residual equation. It provides functionality that can be used to linearize the nonlinear
residual equation (linear form) automatically for use with the Newton-Raphson method. Fea-
tures of the Unified Form Language (UFL) [77,78] used in the FEniCS [77] project permit
problems to be posed as energy minimization problems, making it unnecessary to compute an
expression for a stress tensor, or its linearization, explicitly. The value of the Right Cauchy
Green Tensor C was then used to update the diffusion coefficient tensor in Eq 1. Over a typical
finite element domain, P2 elements [71–73] were used to discretize the displacement variable u,
while the pressure variable p was discretized with P1 elements [71–73]. This P2–P1 mixed finite
element has been proven to ensure stability [77,79,80] and an optimal convergence rate
[73,79,81].

The algorithm for solving the full electro-mechanics problem is as follows:

1. Determine the initial deformation and obtain the value of the Right Cauchy Green Tensor C.

2. While time< end time of simulation:

Electrical Remodeling Effects on Atrial Electro-Mechanics
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a. Solve the electrophysiology problem for Δtmechanics = 1 ms with C as input and active
strain γ as output (Δtelectrophysiology = 0.01 ms).

b. Project γ from the electrophysiology mesh onto the mechanics mesh.

c. Solve the mechanics problem with γ as input and C as output.

Meshes and Computation: The atrial electrophysiology mesh consisted of 2736128 tetrahe-
dra and 566234 vertices while the atrial mechanics mesh consisted of 42752 tetrahedra and
14349 vertices. The two meshes were also checked to ensure good mesh quality metrics. The
single cell ODEs were parallelised using OpenMP while the Conjugate Gradient method with
the Symmetric successive overrelaxation preconditioner (Electrophysiology) and the parallel
sparse direct solver MUMPS (Mechanics) were used for Linear Algebra via PETSc [82,83]. The
simulations were carried out on an Intel Xeon CPU E5-2687W @ 3.10 GHz with 32 hyper-
threaded cores and 64 GB of memory. It took about 48 hours to simulate a period of 1000 ms
electro-mechanical activities of the model.

Methods of stimulus, and measurement of atrial volume: For the single cell simulations,
APs were elicited with an S1-S2 protocol consisting of 1000 S1 stimuli followed by a single S2
stimulus at a frequency of 1 Hz. For the 3D simulations, in order to guard against any drift in
the steady state values of the ion concentrations in the model, the electromechanical single cell
models described in section 2.1 were pre-paced for a 1000 beats before being incorporated into
the tissue model.

Atrial volume was computed as a surface integral using the Ostrogradsky formula [84]:

VINNERðφÞ ¼
ð
φðOINNERÞ

dv ¼ � 1

3

ð
@φðGENDOÞ

x � nds ð12Þ

where φ is the deformation, OINNER is the volume enclosed by the atrial endocardium ΓENDO

and n is the outward unit normal vector.

Modelling different states of the atria
In order to investigate the functional impact of AFER on atrial electromechanical dynamics,
we implemented 3 simulation conditions mimicking 4 states of atrial tissue. These include: (i)
the control condition, which mimics the healthy and normal atrial tissue (state 1), as well as
the tissue about 6 weeks after successful cardioversion (state 2). This assumption is reasonable
as the atria normally restore their mechanical contraction about 6 weeks after successful car-
dioversion with atrial stunning [6–8,85]. This time period is sufficient for atrial tissue to go
through reverse electrical remodeling after cardiac arrhythmias as shown in some experimental
animal studies [86]; (ii) AFER-SR condition that simulates the AF-remodeled atrial tissue with
normal sinus rhythm (SR) (state 3). This condition mimics the state of atrial tissue just after a
successful cardioversion such that the tissue electrophysiology is remodelled; and (iii)
AFER-AF condition simulating the AF-remodeled tissue with multiple reentrant excitation
waves (state 4). This condition mimics the atrial tissue during chronic atrial fibrillation, in
which both tissue electrophysiological remodeling and re-entrant wavelets are present.

Results

Single Cell Electromechanical Simulations
Fig 2 shows the simulated electromechanical activities of the right atrial baseline model under

control (states 1 & 2) and AFER conditions (states 3 & 4) for AP (Fig 2A), ½Ca�2þi (Fig 2B), SL
(Fig 2C) and normalised active force (Fig 2D). In simulations, AFER abbreviated the atrial
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action potential duration. The measured APD90 (action potential duration at 90% repolarisa-
tion) values were 274 ms and 188 ms under control and AFER conditions respectively. This
represented about 31% APD abbreviation by AFER, which was within the range of observed
APD abbreviation in atrial cells of AF patients as compared to those of patients in sinus rhythm

Fig 2. Electromechanical properties of the baseline, isolated RA single cell under control (dark) and
AFER (dashed) conditions. (A) Action potential. (B) Cytosolic Ca2+ concentration. (Inset) Comparison of
our simulation results (grey bars) with experimental data (symbols) on APD90 [10–12,14,87,88] and cytosolic
Ca2+ reduction [88,90,91]. (C) Sarcomere length shortening and (D) Active force normalised to maximum of
Control.

doi:10.1371/journal.pone.0142397.g002
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[10–12,14,24,87,88]. In simulations, AFER reduced the systolic ½Ca�2þi level by 25% and the dia-

stolic ½Ca�2þi level by ~50% (Fig 2B), which was also within the range of observed reduction in

systolic ½Ca�2þi transient amplitude in atrial cells of AF patients as compared to those of patients
with normal sinus rhythm [14,88–91]. Fig 2B inset shows a comparison of the simulation

APD90 and systolic ½Ca�2þi level reduction (grey bars) with relevant experimental data (sym-

bols) from literature [10–12,14,87,88]. The reduced ½Ca�2þi transient amplitude led to a
decreased sarcomere length shortening (Fig 2C) and consequently, to an 82% decrease in active
force (Fig 2D). This reduction in active force is close to clinical data showing that in AF
patients the average force of atrial contraction was reduced by about 75% [92]. The match
between simulation data and clinical data at the cellular level for the reduced active force also
provides validation for the use of the single cell model for the electro-mechanical coupling.

The mechanisms for the reduced amplitude and diastolic level of ½Ca�2þi are attributable to
the effects of AFER on the Ca2+ signalling processes as shown in Fig 3. The figure plotted the
time courses under control (states 1 & 2) and AFER conditions (states 3 & 4) for AP (Fig 3A),

½Ca�2þi (Fig 3B), sarcoplasmic reticulum Ca2+ content (CaSR; Fig 3C), the L-type Ca2+ current
density, (ICaL; Fig 3D), the Na

+/Ca2+ exchanger current density (INaCa; Fig 3E), the flux of Ca
2+

uptake into the sarcoplasmic reticulum (Jup; Fig 3F) and the flux of Ca
2+ release from the sarco-

plasmic reticulum (Jrel; Fig 3G). It was shown that AFER reduced the CaSR content (by ~50%)
(Fig 3C), which was accompanied by a reduced ICaL (Fig 3D) that led to a reduced trigger for
Ca2+ release from the sarcoplasmic reticulum, an increased Na+-Ca2+ exchange current, and a
functionally reduced sarcoplasmic reticulum Ca2+ uptake and release though both maximal
activities were increased by the AFER (see Table 1). All of these changes were collectively

responsible for the AFER-induced reduction in the systolic and diastolic levels of ½Ca�2þi .
AFER also altered the electromechanical activities of other types of atrial cells as shown in

Fig 4, which were created from the right atrial baseline model (Fig 2). In the figure, the electro-
mechanical activities of different atrial cell types in the control condition (Fig 4A and 4D) are
compared with those in the AFER (Fig 4E and 4H) conditions. The APs from the single cell
family under both the control (Fig 4A) and the AFER conditions (Fig 4A) exhibited heteroge-

neous morphologies with significant differences in the diastolic and systolic ½Ca�2þi levels (Fig
4B and 4F), SL shortening (Fig 4C and 4G), active force (Fig 4D and 4H) and APD90, the latter
ranging from 181 ms in the PV to 325 ms in the BBRA (Table 3). For all of the cell types, AFER
abbreviated APD, reduced the diastolic and systolic level of [Ca2+]i, leading to reduced cell
length shortening and the production of the active force. In simulations, AFER induced
marked and heterogeneous reduction in the active force among variant cell types, ranging from
a 57% reduction in the BBRA to 97% in the PV. There was negligible contraction in the SEP.
Table 3 summarises the characteristics of the electromechanical activities for different cell
models and the changes between the control and AFER conditions. Note that the range of sim-
ulated reduction in active force (57–97%) among variant types of atrial cells is also close to the
clinical data of reduced force of atrial contraction observed in AF patients [92].

3D Electro-mechanical simulations in the 3D model
Atrial contraction is an integral action of a large population of myocytes that are electrically
and mechanically coupled. Due to the complex geometry, heterogeneity and anisotropic prop-
erties of atrial tissue, it cannot be assumed that behaviour at the single cell level necessarily
translates into similar activity at the organ level. In particular, reduction in cell shortening as
observed in Fig 4 cannot automatically be interpreted as leading to reduction of the contraction
volume of the atria, which is normally measured at the clinical setting: cells with differing
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Fig 3. AFER effects on the Ca2+ signalling processes of the baseline, isolated RA single cell under
control (dark) and AFER (dashed) conditions. (A) Action Potential. (B) Cytosolic Ca2+ concentration. (C)
SR Ca2+ content. (D) L-type Ca2+ current (ICaL) density. (E) Na

+/Ca2+ exchanger current density (INaCa). (F)
Flux of Ca2+ uptake into the SR (Jup) and (G) Flux of Ca2+ release from the SR (Jrel) Inset: Magnified view of
Jrel in the first 20 ms.

doi:10.1371/journal.pone.0142397.g003
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electrophysiological and electromechanical properties are coupled, which will therefore influ-
ence timing of electrical propagation and therefore mechanical activity. In addition, passive
stress arising from tissue contraction may also influence atrial contraction at the whole organ
level. Thus, it is necessary to investigate the functional consequences of AFER at the 3D atrial

Fig 4. Electromechanical properties of the isolated regional atrial single cell types under control (A-D) and AFER (E-H) conditions. (A,E) Action
potential. (B,F) Cytosolic Ca2+ concentration. (C,G) Sarcomere length shortening and (D,H) Active force normalised to maximum of Control (Note the
different scales between control and AFER).

doi:10.1371/journal.pone.0142397.g004
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organ level. Therefore, we performed further simulations using realistic human 3D anatomical
atrial geometry with consideration of the intrinsic electrical heterogeneity in the atria.

At the whole organ level, AFER impaired atrial mechanical contraction as shown in Fig 5, in
which the sequence of electrical wave initiation and propagation, and the resultant contraction
of the atria are shown for control (states 1 & 2; S1 Video), AFER tissue in the normal sinus
rhythm (i.e, 1Hz) (AFER-SR) (middle panels for state 3; S2 Video) and AFER tissue with reen-
trant excitation wave condition (AFER-AF) (right panels for state 4; S3 Video). In all the cases,
the deforming mesh was superimposed on an undeformed mesh (grey) in order to show the
atrial contraction. At 0 ms, excitation was initiated from the SAN for both the control and
AFER-SR conditions. At 100 ms, under the control condition, the whole atria had almost
completely activated while in AFER, due to the slower electrical wave conduction, large parts
of the right and left atria (blue-coloured) were yet to be activated. AFER caused a delayed atrial
activation.

At 200 ms, there was significant atrial contraction under the control condition but compara-
tively negligible contraction under AFER-SR. There was a delayed onset of atrial contraction in
the AFER condition.

At 300 ms, relaxation was underway under the control condition, but in the AFER-SR con-
dition, relaxation was almost complete, suggesting a shortened contraction time course under
AFER condition due to an abbreviated APD and the significant reduction in SR loading (Fig
3C) leading to an abbreviated time course of the intracellular Ca2+ transient.

Fig 5 also shows the time course of the atrial volume change during atrial excitation and
contraction under both control and AFER-SR conditions. Volume change (i.e., atrial contrac-
tion) was reduced by 76.3% in the AFER-SR condition as compared to the control condition.
Such a reduction in the atrial contraction volume was attributable to the reduction in active
force at the cellular level (~80%) in all of the atrial cell types in the AFER condition (Table 3
and Fig 4). Note that at the 3D whole atria level, the simulation result of 76.3% reduction in
atrial contraction corresponds with clinical data of 75% reduction of atrial contraction in AF
patients [92], which provides further validation of the cellular and 3D organ models used for
the electro-mechanical coupling of the human atria.

Further simulations were carried out to investigate the functional impact of AFER on atrial
contraction while there were rapid reentrant excitation waves in the atria (AFER-AF; Fig 5,

Table 3. Electromechanical properties of the family of single cell atrial models.

Cell Type APD90 (Control) (ms) APD90 (AF) (ms) ½Ca�2þi % Change (Control to AF) Active Force % Change (Control to AF)

RA/PM 274 188 25%# 82%#
LA 234 167 26%# 86%#

CT/BBLA 322 213 34%# 57%#
BBRA 325 215 33%# 56%#
TVR 250 149 29%# 93%#
MVR 218 130 28%# 92%#
RAA 272 189 26%# 78%#
LAA 229 167 26%# 82%#
PV 181 145 43%# 97%#
SEP 189 125 26%# 0%#

RA: Right Atrium, LA: Left Atrium, PM: Pectinate Muscle, CT: Crista Terminalis, BB: Bachmann’s Bundle, TVR: Tricuspid Valve Ring, MVR: Mitral Valve

Ring, RAA: Right Atrial Appendage, LAA: Left Atrial Appendage, PV: Pulmonary Vein, SEP: Septum

doi:10.1371/journal.pone.0142397.t003
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Fig 5. Snapshots of atrial electromechanical contraction superimposed on an atrial mesh (grey) under control and the tissue 2–3 months after
cardioversion (Left; states 1 & 2), AFER-SR (Middle; AF-remodelled tissue under sinus rhythm; state 3) and AFER-AF (Right; AF-remodelled tissue
with multiple re-entrant excitation waves; state 4) conditions. 0 ms: Before electrical activation. 100ms: Almost complete activation under control (left)
condition compared to slower activation in AFER-SR (middle) and AFER-AF (right) conditions. 200ms:Control (left) condition undergoing contraction,
AFER-SR (middle) and AFER-AF (right) conditions with negligible contraction. 300ms: Control (left) and AFER-SR (middle) conditions undergoing
repolarisation and re-entrant wavelets in the AFER-AF (right) condition. 700ms: Complete repolarisation and tissue relaxation in control (left) and AFER-SR
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right panels). In this case, reentrant excitation waves were initiated by a premature stimulus
applied to a localized region (IAS) at a 250 ms delay from the initiation of sinoatrial node exci-
tation. Before the premature stimulus, the activation pattern and the mechanical contraction
time course were the same as those in the AFER-SR condition. After the premature stimulus,
sustained reentrant excitation wavelets developed, which were uncoordinated across the atria,
leading to diminished mechanical contraction of the atria as illustrated by an almost flattened
time course of the atrial volume.

Fig 6 shows the time course of AP (Fig 6A), [Ca2+]i (Fig 6B), SL (Fig 6C) and active force
(Fig 6D) recorded from a localized site of the atria under control, AFER-SR and AFER-AF con-
ditions. It was shown that as compared to the control condition, AFER impaired atrial mechan-
ical activity by reducing the diastolic and systolic levels of [Ca2+]i, leading to reduced cell
length shortening and less active force production. For the AFER tissue with rapid reentrant
excitation activity, though the diastolic [Ca2+]i level was elevated because of Ca

2+ accumulation
as compared to the sinoatrial node rhythm, the systolic [Ca2+]i level was markedly reduced,
which is responsible for the reduced cell length shortening and the product of the active force.

Discussion
In this study, we have developed a new biophysically detailed, 3D anatomical model of the elec-
tromechanical activity of the human atria. This incorporates accurate anatomical structures
(Fig 1A) including fibre orientations (Fig 1B), which were validated against patient-specific vol-
umetric models derived from CT, MRI and photographic data [43,44]. The 3D geometry itself
is based on the Visible Female dataset [42]. The 3D human atrial electromechanical model also
incorporates the intrinsic electrophysiological heterogeneity of the human atria through the
integration of a family of heterogeneous, cellular models for the electrical APs of human atrial
myocytes (Fig 3A and 3D). These cellular models were also modified to reflect ionic channel
changes during chronic AF-remodelling (Fig 3E and 3H).

Effects of AFER on atrial electro-mechanics
To investigate the effects of AFER on atrial electro-mechanics, simulations have been per-
formed for 3 conditions mimicking 4 states. At the cellular level, AFER (state 3 & 4) abbrevi-
ated atrial action potential duration and reduced Ca2+ loading in the sarcolemma reticulum,
which resulted in reduced diastolic and systolic [Ca2+]i levels, leading to reduced cell shorten-
ing and active force production.

Impaired electro-mechanical activity at the cellular level was reflected by impaired mechani-
cal contraction of the atria at the whole organ level for the AFER-SR condition (state 3). In
simulations, AFER-SR resulted in a reduction in the emptying fraction of the atria as demon-
strated by results shown in Fig 5. In the AFER-SR, the conduction of atrial excitation was slo-
wed down, leading to delayed onset but earlier completion of atrial contraction as compared
to the control tissue. The overall contraction volume was markedly reduced (Fig 5). Such
impaired mechanical contraction is attributable in our model to the reduced level of diastolic
and systolic [Ca2+]i levels, resulting in reduced cell length shortening and production of the
active force (Fig 6).

In our simulations of the AFER-AF tissue (state 4), multiple rapid reentrant excitation
waves were initiated and sustained. Due to uncoordinated regional excitation waves, the

(middle) conditions but multiple sustaining re-entrant wavelets in the AFER-AF (right) condition. Bottom: Time course of computed atrial volume during
electrical excitation for control (blue), AFER-SR (green) and AFER-AF (red) conditions.

doi:10.1371/journal.pone.0142397.g005

Electrical Remodeling Effects on Atrial Electro-Mechanics

PLOS ONE | DOI:10.1371/journal.pone.0142397 November 25, 2015 16 / 24



Fig 6. Electromechanical properties of a RA cell in the 3D atria under control (blue), AFER-SR (sinus
rhythm, green) and AFER-AF (red) conditions. (A) Action potential. (B) Cytosolic Ca2+ concentration. (C)
Sarcomere length shortening and (D) Active force normalised to maximum of Control.

doi:10.1371/journal.pone.0142397.g006
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mechanical contraction of the atria is significantly diminished even though the diastolic [Ca2+]i
level was elevated arising from Ca2+ accumulation (Figs 5 and 6).

Relevance to Previous Studies
This study is the first to develop a 3D electromechanical model of the human atria with hetero-
geneous, electromechanically coupled, regional single cell models. It is also the first to investi-
gate the cellular mechanisms responsible for weak atrial contraction in AFER tissue. Fritz et al.
[93] developed a 3D electromechanical model of the human atria, but that study used a geo-
metric model and appears to not consider atrial cellular heterogeneity, as it used just the right
atrial CRN single cell model. Also it did not investigate AF [93]. Chapelle et al. [94] and Collin
et al. [95] developed a surface-based electrophysiology model of the atria, treating the atria as a
shell structure. Their model relied on detailed asymptotic analysis, reduced the computational
cost of simulating a 3D atria and they presented strong convergence results of the numerical
solution. However, they did not consider atrial deformation. Coudiere et al. [96] et al. also
developed a two-layered model of atrial electrophysiology with two coupled, superimposed lay-
ers with the introduction of 3D heterogeneity. They used the model to explore numerical con-
vergence for vanishing thicknesses. This model also reduced computational cost relative to a
3D model.

It is important to note that while multiscale simulations of atrial electromechanics are rare,
there are several studies involving the ventricles and the whole heart such as the Multi-scale,
Multi-physics Heart Simulator, “UT Heart” [97], the parallel multiphysics code for Computa-
tional Biomechanics, ALYA Red [98,99], the interactive framework for rehearsal of and train-
ing in cardiac catheter ablation from INRIA [100] and several others [57,68,101–103].

Clinical Implications
Altered electro-mechanical function has important clinical implications. The failure of a return
of atrial contraction following successful cardioversion may result in reduced exercise capacity
and to an increased risk of thrombo-embolism and stroke. In addition, atrial stunning is associ-
ated with a greater risk of recurrence of atrial fibrillation [104], perhaps related to lower atrial
pressures and less atrial stretch.

Limitations
In addition to acknowledged limitations of both the CRN electrophysiology model [31] on
which the atrial single cells were based and of the Rice et al. [36] mechanics model, all the other
regional cell models used here are inherited from Colman et al. [41] atrial models, the limita-
tions of which have been discussed in our previous study.[41]

The CRN electrophysiology model [31] is based on human experimental data whilst the
Rice et al. myofilament model [36] is based on data from rat and rabbit. Ideally, all model
parameters should be derived from human data, but as is often the case, there are a very limited
amount of human experimental data to use to constrain the myofilament model and indeed
the electromechanical model. This is a limitation but a necessary model compromise. This
approach is consistent with that adopted in prior studies from our own group and others
[41,105–107]. Therefore, qualitatively, at least, the model enables the elucidation of the con-
tractile response under pathological conditions such as AF. Additionally, all temperature-
dependent parameters were adapted to 37°C.

In the tissue model, intrinsic electrical heterogeneity and anisotropic intercellular coupling
were introduced for several atrial regions phenomenologically [26,41,42,108] due to the lack of
detailed experimental data from human atria. Atrial pressure is considered to be constant in
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the LA and RA but realistically, it varies throughout the cardiac cycle and may increase follow-
ing the onset of atrial fibrillation. The use of a computational fluid dynamics model enabling
the consideration of blood flow would allow the use of a more realistic pressure profile. The
model does not take into consideration contact between the atria and the ventricles or the effect
of ventricular motion on atrial mechanics, which all likely play a significant role in determining
atria function. We did not investigate the effect of stunning on the LA and RA individually. It
is possible that it affects both differently [8]. Therefore, this should be a subject of future study.
Note that in simulations we have assumed that atrial tissue would take about 6 weeks (a time
required for restoring atrial mechanical contraction after cardioversion) to complete reverse
electrical remodeling, and simulated the tissue at that time using the same condition as healthy
tissue. Though in animal models it has been demonstrated that reverse cardiac electrical
remodeling process may take approximately the same time period [109], in human, due to
multiple factors (structural, pathological and physiological) associated with atrial fibrillation,
such an assumption may be too idealised. Whilst it is important that these potential limitations
are stated, they do not fundamentally alter the principal conclusions of this study.

Conclusion
We have developed an anatomically accurate, 3D biophysically detailed, electro-mechanical
model of the human atria, which incorporates a suite of electro-mechanical single cell models
comprising the different regions of the human atria. The model also incorporates fibre orienta-
tions validated against patient-specific data. Using the model, we have investigated the func-
tional consequences of AFER for atrial contraction. We have shown that chronic AF-induced
remodeling of ionic channel and intracellular Ca handling may be responsible for weak atrial
contraction, a phenomenon as seen in atrial stunning after successful cardioversion.

Supporting Information
S1 Video. Atrial electrical wave propagation and mechanical contraction in the normal tis-
sue (state 1) and the tissue 2–3 months after cardioversion (state 2).
(AVI)

S2 Video. Atrial electrical wave propagation and mechanical contraction under the atrial
fibrillation-induced electrical remodelling condition under sinus rhythm (AFER-SR).
(AVI)

S3 Video. Atrial electrical wave propagation and mechanical contraction under the atrial
fibrillation-induced electrical remodelling condition with atrial fibrillation re-entrant exci-
tation waves (AFER-AF).
(AVI)
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