
Essays on Monetary Policy

Anh Dinh Minh Nguyen

Department of Economics

Lancaster University

This thesis is submitted for the degree of Doctor of Philosophy in the
subject of Economics at Lancaster University

November 2015



To my family.



Declaration

I hereby declare that this thesis is my own work and that it has not been submitted for any

other degree.

Anh Dinh Minh Nguyen

November 2015



Acknowledgements

First and foremost, I am very grateful to my supervisors, Prof. David Peel and Dr. Efthymios

Pavlidis, for their constant and enthusiastic instructions, inspiring discussions, and valuable

comments on my chapters. I have been fortunate to have opportunities to work with them

and hope to have more chances to cooperate with them in the future.

I would like to express my appreciation to Prof. Ivan Paya for his suggestions on my

work as well as support during my time at the department. I thank all the staff members

of the department for making a stimulating and pleasurable working environment and the

manager of the High Performance Cluster, Mike Pacey, for his assistance. I would also like

to thank my PhD fellows at the department whose friendship has made my adventure more

interesting and enjoyable.

In addition, I spent one year visiting at the Department of Economics, the University of

Manchester which advanced my knowledge and helped me acquire necessary skills for my

PhD study and future career as well. My particular thanks go to Chris Orme for leading me

to the beautiful land of econometric theory. I also thank all staff members there for useful

and interesting lectures and support as well.

The internship at the International Monetary Fund also provided a great chance for me

to improve my knowledge on monetary policy and to have first-hand experience on policy-

oriented studies on developing countries. I specially thank Dr. Oral Williams, Dr. Filiz

Unsal and Dr. Jemma Dridi for their instructions. My thanks also to the staff of African

department for their willingness to help me whenever I needed it.

I would also like to thank Prof. Nobuhiro Kiyotaki, Dr. Raffaele Rossi, Dr. Giorgio

Motta, Dr. Konstantinos Theodoridis, Dr. John Whittaker, Dr. Benjamin Born, Dr. Jo-



iv

hannes Pfeifer, Dr. Mihnea Constantinescu, and participants at RES (2015), SES (2015),

ECOBATE (2014), RES Easter School (2014), IMF seminar, Bank of Lithuania seminar,

and Department seminars for useful discussions and suggestions.

I give the greatest thanks to my family. My parents, Huan and Yen, and my brother,

Nhat, have always given me love, support, and encouragements. And a great appreciation

to a wonderful woman, my wife- Anh, who has touched my life and provided me with

enormous support. I therefore dedicate this thesis to my family as a thankfulness for all of

wonderful things they have done for me.

I am glad to acknowledge that this work was supported by the Economic and Social

Research Council under the grant ES/J500094/1.



Abstract

This thesis consists of three essays which aim to evaluate the role played by monetary pol-

icy in economic outcomes. The first two essays investigate the properties of the historical

conduct of monetary policy in the United Kingdom and the United States, respectively, and

justify how these properties are related to economic performance. The third essay analyzes

the impact of changes in the volatility of monetary policy shocks on the economy using a

Dynamic Stochastic General Equilibrium (DSGE) model with financial frictions.
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Chapter 1

Introduction

Monetary policy has been shown to have short-run non-neutral effects on the real economy

(see, e.g, the vast literature on New Keynesian economics, as discussed at length in Wood-

ford, 2003) and, for this reason, studying its practice has been increasingly attracting the

interests of both policymakers and academics. This thesis comprises three essays which

aim to evaluate the role played by monetary policy in economic outcomes. Specifically,

Chapters 2 and 3 investigate the features of the historical conduct of monetary policy in the

United Kingdom and the United States, respectively, and discuss how these features are re-

lated to economic performance. Chapter 4 develops a DSGE model with financial frictions

to analyze the impact of changes in the volatility of monetary policy shocks on the economy.

Following the introduction, Chapter 2 investigates U.K. monetary policy under the infla-

tion targeting regime, which was introduced in October 1992, with the aim of explaining the

low and stable rates of inflation observed in this regime. The model specifications are based

on a Taylor rule in which the interest rate is assumed to respond symmetrically to the devi-

ation of inflation from its target and the deviation of output from the potential level. A vari-

ety of Taylor-rule-type reaction functions are taken into consideration including backward-,

contemporaneous-, and forward-looking models in order to seek the one explaining best

the movement of interest rate. While most of studies on U.K. monetary policy use ex-post

data, this work relies on real-time data for analysis. As argued by Orphanides (2001), using

ex-post data might mislead the description of past policy and conceal the behavior proposed
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by the information available to central bankers in real time. While estimating backward-

looking rules is straightforward, the estimation of contemporaneous- and forward-looking

rules are problematic due to lack of current and future data in real time. To deal with this

issue, the study employs the two-step strategy introduced by Nikolsko-Rzhevskyy (2011).

The first step is to construct the forecasts required. The second step is to use those forecasts

for the estimation. Moreover, in order to obtain the estimates which are robust to outliers,

the study introduces the impulse-indicator saturation (IIS), which is proposed by Hendry

(1999), to the standard Taylor rules. Three main findings are obtained. First, the robust

characteristics of monetary policy under inflation targeting are forward-looking and raising

the interest rate by more than one-to-one to changes in inflation, thus satisfying the Tay-

lor principle. Second, the granting of operational independence to the Bank of England in

1997 appears to have led to a stronger response to inflation. Third, dealing with outliers is

important in the evaluation of monetary policy. Failing to do so can result in an improper

interpretation that the post-1992 response to inflation was weak, below unity, perhaps not

satisfying the Taylor principle. These results are therefore in line with the view that mone-

tary policy has contributed to stabilize inflation in the U.K.

Chapter 3 turns the focus to U.S. monetary policy. Specifically, it investigates how the

conduct of monetary policy has changed since the late 1960s. An important contribution of

this chapter is to simultaneously take into account the four issues highlighted as important

in modeling monetary policy: the type of time-variation in policy parameters, the treatment

of heteroscedasticity, the real-time nature of data, and the role of asymmetric preferences.

To the best of our knowledge, this is the first study that allows for all four features simulta-

neously. The empirical model is built on the derived optimal rule from the formal monetary

policy design problem in which central bankers show asymmetric loss function as described

in Nobay and Peel (2003). Following Boivin (2006), in this empirical model, parameters

are allowed to be time-varying to capture potential changes in the conduct of policy. The

issue of heteroscedasticity, which is emphasized by Sims and Zha (2006), is dealt with by

letting the standard deviation of policy shocks to follow a stochastic volatility process. The

model is then written in a non-linear state-space form which is estimated with real-time data
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using particle filtering. Our results suggest that the conduct of U.S. monetary policy expe-

rienced considerable changes at the mid and late 1970s, and the early 1990s. The timing

of the changes are consistent with the view that monetary variables impact on economic

performance.

A key finding of Chapter 3 is that the volatility of monetary policy shocks and, hence,

the uncertainty of monetary policy have changed overtime. Such a result is also supported

by the vast literature on macroeconomic volatility (for instance, Fernández-Villaverde et al.,

2010a; Justiniano and Primiceri, 2008). Nonetheless, only a few studies have analyzed the

impact of changes in the volatility of monetary policy on real activity. Shedding light on

this issue is the goal of Chapter 4. An important contribution of the chapter is to investigate

how financial frictions influence the transmission of monetary volatility shocks. To do so,

we develop a standard DSGE model, similar to Smets and Wouters (2007), but incorporate

financial frictions à la Bernanke et al. (1999) and introduce stochastic volatility to monetary

policy innovations (and to other structural shocks to capture aggregate dynamics). As with

other DSGE models, it is required to solve the model before estimation. However, a solution

to the first-order approximation is certainty-equivalent, which implies that there is no role

for volatility shocks. To this end, the model is solved to a higher-order approximation which

results in a non-linear state-space model. The state-space model is, in turn, estimated with

U.S. data using maximum likelihood in which the value of likelihood is calculated by a

sequential Monte Carlo method. Our results show that, first, the model captures aggregate

dynamics fairly well. Second, an increase in monetary volatility shock leads to a fall in

economic activity. Finally, financial frictions amplify and propagate the transmission of

monetary volatility shocks to the economy via the financial accelerator mechanism.



Chapter 2

U.K. Monetary Policy under Inflation

Targeting

2.1 Introduction

Low and stable rates of inflation have been observed in the U.K. since the early 1990s. This

experience of price stability has been mainly documented as a result of improvements in

the conduct of monetary policy associated with the adoption of inflation targeting in 1992.

Notably, Nelson (2000) estimates U.K. monetary policy reaction functions with ex-post

data using the split-sample approach and find that the post-1992 inflation could be charac-

terized by a forward-looking rule with inflation coefficient being above unity. Therefore,

when inflation increases, monetary policy raises the real interest rate, leading to a reduction

in inflationary pressures. This feature is known as the Taylor principle (Woodford, 2001).

Meanwhile, the 1972− 1976 period of extremely high inflation is captured by a near-zero

response of nominal interest rate to inflation. Also based on ex-post data, Cukierman and

Muscatelli (2008) and Martin and Milas (2004) affirm the anti-inflationary stance of mone-

tary policy under the inflation targeting regime.

However, according to Orphanides (2001), using ex-post data might mislead the descrip-

tion of past policy and conceal the behavior proposed by the information available to central

bankers in real time. The author therefore argues that it is essential to take the real-time na-
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ture of data into consideration when investigating historical episodes of monetary policy. On

the basis of this rationale, we rely on real-time data for our analysis on U.K. monetary pol-

icy under inflation targeting. A variety of Taylor rules are considered including backward-,

contemporaneous-, and forward-looking models. While estimating the backward-looking

model is straightforward, complications arise in the estimation of the other two types of

models because of lack of the contemporaneous- and forward-looking data. For the estima-

tion of U.S. monetary policy rules, Orphanides (2002) uses forecasts from the Greenbook

which is prepared by Federal Reserve Board staff for the Federal Open Market Committee

before every regularly scheduled meeting. For the U.K. economy, we notice that the Bank

of England (henceforth BoE) has produced quarterly forecasts of inflation since 1993. How-

ever, these forecasts appear to reflect the (expected) effect of changes in policy, instead of

the cause of changes. For example, in August 2006, the interest rate was raised to 4.75 per-

cent from 4.5 percent in July and inflation projections in the August 2006 Inflation Report

were based on the value of 4.75, therefore less likely to justify the increase of the interest

rate. In Appendix A.1, we estimate Taylor rules with the BoE’s forecasts and find that the

responses to inflation are wrongly signed. To deal with this data-related issue, we follow

the two-step strategy introduced by Nikolsko-Rzhevskyy (2011). The first step is to con-

struct the forecasts required. The second step is to use the constructed forecasts to estimate

the contemporaneous- and forward-looking monetary policy reaction functions. Using the

two-step approach is appealing for two reasons. First, it matches with the real-time nature

of data. Second, it bypasses the problem of endogeneity, therefore does not require the use

of instruments given that finding instruments might be problematic (Nikolsko-Rzhevskyy,

2011).

In a standard Taylor rule, the interest rate is characterized by a linear function of a con-

stant intercept, the deviation of inflation from its target and the deviation of output from the

potential level. However, policy makers in fact may desire to deviate from such a rule at

some points in time, say, to moderate the economy under unfavorable global conditions or

to respond sporadically to some other variables besides inflation and the output gap, such as
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exchange rates, credit growth, or asset prices.1 These deviations can be considered as out-

liers. To obtain reliable estimates of coefficients of interest, such as the response of monetary

policy to inflation, we need to take the issue of outliers into consideration when evaluating

monetary policy. One proposal is to add dummy variables over the periods of deviations;

however, this approach requires prior knowledge on the timing of deviations which are too

diversified in the real world to identify properly. Another proposal is to incorporate other

variables in addition to inflation and the output gap into the reaction function. However,

unless policy makers take those variables as their policy’s objectives, it is unwise to expand

the framework to include all of them because the inclusion could mislead the estimates of

interest.2 In addition, it is hard to address what “other” variables are.

In order to deal with the above issue, we employ the impulse-indicator saturation (hence-

forth IIS) approach which is introduced by Hendry (1999). Specifically, impulse indicators,

one for every observation, are embedded into the standard Taylor-rule type model to create

a new model that produces robust estimates to outliers (see, Johansen and Nielsen, 2009;

Santos et al., 2008). In this framework, the number of variables (N) equals the number of

observations (T ) plus four (an intercept and coefficients on inflation, output gap, and the lag

of interest rate). Because the proposed model involves more variables than observations,

it cannot be estimated by customary econometric methods. We instead use Autometrics

(Doornik, 2009) which is a method that handles the N > T problem by implementing a

mixture of expanding and contracting searches in order to seek the indicators relevant at a

selected significance level α . The method is analogous to using dummies but not requiring

advanced knowledge about break points.

Our study therefore has two main contributions. First, it enriches the literature on U.K.

monetary policy in terms of type of data (real time data) and methodology (two-step esti-

mation strategy). Second, it considers the issue of outliers carefully, which has been disre-

garded in previous studies, and conducts policy evaluations based on the estimates which

1For example, Kharel et al. (2010) investigate the response of monetary policy to exchange rate fluctuations
and Chadha et al. (2004) consider monetary policy reactions to asset prices and exchange rates.

2For the 1992Q4-2007Q4 period, our model detects only 6 outliers, suggesting that monetary policy mainly
respond to inflation and output gap. Nevertheless, we show that it is important to deal with these outliers.
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are robust to that problem. When it comes to the results, we find that forward-looking rules

capture the post-1992 interest rate movements better than backward- and contemporaneous-

looking rules in both the models with and without IIS. Diagnostic tests, however, reject the

validity of the models without IIS; whereas, forward-looking models with IIS pass all mis-

specification tests. More importantly, failing to do so misleads the features of U.K. monetary

policy under inflation targeting. The long-run response of interest rate to inflation is smaller

than unity in the models without IIS, suggesting that the post-1992 response to inflation

was not satisfying the Taylor principle. In contrast, the response to inflation was larger

than unity in forward-looking models with IIS. Such a difference indicates the importance

of dealing with outliers in evaluating the conduct of monetary policy. Moreover, we argue

that monetary policy appears to have responded stronger to inflation since the granting of

operational independence in 1997. Finally, based on these results we provide some possible

explanations for the stability of inflation observed under the inflation targeting regime.

The remaining study is structured as follows. The next section provides an overview of

Taylor-rule based model specifications and describes data for the estimation. Section 3 is

about inflation forecasts. Section 4 presents the results. The last section concludes.

2.2 Taylor Rules and Data

2.2.1 Taylor Rule Specifications

The original Taylor (1993) rule has the following simple formula

rt = c+φππt +φxxt , (2.1)

where rt is the nominal interest rate, πt is the inflation rate, and xt is the output gap. For

the U.S. economy in the 1984-1992 period, Taylor (1993) specifies that c = 1, φπ = 1.5,

and φx = 0.5 which implies that the federal funds rate increased by 1.5 percent for 1 percent

positive deviation of inflation from the target and 0.5 percent for an increase by 1 percent in

the output gap.
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Clarida et al. (2000) modify (2.1) to capture the forward-looking behavior and the grad-

ual adjustment of the interest rate. The modified Taylor rule has the following form

M1 : rt = c+ρrt−1 +φπEtπt+h +φxEtxt+q + εt , (2.2)

in which the interest rate responds to the expected changes of inflation and output gap at the

t + p and t + q period by φπ and φx, respectively; ρ is the smoothing parameter; and εt is

the policy shock which is assumed to have mean zero and variance σ2. This type of rule

reflects the ‘leaning against the wind’ view in macroeconomic management.

The specification in (2.2) also nests the backward-looking (such as when h = −1 and

q = −1) and contemporaneous-looking rules ( by setting h = 0 and q = 0). Regarding the

optimal choice of lead structure in the policy rule, it is suggested to be no further than one

year for inflation or beyond the current quarter for output gap (Taylor and Williams, 2011).

Therefore, the maximum values of h and q are set to be 4 and 0, respectively. In addition,

we assume that the expected output gap at time t is equal to the output gap at time t − 1

observed at time t, or Etxt = xt−1|t . This assumption is backed by the fact that the output

gap is significantly inert. Alternatively, the reader can analyze our models as backward-

looking on the output gap. This group of models without IIS is termed M1. We estimate M1

for h =−1,0,1,2,3,4 and q =−1.

We generate a group of models with IIS called M2 by placing impulse indicators into

(2.2) as follows

M2 : rt = c+ρrt−1 +φπEtπt+h +φxEtxt+q +
T

∑
i=1

βi1i=t + εt , (2.3)

in which 1i=t is the impulse indicator which has the value of 1 for every i = t and 0 else-

where, other notations are remained as in M1. As it can be seen, M2 has T parameters of

indicators, one for each observation, and four other parameters, including an intercept and

coefficients on inflation, output gap, and the lag of interest rate. M2 involves more variables

than observations (T + 4 against T ), thus cannot be estimated by customary econometric

methods. We instead use Autometrics (Doornik, 2009) which is a method that handles the
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N > T problem by using a mixture of expanding and contracting searches in order to seek

the indicators relevant.

2.2.2 Data

The estimation is executed by using the following data:

• Interest rate: The actual interest rate that is the instrument of the Bank of England has

varied three times since 1992, including the minimum band 1 dealing rate (August

1981- April 1997), the repo rate (May 1997 - July 2006) and the official bank rate

(since August 2007). Meanwhile, the treasury bill rate has moved very closely with

these actual rates over time and is available for the period considered; thus, we follow

(Nelson, 2000) to use the treasury bill rate as a proxy of the policy rate. The end-

of-quarter series is collected from the International Financial Statistics (IFS) for the

1992Q4-2012Q1 period.

• Output gap: The quarterly output gap is defined as the deviation of the (log) real

Gross Domestic Product (GDP) from its Hodrick-Prescott (HP) trend. The quarterly

real GDP data is obtained from the real-time GDP database of the Office for Na-

tional Statistics (ONS) and seasonally adjusted. It covers the vintages from 1992Q4 to

2012Q1. Moreover, we use the real-time quadratic output gap for robustness checks.

• Inflation rate: The inflation rate is the annual percentage change of the quarterly

Retail Price Index (RPI) published by the ONS. We use both quarterly and monthly

frequency. The former is used in backward-looking models and covers the period from

1992Q3 to 2011Q4; whereas the latter spans from 1988M1 to 2012M2 and is used to

make forecasts of inflation. Besides, eight monthly price index series, which are the

components of the RPI, including the price indexes of food, alcohol and tobacco,

petrol and oil other goods, rent, utilities, shop services, and non-shop services, are

also utilized to make inflation forecasts based on VAR models. The sample for these

components is from 1988M1 to 2012M2.
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2.3 Inflation Forecasts

This section presents how we construct the expected values of inflation in order to estimate

contemporaneous- and forward-looking Taylor rules. The inflation forecasting strategy is

similar to Hendry and Hubrich (2011) who execute 1-month, 6-month and 12-month ahead

forecasts of U.S. inflation from 1970M1 to 2004M12. Specifically, they consider three types

of models to forecast an aggregate like inflation:

1. Models that use only the past information of the aggregate. For example, simple

autoregressive (AR) models;

2. Models that aggregate subcomponent forecasts to obtain aggregate forecasts, which

is also known as indirect forecasts. For instance, vector autoregression models for all

disaggregate components but the aggregate;

3. Models that incorporate disaggregate information directly into the aggregate model.

For instance, vector autoregression models combining the aggregate and all disaggre-

gate factors (VARagg,sub) or a set of selected disaggregate ones.

Hendry and Hubrich (2011) find that the univariate model using only the historical in-

formation of the aggregate dominates other forecasting models in terms of the Root Mean

Square Forecast Error (RMSFE) criterion. In what follows, the study applies the Hendry

and Hubrich (2011)’s approaches to the U.K data. However, we only consider the univari-

ate model and the VARagg,sub model because the indirect forecasting strategy requires the

weights of subcomponents in aggregation which are not available. In addition, we incor-

porate the impulse indicator saturations to avoid systematic forecast failure (Castle et al.,

2013, 2009) and use Autometrics to select the forecasting model from a general unrestricted

model (Doornik, 2009).

2.3.1 Empirical Forecasting Specifications

It is known that the inflation rate of the reference month is released with one month delay. In

other words, at time t (month), only the inflation rate of time t −1 and earlier are observed.
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The study aims to forecast the inflation at time t (nowcasting) and the next 12 months (t +

12), using the dynamic (ex-ante) forecasting method. As it is aforementioned, the two

models considered are: [A] -the univariate model and [B] -the VAR model combining the

aggregate and all disaggregate factors. The general unrestricted model specifications at each

forecast origin are as follows

A - The univariate model

πt = c+
13

∑
k=1

αkπt−k +
T

∑
i=1

βi1i=t + εt ,

in which t = 1, ...,T ; 1i=t is the impulse indicator saturation which has the value of 1

for every i = t and 0 elsewhere; εt = IID{0,σ2}.

B - The VAR model

pt = c+
13

∑
k=1

Ak pt−k +
T

∑
i=1

bi1i=t +ut ,

in which pt = [π,π1,π2,π3,π4,π5,π6,π7,π8]
′
t is the 9×1 vector of aggregate inflation

and its disaggregate components;3 c and Ak are the constant vector and the coefficient

matrix, respectively; bi is the 9× 1 coefficient vector relating to the indicators; t =

1, ...,T ; 1i=t is the impulse indicator which has the value of 1 for every i = t and 0

elsewhere; and the innovation process ut is a zero-mean white noise process with a

time-invariant positive-definite variance-covariance matrix Σ.

2.3.2 Forecasting Performance Comparison

We compare forecasting performance between the univariate and the VAR models for the

1999Q1-2011Q2 period. The forecasts are assumed to be executed at the last month of

every quarter; therefore, there are 49 forecast origins in total. At every forecast origin t, we

conduct thirteen year-on-year monthly inflation forecasts from t to t + 12. We rely on the

RMFSE measure to compare the forecasting performance between the two models.
3π,π1,π2,π3,π4,π5,π6,π7,π8 are the annual percentage changes of the monthly RPI (π) and its eight

components, including food (π1), alcohol and tobacco (π2), petrol and oil (π3), other goods (π4), rent (π5),
utilities (π6), shop services (π7) and non-shop services (π8).
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Table 2.1 Root Mean Square Forecast Error

Model 1999-2011 1999-2004 2005-2011
AR 1.23 0.73 1.69

VARagg,sub 1.58 1.25 1.88

Table 2.2 Other Measures of Forecast Error

Model MAE MAPE
AR 0.96 33.53

VARagg,sub 1.27 55.20

Notes: This table shows two other measures of forecast errors: Mean absolute error (MAE) and mean
absolute percentage error (MAPE).

Table 2.1 shows the RMSFE of each model. The results indicate that it is hard for the

VAR model to defeat the univariate model in forecasting U.K. inflation. This result remains

if we compare forecasting performance in sub-periods: 1999Q1-2004Q4 and 2005Q5-2011Q2

as shown in the same table. Such a result is in line with what Stock and Watson (2007) and

Hendry and Hubrich (2011) find for the U.S. economy. Similarly, Castle et al. (2013) doc-

uments that inflation forecasts using AR-type models have a lower RMSFE than those with

variables, factors, or both. Furthermore, according to Stock and Watson (2010), in terms of

forecasting inflation, simple univariate models are competitive with models using explana-

tory variables.

In addition to the RMSFE, we consider two other measures of forecast error: Mean

absolute error (MAE) and mean absolute percentage error (MAPE) and present the results in

Table 2.2. They confirm that the univariate model is more successful in forecasting inflation

in the U.K. For this reason, we use the inflation forecasts from the univariate model to

estimate contemporaneous- and forward-looking reaction functions of monetary policy.
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2.3.3 Expected Quarterly Inflation Rates

To illustrate the process of constructing the quarterly series of Etπt+h for h = 0 to h = 4,

we use the forecasts obtained at the 1992M12 forecast origin as an example. It should be

noted that the inflation rate of 1992M10 and 1992M11 are observed at 1992M12. At that

origin, there are 13 forecasts carried out including the year-on-year inflation of that month,

1992M12, and the next 12 months from 1993M1 to 1993M12. We choose the (nowcasted)

forecasted inflation rate of 1992M12 to be the expected contemporaneous inflation rate of

1992Q4, Etπt . Meanwhile, the expected one-quarter-ahead inflation rate, Etπt+1, equals

the forecasted inflation rate of 1993M3. The expected two-, three-, and four-quarter-ahead

inflation rates are computed in a similar way.

2.4 Results

In order to highlight the important characteristics of monetary policy under the inflation tar-

geting regime, we exclude the recent crisis period from the sample in the first step. Nonethe-

less, given the flexibility of the IIS method, we later extend the analysis to include the post-

2007 sample in the estimation. This is executed as a robustness check to the method used

and the results obtained. We also investigate if the conduct of monetary policy was different

before and after the granting of operational independence to the BoE. Furthermore, based

on the empirical results, we provide explanations for the observed stability in the post-1992

period.

2.4.1 Taylor Rules without IIS

Table 2.3 presents the estimates of the models without IIS, known as M1, for the 1992Q4-

2007Q4 period. The inflation coefficient φπ is found to be positive and statistically signifi-

cant only in the models whose policy horizons are from h = 1 to h = 4 or forward-looking

models. The output gap coefficient is positive and significant regardless of the type of policy

rule. Based on the Schwarz criterion (SC), we find that the worst fitting model is the one
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responding to the past inflation rate. On the other hand, forward-looking rules dominate the

others in terms of fitness. Especially, the forward-looking interest rate rule with 3-quarter-

ahead expected inflation, Etπt+3, seems to describe best the evolution of interest rate. The

standard error (SEE) and the residual sum of squares (RSS) also suggest similar results.

Table 2.3 Taylor Rule Estimates without IIS: 1992Q4-2007Q4, HP Output gap

h =−1 h = 0 h = 1 h = 2 h = 3 h = 4
Constant c 0.92* 0.75* 0.66** 0.62** 0.60** 0.63*

[0.25] [0.25] [0.25] [0.24] [0.24] [0.24]
Smoothing ρ 0.81* 0.80* 0.81* 0.80* 0.80* 0.79*

[0.05] [0.05] [0.04] [0.04] [0.04] [0.04]
Inflation φπ -0.002 0.09 0.12* 0.14* 0.17* 0.17*

[0.05] [0.05] [0.04] [0.04] [0.05] [0.05]
Output Gap φx 0.24* 0.21* 0.19* 0.19* 0.19* 0.19*

[0.05] [0.05] [0.05] [0.05] [0.05] [0.05]
LR-Inflation γπ = φπ

1−ρ
-0.01 0.44 0.60** 0.71* 0.81* 0.82*
[0.28] [0.25] [0.25] [0.26] [0.27] [0.27]

LR-Output Gap γx =
φπ

1−ρ
1.30* 1.05* 0.98* 0.96* 0.94* 0.93*
[0.35] [0.28] [0.27] [0.25] [0.24] [0.23]

Ad j.R2 0.90 0.90 0.91 0.91 0.92 0.91
SEE 0.31 0.30 0.29 0.28 0.28 0.28
RSS 5.27 4.97 4.67 4.47 4.29 4.33
LL -12.17 -10.44 -8.52 -7.24 -5.97 -6.29
SC 0.68 0.62 0.56 0.51 0.47 0.48

AR (Far) 4.67* 4.39* 3.71* 3.42** 3.16** 3.19**
ARCH (Farch) 1.06 1.36 1.02 1.00 0.98 0.87

Normality (χ2(2)) 0.39 1.16 4.54 5.08 5.42 6.06**
Hetero (Fhet) 2.39** 1.68 0.82 0.69 0.75 0.97

Notes: The regression equation is

M1 : rt = c+ρrt−1 +φπ Etπt+h +φxEtxt+q + εt ,

for t = 1993Q1, ...,2007Q4, h =−1,0,1,2,3,4 and q =−1. LR: long run, SEE: standard error of the
regression, RSS: residual sum of squares, LL: log-likelihood, and SC: Schwarz criterion. The columns
correspond to different values of h. Standard errors are given in [.]. *p < 0.01 and **p < 0.05. The
autocorrelation test is the F-test suggested by Harvey (1990), normality test of Doornik and Hansen (2008),
unconditional homoscedasticity test of White (1980) and ARCH (Autoregressive conditional
heteroscedasticity) test of Engle et al. (1985).

The long-run responses of interest rate to inflation in all models are below unity, there-
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Table 2.4 Taylor Rule Estimates with IIS: 1992Q4-2007Q4, HP Output gap

h =−1 h = 0 h = 1 h = 2 h = 3 h = 4
Constant c 0.97* 0.74* 0.41** 0.37** 0.36** 0.38**

[0.18] [0.19] [0.17] [0.18] [0.17] [0.17]
Smoothing ρ 0.75* 0.77* 0.82* 0.82* 0.82* 0.81*

[0.04] [0.03] [0.03] [0.03] [0.03] [0.03]
Inflation φπ 0.08** 0.13* 0.19* 0.21* 0.23* 0.24*

[0.04] [0.03] [0.03] [0.03] [0.03] [0.04]
Output Gap φx 0.22* 0.19* 0.15* 0.16* 0.16* 0.16*

[0.04] [0.04] [0.03] [0.04] [0.03] [0.03]
LR-Inflation γπ = φπ

1−ρ
0.34** 0.58* 1.03* 1.16* 1.24* 1.27*
[0.14] [0.16] [0.23] [0.26] [0.26] [0.26]

LR-Output Gap γx =
φπ

1−ρ
0.88* 0.83** 0.84* 0.86* 0.87* 0.86*
[0.15] [0.16] [0.18] [0.19] [0.18] [0.18])

Ad j.R2 0.95 0.96 0.96 0.96 0.96 0.96
SEE 0.20 0.20 0.19 0.20 0.19 0.19
RSS 1.91 1.86 1.69 1.96 1.84 1.87
LL 18.35 19.03 21.90 17.46 19.48 18.97
SC 0.34 0.25 0.09 0.10 0.03 0.05

AR (Far) 2.53 3.51* 1.37 0.76 0.80 0.55
ARCH (Farch) 1.67 1.55 0.77 1.08 0.47 0.53

Normality (χ2(2)) 0.46 0.61 0.70 1.79 0.36 0.06
Hetero (Fhet) 1.69 1.67 0.71 0.24 0.57 0.54

NIIS 10 9 8 6 6 6

Notes: The regression equation is

M2 : rt = c+ρrt−1 +φπ Etπt+h +φxEtxt+q +
T

∑
i=1

βi1i=t + εt ,

for t = 1993Q1, ...,2007Q4, h =−1,0,1,2,3,4 and q =−1. NIIS: numbers of IIS retained. See footnotes in
Table 2.3 for more explanations.

fore not satisfying the Taylor principle. Although such a result is quite different from the one

documented in Nelson (2000), it is not unprecedented in the context of real-time data. For

instance, Mihailov (2006) obtains a corresponding value of 0.81 for the 1992Q4−1997Q1

period and 0.5 for the 1997Q2− 2001Q4 period. However, the mis-specification tests in

Table 2.3 reject the validity of the models without IIS. In the following part, we argue that

the results obtained from the M1-type models are likely misled by outliers and, thus, do not
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reflect properly the properties of U.K. monetary policy under inflation targeting.

2.4.2 Taylor Rules with IIS

To obtain the results which are robust to outliers, we estimate the Taylor rules with impulse

indicators for the same sample, 1992Q4−2007Q4, and present the results in Table 2.4. We

again find that forward-looking rules fit the data better than the other rules based on the

value of SC. Unlike the previous case without IIS, forward-looking rules with IIS pass all

mis-specification tests. More importantly, the responses to inflation in these rules satisfy

the Taylor principle. All estimated coefficients are also statistically significant regardless

of policy horizons. It appears that the three-period-ahead forward-looking rule is the best

explaining model of interest rate, which is similar to the previous case. In this rule, the

interest rate increases by 1.24 and 0.87 for an unexpected increase by 1 percent in inflation

and the output gap, respectively.

By comparing M2 with M1 for every corresponding pair of h, we see that SC favors M2 to

M1, therefore, suggesting that M2 fits the data better. More importantly, the above analysis

shows that the interpretation of historical policy decisions can be misleading because of not

taking outliers into consideration.

2.4.3 Quadratic Output Gap

As a robustness check, we replace the HP output gap by the quadratic gap and re-estimate

the models with and without IIS. Table 2.5 presents the results from the models without IIS

(M1). The long-run responses of interest rate to inflation are again below unity. However,

diagnostic tests reject the validity of these models.

We re-estimate the reaction functions but embed them with IIS (M2). The results in

Table 2.6 show that forward-looking rules capture the dynamics of interest rate better than

backward- and contemporaneous-looking rules. Moreover, in the best fitting rule, which is

the forward-looking rule with four-quarter-ahead expected inflation, the long-run response

to inflation is 1.24 which is similar to the estimate with IIS using the HP output gap. Mean-
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Table 2.5 Taylor Rule Estimates without IIS: 1992Q4-2007Q4, Quadratic Output gap

h =−1 h = 0 h = 1 h = 2 h = 3 h = 4
Constant c 1.26* 1.03* 0.88* 0.83** 0.80** 0.80**

[0.33] [0.33] [0.33] [0.33] [0.33] [0.34]
Smoothing ρ 0.75* 0.74* 0.76* 0.77* 0.76* 0.77*

[0.06] [0.06] [0.06] [0.06] [0.06] [0.06]
Inflation φπ 0.02 0.11** 0.13* 0.15* 0.17* 0.17*

[0.05] [0.05] [0.05] (0.05) [0.05] [0.06]
Output Gap φx 0.09* 0.08* 0.07* 0.07* 0.06* 0.06**

[0.02] [0.02] [0.02] [0.02] [0.02] [0.02]
LR-Inflation γπ = φπ

1−ρ
0.07 0.43** 0.56** 0.63** 0.72** 0.72**

[0.21] [0.21] [0.24] [0.26] [0.28] [0.31]
LR-Output Gap γx =

φπ

1−ρ
0.36* 0.31* 0.29* 0.28* 0.27* 0.26*
[0.08] [0.07] [0.07] [0.07] [0.07] [0.08]

Ad j.R2 0.88 0.89 0.90 0.90 0.90 0.90
SEE 0.32 0.31 0.30 0.30 0.29 0.30
RSS 5.86 5.40 5.10 4.98 4.87 5.07
LL -15.37 -12.88 -11.17 -10.49 -9.82 -11.03
SC 0.79 0.70 0.65 0.62 0.60 0.64

AR (Far) 7.47* 6.34* 5.23* 5.16* 5.10* 5.61*
ARCH (Farch) 1.76 1.21 0.59 0.63 0.66 0.67

Normality (χ2(2)) 6.83** 4.77 7.15** 6.91** 7.39** 7.91**
Hetero (Fhet) 1.38 1.23 0.77 0.77 0.79 0.88

Notes: The regression equation:

M1 : rt = c+ρrt−1 +φπ Etπt+h +φxEtxt+q + εt

for t = 1993Q1, ...,2007Q3, h =−1,0,1,2,3,4 and q =−1. See footnotes in Table 2.3 for more explanations.

while, the long-run output coefficient is equal to 0.20. The models with IIS are also shown

to fit the data better than those without IIS. The results confirm the importance of dealing

with outliers when studying historical policy decisions.

In summary, our findings are robust to different measures of real activity. Comparing the

two best-fitting rules: one with the HP output gap and the other with the quadratic output

gap, it appears that the former captures the movement of interest rate slightly better than the

latter in terms of SC.4 We therefore use the model with the HP output gap in the following

4The model with HP output gap also retains fewer number of indicators, which implies that its explanatory
variables can explain more the evolution of interest rate than those in the other model.



2.4 Results 18

Table 2.6 Taylor Rule Estimates with IIS: 1992Q4-2007Q4, Quadratic Output gap

h =−1 h = 0 h = 1 h = 2 h = 3 h = 4
Constant c 1.17* 0.89* 0.78* 0.49** 0.44 0.42

[0.27] [0.28] [0.27] [0.23] [0.22] [0.22]
Smoothing ρ 0.78* 0.79* 0.79* 0.82* 0.82* 0.82*

[0.05] [0.05] [0.05] [0.04] [0.04] [0.04]
Inflation φπ -0.003 0.09** 0.13* 0.19* 0.21* 0.22*

[0.04] [0.04] [0.04] [0.03] [0.04] [0.04]
Output Gap φx 0.09* 0.08* 0.07* 0.05* 0.05* 0.04**

[0.02] [0.02] [0.02] [0.02] [0.02] [0.02]
LR-Inflation γπ = φπ

1−ρ
-0.02 0.41 0.63* 1.04* 1.17* 1.24*
[0.20] [0.22] [0.23] [0.30] [0.32] [0.35]

LR-Output Gap γx =
φπ

1−ρ
0.43* 0.38* 0.32* 0.27* 0.26* 0.20*
[0.08] [0.08] [0.07] [0.07] [0.06] [0.07]

Ad j.R2 0.93 0.92 0.94 0.96 0.96 0.97
SEE 0.26 0.26 0.24 0.19 0.19 0.17
RSS 3.58 3.76 3.11 1.81 1.69 1.40
LL -0.56 -2.04 3.66 19.89 22.01 27.59
SC 0.50 0.48 0.36 0.16 0.09 0.04

AR (Far) 3.65** 3.70** 3.21** 0.43 0.45 1.26
ARCH (Farch) 0.27 1.17 1.69 0.57 0.45 1.07

Normality (χ2(2)) 1.98 0.51 0.05 1.80 1.46 1.93
Hetero (Fhet) 0.64 0.86 1.59 1.75 2.13 1.05

NIIS 3 2 3 8 8 10

Notes: The regression equation:

M2 : rt = c+ρrt−1 +φπ Etπt+h +φxEtxt+q +
T

∑
i=1

βi1i=t + εt

for t = 1993Q1, ...,2012Q1, h =−1,0,1,2,3,4 and q =−1. See footnotes in Table 2.4 for more explanations.

analysis.

2.4.4 Monetary Policy after the Operational Independence in 1997

The operational independence was granted to the Bank of England in May 1997. In this

context, it is interesting to investigate if monetary policy was different between the pre- and

post-1997 periods. To address this question, we conduct two exercises. First, we divide

the sample 1992Q4-2007Q4 into two sub-samples 1992Q4-1997Q2 and 1997Q3-2007Q4,
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estimate each sub-sample and then compare their results. Second, we employ the recursive

estimation to the 1992Q4-2007Q4 sample.

Table 2.7 Taylor Rule Estimates with IIS for Sub-Samples

1993Q1−1997Q2 1997Q3−2007Q4
Constant c 1.13** 0.24

[0.48] [0.31]
Smoothing ρ 0.68* 0.85*

[0.08] [0.04]
Inflation φπ 0.23* 0.22*

[0.07] [0.06]
Output Gap φx 0.15** 0.14

[0.05] [0.12]
LR-Inflation γπ = φπ

1−ρ
0.70** 1.43**
[0.26] [0.62]

LR-Output Gap γx =
φπ

1−ρ
0.49** 0.91
[0.22] [0.67]

Ad j.R2 0.88 0.96
SEE 0.19 0.21
RSS 0.45 1.54
LL 7.75 9.89
SC -0.06 0.24

AR (Far) 0.55 0.46
ARCH (Farch) 1.14 0.69

Normality (χ2(2)) 0.47 0.84
Hetero (Fhet) 0.87 1.34

NIIS 1 4

Notes: The regression equation:

M2 : rt = c+ρrt−1 +φπ Etπt+h +φxEtxt+q +
T

∑
i=1

βi1i=t + εt

for h = 3 and q =−1. See footnotes in Table 2.4 for more explanations.

Table 2.7 presents the results of the first exercise. Interestingly, the short-run responses

of interest rate to inflation and the output gap are similar between the two sub-samples:

0.22 and 0.15, respectively. However, the smoothing parameter increases to 0.85 after the

operational independence from 0.68 in the pre-independence. Consequently, the long-run

responses to inflation and the output gap rise in the post-independence. For an increase by
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1 percent in inflation, the long-run response of interest rate increased from only 0.7 percent

in the pre-1997Q2 period to 1.43 percent after that. The long-run response to the output gap

also doubles, but not statistically significant in the post-1997Q2 sub-sample.

Regarding the second exercise, Figure 2.1 plots the recursive estimate of the short-run

inflation coefficient with the 1992Q4-1995Q2 sample used for the initial estimation. It ap-

pears that the response to inflation increased consistently from 0.13 in 1995Q3 to 0.28 in

1997Q3, then stayed stable around that level for a relatively long period to the mid-2000s

before declining slightly. On the contrary, the short-run output gap coefficient reduced from

0.2 in 1995Q3 to 0.13 in 1997Q3 and remained stable at that level (Figure 2.2). Regarding

the smoothing coefficient, it fell to the lowest level of 0.68 in 1997Q3 from 0.78 in 1995Q3,

but went up gradually to 0.81 in 2007Q4 (Figure 2.3). It is more intuitive to look at the

long-run responses to inflation and the output gap which are presented in Figure 2.4. The

former has been above unity since 1997Q4, a few months after the operational indepen-

dence, and stayed around 1.2 until the end of the sample. Meanwhile, the long-run output

gap coefficient declined from 1.0 in 1995Q3 to 0.35 in 2000Q1, but went up continually to

0.9 by 2007Q4.

Based on these results, it is fair to say that monetary policy has responded stronger

to inflation since the granting of operational independence to the Bank of England. This

finding is in line with Adam et al. (2005).

2.4.5 Estimation Including the Recent Crisis Period

In the previous analysis we exclude the recent crisis period, the post-2007 sample, in order

to highlight the important characteristics of U.K. monetary policy under inflation targeting.

In this section, we examine the effects of taking this period into account. Table 2.8 presents

the estimates using the 1992Q4-2012Q1 sample. As it is shown, most of quarters in the

post-2007 sample are detected as outliers. Specifically, among 14 indicators retained, there

are 11 indicators belong to the 2007Q4-2012Q1 period.

The model performs well and passes all mis-specification tests. All estimates are statis-

tically significant in both the short run and long run. Most importantly, the results affirm that
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the long-run response to inflation is above unity, thus satisfying the Taylor principle. This

finding therefore corroborates our belief in the method applied and the results obtained.

Table 2.8 Taylor Rule Estimates with IIS for the 1993-2012 Period

Constant c 0.19**
[0.14]

Smoothing ρ 0.88*
[0.03]

Inflation φπ 0.16*
[0.03]

Output Gap φx 0.17*
[0.03]

LR-Inflation γπ = φπ

1−ρ
1.33*
[0.36]

LR-Output Gap γx =
φπ

1−ρ
1.39*
[0.20]

Ad j.R2 0.99
SEE 0.22
RSS 2.84
LL 17.82
SC 0.55

AR (Far) 1.33
ARCH (Farch) 0.47

Normality (χ2(2)) 0.62
Hetero (Fhet) 0.54

NIIS 14
1998Q4, 1999Q3-Q4,2007Q4
2008Q1,2008Q3-Q4,2009Q2
2010Q4,2011Q1-Q4, 2012Q1

Notes: The regression equation:

M2 : rt = c+ρrt−1 +φπ Etπt+h +φxEtxt+q +
T

∑
i=1

βi1i=t + εt

for t = 1993Q1, ...,2012Q1, h = 3, and q =−1. See footnotes in Table 2.4 for more explanations.
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2.4.6 Stability of the Post-1992 Inflation - An Empirical Evaluation

We discuss some possible explanations for the stability of the post-1992 inflation. First,

according to Clarida et al. (1998), the magnitude of the long-run inflation parameter γπ is key

to evaluate a central bank’s policy rule. If γπ > 1, when inflation rises, the real interest rate

increases, thus slowing the economy and reducing inflationary pressures. On the contrary,

with γπ < 1, though the central bank raises the nominal rate to respond to an unexpected

rise in inflation, it is not increased sufficiently to prevent the real rate from declining; thus

the self-fulfilling bursts of inflation and output may be possible. Consequently, an effective

policy rule should have γπ > 1. As it is regarded above, such a property is called the Taylor

principle. Clearly, the forward-looking rules with IIS satisfy this principle. Second, the

forward-looking rules appear to capture the movement of the interest rate better than the

others suggesting that the post-1992 monetary policy “leans against the wind”. This is

another important characteristic of an effective monetary policy as regarded by Taylor and

Williams (2011). Third, the smoothing parameter is found to be large and significant which

helps monetary authorities avoid the loss of credibility from sudden large policy reversals

(Clarida et al., 1998). Last but not least, the granting of instrument independence to the Bank

of England led to a stronger response to inflation which likely reflects the determination to

anchor inflation expectations, accordingly, contributing to keep inflation stable.

2.5 Conclusion

The study analyzed U.K. monetary policy under inflation targeting based on a real-time

Taylor-rule framework. It considered a wide range of rules including backward, contempo-

raneous, and forward-looking policy functions in order to address what rule describes best

the post-1992 conduct of monetary policy. Some important results were established. First,

we show the importance of dealing with outliers. Failing to do so misleads the features of

U.K. monetary policy under inflation targeting. Second, the robust characteristics of mon-

etary policy during this regime are forward-looking and rising the interest rate more than

unity to movements in inflation. Third, monetary policy apparently responds stronger to
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inflation after the operational independence. Based on these features of monetary policy,

the documented price stability under inflation targeting could be explained. Nonetheless,

the current study did not take into account some other issues such as the contemporane-

ous or forward-looking behavior of interest rate to the output gap or the role of asymmetric

preferences in policymaking. We hope to solve these shortcomings in future investigations.



Chapter 3

Modeling Changes in U.S. Monetary

Policy

3.1 Introduction

In a seminal paper, Clarida et al. (2000) show that U.S. monetary policy has been subject to

important changes in the postwar period. Specifically, the authors find that the pre-Volcker

monetary policy was greatly accommodative with the interest rate being raised less than the

increase in expected inflation, perhaps not satisfying the Taylor principle. The basic logic

behind this principle is that when inflation increases, monetary policy needs to raise the

real interest rate in order to slow the economy and reduce inflationary pressures (Taylor and

Williams, 2011). On the contrary, during the Volcker-Greenspan era, the anti-inflationary

stance of monetary policy was strong with an increase in expected inflation being associated

with a larger increase in the nominal interest rate.

The Clarida-Galí-Gertler results have been criticized in four main dimensions. The first

dimension is that a single break may not be a proper characterization of the evolution of

monetary policy. Boivin (2006) estimates a policy rule with time-varying parameters and

finds that the response to inflation was strong until the mid-1970s, became weak in the

remainder of the 1970s, and then rebounded to be strong in the early 1980s. Cogley and

Sargent (2005, 2001) obtain similar results.
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Regarding the second dimension, there have been arguments that it might not be mone-

tary policy but luck that changed between the pre- and post-Volcker periods. Sims and Zha

(2006), for instance, examine several multivariate regime-switching models for the U.S.

economy and show that the best fit is the one allowing time variation in disturbance vari-

ances only. The authors reckon that the observed changes of monetary policy before and

after 1979 can be attributed to the presence of heteroscedasticity.

The third dimension is about the type of data used: real-time data, i.e. the data available

to policymakers when making decisions, versus ex-post data. Orphanides (2001) argues

that using the latter misleads the properties of the historical conduct of monetary policy.

Orphanides (2002) estimates forward-looking Taylor rules, similar to those considered by

Clarida et al. (2000), with real-time data on inflation and unemployment and finds that

monetary policy during the 1970s was essentially similar with the period after that.

Finally, a number of studies have argued that monetary policy may respond asymmet-

rically to changes in the state of the economy due to asymmetric preferences of the central

bank with respect to inflation and/or real activity (see, e.g., Cukierman and Gerlach, 2003;

Nobay and Peel, 2003; Ruge-Murcia, 2003). Notably, Dolado et al. (2004) show that the

conduct of monetary policy in the Volcker-Greenspan regime could be characterized by an

asymmetric rule that induced deflationary bias. However, this does not hold for the Burns-

Miller regime. Contrary to Clarida et al. (2000), the authors do not find evidence that the

response of interest rate to inflation in the post-Volcker period was larger than unity.

The above studies highlight four issues that are apparently crucial in evaluating the evo-

lution of U.S. monetary policy: (i) the type of time-variation in policy parameters, (ii) the

treatment of heteroscedasticity, (iii) the real-time nature of data, and (iv) the role of asym-

metric preferences. This work, for the first time in the literature, takes all these issues

simultaneously into account. To do so, we first derive a model specification as the discre-

tionary outcome of the formal monetary policy design problem in which the central bank

displays asymmetric preferences. The coefficients of the derived policy rule are allowed to

vary over time, as in Boivin (2006) and Kim and Nelson (2006), in order to capture poten-

tial changes in policy parameters. Moreover, we deal with heteroscedasticity by assuming
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the standard deviation of monetary policy innovations to follow stochastic volatility pro-

cesses similar to Stock and Watson (2007) and Justiniano and Primiceri (2008). Finally,

following Orphanides (2001), we use real-time Greenbook forecasts for estimation. The

resulting econometric model is both time-varying and nonlinear with respect to parameters.

Therefore, the popular Kalman filter can not be utilized. To overcome this issue, we ap-

ply a novel approach, which has gained popularity in economics and econometrics recently,

called particle filtering (see, Creal, 2012; Doucet et al., 2001; Gordon et al., 1993).

Our findings suggest substantial changes in the response to inflation and real activity as

well as in the Fed’s preferences. Regarding the pre-Volcker period, the response to inflation

was not uniformly weak as typically assumed. It violated the Taylor principle only in the

second half of the 1970s, but not before that. This result is in line with Cogley and Sargent

(2005, 2001) and Boivin (2006). Moreover, we find that the pre-Volcker monetary policy

behaved as if possessing asymmetric preferences that could have caused inflationary bias in

the conduct of monetary policy. This evidence could help explain the great inflation during

this decade.

On the other hand, monetary policy in the post-Volcker era appears to have responded

symmetrically to inflation and real activity, thus less likely creating the type of inflationary

bias as before. Surico (2007) investigates changes in the Fed’s preferences before and after

1979 and obtains similar results. Nonetheless, a single-regime symmetric policy rule is not a

proper characterization for the post-Volcker monetary policy because there are considerable

differences in the response of interest rate to inflation and real activity between the 1980s

and the 1990s and thereafter period. In the former, monetary policy responded strongly to

inflation but weakly to real activity, as in line with Kim and Nelson (2006) and Clarida et al.

(2000), which implies a concentration of the Fed on stabilizing inflation. In contrast, once

inflation has been stabilized, the Fed has paid more attention to stabilizing real activity,

while hardly responding to inflation, since the early 1990s, which is broadly similar to

Martin and Milas (2010) and Fernández-Villaverde et al. (2010b, 2015) in terms of the

response to inflation and Kim and Nelson (2006) and Blinder and Reis (2005) in terms of

the response to real activity. Overall, our findings suggest that the conduct of U.S. monetary
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policy could have experienced important changes at the mid and late 1970s, and the early

1990s.

The study proceeds as follows. Section 3.2 discusses the formal monetary policy de-

sign problem in which the central bank’s loss function is asymmetric with respect to infla-

tion. Section 3.3 describes the empirical model with time-varying parameters and stochastic

volatility. The same section deals with how to apply particle filtering to estimate the model.

Section 3.4 presents the data, the empirical results, a number of robustness checks, and a

discussion on the evolution of monetary policy through the lens of our model. Section 3.5

concludes.

3.2 The Theoretical Model

The central bank chooses the interest rate to minimize the present discounted value of its

asymmetric loss function. This policy action is subject to the constraints imposed by the

structure of the economy, which includes two components: the forward-looking Phillips

curve and the IS curve.

3.2.1 The Loss Function

The loss function L(·) of the central bank is assumed to depend on the inflation gap, which

is the difference between inflation and its target πt − π∗, the output gap yt , which is the

gap between the actual output and the potential one, and the interest rate gap, which is the

distance between the interest rate level and the target it − i∗ (Surico, 2007; Tillmann, 2011).

Formally, the loss function takes the following form

Lt =
eα(πt−π∗)−α(πt −π∗)−1

α2 +
µ

2
(yt)

2 +
γ

2
(it − i∗)2, (3.1)

where α captures the asymmetry in the loss function with respect to inflation, µ and γ

are parameters representing the central bank’s preferences towards the output gap and the

deviation of the interest rate from its target. The preference to inflation is normalized to
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one. This specification of the loss function is called the linex function proposed by Varian

(1975) and introduced to the optimal monetary policy literature by Nobay and Peel (2003).

The loss function (3.1) differs from the conventional quadratic set-up in the way it deals
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Fig. 3.1 Preference over Inflation Stabilization

with inflation deviations. For α > 0, when inflation is above the target, the exponential

term of the loss function eα(πt−π∗) dominates the linear term α(πt −π∗), so the value of the

loss function rises exponentially. However, if inflation is below the target, the linear term

dominates the exponential term and the value of the loss function increases linearly. This

implies that, for α > 0, positive deviations of inflation relative to the target are more costly

than negative deviations. In this case, the central bank can be said to have deflationary

bias. In contrast, for α < 0, negative deviations cause a greater loss than positive deviations.

This case reflects the view of the central bank that deflation is more costly than inflation.

Therefore, the central bank can be characterized as possessing inflationary bias. Another

interesting feature is that when α approaches zero, the loss function becomes the common

quadratic form. The quadratic loss function is thus a special case of the loss function (3.1).

Figure 3.1 illustrates the above cases.
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3.2.2 The Structure of the Economy

The structure of the economy imposes constraints to the policy action. This structure in-

cludes the following two components

πt = βEtπt+1 +κyt + ε
s
t , (3.2)

yt = Etyt+1 −ϕ(it −Etπt+1)+ ε
d
t , (3.3)

which represent the equilibrium conditions of the standard New Keynesian model. The

reader is referred to Woodford (2003, Chapter 3) and Galí (2008, Chapter 3) for a complete

derivation. Equation (3.2) is called the forward-looking Phillips curve. It is built from the

Calvo-type staggered nominal price setting in which only a fraction of firms are allowed to

reset their prices in any given period, whereas the others are constrained to keep their pre-

vailing prices. When a firm has a chance to re-optimize, it chooses the price that maximizes

the present discounted value of its profits subject to constraints on the frequency of future

price changes. Because of common marginal costs, all firms that change their prices choose

the same price. Inflation thus relies entirely on current and expected future economic con-

ditions. Specifically, it relates to the current output gap and expected inflation. Regarding

the equation’s parameters, β < 1 is the discount factor and κ is the slope coefficient of the

Phillips curve.

The second equation (3.3) is the log-linearized consumption Euler equation which is de-

rived from the household’s optimal consumption decision and the market clearing condition.

This equation shows that the current output gap depends on the expected future output gap

and the real interest rate. A higher level of expected future output leads to a greater level of

current output because of the consumption smoothing behavior, whereas a higher real inter-

est rate lowers the current output owning to the intertemporal substitution of consumption.

The interest elasticity ϕ corresponds to the intertemporal elasticity of substitution. Finally,

εs
t and εd

t are cost and demand disturbances.
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3.2.3 Asymmetric Policy Rule

Central bankers conduct monetary policy to minimize the expected value of a loss criterion

of the form

W = Et

∞

∑
i=1

β
iLt+i, (3.4)

subject to the forward-looking Phillips curve (3.2) and the IS curve (3.3).

It is assumed that central bankers are unable to make any kind of commitment over the

course of future monetary policy. Instead, they take private sector expectations as given and

execute policy under discretion. According to Clarida et al. (1999), this scenario seems to

accord best with reality. Given this assumption, the Lagrangian of the policy problem is

written as follows

Min
πt ,yt ,it

Et

{eα(πt−π∗)−α(πt −π∗)−1
α2 +

µ

2
(yt)

2 +
γ

2
(it − i∗)2

−φ
π
t (πt −κyt − ε

s
t )−φ

y
t (yt +ϕit − ε

d
t )
}
,

where φ π
t and φ

y
t are the Lagrange multipliers. It is straightforward to obtain the following

first-order conditions

Et(µyt +φ
π
t κ −φ

y
t ) = 0,

Et [γ(it − i∗)−φ
y
t ϕ] = 0,

Et

{eα(πt−π∗)−1
α

−φ
π
t

}
= 0.

Using these conditions, we obtain

Et

{eα(πt−π∗)−1
α

+
µ

κ
yt −

γ

ϕκ
(it − i∗)

}
= 0. (3.5)
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Based on (3.5), the central bank sets the interest rate according to

it = i∗+Et

{eα(πt−π∗)−1
α

ϕκ

γ
+

µϕ

γ
yt

}
,

and the above expression can be approximated as

it = i∗+Et

{
(πt −π

∗)
ϕκ

γ
+(πt −π

∗)2 αϕκ

2γ
+

µϕ

γ
yt

}
= i∗+

ϕκ

γ
Et(πt −π

∗)+
αϕκ

2γ
Et(πt −π

∗)2 +
µϕ

γ
Etyt .

(3.6)

The expectations operator in (3.6) implies that the policy action is taken before the realiza-

tion of inflation and the output gap. Therefore, the central bank chooses the interest rate

at time t based on its expectations on the relevant variables conditional on the information

available at that period. Let πt|t , σ2
πt |t , yt|t be the nowcasts of inflation, the variance of

inflation, and the output gap, respectively. Equation (3.6) can be re-written as

it = a0 +a1πt|t +a2σ
2
πt |t +a3yt|t . (3.7)

where a0 = i∗− ϕκ

γ
π∗, a1 = ϕκ

γ
, a2 = αϕκ

2γ
, and a3 = µϕ

γ
. Note that when α approaches

zero, so does a2, the reaction function (3.7) collapses to a standard interest rate rule in

which the interest rate responds symmetrically to the deviations of inflation and output from

their targets. Equation (3.7) therefore nests the symmetric form as a special case. In the next

section, we describe how to fit (3.7) to data.

3.3 The Empirical Model

The empirical counterpart of the theoretical model (3.7) is written as follows

it = ρt it−1 +(1−ρt)(a0,t +a1,tπt|t +a2,tσ
2
πt |t +a3,tyt|t)+ exp(a4,t)εt , (3.8)

ρt =
1

1+ exp(−a5,t)
, (3.9)



3.3 The Empirical Model 33

ak,t = ak,t−1 + exp(σak)εak,t , k = 0,1, ...,5, (3.10)

where εt ∼ i.i.d.N(0,1) and εak,t ∼ i.i.d.N(0,1) for k = 0,1, ...,5. The innovations, εt and

εak,t for k = 0,1, ...,5, are independent.

This empirical model deals with the four issues raised in the literature on modeling

monetary policy. First, its specification takes into consideration the asymmetric issue in

monetary policy. Second, parameters are allowed to vary over time to capture potential

changes in the conduct of monetary policy. Third, the issue of heteroscedasticity is treated

by modeling the standard deviation of monetary policy innovations by a stochastic volatility

process. Finally, the model is fitted with real-time data, as will be discussed below. It is also

worth noting other features of the model. Following Clarida et al. (1999), the lag of interest

rate is included as an explanatory variable to capture the observed smoothing of interest rate.

Moreover, the smoothing parameter ρt is constrained to be positive but smaller than unity

and then transformed to the real line by the logit transformation as in line with Kim and

Nelson (2006). For the time-variation of parameters, it is assumed to follow random walk

dynamics similar to Cogley and Sargent (2005) and Boivin (2006), among many others.

Substituting (3.9) into (3.8) yields

it =
1

1+ exp(−a5,t)
it−1 +

exp(−a5,t)

1+ exp(−a5,t)
(a0,t +a1,tπt|t +a2,tσ

2
πt |t +a3,tyt|t)

+exp(a4,t)εt ,

(3.11)

The combination of (3.10) and (3.11) generates a state-space system. In this system, the state

model (3.10) describes the evolution of the state vector xt = [a0,t ,a1,t ,a2,t ,a3,t ,a4,t ,a5,t ]
′ and

the measurement model (3.11) relates the noisy measurement it to the state. In order to

facilitate the analysis, the state-space system is written in its probabilistic form as follows

xt = h(xt−1,wt ;ϖ), (3.12)

it = g(xt ,εt ;ϖ ,At), (3.13)

where wt = [ε0,t ,ε1,t ,ε2,t ,ε3,t ,ε4,t ,ε5,t ]
′ is the vector of state noises, which has a multivariate
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normal distribution with zero mean and identity covariance matrix, ϖ = [σa0,σa1,σa2,σa3,

σa4,σa5]
′ presents the set of time-invariant parameters, and At = [it−1,πt|t ,yt|t ,σ

2
πt |t ] includes

observed inputs. To ease notation, in what follows we drop At without any loss of generality.

The functions h(·) and g(·) come from the equations that characterize the behavior of the

model, which are (3.10) and (3.11), respectively.

We aim to estimate the evolution of state variables given the sequence of received mea-

surement. In order to do so, it is required to construct the posterior probability density

function of the state vector. However, the constraint on the smoothing parameter and the

stochastic volatility of monetary policy shocks generate nonlinearities in the system, pre-

venting us from using the well-known Kalman filter and, thus, completing the estimation.

To deal with the nonlinearities, we apply the approach called the particle filter, which is

proposed by Gordon et al. (1993). The key idea of particle filtering is to represent the re-

quired posterior density function by a set of random samples with associated weights and to

compute estimates based on these samples and weights (Ristic et al., 2004).

Before we go into the details of the algorithm, let us introduce Xt = {x j, j = 0, ..., t} and

It = {i j, j = 0, ..., t} which represent the sequences of all states and available measurements,

respectively, up to time t. The joint posterior density at time t is denoted by p(Xt |It) and

its marginal is p(xt |It). Let {Xk
t ,ω

k
t }N

k=1 denote a random measure that describes the joint

posterior p(Xt |It) where {Xk
t ,k = 1, ...,N} is a set of support points with associated weights

{ωk
t ,k = 1, ...,N}. The weights are normalized by dividing each by their sum. Thus, the

joint posterior distribution at t can be approximated by

p(Xt |It)≈
N

∑
k=1

ω
k
t δ (Xt −Xk

t ), (3.14)

where δ (.) is the Dirac delta measure. The normalized weights ωk
t are chosen by applying

the principle of importance sampling in which Xk
t is drawn from an importance density

q(Xt |It)

ω
k
t ∝

p(Xk
t |It)

q(Xk
t |It)

. (3.15)
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If the importance density is chosen so that it can be factorized by

q(Xt |It), q(xt |Xt−1, It)q(Xt−1|It−1), (3.16)

then the samples Xk
t ∼ q(Xt |It) can be achieved by augmenting each of the existing samples

Xk
t−1 ∼ q(Xt−1|It−1) with the new state xk

t ∼ q(xt |Xk−1, Ik). At time step t when a measure-

ment it becomes available, the posterior density p(Xt |It) can be updated from p(Xt−1|It−1)

by

p(Xt |It) =
p(it |Xt , It−1)p(Xt |It−1)

p(it |It−1)

=
p(it |Xt , It−1)p(xt |Xt−1, It−1)p(Xt−1|It−1)

p(it |It−1)

=
p(it |xt)p(xt |xt−1)p(Xt−1|It−1)

p(it |It−1)

∝ p(it |xt)p(xt |xt−1)p(Xt−1|It−1). (3.17)

Substituting (3.16) and (3.17) into (3.15) yields the weight update equation

ω
k
t ∝

p(it |xk
t )p(xk

t |xk
t−1)p(Xk

t−1|It−1)

q(xk
t |Xk

t−1, It)q(X
k
t−1|It−1)

= ω
k
t−1

p(it |xk
t )p(xk

t |xk
t−1)

q(xk
t |Xk

t−1, It)
.

Moreover, by choosing the importance density to depend only on xt−1 and it , the weights

are given by

ω
k
t ∝ ω

k
t−1

p(it |xk
t )p(xk

t |xk
t−1)

q(xk
t |xk

t−1, it)
.

In this study, we use the bootstrap filtering proposed by Gordon et al. (1993) in which

q(xt |xt−1,zt) = p(xt |xt−1). Therefore,

ω
k
t ∝ ω

k
t−1 p(it |xk

t ).
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Given these weights, the marginal posterior density p(xt |It) can be approximated as

p(xt |It)≈
N

∑
k=1

ω
k
t δ (xt −xk

t−1). (3.18)

As N → ∞ the approximation (3.18) approaches the true marginal posterior density p(xt |It)

(Ristic et al., 2004). Based on this posterior density, we estimate the state vector as its

conditional mean.

It is however worth emphasizing that, given the importance function of the form (3.16),

the variance of importance weights can only increase over time, thus leading to the degen-

eracy problem (Ristic et al., 2004). Therefore, resampling that replaces the samples with

low importance weights by those with high importance weights is required. There are many

different resampling schemes, which can be referred to Doucet and Johansen (2009), but

we use the systematic resampling method because it is easy to apply and outperforms other

resampling schemes in most cases (Doucet and Johansen, 2009).

Moreover, a by-product of the particle filter is that the likelihood can be approximated

by using the weights ω i
t

p(IT ;ϖ)≈
T

∏
i=1

(
N

∑
i=1

ω
i
t

)
. (3.19)

Appendix B.1 presents the details of this approximation. Once the likelihood is evaluated,

we can use the maximum likelihood approach to estimate ϖ , the vector of time-invariant

parameters.

Note that particle filtering generates an approximation to the likelihood function that is

not differentiable with respect to the parameters because of the inherent discreteness of the

resampling step. Therefore, Newton’s type algorithms, based on derivatives, are not ap-

plicable. Nguyen (2015) and van Binsbergen et al. (2012) deal with this issue by using the

covariance matrix adaption evolutionary strategy (CMA-ES) because this optimization algo-

rithm is designed to cope with objective functions that are non-linear, non-convex, rugged,

multimodal as well as with those having other difficult conditions (Hansen, 2011). Follow-

ing these papers, we employ the CMA-ES to obtain the maximum-likelihood estimates of

ϖ .
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3.4 Data and Empirical Results

3.4.1 Data

The estimation of state-space system described by (3.10) and (3.11) require data for the

nominal interest rate, expected inflation, the expected variance of inflation, and the ex-

pected output gap. For the nominal interest rate it , we use the effective federal funds rate

extracted from the FRED economic data. For the expected value of inflation πt|t , we use

the Greenbook forecasts of the current-quarter annualized percentage change in the GNP

or GDP deflator. The expected variance of inflation σ2
πt |t is not available, we discuss the

construction of this series in Section 3.4.2. For the expected output gap yt|t , we proxy it by

the unemployment gap for two reasons. First, because of repeated changes in the base year,

no consistent time series of predicted real GDP or GNP can be derived from the Greenbook

over the sample (Boivin, 2006). Second, maximum employment is one of the objectives of

monetary policy clearly written in the Federal Act, thus the unemployment rate should be

taken directly into the policy function. We define the unemployment gap as the difference

between the natural rate of unemployment and the forecasted unemployment rate, therefore

the sign of the unemployment gap is consistent with that of the conventionally-defined out-

put gap. While the forecast of contemporaneous unemployment rate is collected directly

from the Greenbook, the natural rate of unemployment is measured by a 5-year moving

average of unemployment rate as in Bernanke and Boivin (2003). We name this proxy

the 5-year moving average unemployment gap. Because of uncertainties in the real-time

measures of real activity, we investigate the robustness of the baseline results to different

measures of real activity, including the expected output gap per se.

The sample of the above data is from 1965Q4 to 2007Q4. The starting point coincides

with the first period that predictions were recorded in the Greenbook, while the ending point

is the latest period available. Note that the Greenbook forecasts are made publicly available

with a 5-year lag. We also use monthly data of inflation and unemployment from 1948M1 to

2007M9 for the constructions of the expected variance of inflation and the expected variance

of output gap, which we describe next.
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3.4.2 Expected Variance of Inflation

Bollerslev (1986) and Dolado et al. (2004) obtain the conditional variance of inflation with

ex-post revised data by estimating inflation dynamics using a GARCH(1,1) model. Because

of the real-time data issue, i.e. inflation at time t can be only observed with a lag, we

modify this GARCH procedure in two ways. First, we estimate a specification of inflation

dynamics with GARCH(1,1) errors using information available at that time. Second, based

on the estimated GARCH process, we forecast the contemporaneous variance of inflation.

This procedure is conducted recursively from 1965Q4 to 2007Q4.

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

0.1

0.2

0.3

0.4

0.5

Fig. 3.2 Expected Variance of Inflation

Notes: The expected variance of inflation is computed by applying the four-step procedure described in
Section 3.4.2, with the number of lags of inflation set equal to three and the output gap yt proxied by the
five-year moving average gap in Equation (3.20).

We use the following specification of inflation dynamics

πt = c+
n

∑
i=1

βiπt−i +ζ yt + εt , (3.20)

εt = σπ,tzt , (3.21)

σ
2
π,t = α0 +α1ε

2
t−1 +β1σ

2
π,t−1. (3.22)

Equation (3.20) is derived from (3.2) by substituting Etπt+1 by a linear combination of the
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lags of inflation. According to Rudebusch (2001), Equation (3.20) is fairly successful in

capturing the dynamics of inflation in the U.S. economy. This specification is also similar

to the one used in Bollerslev (1986) and Dolado et al. (2004).

As mentioned above, we proxy yt by the unemployment gap. Because data on inflation

and unemployment are available at the monthly frequency, we utilize this advantage to in-

crease the number of observations, which most likely benefits GARCH-based estimations.

We assume that the variance of inflation of quarter t is nowcasted using the information

available at the first month of that quarter. This assumption is in line with the Greenbook

forecasts because they are often published by the end of the first month or the middle of the

second month of a quarter.

We detail the procedure to forecast the contemporaneous variance of inflation series as

follows:

Step 0, Initiation: We start with the 1965Q4 period, set i 1965Q4.

Step 1, Estimation: Let Ii be the information set at time i which includes monthly inflation

and the output gap (proxied by the unemployment gap) from 1948M1 to the last month

of the quarter i−1. Given Ii, Equation (3.20) is estimated with GARCH(1,1) errors.

Step 2, Forecast: Based on the estimated-GARCH process, we forecast the conditional

variances of inflation for the three months of quarter i. Take the average of those

forecasts and save it as σ2
πi|Ii

.

Step 3, Termination: If i ̸= 2007Q4, move to the next period i = i+ 1 and follow step 1.

Otherwise, the procedure stops and we collect the expected variance of inflation σ2
πi|Ii

for i = 1965Q4, ...,2007Q4.

Figure 3.2 present one of the measures of the expected variance of inflation estimated

by applying the above four-step procedure with three lags of inflation (n = 3) and the output

gap (yt) proxied by the 5-year moving average unemployment gap. Overall, we observe that

the expected variance of inflation has changed considerably over time. Specifically, it was

around 0.05 in the late 1960s and the first half of the 1970s, then increased substantially in
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Table 3.1 Summary Statistics for Forecasts of Inflation Variance: 1965Q4-2007Q4

M0 M1 M2 M3 M4 M5
Means 0.102 0.100 0.104 0.102 0.099 0.098

Standard deviations 0.055 0.056 0.059 0.058 0.051 0.052
Correlation matrix

M0 1.000 0.994 0.993 0.991 0.992 0.988
M1 0.994 1.000 0.984 0.995 0.987 0.995
M2 0.993 0.985 1.000 0.993 0.978 0.973
M3 0.991 0.995 0.993 1.00 0.978 0.984
M4 0.992 0.987 0.978 0.978 1.000 0.994
M5 0.988 0.995 0.973 0.984 0.994 1.000

Notes: The table reports the means, the standard deviations and the correlation matrix of different estimates
of the expected variance of inflation by applying the four-step procedure outlined in Section 3.4.2. The
measures are different in terms of the number of lags of inflation (n) and the measure of output gap (yt ) used
in Equation (3.20). The measure M0 is associated with three lags of inflation n = 3 and the output gap yt

proxied by the five-year moving average unemployment gap. For M1, n = 6 and yt proxied by the five-year
moving average unemployment gap. For M2, n = 3 and yt proxied by the historical average unemployment
gap. For M3, n = 6 and yt proxied by the historical average unemployment gap. For M4, n = 3 and yt proxied
by the three-year moving average unemployment gap. Finally, for M5, n = 6 and yt proxied by the three-year
moving average unemployment gap.

the mid-1970s. It reduced gradually to the level of 0.05 by 2000s, but rose again after that

and reached a peak in 2007Q1.

We also consider alternative proxies of the output gap and different numbers of lags of

inflation used in Equation (3.20) and summarize all the results in Table 3.1. As it can be

seen, these forecasts are very similar, thus corroborating our constructed series.1 For the

estimation of the baseline model, we use the measure depicted in Figure 3.2.

3.4.3 Results for the Baseline Model

We proceed to analyze the estimation results, with a particular interest in the responses

of interest rate to real activity, inflation, and the variance of inflation.2 Figure 3.3 reports

the response to real activity. We observe that the response was positive and statistically

1The results remain similar if we substitute the real activity variable yt in (3.20) by a linear combination of
its lags.

2The estimates of time-invariant parameters are presented in Appendix B.2.
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significant in the 1970s in line with Clarida et al. (2000). In the 1980s, it decreased and

became insignificant, particularly in the second half of the decade. In the early 1990s, the

response to real activity experienced a substantial increase from just above 1.0 in 1990 to

approximately 2.0 from 1995 onwards, which implies that the Fed paid more attention to

real activity since then. This result is in line with Blinder and Reis (2005) who find that

monetary policy under the Greenspan regime responded stronger to unemployment than the

policy under the Volcker period. Kim and Nelson (2006) also obtain similar results when

estimating a time-varying parameter model using ex-post data.

The response to inflation is depicted in Figure 3.4. The pre-1979 response to inflation

was not uniformly weak as typically assumed. It was above unity until 1975, then decreased

considerably and went below unity, particularly between 1976 and 1978. This property of

the pre-1979 monetary policy is surprisingly consistent with Boivin (2006) and Cogley and

Sargent (2005, 2001). Based on narrative evidence, Romer and Romer (1989) also point

out that the actual commitment of the Fed to combat inflation appeared to have been weak

in the 1976-1978 period. In 1979Q3, Paul Volcker was appointed Chairman of the Fed,

the response to inflation became strong, which is in line with the findings of Clarida et al.

(2000) and Romer and Romer (1989). However, the main shift under the Volcker’s tenure

seems to have happened during the 1981-1982 period as documented by Boivin (2006). The

inflation coefficient was mainly above unity to the early 1990s, then fell and has become not

significant by the mid-1990s. This finding could be surprising given the fact that inflation

has continued staying at low and stable levels in the 1990s and thereafter. In Section 3.4.5,

we provide a discussion about this point. For the moment, we just note that the finding of

a weak response to inflation in the post-1990 period is not unprecedented in the literature.

Martin and Milas (2010) test the opportunistic approach in the U.S. and obtain a similar

result. Fernández-Villaverde et al. (2010b, 2015) estimate a DSGE model with drifting pa-

rameters and stochastic volatility for the U.S. economy and find that the post-1990 response

to inflation was weak.

Regarding the response to inflation variance, Figure 3.5 shows that it was negative and

statistically significant in the pre-1979 period, but not statistically different from zero in
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the post-1979 period. These results therefore suggest that the Fed in the pre-1979 period

behaved as if having asymmetric preferences in the sense that negative inflation gaps are

considered to be more costly than positive gaps of the same absolute size. In other words,

deflation was thought to be more costly than inflation. Meanwhile, the post-1979 monetary

policy could be characterized by symmetric rules. Our results are broadly similar to Surico

(2007) who investigates changes in asymmetric preferences of the Fed before and after 1979.

The smoothing parameter and the standard deviation of monetary policy shocks also

vary over the sample as displayed in Figure 3.6. Regarding the former, it was large and stable

from the mid-1980s to the mid-1990s, which suggests that the interest rate was persistent

during these periods. The smoothing parameter then decreased and reached the bottom in

the early 2000s, before returning to the high level of persistence at the end of the sample.

Concerning the standard deviation of monetary policy shocks, it has become lower and

more stable since the mid-1980s. This result therefore affirms the importance of taking

heteroscedasticity into account as emphasized by Sims and Zha (2006).

3.4.4 Robustness Checks

We study the robustness of the results in the baseline model along two dimensions: alterna-

tive measures of real activity and another model specification with asymmetric preferences

with respect to both inflation and output gap.

Real Activity Measures

In the baseline model, we proxy the output gap by the difference between a 5-year mov-

ing average of unemployment rate and the expected contemporaneous unemployment rate.

Because there is no guarantee that this proxy corresponds to the real activity measure per-

ceived by policymakers, it is important to investigate how robust the results are with respect

to different measures of the output gap.

First, we consider two alternative measures of the natural rate of unemployment: a his-

torical average and a 3-year moving average (Boivin, 2006), leading to the two different

measures of unemployment gap. The estimates with these alternatives are presented in Fig-
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Fig. 3.3 Response to Real Activity
Note: Dashed lines are 68% and 90% percentile intervals.
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Fig. 3.4 Response to Inflation
Note: Dashed lines are 68% and 90% percentile intervals.
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Fig. 3.5 Response to Inflation Variance
Note: Dashed lines are 68% and 90% percentile intervals.
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(b) Stochastic Volatility
Fig. 3.6 Interest Rate Smoothing Degree and Stochastic Volatility

Note: Dashed lines are 68% and 90% percentile intervals.

ures 3.7 and 3.8, respectively. The response to inflation follows the similar path regardless

of the measure used. In terms of the response to real activity, the one with the 3-year moving

average unemployment gap was not distinguishable from zero in the 1980s. Meanwhile, the

one with the historical average unemployment gap was statistically significant over the sam-

ple; although, it was only marginally significant in the second half of the 1980s. However,

both cases affirm that the Fed has responded stronger to real activity since the early 1990s.

For the coefficient on the inflation variance, it was negative and significant in the 1970s,

then has became insignificant since the early 1980s. Overall, the results are similar to those

in the baseline model.

We have so far considered the unemployment rate as a proxy for the output gap be-
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cause, as mentioned previously, it is built from a time series that has a consistent definition

throughout the sample. Though this is not the case for real GDP- or GNP-based measures.

In this robustness check, we conduct the estimation with the output gap per se, which is the

HP output gap, and then compare the results obtained with those in the baseline model. In

order to do so, we need to construct the expected contemporaneous real-time HP output gap

series. This step is described in Appendix B.3 and the constructed series is shown in Figure

3.9 together with the above measures of unemployment gap. As can be seen in the figure,

the HP output gap series shows a similar trend with the measures based on unemployment.

We then re-estimate the state-space system in Section 3.3 using this HP output gap series

and display the results in Figure 3.10. The main finding is that the evolving path of the esti-

mated responses using the HP output gap are similar with those documented in the baseline

model. Thus, the results drawn are not sensitive to the output gap measure.

Asymmetric Preferences to Both Inflation and Output Gap

So far, we have considered asymmetric preferences with respect to inflation. However, the

central bank may also react asymmetrically to real activity, for instance, a negative output

gap may be considered more costly than a positive gap of the same absolute size. This kind

of asymmetry is studied in Ruge-Murcia (2003) and Cukierman and Gerlach (2003). For

this reason, we modify the loss function in Equation (3.1) to include a linex function of the

output gap as follows

Lt =
eα(πt−π∗)−α(πt −π∗)−1

α2 +µ(
eλyt −λyt −1

λ 2 )+
γ

2
(it − i∗)2, (3.23)

where λ captures the asymmetry in the loss function with respect to the output gap and other

notations are the same as in (3.1).

By following the steps in Section 3.2.3, we derive a policy rule in which the interest rate

responds to inflation, output gap, the variance of inflation and the variance of output gap.3

3Appendix B.4 presents the derivation in detail.
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Fig. 3.7 Robustness Check with Three-Year Moving Average Unemployment Gap

Note: Dashed lines are 68% and 90% percentile intervals.
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(c) Response to Inflation Variance
Fig. 3.8 Robustness Check with Historical Average Unemployment Gap

Note: Dashed lines are 68% and 90% percentile intervals.
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Fig. 3.9 Measures of Real Activity for the Contemporaneous Quarter.

The corresponding empirical model is then given by

it =
1

1+ exp(−b6,t)
it−1+

exp(−b6,t)

1+ exp(−b6,t)
(b0,t +b1,tπt|t +b2,tσ

2
πt |t +b3,tyt|t +b4,tσ

2
yt |t)+exp(b5,t)εt

(3.24)

and the state vector becomes xt = [b0,t ,b1,t ,b2,t ,b3,t ,b4,t ,b5,t ,b6,t ]
′.

The estimation of (3.24) requires the data of the expected variance of output gap which is

not available. We describe the construction of this series in Appendix B.4.1. Other variables

remain as in the baseline model.

Figure 3.11 presents the time-varying parameter results. It is apparent that the response

to inflation, output gap, and the variance of inflation are essentially similar with those in the

baseline model. Meanwhile, the response to the variance of output gap is mostly insignif-

icant over the sample. Overall, the results are again in line with those documented in the

baseline model.

3.4.5 Discussion

Our discussion focuses on two issues. First, based on the empirical results, we interpret how

inflation stabilization was achieved. This is accomplished by addressing crucial differences

in the conduct of monetary policy between the pre-Volcker period and the Volcker period.

Second, we provide an interpretation of monetary policy in the post-1990 period that appears
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Fig. 3.10 Robustness Check with HP Output Gap
Note: Dashed lines are 68% and 90% percentile intervals.
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Fig. 3.11 Robustness Check with Asymmetric Preferences to Both Inflation and Output Gap

Note: Dashed lines are 68% and 90% percentile intervals.
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to have responded weakly to inflation.

We begin with the issue on inflation stabilization. Our results suggest that this achieve-

ment can be attributed to both changes in the direct response to inflation, as suggested

by Clarida et al. (1999, 2000), Cogley and Sargent (2005, 2001), and Boivin (2006), and

changes in preferences, as put forward by Cukierman and Gerlach (2003), Dolado et al.

(2004), and Surico (2007). Regarding the former, the response to inflation was weak in

the second half of the 1970s, which likely contributed to the high level of inflation during

this era. In contrast, the strong response to inflation in the 1980s played a role in bringing

inflation down and keeping it stable. Nevertheless, this explanation may not be completely

satisfactory because the confidence bounds of the estimated coefficient on expected inflation

suggest that monetary policy between the pre-Volcker period and the Volcker years were not

essentially different as indicated by the point estimates. Moreover, the pre-1975 inflation is

hardly explained if we rely only on the direct response to inflation.

It appears that the Fed’s preferences changed in the late 1970s as well. Prior to that,

the Fed’s behavior was seemingly asymmetric in the sense that negative inflation deviations

from the target are considered to be more costly than positive ones of the same magnitude.

This asymmetry led to inflationary bias in the conduct of monetary policy, which might

have accounted for the great inflation during this decade. On the contrary, we do not find

the evidence of such an inflationary bias from the early 1980s onwards.

If so, the question that arises is what made the Fed’s preference shift. According to

De Long (1997), the Fed in the 1970s did not have enough autonomy to control inflation.

The author provides extensive narrative evidence about the influence of Nixon’s administra-

tion on the Chairmanship of Burns at the Fed. Among those is the following conversation

between Richard Nixon (the speaker) and Arthur Burns (the listener), reported in Ehrlich-

man (1982), on October 23 1969, after Nixon had announced his intention to nominate

Burns to replace Martin as chairman of the Fed:

I know there’s the myth of the autonomous Fed... [short laugh] and when you go

up for confirmation some Senator may ask you about your friendship with the

President. Appearances are going to be important, so you can call Ehrlichman
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to get messages to me, and he’ll call you (Ehrlichman, 1982, p.248-249 cited in

De Long, 1997, p.263).

The Fed was therefore quite sensitive to the concerns of political authorities, who were not

willing to accept the possibility of recession to lower inflation given the prevailing view of a

permanent negative trade-off between unemployment and inflation at the time. Disinflation

might have been thought to be more costly than inflation, so that it would be better not

to reduce inflation or to do so substantially gradually (Taylor, 1997). However, given fear

about the possibility of unanchored structure of expectations and the permanent double-

digit inflation, fighting inflation by inducing a significant recession actually became the

Fed’s mandate in 1979 (De Long, 1997). This implies a greater independence of the Fed

since then. In addition, Taylor (1992) argues that changes in the perceptions of how the

economy works at the early 1980s, which rejects the trade-off view between unemployment

and inflation, provided more impetus to curb inflation. For these reasons, the post-1980

monetary policy less likely created inflationary bias than it used to do in the 1970s.

We continue with the interpretation of the post-1990 conduct of monetary policy. In

short, the inflation coefficient began to fall at the beginning of the 1990s, becoming sta-

tistically insignificant by the mid-1990s (Figure 3.4), while the response to real activity

increased substantially. These features appear to be consistent with the opportunistic ap-

proach to disinflation in conducting monetary policy. The idea of this approach is that if

inflation stays within a range around a target, the interest rate should not respond to infla-

tion, but rather should wait for external circumstances to bring inflation back to the target.

In this case, the focus is on stabilizing output (Orphanides and Wilcox, 2002).

Although the response to inflation variance has been insignificant since the early 1980s,

its point estimate seems to be relevant to the opportunistic approach as well. Specifically,

the estimate increased substantially from the mid-1990s and has been mainly above zero

since the early 2000s (Figure 3.5) (with the HP output gap, Figure 3.10, it has even become

positive since the mid-1990s). This finding is apparently consistent with an aspect of the

opportunistic approach that the variance of shocks matter. If the variance of shocks were

to increase, the speed of convergence to the long-run target would increase as well (Aksoy
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et al., 2006).

The opportunistic approach is first described by President Boehne of the Federal Reserve

Bank of Philadelphia during the FOMC meeting in December 1989:

Now, sooner or later, we will have a recession. I don’t think anybody around

the table wants a recession or is seeking one, but sooner or later we will have

one. If in that recession we took advantage of the anti-inflation (impetus) and

we got inflation down from 4 1/2 percent to 3 percent, and then in the next

expansion we were able to keep inflation from accelerating, sooner or later there

will be another recession out there. And so, if we could bring inflation down

from cycle to cycle just as we let it build up from cycle to cycle, that would be

considerable progress over what we’ve done in other periods in history (Federal

Reserve Board, 1989, p.19).

Alan Blinder, a former Vice Chairman of the Fed, also testified this issue before the Senate

committee in 1994:

If monetary policy is used to cut our losses on the inflation front when luck

runs against us, and pocket the gains when good fortune runs our way, we can

continue to chip away at the already low inflation rate (Blinder, 1994, p.4).

The timing of these statements coincides with changes in monetary policy in the post-

1990 period, including the insignificant response of monetary policy to inflation. Regarding

the empirical evidence, Martin and Milas (2010) also point out that expected inflation since

the early 1990s seldom moved away from the zone of inaction.

The insignificant response to inflation can be also explained from the statistical per-

spective. If inflation was close to the implicit target in the post-1990 period as suggested by

Martin and Milas (2010), it might be hard to identify the response of interest rate to inflation

due to lack of variability.
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3.5 Conclusion

This study analyzed how the conduct of U.S. monetary policy has changed since the late

1960s by accounting for the four issues that have been highlighted as important in the

literature, including the type of time-variation in policy parameters, the treatment of het-

eroscedasticity, the real-time nature of data, and the role of asymmetric preferences. The

findings show that monetary policy since the late 1960s has evolved richly in terms both of

the response to inflation and real activity and of preferences. Specifically, the Fed behaved

like having asymmetric preferences, which induced inflation bias, in the pre-Volcker period,

but changed to symmetric preferences in the post-Volcker era. Regarding the response to

inflation, it was strong in the first half of the 1970s and the 1980s, but weak elsewhere.

Meanwhile, the response to real activity was seemingly weaker in the 1980s than in other

periods. The properties and timings of these changes, which suggests a nontrivial role of

monetary policy in economic performances, are highly consistent with the literature on the

evolution of monetary policy.



Chapter 4

Financial Frictions and the Volatility of

Monetary Policy Shocks

4.1 Introduction

The role of financial frictions in business cycles has been attracting the interest of both aca-

demics and policy makers, especially after the recent financial crisis. The seminal work of

Bernanke et al. (1999) develops a framework combining nominal rigidities with an agency

cost model and argues that endogenous developments in the credit market can significantly

amplify and propagate shocks to the economy through the financial accelerator mechanism.

The core of this mechanism lies at the negative relationship between the net worth of firms

and the external premium demanded by lenders. With respect to monetary policy, their

model shows that an unanticipated increase in the nominal interest rate decreases the de-

mand for capital and therefore causes a fall in its price. The decline in the value of capital

reduces entrepreneurs’ net worth and thus leads to a higher external premium, which fur-

ther lowers investment and output. Christensen and Dib (2008) and Christiano et al. (2010),

among others, provide quantitative evidence to support the financial accelerator and assert

that financial frictions play a significant role in transmitting monetary policy disturbances
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to the real economy.1

This work investigates further the interaction between financial frictions and monetary

policy. However, our attention is directed to the impact of changes in the volatility of mon-

etary policy on the economy instead of those in its level. Shifts in the volatility of monetary

policy are important because they relate to monetary policy uncertainty which has been a

pivotal theme in policy discussions, especially after the recent financial crisis. For example,

hawks and doves at the Federal Reserve System have argued about the extent of quanti-

tative easing and the appropriate monetary stance given opposing signals from core and

headline inflation measures (Born and Pfeifer, 2014). Furthermore, an increasing number

of studies (for instance, Fernández-Villaverde et al., 2010a; Justiniano and Primiceri, 2008;

Mumtaz and Zanetti, 2013) have shown that the volatility of monetary policy shocks has

changed substantially in the U.S. Specifically, it was large during the Great Inflation of the

mid 1970s and early 1980s, became mild after the mid 1980s and increased significantly

during the recent crisis (Mumtaz and Zanetti, 2013).

In order to model changes in the volatility of shocks, the literature has proposed three

alternatives: stochastic volatility, GARCH, and Markov regime switching models. A de-

tailed comparison between these approaches is reported in Fernández-Villaverde and Rubio-

Ramírez (2010). We use the first method following most of the literature on macroeco-

nomics and volatility (for example, Arellano et al., 2010; Born and Pfeifer, 2014; Cesa-

Bianchi and Fernandez-Corugedo, 2014; Fernández-Villaverde et al., 2010a; Gilchrist et al.,

2014; Justiniano and Primiceri, 2008). With this specification, there are two types of shocks

relating to monetary policy: one affects the level of the interest rate (first moment shocks

or structural shocks or level shocks) and the other affects the standard deviation of the in-

terest rate (second moment shocks or volatility shocks). Note that we assume the nominal

interest rate to be the only instrument of monetary policy, as opposed to a monetary supply

aggregate, following Smets and Wouters (2007). This assumption appears to be reasonable

to describe U.S. monetary policy (Clarida et al., 1999).

1Christensen and Dib (2008) estimate a dynamic stochastic general equilibrium model with the Bernanke-
Gerltler-Gilchrist financial frictions for the U.S. economy, while Christiano et al. (2010) consider both the
Euro Area and the U.S.
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We incorporate the stochastic volatility of monetary policy into a sticky-price DSGE

model embedded with the financial frictions à la Bernanke et al. (1999). We also allow

time-variation in the standard deviations of other structural innovations, including those of

government spending innovations, investment-specific technology innovations, and technol-

ogy innovations, in order to capture aggregate dynamics. The diverse sources of volatility

in our study are desirable as argued by the growing literature on the role of volatility in

business fluctuations such as Sims and Zha (2006) and Justiniano and Primiceri (2008)

among others. Moreover, Hamilton (2008) shows that even if the object of interest is in the

conditional mean, correctly modeling time-varying volatility can still be quite important.

Stochastic volatility has been mostly ignored in the literature on financial frictions though.

Our work is related to the studies on the aggregate effects of uncertainty. Although this

strand has been rapidly growing since the recent financial crisis (for instance, Alexopoulos

and Cohen, 2009; Bachmann and Bayer, 2011; Bloom, 2009; Bloom et al., 2012; Popescu

and Smets, 2010), there are only few studies on the effects of policy uncertainty.2 Mumtaz

and Zanetti (2013) estimate an SVAR model for the U.S. economy and show that an increase

in the volatility of monetary policy leads to a fall in output growth. The authors also calibrate

a simple DSGE model enriched with the time-varying standard deviation of monetary policy

shocks in order to match with and provide an interpretation of SVAR results. Born and

Pfeifer (2014) consider both fiscal and monetary uncertainty in a DSGE model and conclude

that policy risk has an adverse effect on output. This result is also supported by Fernández-

Villaverde et al. (2013) and Fernández-Villaverde et al. (2011). The role of financial frictions

are not considered in these models though.

The present study is one of the few that integrates volatility and financial frictions, which

are the two important issues emerging from the crisis, into a united framework to analyze

macroeconomic dynamics. We briefly review this branch as follows. Dorofeenko et al.

2The influential paper of Bloom (2009) shows that jumps in uncertainty in response to major economic
and political shocks cause firms to pause their investment and hiring, leading to a fall in productivity growth
and then in output and employment. Alexopoulos and Cohen (2009) and Bloom et al. (2012) affirm that an
increase in the uncertainty results in a sharp drop and slow recovery in GDP. In contrast, Bachmann and Bayer
(2011) argue that uncertainty is unlikely to be a major quantitative source of business cycles. Popescu and
Smets (2010) report similar results with Bachmann and Bayer (2011).
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(2008) extend the Carlstrom and Fuerst (1997) agency cost model to study the effect of

the volatility of firm’s idiosyncratic productivity shocks and show that an increase in the

volatility leads to a fall in investment supply. Christiano et al. (2014) consider a so-called

risk shock in an estimated DSGE model incorporating the Bernanke et al. (1999) financial

frictions and find that an increase in this shock reduces consumption, investment, and out-

put. Moreover, they argue that this shock plays the most important role in driving the U.S.

business cycles over the 1985-2010 period. Arellano et al. (2010) build a model with het-

erogeneous firms and financial frictions and find that increases in uncertainty at the firm

level cause a large increase in the dispersion of growth rates across firms and a contraction

in economic activity. Gilchrist et al. (2014) consider a model with heterogeneous firms,

partial investment, irreversible, nonconvex capital adjustment costs, and financial frictions

in both the debt and equity markets. The authors document the negative effects of firm level

uncertainty shocks on the economy and argue that credit spreads are an important chan-

nel through which uncertainty shocks affect the economy. Cesa-Bianchi and Fernandez-

Corugedo (2014) investigate the impacts of two different types of uncertainty shocks: TFP

and firm level uncertainty. They find that the latter has a greater impact on economic ac-

tivity because it is greatly magnified by credit frictions. Finally, Bonciani and Van Roye

(2013) consider the volatility of TFP and show that financial frictions amplify the effect of

uncertainty on the economy.

Our work differs from the above papers in two important aspects. First, we are, to our

best knowledge, the first to investigate the interaction between financial frictions and policy

uncertainty. Second, the parameters of exogenous processes of volatility in our study are

jointly estimated with other parameters of the model instead of being calibrated as common

in this strand of the literature. Note that a few papers have used proxies for uncertainty

shocks to estimate those parameters separately while calibrating other parameters of the

model- an approach that differs from the one applied in this study.

Regarding the estimation, likelihood-based inference is a useful tool to take DSGE mod-

els to the data (An and Schorfheide, 2007). However, those models mostly do not imply a

likelihood function that can be calculated numerically or analytically. Therefore, the model
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must be solved before it can be estimated. Linear approximation methods are very popular

because they result in a linear state-space representation of the model whose likelihood can

be obtained by the Kalman filter (An and Schorfheide, 2007). Nevertheless, in a linearized

version of our model, stochastic volatility would drop, canceling any possibility of study-

ing its impacts on the real economy. We therefore have to solve the model to higher-order

approximations. This solution however leads to a non-linear state-space representation so

that the Kalman filter can not be utilized to evaluate the likelihood function. To overcome

this issue, Fernández-Villaverde and Rubio-Ramírez (2007) propose to use the particle fil-

ter which performs sequential Monte Carlo estimation using a point mass representation

of probability densities. Fernández-Villaverde et al. (2015) apply the method to estimate a

DSGE model with stochastic volatility. Following these studies, we take advantages of the

particle filter to evaluate the likelihood function in a maximum likelihood framework. We

use U.S. data for the estimation.

The results first show that our model captures aggregate dynamics relatively well. Sec-

ond, we find that an increase in the volatility of monetary policy shocks causes a contraction

in consumption, investment, output and hours worked. The model is therefore successful in

generating business-cycle co-movements among key macroeconomic variables, suggesting

that monetary policy uncertainty might have played a certain role in business cycles (Basu

and Bundick, 2012). Moreover, this contractionary effect resembles the findings of Mumtaz

and Zanetti (2013) and Born and Pfeifer (2014). Most importantly, we argue that financial

frictions amplify and propagate the transmission of volatility shocks to the economy through

the financial accelerator mechanism. This finding is in line with Gilchrist et al. (2014) and

Bonciani and Van Roye (2013).

The rest of the study is organized as follows. Section 4.2 presents the baseline DSGE

model. Section 4.3 shows the state-space representation of the model. In section 4.4, we

present the estimates of model parameters and of structural and volatility shocks. Section

4.5 analyzes impulse response functions. Finally, section 4.6 concludes.
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4.2 The DSGE Model

Our model is a cashless-limited closed-economy New Keynesian DSGE model that incor-

porates the financial-accelerator mechanism proposed by Bernanke et al. (1999). In this

small-sized model of the economy, there are five agents: households, capital producers,

entrepreneurs, retailers and policy authorities. Households make decisions on consump-

tion and hours worked to maximize their utilities subject to their intertemporal budget con-

straints. Capital producers transform the investment component of output into new capital

goods which replace depreciated capital and add to capital stock. Entrepreneurs produce

wholesale goods. They borrow from financial intermediates to cover for the difference

between the expenditure on new capital and their net worth. Because of imperfect infor-

mation between entrepreneurs and lenders, the former faces an external finance premium

that rises when their leverage increases. This is how financial frictions are incorporated

into the model. Retailers are introduced to motivate sticky prices. They buy the wholesale

goods from the entrepreneurs, transform them into differentiated goods, and set prices in

the Calvo type. Finally, authorities conduct both monetary and fiscal policy. The nominal

interest rate, which is supposed to be the only tool of monetary policy, follows a Taylor rule

that responds to the deviations of inflation and output from their steady states. Regarding

fiscal policy, government spending is financed by lump-sum taxes.

Although our main interest is on monetary policy innovations, we include technology

innovations, investment specific technology innovations, and government spending innova-

tions into the model to capture aggregate dynamics. All standard deviations are assumed to

be time-varying following an AR(1) process. Consequently, there are four structural shocks

and four volatility ones brought into the model, which makes the number of shocks driving

the economy eight.
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4.2.1 Households

The representative household chooses consumption Ct , the amount of risk-less bonds Bt+1

and hours worked ht to maximize the following lifetime utility function

Et

∞

∑
k=0

β
k

(
log(Ct+k −χCt+k−1)−ϖ

h1+ϑ

t+k

1+ϑ

)
, (4.1)

where β ∈ (0,1) is the discount factor, χ controls habit persistence, ϖ controls the level of

labor supply, and ϑ is the inverse of the Frisch elasticity. Moreover, Ct is the consumption

index given by

Ct =

(∫ 1

0
Ct(i)

1− 1
ζ di
) ζ

ζ−1
, (4.2)

where ζ is the elasticity of substitution and Ct(i) represents the quantity of good i consumed

by the household in period t. We assume the existence of a continuum of goods represented

by the interval [0,1].

Maximization of (4.1) is subject to a sequence of flow budget constraints given by

∫ 1
0 Pt(i)Ct(i)di

Pt
+

Bt+1

Pt
≤

Rn,t−1Bt

Pt
+

Wtht

Pt
+Transfers+Profits, (4.3)

where Pt(i) is the price of good i, Bt+1 is the amount of risk-less bonds held between period

t and period t + 1 which pay a nominal gross interest rate Rn,t at maturity, and Wt is the

wage rate. The household receives lump-sum transfers from the government and profits

from firms. Pt is the aggregate price index given by

Pt =

(∫ 1

0
Pt(i)1−ζ di

) 1
1−ζ

.

For each differentiated good i, the household must decide how to choose Ci to maximize

(4.2) for any given level of expenditures
∫ 1

0 Pt(i)Ct(i)di. The first-order solution yields the
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set of demand equations for consumption

Ct(i) =
(

Pt(i)
Pt

)−ζ

Ct ,

for all i ∈ [0,1]. Thus, ∫ 1

0
Pt(i)Ct(i)di = PtCt . (4.4)

Substituting (4.4) into the budget constraint (4.3) results in

Ct +
Bt+1

Pt
≤

Rn,t−1Bt

Pt
+

Wt

Pt
ht +Transfers+Profits. (4.5)

We then derive the first-order conditions for the household’s problem as follows

1
Ct −χCt−1

−βEt(χ
1

Ct+1 −χCt
) = λt ,

λt = βEt(λt+1
Rn,t

Πt+1
),

ϖhϑ
t = λt

Wt

Pt
,

where λt is the Lagrangian multiplier associated with the budget constraint in (4.5).

4.2.2 Capital Producers

Suppose that there is a single, representative, competitive capital producer who uses a

portion of final goods purchased from retailers as investment goods It to produce capital

goods. The production, which is subject to quadratic capital adjustment costs S(.) and an

investment-specific technology shock κt , generates eκt (1− S( It
It−1

))It capital goods. These

goods are sold at a real price Qt per unit at the end of period t.

The adjustment cost function, similar to Smets and Wouters (2007) and Christiano et al.

(2005), is specified as

S
(

It
It−1

)
= φs(

It
It−1

−1)2,
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where φs is the adjustment parameter. Along the balanced growth path, S(1) = S′(1) = 0.

The investment specific technology shock is assumed to follow an AR(1) process

κt = ρκ κt−1 +σκeσκt εκt , εκt ∼ N (0,1),

where σκt is the time-variant component of the standard deviation of investment specific

technology shock εκt . Its evolution is given by

σκt = ρσκ
σκt−1 +ηκuκt , uκt ∼ N (0,1).

The capital producer’s optimization problem is to maximize its discounted profits with

respect to It

Et

∞

∑
k=0

Λt,t+k[Qt+keκt+k(1−S(Xt+k))It+k − It+k],

where Xt =
It

It−1
and Λt,t+k is the real stochastic discount factor over the interval [t, t + k].

The first-order condition for this problem is

Qteκt (1−S(Xt)−XtS
′
(Xt))+Et [Λt,t+1Qt+1eκt+1S′(Xt+1)X2

t+1] = 1.

The produced capital goods combine with the existing capital stock to generate new

capital goods. In other words, the capital accumulation process is described by

Kt = (1−δ )Kt−1 + eκt (1−S(Xt))It .

4.2.3 Entrepreneurs

Entrepreneurs manage the firms that produce the wholesale goods. This production uses

labor and capital. While the former is supplied by both households and entrepreneurs, the

latter is bought from capital producers. The entrepreneurs finance the expenditure on capital

by entrepreneurial net worth (internal finance) and debts (external finance). In the latter, they

face an external finance premium caused by the inability of lenders to monitor borrowers’



4.2 The DSGE Model 64

actions or to share borrowers’ information. In this way, financial market imperfections are

introduced into the model.

The premium relies on the balance-sheet condition of the entrepreneurs. When their net

worth declines, internal sources of funds are limited, forcing them to seek external sources

by borrowing. However, the deterioration of their balance sheets causes the potential diver-

gence between them (the borrowers) and the lenders to be greater, leading to an increase in

agency costs. Consequently, the cost of external finance is pushed up resulting in a contrac-

tion in investment spending and then output.

The entrepreneurs are risk neutral. They are endowed with he
t units of entrepreneurial

labor at the nominal entrepreneurial wage W e
t in order to start off. Moreover, each of them

is assumed to survive until the next period with a probability σE . This is to assure that they

do not accumulate enough funds to finance their expenditures on capital only with their net

worth. New entrepreneurs are allowed to enter to replace those exiting.

Production. The wholesale goods are produced according to a constant-return-to-scale

technology

YW
t = eat A(Ht)

1−αKα
t−1,

where Kt−1 denotes the number of capital units, Ht is the labor input which is a composite

of household labor ht and entrepreneurial labor he
t , A is the level of technology which is

normalized to one, and at is a shifter to the technology level which evolves as

at = ρaat−1 +σaeσat εat , εat ∼ N (0,1),

where σat is the time-variant component of the standard deviation of technology shock εat

and it follows an AR(1) process

σat = ρσaσat−1 +ηauat , uat ∼ N (0,1).

For the labor input, he
t is assumed to be constant at one. In addition, the share of income

going to the entrepreneurial labor is calibrated to be small (the order of 0.01), so that the
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modification of the production function does not have substantial effects on the results. The

labor input Ht is written as follows

Ht = hΩ
t (h

e
t )

1−Ω.

The demand for household and entrepreneurial labor is obtained by equating the marginal

product of each type of labor to its corresponding cost

PW
t
Pt

(1−α)ΩYW
t

ht
=

Wt

Pt
, (4.6)

PW
t
Pt

(1−α)(1−Ω)YW
t

he
t

=
W e

t
Pt

. (4.7)

Meanwhile, the demand for capital of the entrepreneurs is considered below with the occur-

rence of financial frictions.

Financial frictions. At the end of time t, an entrepreneur borrows lt equivalent to the

difference between the expenditure on new capital Qtkt and the net worth nE,t

lt = Qtkt −nE,t .

The net worth accumulation nE,t is calculated by3

nE,t = ψtRk,tQt−1kt−1 −Rl,t lt−1,

where ψt is an idiosyncratic shock to the entrepreneur’s return,4 Rl,t is the real loan rate set

at time t −1, and Rk,t is the real return on capital computed by

Rk,t =
α

PW
t
Pt

YW
t

Kt−1
+(1−δ )Qt

Qt−1
.

3Lower case variables denote the representative entrepreneur, while upper case variables introduced later
denote the aggregate.

4The shock at t +1 is revealed at the end of period t right before investment decisions are made.
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Note that the idiosyncratic shock is the private information of the entrepreneur. We

follow Bernanke et al. (1999) to assume that ψt is distributed log-normally with positive

support and its standard deviation is time-invariant. The distribution of ψt hence can be

written as follows

log(ψt)∼ N (−1/2σ
2
ψ ,σ

2
ψ),

where σψ is the standard deviation of the idiosyncratic shock ψt .

At time t +1, if the net worth nE,t+1 becomes negative, the entrepreneur is bankrupt. In

other words, the default occurs if the idiosyncratic shock falls below the cut-off value ψ̄t+1

given by

ψ t+1 =
Rl,t+1lt

Rk,t+1Qtkt
. (4.8)

Otherwise, the entrepreneur makes the full payment of her loans, Rl,t+1lt , to the lender.

Let fψt and ψmin be the density function and the lower bound of ψt , respectively. Then,

the probability of default at time t +1 is calculated by

F(ψ t+1) =
∫

ψt+1

ψmin

f (ψ)dψ.

If default happens, the lender obtains the assets of the firm. However, it has to pay a propor-

tion µ to observe the realized return. Therefore, the expected gross return on the loan of the

lender is given by

Et

[
(1−F(ψ t+1))Rl,t+1lt +(1−µ)Rk,t+1Qtkt

∫
ψt+1

ψmin

ψ f (ψ)dψ

]
.

Substituting Rl,t+1lt by ψ t+1Rk,t+1Qtkt (see (4.8)) yields

Et

[
Rk,t+1Qtkt(ψ t+1(1−F(ψ t+1))+(1−µ)

∫
ψt+1

ψmin

ψ f (ψ)dψ)

]
. (4.9)

Define Γ(ψ t+1) as the share of entrepreneurial earnings accrued to the lender

Γ(ψ t+1) = ψ t+1(1−F(ψ t+1))+G(ψ t+1), (4.10)
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where

G(ψ t+1) =
∫

ψt+1

ψmin

ψ f (ψ)dψ. (4.11)

For the optimal contract, the entrepreneur needs to find kt and ψ t+1 to maximize her

expected net earnings

Et
[
(1−Γ(ψ t+1))Rk,t+1Qtkt

]
, (4.12)

subject to

Et
[
Rk,t+1Qtkt(Γ(ψ t+1)−µG(ψ t+1))

]
= Et(Rex

t+1lt). (4.13)

The constraint reflects the assumption that the lender is indifferent between the expected

return from lending to the entrepreneur and the one from owning risk-free bonds. Then,

using the Lagrange multiplier method, we obtain

Et [Rk,t+1] = Et [ι(ψ t+1)R
ex
t+1],

where ι(ψ t+1) is the premium on external finance given by

ι(ψ t+1) =
Γ′(ψ t+1)

(1−Γ(ψ t+1))(Γ
′(ψ t+1)−µG′(ψ t+1))+Γ′(ψ t+1)(Γ(ψ t+1)−µG(ψ t+1))

.

(4.14)

For the calculation of Γ(.),Γ′(.),G(.) and G′(.), see Appendix C.1.

So far we have established the optimizing decision of a representative entrepreneur. We

now assume that a fraction 1−σE of entrepreneurs exits at the end of period t −1 and they

consume all their residual equities. Therefore, the aggregate net worth accumulating at the

end of time t is calculated by

NE,t = σE(1−Γ(ψ t))Rk,tQt−1Kt−1 +
WE,t

Pt

and the consumption of the exiting entrepreneurs is

CE,t = (1−σE)(1−Γ(ψ t))Rk,tQt−1Kt−1.
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4.2.4 Retailers

In order to motivate sticky prices, two additional ingredients are added to the model. First,

the retail sector is assumed to be monopolistically competitive. Second, there are costs of

adjusting nominal prices.

Optimal Price Setting. Retailers purchase the wholesale goods from the entrepreneurs

and transform them into differentiated goods according to

Yt =
YW

t
∆t

,

where Yt = (
∫ 1

0 Yt(i)
1− 1

ζ di)
ζ

ζ−1 and ∆t =
∫ 1

0 (
Pt(i)

Pt
)−ζ di is the price dispersion. The retailers

then set prices to optimize their expected profits. The setting is however constrained by the

so-called Calvo-typed price rigidity (Calvo, 1983). Specifically, each retailer can reoptimize

her price in a given period with a constant probability 1− ξ . The law of large number

suggests that a fraction 1−ξ of firms re-optimize their prices at each period. The remaining

retailers are assumed to adjust their prices based on the lagged inflation with a degree of

indexation γ ∈ [0,1] in order to capture the inertia observed in the response of inflation to a

monetary policy shock (Woodford, 2003).

Given a common real marginal cost MCt to all retail firms, a new price P∗
t (i) chosen by

the retailer i in period t should maximize her discounted nominal profits given by

Et

∞

∑
k=0

ξ
kDt,t+kYt+k(i)

[
P∗

t (i)
(

Pt+k−1

Pt−1

)γ

−Pt+kMCt+k

]
,

subject to the sequence of demand constraints

Yt+k(i) =
(

Pt+k(i)
Pt+k

)−ζ

Yt+k.

Note that Dt,t+k = β k λt+k
λt

is the nominal stochastic discount factor over the interval [t, t +k]

and k = 0,1,2, ....
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The first order condition associated with the above problem has the form

Et

∞

∑
k=0

ξ
kDt,t+kYt+k(i)

[
P∗

t (i)
(

Pt+k−1

Pt−1

)γ

−M Pt+k MCt+k

]
= 0, (4.15)

where M ≡ ζ

ζ−1 is the frictionless markup. We rearrange Dt,t+kYt+k(i) as follows

Dt,t+kYt+k(i) = β
k λt+k

λt

Pt

Pt+k

[
P∗

t (i)
Pt+k

(
Pt+k−1

Pt−1

)γ]−ζ

Yt+k

= β
k λt+k

λt

Pt

Pt+k

(
P∗

t (i)
Pt+k

)−ζ (Pt+k−1

Pt−1

)−ζ γ

Yt+k

= β
k λt+k

λt

(
P∗

t (i)
Pt

)−ζ

Π
ζ−1
t,t+kΠ

−ζ γ

t−1,t+k−1Yt+k,

where Πt,t+k =
Pt+k
Pt

. By substituting this rearrangement into (4.15), then canceling out

(
P∗

t (i)
Pt

)−ζ and multiplying by λt
Pt

in (4.15), we get

Et

∞

∑
k=0

(ξ β )k
λt+kΠ

ζ−1
t,t+kΠ

−ζ γ

t−1,t+k−1Yt+k

[
P∗

t (i)
Pt

Π
γ

t−1,t+k−1 −M Πt,t+k MCt+k

]
= 0.

This is equivalent to

P∗
t (i)
Pt

Et

∞

∑
k=0

(ξ β )k
λt+kYt+kΠ

ζ−1
t,t+k = M Et

∞

∑
k=0

(ξ β )k
λt+kYt+k Π

ζ

t,t+k MCt+k, (4.16)

where Πt =
Πt

Π
γ

t−1
. We now define

Ht = Et

∞

∑
k=0

(ξ β )k
λt+kYt+kΠ

ζ−1
t,t+k (4.17)

and

Jt = M Et

∞

∑
k=0

(ξ β )k
λt+kYt+k Π

ζ

t,t+k MCt+k. (4.18)

From (4.17) and (4.18), we derive

Ht −ξ βEt [Π
ζ−1
t+1 Ht+1] = λtYt
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and

Jt −ξ βEt [Π
ζ

t+1Jt+1] = M λt MCtYt .

Combining (4.16), (4.17), and (4.18) yields

P∗
t (i)
Pt

=
Jt

Ht
. (4.19)

Aggregate Price Level Dynamics. Equation (4.19) implies that all the retailers that are

resetting their prices will choose an identical price which is P∗
t . The aggregate price level at

time t therefore evolves according to

Pt =

[
(1−ξ )P∗1−ζ

t +ξ

(
Pt−1

(
Pt−1

Pt−2

)γ)1−ζ
] 1

1−ζ

. (4.20)

Dividing both side of (4.20) by Pt results in

1 = (1−ξ )

(
Jt

Ht

)1−ζ

+ξ Π
ζ−1
t .

4.2.5 The Central Bank

The model is closed by the presence of a central bank that sets the nominal interest rate

according to a Taylor-type rule

Rn,t

Rn
=

(
Rn,t−1

Rn

)ρr
((

Πt

Π

)θπ
(

Yt

Y

)θy
)(1−ρr)

eσmeσmt εmt , εmt ∼ N (0,1),

where εm,t is the monetary policy innovation whose time-varying component of the standard

deviation σmt evolves according to an AR(1) process

σmt = ρσmσmt−1 +ηmumt , umt ∼ N (0,1).

In the Taylor rule, the first term on the right-hand-side Rn,t−1
Rn

represents the smoothing behav-

ior of the central bank in setting the interest rate. The second term Πt
Π

denotes the deviation
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of inflation from its steady level Π. The third term Yt
Y is the output gap which is the deviation

of output from its balanced state Y .

4.2.6 Resource Constraint

The market for final goods clears in every period

Yt =Ct +CE,t + It +Gegt +µG(ψ t)Rk,tQt−1Kt−1.

In that the government spending is financed by lump-sum taxes on the basis of a balanced

budget. Government spending, whose steady state is G, is influenced by an exogenous shock

gt following an AR(1) process

gt = ρggt−1 +σgeσgt εgt , εgt ∼ N (0,1),

where εgt is the government spending shock. The time-varying component of the standard

deviation is σgt whose evolution is given by

σgt = ρσgσgt−1 +ηgugt , ugt ∼ N (0,1).

4.3 State-Space Representation

4.3.1 State Transition Equations

The optimal decisions of households, capital producers, entrepreneurs, and retailers, the

Taylor rule and the resource constraint form a non-linear rational expectations system. This

system can not be estimated by likelihood-based approaches directly because the system

does not imply a likelihood function that can be calculated numerically or analytically

(Fernández-Villaverde and Rubio-Ramírez, 2007). Therefore, we need to solve the model

before estimating it.

As regarded in the introduction, the most popular method in the literature is lineariza-
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tion because it leads to a linear state space representation of the model whose likelihood

can be obtained by the Kalman filter (An and Schorfheide, 2007). However, linearization

is certainty-equivalent, which means that all volatility shocks will be dropped out, therefore

canceling any chance of analyzing their impacts on the economy. In a second-order approx-

imation, volatility shocks enter as cross-products with the corresponding level shocks in the

policy functions. In a third-order approximation, volatility shocks play a role by themselves,

thus allowing us to calculate the impulse response functions to a monetary volatility shock,

while holding constant its level shock. This feature makes the third-order approximation

very attractive, but it comes with high computational costs in the estimation, given that the

particle filter is employed to obtain the likelihood function (see the computational issues

of particle filters in Fernández-Villaverde and Rubio-Ramírez, 2007). In contrast, although

the second-order approximation does not allow us to investigate the independent effects of

volatility shocks, it is sufficient to estimate the parameters of the model including those of

stochastic processes, while having smaller computational costs than the third-order approx-

imation does. Fernández-Villaverde and Rubio-Ramírez (2007) and Fernández-Villaverde

et al. (2015) also estimate dynamic macroeconomic models with stochastic volatility based

on their second-order approximations. Therefore, we first follow those papers to estimate

a second-order approximation of our DSGE model. Given the estimates, we then solve the

model to a third-order approximation and compute the impulse response functions to a mon-

etary volatility shock. By using such a strategy, we can take advantages of each method.5

Let st be the vector of all variables of the model at time t with each variable expressed in

terms of log deviation from its steady state. The system is driven by the vector of structural

shocks vt = (εκt ,εat ,εgt ,εmt) and by the vector of volatility shocks wt = (uκt ,uat ,ugt ,umt).

The solution of the rational expectations system takes the form

st = Θ(st−1,vt ,wt ;Ξ), (4.21)

where Ξ is the vector of parameters in the model. Equation (4.21) represents the state

5We apply the pruning procedure to avoid the explosion which often happens to paths simulated by the
higher-order approximated model. See Kim et al. (2008) and Andreasen et al. (2013) for more details.
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transition equations in the state-space representation, which is non-linear.6 The following

part describes the measurement equations.

4.3.2 Measurement Equations

We assume that the time period t corresponds to one quarter. For the estimation, we use four

data series including the Hodrick-Prescott output gap per capita, the log difference of the

GDP deflator, the federal funds rate, and the Moody’s seasoned data corporate bond yields,

which are denoted by OUTt , INFt , INRt , and CBYt , respectively. Details on the sources

and constructions of these time series are documented in Appendix C.2. These series are

connected to the model variables by

INFt = Π̂t +σmπεmπ,t , εmπ,t ∼ N (0,1),

OUTt = Ŷt +σmyεmy,t , εmy,t ∼ N (0,1),

INRt = R̂n,t +σmrnεmrn,t , εmrn,t ∼ N (0,1),

CBYt = R̂k,t + Π̂t +σmrkεmrk,t , εmrk,t ∼ N (0,1),

where εmy,t ,εmπ,t ,εmrn,t ,andεmrk,t are measurement errors and their standard deviations are

σmy,σmπ ,σmrn andσmrk , respectively. The notation “ˆ” above a variable denotes the log

deviation of that variable from its steady state. These four measurement equations and

the state transition equations in (4.21) establish the non-linear state-space representation of

the model.
6For example, a second-order approximation is given by

s j,t =C j +
J

∑
i=1

Θ
(s)
j,i si,t−1 +

n

∑
l=1

Θ
(v)
j,l vl,t +

n

∑
l=1

Θ
(v2)
j,k v2

l,t +
J

∑
i=1

J

∑
l=1

Θ
(ss)
j,il si,t−1sl,t−1

+
J

∑
i=1

n

∑
l=1

Θ
(sv)
j,il si,t−1vl,t +

n

∑
l=1

Θ
(vw)
j,ll vl,twl,t .
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4.4 Estimation

In order to estimate the non-linear state-space system described in the previous section, we

follow Fernández-Villaverde and Rubio-Ramírez (2007) to use the particle filter to evaluate

its likelihood function. Basically, the particle filter performs sequential Monte Carlo estima-

tion using a point mass representation of probability densities to approximate the posterior

density of the states and the likelihood function (see Appendix C.3 for the algorithm of

the particle filter). As discussed above, we use the four quarterly U.S. time series for the

estimation. Regarding the coverage of the sample, while including the post-2007 could be

beneficial because of the increased observations, it would introduce extra problems origi-

nating from the recent crisis and its on-going consequences, among which is the zero-lower

bound of the interest rate. Given the inherent complexity in the estimation of a higher-order

approximated model, a more ‘safe and sound’ solution is to exclude the post-2007 period.

Our sample therefore spans from 1959Q1 to 2007Q1. Advancing the model to include the

recent crisis episode into consideration is a potential expansion of our work.

We summarize the procedure of the estimation in three steps. First, given the values of

parameters, we solve the non-linear rational expectations system by performing a second-

order perturbation around the deterministic steady states. Second, we construct the state-

space representation of the model and apply the particle filter to evaluate its likelihood.

Finally, we use an maximum-likelihood algorithm to estimate parameters.

We are aware that obtaining the MLE is complicated because the shape of the likelihood

function may be rugged and multimodal. In addition, the use of optimization algorithms

based on derivatives is not applicable because the particle filter generates an approximation

to the likelihood function that is not differentiable with respect to parameters. Instead,

we follow van Binsbergen et al. (2012) to use the covariance matrix adaption evolutionary

strategy, whose aim is to cope with objective functions which are non-linear, non-convex,

multimodal, as well as those with other difficult conditions, in order to obtain the maximum-

likelihood estimates.

As customary when taking DSGE models to data, some parameters are fixed to values

which are common in the existing literature or selected to satisfy some certain conditions in
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the steady state (for instance, Fernández-Villaverde et al., 2009; Justiniano and Primiceri,

2008; Smets and Wouters, 2007). This helps to reduce the numbers of parameters required to

estimate, therefore lessening the computational issues. We discuss those fixed parameters in

subsection 4.4.1. The estimates of unknown parameters are presented in subsection 4.4.2.

Given the values of all parameters, we perform particle filtering to compute the posterior

densities of structural and volatility shocks and then estimate their means. Combining these

estimates over the sample shows us the evolution of structural and volatility shocks. They

are presented in subsection 4.4.3.

4.4.1 Fixed Parameters

The standard parameters calibrated includes {β ,ζ ,α,Ω,ϑ ,φs,χ,ϖ ,}. The discount factor

β = 0.985 is chosen to match the inverse of the average of risk-free rate observed in the U.S.

The elasticity of substitution ζ is fixed at 10 which implies a 10% markup. The elasticity

of capital to output α = 0.3 reflects the share of national income that goes to capital. As

mentioned previously, the share of income to entrepreneurial labor (1−α)(1−Ω) is set to

a very small number 0.01, which implies a value of 0.98 for Ω . The depreciation rate δ is

assigned to 0.025, which is a common value in the literature of DSGE models on the U.S.

economy. The inverse of the Frisch labor elasticity ϑ is set to 1.3 which pins down the Frisch

elasticity to around 0.75 as suggested by Chetty et al. (2011). The adjustment cost φs = 4.5

is similar to other estimates from DSGE models, for example, Fernández-Villaverde (2010).

The habit persistence χ is set to 0.9 in order to reflect the observed sluggish response of

consumption to shocks (Fernández-Villaverde et al., 2010a). The steady state government

spending to GDP ratio G/Y is fixed at 0.2 to match the U.S. data on average. The parameter

controlling the level of labor supply ϖ is calibrated in such a way that generates a steady

state level of hours worked h = 0.35.

We also calibrate three non-standard financial parameters including {µ,σψ ,σE}. They

are chosen to imply the three following conditions in the steady state: (i) a probability of

default equal to 3%, (ii) a credit spread of 66.5 basis points which is consistent with the

data over the sample, and (iii) a ratio of capital to net worth QK/N of 2. Specifically, the
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fraction of realized payoffs lost in bankruptcy µ is 0.0555, the existing rate of entrepreneurs

σE is found to be 0.9708, and the steady state level of the variance of the idiosyncratic

productivity variable σψ is equal to 0.3388.

4.4.2 Parameter Estimates

Table 4.1 reports the estimates for the remaining 24 parameters. First, the degree of indexa-

tion γ is 0.2 implying a moderate inflation inertia. The price rigidity ξ is around 0.7 which

suggests that the prices are reoptimized approximately once every three quarters. This value

is common in the literature, see e.g., Smets and Wouters (2007). Regarding the estimates of

policy parameters, the response to the deviation of inflation in the long run is about 1.560,

which is close to the estimate of Christensen and Dib (2008) in a linearized DSGE model

with financial frictions. In contrast, the interest rate does not appear to respond strongly

to changes in the output gap. Given a 1% increase in the output gap, the interest rate only

rises about 7 basis points. Smets and Wouters (2007) also document a weak response to

the output gap (0.09). Finally, the interest rate shows a moderate inertia with the smoothing

parameter ρr around 0.6.

Turning to the stochastic processes of structural shocks, they appear to be consider-

ably persistent with estimated AR(1) coefficients equal to 0.962, 0.978, and 0.959 for the

investment-specific technology, technology, and government spending process, respectively.

For the time-invariant component of the standard deviations of structural shocks, the govern-

ment shock has the largest value of 0.04. The smallest figure is for the investment-specific

shock, roughly 0.0006.

Regarding the stochastic volatility processes, the standard deviation of technology shock

is the most persistent with an estimated AR(1) coefficient of 0.980, followed closely by the

coefficient of monetary shock, 0.971. The standard deviation of government shock is found

to be fairly persistent with a coefficient of 0.624. Meanwhile, the corresponding value for

the investment-specific technology shock is the least persistent, 0.424. For the standard

deviations of volatility shocks, we find that those of investment-specific technology and

government spending innovations are similar with a value of about 0.35 for each. Mean-
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Table 4.1 Parameters’ Estimates of the DSGE model

Parameter Mean S.E. (×10−2)
Nominal rigidities parameters

γ 0.203 0.308
ξ 0.708 0.162

Policy parameters
ρr 0.597 0.189
θπ 1.560 0.400
θy 0.069 0.114

Parameters of the stochastic process
for structural shocks

ρκ 0.962 0.101
ρa 0.978 0.092
ρg 0.959 0.159
σκ 0.060×10−2 0.020
σa 0.881×10−2 0.013
σm 0.188×10−2 0.004
σg 4.130×10−2 0.039

Parameters of the stochastic process
for volatility shocks

ρσκ
0.424 0.741

ρσa 0.980 0.685
ρσm 0.971 0.482
ρσg 0.624 0.651
ηκ 0.352 2.239
ηa 0.168 2.000
ηm 0.163 2.058
ηg 0.337 2.350

Parameters of
measurement equations

σmy 0.338×10−2 0.011
σmπ 0.412×10−2 0.012
σmrn 0.154×10−2 0.010
σmrk 0.434×10−2 0.012

Notes: The table shows the estimates of parameters in the baseline DSGE model in section 4.2.

while, the corresponding values of monetary and technology innovations are close to each

other, 0.17.

Finally, we find that the standard deviations of measurement noises are small, suggest-

ing that the model captures the aggregate dynamics relatively well. To corroborate the

statement, we plot the actual data and the data generated by the model (filtered states) in
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Fig. 4.1 Model vs. Data

Notes: The graphs show the data generated by the DSGE model with 2 SD bounds and the actual data.

Figure 4.1. The top left graph shows that the model captures much of the dynamics of the

real output gap per capita. The model value has a correlation of 99% with the data. The

standard deviation of the former and the latter are of equal magnitude, 0.015. The top right

plot displays the actual data and the generated data for inflation. The correlation between

them is 80% and their standard deviations are similar around 0.005. The bottom left graph

depicts the actual observation and the one created by the model for the nominal interest

rate, it appears that the model replicates the data very well with a correlation of 99% and

a standard deviation of 0.008 for each. Finally, the actual data and the value produced by
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Fig. 4.2 Structural Shocks

Notes: The graphs present the estimates of structural shocks. They are obtained by performing particle
filtering to compute the posterior densities of the shocks given the values of parameters. Combining all the
estimates of their means over the sample provides us the measures of the shocks.

the model for the nominal rate of return on capital are displayed in the bottom right graph.

Their correlation is 88% and they have similar standard deviations of 0.007. Based on these

evidence, we conclude that the model is fairly successful in characterizing the properties of

the economy.



4.4 Estimation 80

1960 1970 1980 1990 2000 2010
−1

−0.5

0

0.5

1

1.5
Government−spending volatility shock

1960 1970 1980 1990 2000 2010
−2

−1.5

−1

−0.5

0

0.5
Investment specific technological volatility shock

1960 1970 1980 1990 2000 2010
−1

−0.5

0

0.5

1
Technological volatility shock

1960 1970 1980 1990 2000 2010
−1

−0.5

0

0.5

1
Monetary policy volatility shock

Fig. 4.3 Volatility Shocks

Notes: The graphs present the estimates of volatility shocks. They are obtained by performing particle
filtering to compute the posterior densities of the shocks given the values of parameters. Combining all the
estimates of their means over the sample provides us the measures of the shocks.

4.4.3 The Evolution of Structural and Volatility Shocks

In this subsection, we present the estimates of the structural shocks and the volatility shocks

of the model. This exercise has been done in models without financial frictions, for instance

Fernández-Villaverde et al. (2010a) and Justiniano and Primiceri (2008).

Figure 4.2 reports the evolution of structural shocks (εmt , εat , εgt , and εκt). The fig-

ure shows that our model is successful in capturing striking features documented in the

literature. First, there are two clear drops in the technology shocks in 1972− 1974 and
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1980−1981 and one substantial reduction in the investment-specific technology shocks in

1980 which are likely the consequences of the oil price shocks. Second, regarding the mon-

etary policy shocks, our model shows large fluctuations in the first half of the 1980s which

might be caused by fast changes in the policy by the Fed chairman Paul Volcker.

The volatility shocks are plotted in Figure 4.3. One common feature is that the shocks

were higher in the 1970s and early half of the 1980s than in other periods. This result there-

fore asserts Blanchard and Simon (2001)’s observation that volatility had fallen in the 20th

century with a temporal and surprising rise in the 1970s. Especially, the volatility shocks

have substantially declined since the middle of the 1980s, around 1984. McConnell and

Perez-Quiros (2000) and Kim and Nelson (1999) also document a decline in the volatility

of U.S real GDP growth around this point in time. Stock and Watson (2002) consider 1984

as the start of the ‘Great Moderation’ period in the U.S economy. Our results therefore sug-

gest that the fall in the magnitude of shocks might have contributed to the stability during

the Great Moderation period in the U.S., in accordance with Born and Pfeifer (2014) and

Justiniano and Primiceri (2008).

4.5 Impulse Response Functions

This section analyzes the impulse response functions (IRFs) generated by our model to a 1

S.D. monetary volatility shock umt . There are two issues deserving discussion. First, recall

that in the second order approximation the volatility shocks enter policy functions in the

cross-product with the corresponding level shocks, e.g. umtεmt . This connection prevents

us from disentangling the impact of volatility shocks on the economy. To overcome this

issue, we solve the model to the third-order approximation, given the parameters estimated

in the previous section, because at that order volatility shocks play a role by themselves,

therefore allowing us to compute the IRFs to a second-moment shock of monetary policy

while keeping its level shock unchanged.

The second issue is that the higher-order approximation of the model not only results

in a nonlinear environment, which makes the computation of IRFs somewhat complicated,
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but also makes the simulated paths of states and controls in the model move away from

their state values. To deal with these issues, we follow the process proposed by Fernández-

Villaverde et al. (2011) which calculates the IRFs as percentage deviations from their er-

godic means rather than their steady states. This process includes four following steps.

1. The model is simulated for 2096 periods. The first 2000 periods are disregarded as a

burn-in.

2. We calculate the mean for each variable based on the last 96 periods. Adding more

periods does not essentially affect the mean.

3. Starting from the mean and in the absence of shocks, we hit the model with a one-

standard-deviation second-moment shock of monetary policy umt .

4. The impulse responses are defined as percentage deviations from the variables’ means.

Figure 4.4 plots the IRFs to a positive 1 S.D. monetary volatility shock. This shock

causes a prolonged contraction in economic activity: output, consumption, investment, real

wages and hours worked fall. Our model is therefore successful in generating business-cycle

co-movements in response to changes in the uncertainty of monetary policy. This feature is

an important prerequisite for any shock that seeks to explain business cycles because those

co-movements are observed in the data (see Basu and Bundick, 2012; Cesa-Bianchi and

Fernandez-Corugedo, 2014).

The principal transmission mechanism for monetary volatility shocks is in line with

Basu and Bundick (2012). The uncertainty causes households to consume less, save more,

and supply more hours worked for any given wage (precautionary behavior). The increased

labor supply decreases wages, leading to a fall in marginal cost. The decline in marginal

cost raises markups because prices adjust slowly due to price rigidity. Consequently, the

demand for household labor falls, which lowers the real wage earned by the representative

household. Moreover, the decrease in labor demand reduces investment in capital stock by

entrepreneurs. Financial frictions amplify and propagate the decrease in investment via the

financial accelerator mechanism as will be analyzed below. The increase in inflation can
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Fig. 4.4 IRFs to a 1 S.D. Monetary Volatility Shock
Notes: The graphs are expressed as percentage changes from their ergodic means.

be explained as a supply-shock-alike effect of the uncertainty because it lowers labor and

capital demand. Policy rate, which follows a Taylor rule, rises in response to the increase in

inflation. Then both inflation and the interest rate fall because of the contraction of economic

activity.

In order to investigate the role of financial frictions, we compare the IRFs to a monetary

volatility shock generated by the baseline model with those created by two counterfactual

models: one with a smaller level of financial frictions and the other with a more pronounced

level of financial frictions. These alternative cases are formed by modifying the value of

the monitoring cost parameter µ . The idea is that monitoring cost introduces a wedge in

the lender’s zero profit condition. Therefore, if the monitoring cost is higher, they require
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Notes: The graphs present the IRFs to a 1 S.D. monetary volatility shock, expressed as percentage changes
from their ergodic means with three different levels of financial frictions. The level of financial frictions in
the baseline model: µBase = 0.055. For low level of financial frictions: µLow = 1

2 µBase. For high level of
financial frictions: µHigh = 2µBase.

a higher return from lending, which in turn causes a greater external premium or, in other

words, a more pronounced level of financial frictions. This intuition is captured by Equation

(4.14). Figure 4.5 presents the IRFs generated by the baseline and the counterfactual models

together. The financial accelerator mechanism is prominent. The decline in capital demand

caused by increased markups leads to a fall in its price, therefore decreasing firms’ net worth.

The fall in the net worth increases the external premium required by lenders, thus forcing
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down investment and output. More importantly, we note that a higher level of financial

frictions lead to a greater premium, which decreases investment further. A kind of multiplier

effect arises, since the fall in investment lowers the price of capital and net worth, therefore

pushing down investment to a greater extent. Consequently, the decline in output is larger

when financial frictions are more pronounced and vice versa.

We conduct a number of experiments to check the robustness of the above results. These

experiments are described in Table 4.2. In the first robustness experiment (RE), the inverse

of the Frisch labor elasticity ϑ is increased, which therefore makes labor supply less flexible

in response to shocks. In the next three experiments, we decrease the values of Calvo

parameter prices ξ , capital adjustment costs φs, and consumption habits λ , thus reducing

the persistence in the model. The last experiment is related to the counteracting reaction

of monetary policy in which we shut off the response of interest rate to output gap and

considerably increase the smoothing parameter.

Table 4.2 Robustness Experiments (RE)

Parameter Descriptions Baseline RE I RE II RE III RE IV RE V
ϑ Inverse of the Frisch elasticity 1.3 10 * * * *
ξ Calvo parameter prices 0.708 * 0.6 * * *
φs Capital adjustment costs 4.5 * * 0.5 * *
λ Consumption habits 0.9 * * * 0.6 *
θy Taylor rule output gap 0.069 * * * * 0
ρr Interest smoothing 0.597 * * * * 0.98

Notes: “*” means that the value of relevant parameter in the experimental model is the same with the one in
the baseline model.

Figure 4.6 presents the impulse response functions of output to a 1 S.D. monetary volatil-

ity shock generated by these experimental models with respect to different levels of financial

frictions. Similar to the results documented above, we find in all experiments that output

falls persistently after the shock and that the more pronounced financial frictions the larger

the decline of output. Our findings are therefore robust to these experiments. Another

feature of Figure 4.6, which may be worth noting, is that the reductions of output in the

robustness experiments are mostly larger than that in the baseline model. This is somewhat

expected because the dampening general equilibrium effects and the counteracting reaction
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Fig. 4.6 Robustness Experiments

Notes: The graphs present the IRFs of output to a 1 S.D. monetary volatility shock, expressed as percentage
changes from their ergodic means. The level of financial frictions in the baseline model: µBase = 0.055. For
low level of financial frictions: µLow = 1

2 µBase. For high level of financial frictions: µHigh = 2µBase.

are limited in the experiments.

Particularly, in the experiment with the monetary policy reaction function (denoted by

‘RE V’ in Figure 4.6 ), output drops by 0.5% on impact, falls as great as 1.5%, reaching to

the lowest point, after 20 quarters, and then slowly returns to its mean. A similar result is

documented by Born and Pfeifer (2014). In the baseline model, with a positive response to

output gap and a moderate value of interest smoothing parameter, monetary policy is more

aggressive and quicker to offset negative shocks, therefore mitigating the potential impacts
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Fig. 4.7 Robustness Experiment V

Notes: The graphs present the IRFs to a 1 S.D. monetary volatility shock, expressed as percentage changes
from their ergodic means. In this experiment, the response of interest rate to output gap is shut off and the the
smoothing parameter is increased considerably. The level of financial frictions in the baseline model:
µBase = 0.055. For low level of financial frictions: µLow = 1

2 µBase. For high level of financial frictions:
µHigh = 2µBase.

of uncertainty. In the experiment V, we however force the response to output down to zero

and give more weight to past interest rates. Hence, the current economic conditions affect

the nominal interest rate less than its past values. Figure 4.7 plots the IRFs of output and

other variables to a monetary volatility shock of this experiment. The transmission mech-

anism of the shock is similar to what we discussed in the baseline model with increased

markups and greater premium. However, the sluggish response of monetary policy exacer-
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bates the contraction. While inflation reduces because of the contraction, the sluggishness

causes the nominal interest rate to fall much slower than the reduction in inflation, which

lead to an increase in the real interest rate. Consequently, investment decreases further,

which is again amplified by the existence of financial frictions in the model. Eventually,

investment falls by more than 4% after 10 quarters, resulting in a substantial decline in

output.

The finding that the more sluggish monetary policy the more substantial the effects of

monetary volatility shocks on the economy might have an important implication regarding

the zero-lower bound in the nominal interest rate, although our current model does not

explicitly account for it. In such a situation, the nominal interest rate is likely independent

to current conditions and substantially, if not completely, depends on its past values. This

limits the ability of the nominal interest rate to mitigate negative shocks to the economy,

which likely causes a greater contraction of economic activity. Basu and Bundick (2012)

consider the uncertainty of TFP shocks and argue that the uncertainty has larger effects

under the zero-lower bound. A similar result is documented by Fernández-Villaverde et al.

(2013) who consider fiscal uncertainty.

4.6 Conclusion

The study attempted to investigate the role of financial frictions in the transmission of mon-

etary volatility shocks on the economy. To do so, we employed the particle filter to estimate

a non-linear DSGE model that incorporates the financial frictions à la Bernanke et al. (1999)

and introduces stochastic volatility to shocks. The results show that our model captures ag-

gregate dynamics relatively well. More importantly, we document that an increase in the

volatility of monetary policy causes a contraction in economic activity: output, consump-

tion, investment, hours worked, and real wages fall. The co-movement of these variables

suggests that monetary volatility shocks may play a certain role in business fluctuations. Re-

garding the role of financial frictions, we find that financial frictions amplify and propagate

the effects of monetary volatility shocks via the financial accelerator mechanism.
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Our work does not examine the impact of monetary volatility shocks under environments

in which there is a zero-lower bound in the nominal interest rate or unconventional mone-

tary policies. Advancing the model to address these issues is an interesting and important

expansion which we would like to consider in the future research.



Chapter 5

Concluding Remarks

This thesis developed three essays on monetary policy. Chapters 2 and 3 provided evidence

on the role played by monetary policy in economic outcomes through the analysis of the

historical conduct of monetary policy. Chapter 4 studied the impact of monetary uncertainty

on the economy using a DSGE model with financial frictions.

In Chapter 2, we considered a variety of reaction functions in the context of real time

data to analyze U.K. monetary policy under inflation targeting adopted in 1992. There

were two important features regarding the estimation procedure. First, expected variables

in contemporaneous- and forward-looking rules were forecasted before estimation. Second,

we used the impulse indicator saturation approach to obtain estimates robust to outliers.

We found that monetary policy after 1992 was forward-looking and satisfied the Taylor

principle. Moreover, the response of monetary policy to inflation has been stronger since

the granting of operational independence to the Bank of England in 1997. Importantly, we

showed that failing to deal with outliers can lead to a distorted result that the post-1992

response to inflation was weak, perhaps not satisfying the Taylor principle.

Chapter 3 modeled changes in U.S. monetary policy by taking four issues that have

been highlighted in the literature as crucial into consideration. These issues are: (i) the type

of changes in policy parameters, (ii) the treatment of heteroscedasticity, (iii) the real-time

nature of data, and (iv) the role of asymmetric preferences. The empirical model specifi-

cation was built on the optimal interest rate rule derived from the formal monetary policy
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design problem in which the loss function is asymmetric with respect to inflation. In this

empirical model, we introduced time-varying parameters and dealt with heteroscedasticity

in policy shocks via a stochastic volatility specification. The estimation was based on real-

time data using particle filtering. The findings suggested that the conduct of U.S. monetary

policy could have experienced important changes at the mid-1970s, the late 1970s, and the

early 1990s. Therefore, a single division at the late 1970s as conventionally assumed might

mislead the evaluation of monetary policy.

Finally, Chapter 4 investigated the impacts of the volatility of monetary policy on the

economy in a DSGE model with financial frictions à la Bernanke, Gertler, and Gilchrist

(1999). The model was estimated for the U.S. economy by maximum likelihood with the

value of the likelihood approximated by particle filtering. The results show that, first, the

model was fairly successful in capturing aggregate dynamics. Second, a positive mone-

tary volatility shock was found to cause a contraction in economic activity. Finally, we

demonstrate that financial frictions amplified and propagated the effects of the shock via

the financial accelerator mechanism. Our results therefore contribute to further advance

understanding of the role played by financial frictions in business fluctuations.

In future research, we would like to expand further the issues discussed in the above

studies. The first direction is to investigate other sources of asymmetric monetary policy.

Regarding the second direction, we would investigate the conduct of monetary policy in

recent years associated with the financial crisis and its consequences. Last but not least, we

would consider the impact of the volatility of monetary policy in different scenarios such as

in a small open economy model or in a model with the zero-lower bound of interest rates.
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Appendix A

Appendix of Chapter 2

A.1 Estimation with BoE’s Forecasts

This appendix presents the estimates of Taylor rules using BoE’s inflation forecasts in two

cases: with and without the impulse-indicator saturation. See explanations on IIS in the

main text.

Table A.1 Taylor Rule Estimates without IIS: 1992Q4-2007Q4, using BoE’s Inflation Fore-
casts and Real-time HP Output gap

h = 0 h = 1 h = 2 h = 3 h = 4
Inflation φπ -0.07 -0.13 -0.16** -0.17** -0.17**

[0.08] [0.08] [0.08] [0.08] [0.08]
Output Gap φx 0.24* 0.24* 0.25 0.26* 0.26*

[0.05] [0.05] [0.05] [0.05] [0.05]

Notes: The regression equation is

M1 : rt = c+ρrt−1 +φπ Etπt+h +φxEtxt+q + εt ,

for t = 1993Q1, ...,2007Q4, h =−1,0,1,2,3,4 and q =−1. The columns correspond to different values of h.
Standard errors are given in [.]. *p < 0.01 and **p < 0.05.
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Table A.2 Taylor Rule Estimates with IIS: 1992Q4-2007Q4, using BoE’s Inflation Forecasts
and Real-time HP Output gap

h = 0 h = 1 h = 2 h = 3 h = 4
Inflation φπ -0.08 -0.14 -0.16** -0.15** -0.16**

[0.08] [0.07] [0.08] [0.08] [0.08]
Output Gap φx 0.21* 0.22* 0.23* 0.24* 0.24*

[0.05] [0.05] [0.04] [0.05] [0.05]

Notes: The regression equation is

M2 : rt = c+ρrt−1 +φπ Etπt+h +φxEtxt+q +
T

∑
i=1

βi1i=t + εt

for t = 1993Q1, ...,2007Q4, h =−1,0,1,2,3,4 and q =−1. The columns correspond to different values of h.
Standard errors are given in [.]. *p < 0.01 and **p < 0.05.
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Appendix of Chapter 3

B.1 An Approximation for the Likelihood Value

The likelihood function is derived as follows

p(IT ;ϖ) =
T

∏
t=1

p(it |It−1;ϖ)

=
T

∏
t=1

(∫
p(it |xt ;ϖ)p(xt |It−1;ϖ)dxt

)
=

T

∏
t=1

(∫ ∫
p(it |xt ;ϖ)p(xt |Xt−1;ϖ)p(Xt−1|It−1;ϖ)dXt−1dxt

)
=

T

∏
t=1

(∫ ∫
p(it |xt ;ϖ)p(xt |xt−1;ϖ)p(Xt−1|It−1;ϖ)dXt−1dxt

)
=

T

∏
t=1

(∫ p(it |xt ;ϖ)p(xt |xt−1;ϖ)

π(xt |Xt−1, It)
π(xt |Xt−1, It)p(Xt−1|It−1;ϖ)dXt

)
≈

T

∏
t=1

(
1
N

N

∑
k=1

p(it |xk
t ;ϖ)p(xk

t |xk
t−1;ϖ)

π(xk
t |Xk

t−1, It)

)

=
T

∏
t=1

(
N

∑
k=1

ω
k−1
t

p(it |xk
t ;ϖ)p(xk

t |xk
t−1;ϖ)

π(xk
t |Xk

t−1, It)

)

=
T

∏
t=1

(
N

∑
k=1

ω
k
t

)
.
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In the above derivation, we used an assumption that π(Xt−1|It−1) = π(Xt−1|It).

B.2 Estimates of Time-Invariant Parameters

The estimates of time-invariant parameters are presented in the following table

Means and Standard Deviations of Time-Invariant Parameters

Parameters Means Standard deviations

σa0 −0.86 0.11

σa1 −2.22 0.08

σa2 0.63 0.11

σa3 −2.23 0.14

σa4 −1.10 0.07

σa5 −1.28 0.08

Notes: The table presents the estimates of the time-invariant parameters of the state space system:

it =
1

1+ exp(−a5,t)
it−1 +

exp(−a5,t)

1+ exp(−a5,t)
(a0,t +a1,tπt|t +a2,tσ

2
πt |t +a3,tyt|t)+ exp(a4,t)εt ,

ak,t = ak,t−1 + exp(σak)εak,t , k = 0,1, ...,5.

B.3 Constructing the Contemporaneous Real-Time HP Out-

put Gap Series

In order to construct the contemporaneous real-time HP output gap from 1965Q4 to 2007Q4,

we use two data sets: the Greenbook projections and the real-time data set for macroe-

conomists. Both can be downloaded from the website of the Philadelphia Fed. For more

explanations about real-time data, we refer the readers to Orphanides (2001).

The procedure to construct the contemporaneous real-time HP output gap for a given

quarter i is described as follows:
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Step 1: Collect the entire time-series history perceived at the quarter i vintage (the vintage

is shown at the column header of the real-time data set) which includes the real output

up to the previous quarter. Note that the real output of quarter i is not available to

observe in that quarter. Denote this series by X j:i−1|i = [x j|i,x j+1|i,x j+2|i, ...,xi−1|i]

where j is the first quarter with data recorded in the vintage i data set and xh|i is the

data of real output of the quarter h perceived at the vintage i.

Step 2: Use the Greenbook forecasts for the quarter-to-quarter growth in real GDP (with

quarterized percentage points) to calculate the expected value of real GDP for the

contemporaneous quarter xi|i from xi−1|i. In order to reduce the end-of-sample issue

of the HP filter, we also compute the expected value of real GDP in the following

quarters when the forecasts of the growth rate for those quarters are available at that

vintage.

Step 3: Combine these expected values with the historical series to generate the new series:

X j:i+k|i = [x j|i,x j+1|i,x j+2|i, ...,xi−1|i,xi|i, ...,xi+k|i] where 0 ≤ k ≤ 4.

Step 4: Apply the HP filter to the series X j:i+k|i to achieve the HP output gap series X∗
j:i+k|i =

[x∗j|i,x
∗
j+1|i,x

∗
j+2|i, ...,x

∗
i−1|i,x

∗
i|i, ...,x

∗
i+k|i]. We then record x∗i|i as the contemporaneous

real-time HP output gap at the quarter i.

B.4 Asymmetric Preferences to Both Inflation and Output

Gap

The Lagrangian of the policy problem in this case is written as follows

Min
πt ,yt ,it

Et

{eα(πt−π∗)−α(πt −π∗)−1
α2 +µ

[
e(λyt)−λyt −1

λ 2

]
+

γ

2
(it − i∗)2

−φ
π
t (πt −κyt − ε

s
t )−φ

y
t (yt +ϕit − ε

d
t )
}
,

(B.1)
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in which φ π
t and φ

y
t are the Lagrange multipliers. It is straightforward to derive the first-

order optimal conditions

Et

{eα(πt−π∗)−1
α

−φ
π
t

}
= 0,

Et(γ(it − i∗)−φ
y
t ϕ) = 0,

Et

{
µ

eλyt −1
λ

+φ
π
t κ −φ

y
t

}
= 0.

Combine these conditions to eliminate the Lagrange multipliers

Et

{eα(πt−π∗)−1
α

κ +
eλyt −1

λ
µ − γ

ϕ
(it − i∗)

}
= 0. (B.2)

Then the central bank sets the interest rate in order to respond to inflation and output devia-

tions

it = i∗+Et

{eα(πt−π∗)−1
α

κϕ

γ
+

eλyt −1
λ

µϕ

γ

}
. (B.3)

and the above expression can be approximated as

it = i∗+Et

{
κϕ

γ
(πt −π

∗)+
κϕα

2γ
(πt −π

∗)2 +
µϕ

γ
yt +

µϕλ

2γ
y2

t

}
= i∗+

κϕ

γ
Et(πt −π

∗)+
κϕα

2γ
Et(πt −π

∗)2 +
µϕ

γ
Etyt +

µϕλ

2γ
Ety2

t

= (i∗− κϕ

γ
π
∗)+

κϕ

γ
πt|t +

κϕα

2γ
σ

2
πt |t +

µϕ

γ
yt|t +

µϕλ

2γ
σ

2
yt |t

= b0 +b1πt|t ++b2σ
2
πt |t +b3yt|t +b4σ

2
yt |t ,

(B.4)

where b0 = i∗− κϕ

γ
π∗, b1 = κϕ

γ
, b2 = κϕα

2γ
, b3 = µϕ

γ
, b4 = µϕλ

2γ
and σ2

yt |t is the expected

variance of unemployment gap conditional on the information available at time t. Other

notations are as in the baseline model.
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B.4.1 Expected Variance of Output Gap

The process of generating the expected variance of output gap series is similar to the one

used to create the expected variance of inflation series in Section 3.4.2. The model specifi-

cation used is given by

yt = c+
3

∑
i=1

βiyt−i +ϕit +
3

∑
j=1

ψiπt− j + εt , (B.5)

where the output gap is proxied by the 5-year moving average gap. This specification is

derived from the IS curve equation (3.3) by substituting the expectations by a linear combi-

nation of lags of inflation and the output gap.



Appendix C

Appendix of Chapter 4

C.1 Choice of Density Function for ψt

Then, one can draw that Et(ψt+1) = 1. Some other outputs can be calculated including

F(ψt) = Φ(zt)

G(ψt) =
∫

ψt

0
ψ f (ψ)dψ

= 1−
∫

∞

ψt

ψ f (ψ)dψ

= 1−Φ(σψeσψt − zt)

= Φ(zt −σψeσψt )

Γ(ψt) = ψt(1−Φ(zt))+Φ(zt −σψeσψt )

G
′
(ψt) = ψtf(ψt)

Γ
′
(ψt) = 1−F(ψt)

where zt = (
log(ψt)+0.5σ2

ψ e2σψt

σψ eσψt ), f(ψ) is the p.d.f of ψ , and Φ(.) is the standard normal c.d.f.
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C.2 Data Sources and Construction

The original time series’ sources are summarized as follows

• RGDP: Real Domestic Product, Billions of chained (2005) dollars, Seasonally ad-

justed at annual rates, Bureau of Economic Analysis Table 1.1.6, line 1

• GDPDEF: Gross Domestic Product: Implicit Price Deflator (GDPDEF), Index 2009=

100, Quarterly, Seasonally Adjusted, Federal Reserve Economic Data

• LNU00000000Q: Labor force status: Civilian noninstitutional population; Bureau of

Labor Statistics

• LNS10000000Q: Labor force status: Civilian noninstitutional population; Bureau of

Labor Statistics (Before 1976: LNU00000000Q)

• LNSindex: LNS10000000Q(2005 : 2) = 1

• FFR: Federal Funds Rate; Federal Reserve Bank of St. Louis

• BAA: Moody’s seasoned Baa corporate bond yields; Federal Reserve Bank of St.

Louis

The four observable data used in the estimation are constructed as below

• ROUTt = LN
(

RGDPt
LNSindext

)
• OUTt = ROUTt −ROUT t in which ROUT t is the potential output per capital filtered

by the Hodrick-Prescott method.

• INPt = LN
(

GDPDEFt
GDPDEFt−1

)
demeanded

• INRt = FFRt/400demeanded

• CBYt = BAAt/400demeanded



C.3 Particle Filter Algorithm 113

C.3 Particle Filter Algorithm

The model considered above belongs to a larger class of non-linear and/or non-normal dy-

namic macroeconomic models which can be written generally in the following state-space

system. First, the law of motion for the state vector xt is given by

xt = h(xt−1,wt ;Ξ) (C.1)

where wt is a random vector of innovations, in our specific case wt includes structural and

volatility shocks, with dimension nw and Ξ is the vector of parameters of the model. Second,

the set of observables denoted by zt are connected to the state variables xt by the measure-

ment equation

zt = g(xt ,vt ;Ξ) (C.2)

where vt is a random vector of measurement errors. To be convenient, we assume indepen-

dence between vt and wt . The functions h and g come from the equations that characterize

the behavior of the model. The particle filter algorithm is presented below.

Particle Filter Algorithm

• Initialization t = 0

Draw N particles x(i)0 , i = 1,2, ..,N , from p(x0;Ξ) and let π
(i)
0 = 1

N for all i.

• Propagation

Draw N particles x(i)t , i = 1,2, ..,N , from p(xt |x̂(i)t−1;Ξ).

• Importance weights

Evaluate the importance weights π
(i)
t , i = 1,2, ..,N

π
(i)
t = π

(i)
t−1 p(zt |x(i)t ;Ξ)

• Log-Likelihood Contribution
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logLt = logLt−1 + log(
N

∑
i=1

π
(i)
t )

• Normalization

Normalize the importance weights π
(i)
t , i = 1,2, ..,N

π̃
(i)
t =

π
(i)
t

∑
N
i=1 π

(i)
t

• Resampling step

We use the systematic resampling algorithm to generate a new set of particles {x̂( j)
t }N

j=1

by resampling (with replacement) from the existing particles {x(i)t }N
i=1 with probabil-

ity {π̂
(i)
t }N

i=1.

• Propagation

Set t = t +1 and go to Step 2: Propagation

Systematic Resampling Algorithm

• Construction of the cumulative sum of weights (CSW)

Let c1 = π̃1
t and define ci = ci−1 + π̃

(i)
t for i = 2, ...,N

• Resampling step

Generate a starting point from a uniform distribution: u1 ∼U [0,N−1] and define u j =

u1 +N−1( j−1) for j = 2, ...,N. For each j = 1, ...,N, find i = 1, ...,N to satisfy

c(i−1)≤ u( j)≤ c(i)

- Assign sample: s( j)∗

k = x(i)k

- Assign weight: π
( j)
t = N−1


	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 U.K. Monetary Policy under Inflation Targeting
	2.1 Introduction
	2.2 Taylor Rules and Data
	2.2.1 Taylor Rule Specifications
	2.2.2 Data

	2.3 Inflation Forecasts
	2.3.1 Empirical Forecasting Specifications
	2.3.2 Forecasting Performance Comparison
	2.3.3 Expected Quarterly Inflation Rates

	2.4 Results
	2.4.1 Taylor Rules without IIS
	2.4.2 Taylor Rules with IIS
	2.4.3 Quadratic Output Gap
	2.4.4 Monetary Policy after the Operational Independence in 1997
	2.4.5 Estimation Including the Recent Crisis Period
	2.4.6 Stability of the Post-1992 Inflation - An Empirical Evaluation

	2.5 Conclusion

	3 Modeling Changes in U.S. Monetary Policy
	3.1 Introduction
	3.2 The Theoretical Model
	3.2.1 The Loss Function
	3.2.2 The Structure of the Economy
	3.2.3 Asymmetric Policy Rule

	3.3 The Empirical Model
	3.4 Data and Empirical Results
	3.4.1 Data
	3.4.2 Expected Variance of Inflation
	3.4.3 Results for the Baseline Model
	3.4.4 Robustness Checks
	3.4.5 Discussion

	3.5 Conclusion

	4 Financial Frictions and the Volatility of Monetary Policy Shocks
	4.1 Introduction
	4.2 The DSGE Model
	4.2.1 Households
	4.2.2 Capital Producers
	4.2.3 Entrepreneurs
	4.2.4 Retailers
	4.2.5 The Central Bank
	4.2.6 Resource Constraint

	4.3 State-Space Representation
	4.3.1 State Transition Equations
	4.3.2 Measurement Equations

	4.4 Estimation
	4.4.1 Fixed Parameters
	4.4.2 Parameter Estimates
	4.4.3 The Evolution of Structural and Volatility Shocks

	4.5 Impulse Response Functions
	4.6 Conclusion

	5 Concluding Remarks
	References
	Appendix A Appendix of Chapter 2
	A.1 Estimation with BoE's Forecasts

	Appendix B Appendix of Chapter 3
	B.1 An Approximation for the Likelihood Value
	B.2 Estimates of Time-Invariant Parameters
	B.3 Constructing the Contemporaneous Real-Time HP Output Gap Series
	B.4 Asymmetric Preferences to Both Inflation and Output Gap
	B.4.1 Expected Variance of Output Gap


	Appendix C Appendix of Chapter 4
	C.1 Choice of Density Function for t
	C.2 Data Sources and Construction
	C.3 Particle Filter Algorithm


