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Abstract 

We report a comparison of the molecular and electronic structure of dithio- and 

diselenophosphinate, (E2PR2)
1-, E = S, Se; R = iPr, tBu, with thorium(IV) and uranium(IV) 

complexes.  For the thorium dithiophosphinate complexes, reaction of ThCl4(DME)2 with four 

equivalents of KS2PR2 (R = iPr, tBu) produced the homoleptic complexes, Th(S2P
iPr2)4, 1S-Th-

i
Pr, and Th(S2P

tBu2)4, , 2S-Th-
t
Bu.  The diselenophosphinate complexes were synthesized in a 

similar manner using KSe2PR2 to produce Th(Se2P
iPr2)4, 1Se-Th-

i
Pr, and Th(Se2P

tBu2)4, , 2Se-

Th-
t
Bu.  U(S2P

iPr2)4, 1S-U-
i
Pr, could be made directly from UCl4 and four equivalents of 

KS2P
iPr2.  With (Se2P

iPr2)
1-, using UCl4 and three or four equivalents of KSe2P

iPr2 yielded the 

mono-chloride product U(Se2P
iPr2)3Cl, 3Se-U

iPr
-Cl, but using UI4(1,4-dioxane)2 produced the 

homoleptic U(Se2P
iPr2)4, 1Se-U-

i
Pr. Similarly, the reaction of UCl4 with four equivalents of 

KS2P
tBu2 yielded U(S2P

tBu2)4, 2S-U-
t
Bu, while the reaction with KSe2P

tBu2 resulted in the 

formation of U(Se2P
tBu2)3Cl, 4Se-U

tBu
-Cl. Using UI4(1,4-dioxane)2 and four equivalents of 

KSe2P
tBu2 with UCl4 in acetonitrile yielded U(Se2P

tBu2)4, 2Se-U-
t
Bu. Transmetalation reactions 

were investigated with complex 2Se-U-
t
Bu and various CuX (X = Br, I), salts to yield 

U(Se2P
tBu2)3X, (6Se-U

tBu
-Br, and 7Se-U

tBu
-I)  and 0.25 equivalents of [Cu(Se2P

tBu2)]4, 8Se-

Cu-
t
Bu. Additionally 2Se-U-

t
Bu underwent transmetalation reactions with Hg2F2 and ZnCl2 to 

yield U(Se2P
tBu2)3F, 6, and U(Se2P

tBu2)3Cl, 4Se-U
tBu

-Cl, respectively.  The molecular structures 

were analyzed using 1H, 13C, 31P, and 77Se NMR and IR spectroscopy and structurally 

Page 1 of 39

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2 
 

characterized using X-ray crystallography.  Using the QTAIM approach, the electronic structure 

of all homoleptic complexes were probed and show slightly more covalent bonding character in 

actinide-selenium bonds over actinide-sulfur bonds. 

Introduction 

Recycling of spent nuclear fuel is important if nuclear energy is to be a viable source for a 

portion of the world’s increasing energy requirements.  In recent years, extractors bearing soft 

donor atoms have been shown to have selectivity for actinides over lanthanides.1-3 In fact, 

Cyanex 301, a dithiophosphinic acid, is commercially used to extract late minor actinides from 

lanthanides.4 This is presumed to be due to actinide-ligand bonding having more covalent 

character than lanthanides but further study is warranted.  In this regard, the synthesis of dithio- 

and diselenophosphinate complexes with alkyl-substituents provides a platform from which to 

investigate this phenomenon. 

The Gaunt group recently reported a series of 4f and 5f diphenyldiselenophosphinate 

complexes which showed enhanced covalent character in the actinide series than their lanthanide 

counterparts.5  We followed with a comparison of sulfur- and selenium-based phosphonate 

compounds which observed actinide-selenium bonds had higher covalency than actinide-sulfur 

bonds.6  For strongly oxophilic, Lewis acidic metal centers such as the actinides, this was an 

unexpected result and opens up new opportunities on how to describe actinide-ligand bonding. 

The reactivity of actinide complexes with soft donor ligands is limited. Insertion of CO2 and 

CS2 into uranium-thiolato,7,8 -sulfide, -selenide-, and telluride9 bonds has been reported. In our 

previous work we noted that insertion reactivity was not observed with dithio- and 

diselenophosphonate complexes but realized this could be due to steric crowding around the 

metal center.  Given our interest in coinage metal chemistry,10 which have a propensity for soft 
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donor atoms such as sulfur and selenium, transmetalation reactions with soft metal salts seemed 

plausible. These reactions are advantageous to achieve stoichiometric substitution at one site on 

the actinide and hence examine structure, bonding, and spectroscopic differences.  Herein, we 

report the synthesis of An(E2PR2)4 (An = Th, U; E = S, Se; R = iPr, tBu) complexes and 

transmetalation reactions with U(Se2P
tBu2)4 and CuBr, CuI, ZnCl2, and Hg2F2 salts to produce 

compounds of the form XU(Se2P
tBu2)3. 

Experimental 

General considerations.  The syntheses and manipulations described below were conducted 

using standard Schlenk and glovebox techniques. All reactions were conducted in a Vacuum 

Atmospheres inert atmosphere (N2) glovebox. THF, toluene, and hexanes were purchased 

anhydrous, stored over activated 4 Å molecular sieves, and sparged with nitrogen prior to use. 

Methylene chloride and ethanol (200 proof) were dried over activated 4 Å molecular sieves and 

sparged with nitrogen for thirty minutes prior to use. [ThCl4(DME)2],
11 and [UCl4]

12 were 

synthesized as previously described. [Th(S2P
iPr2)4]

13 and [KS2P
iPr2],

14 were synthesized using 

modified literature procedures (vide infra). Diisopropylphosphine (10% in hexanes), di-tert-

butylphosphine, sublimed sulfur, selenium, potassium hydroxide, [Cu(NCMe)4]PF6, copper(I) 

chloride, Hg2F2, HgCl2, copper(I) bromide, and copper(I) iodide were purchased from 

commercial suppliers and used without further purification. Benzene-d6 and THF-d8 (Cambridge 

Isotope Laboratories) were dried over molecular sieves and degassed with three freeze-evacuate-

thaw cycles. D2O (Cambridge Isotope Laboratories) was used as received. All 1H, 13C, 31P, and 

77Se NMR data were obtained on a 300 MHz DRX or 500 MHz DRX Bruker spectrometer. 1H 

NMR shifts given were referenced internally to the residual solvent peaks at δ 7.16 ppm 

(C6D5H), δ 1.72 ppm (C4D7HO), δ 4.79 (HDO). 13C NMR shifts given were referenced internally 
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to the residual peaks at δ 128.0 ppm (C6D6) or δ 67.20 (C4D8O). 31P NMR spectra were 

externally referenced to 0.00 ppm with 5% H3PO4 in D2O.  77Se NMR shifts given were 

referenced externally to 460.00 ppm with diphenyl diselenide in C6D6, C4D8O, or D2O. Infrared 

spectra were recorded as KBr pellets on Perkin-Elmer Spectrum One FT-IR spectrometer. 

Elemental analyses were performed by Atlantic Microlab, Inc. (Norcross, GA). 

Crystallographic Data Collection and Structure Determination. The selected single crystal 

was mounted on nylon cryoloops using viscous hydrocarbon oil. X-ray data collection was 

performed at 173(2) or 100(2) K. The X-ray data were collected on a Bruker CCD diffractometer 

with monochromated Mo-Kα radiation (λ = 0.71073 Å) or Cu- Kα radiation (λ = 1.54178 Å). 

The data collection and processing utilized Bruker Apex2 suite of programs.15 The structures 

were solved using direct methods and refined by full-matrix least-squares methods on F2 using 

Bruker SHELX-2014/7 program.16 All non-hydrogen atoms were refined with anisotropic 

displacement parameters. All hydrogen atoms were placed at calculated positions and included in 

the refinement using a riding model. Thermal ellipsoid plots were prepared by using X-seed17 

with 50% of probability displacements for non-hydrogen atoms. Crystal data and details for data 

collection for complexes 1-5, 7-10, 13, and 15 are provided in Tables 1 and 2. Significant bond 

distances and angles are listed in Tables 5-9 and 10. 

KS2P
i
Pr2. An oven-dried 100 mL Schlenk flask was charged with diisopropylphosphine (10 g, 

8.46 mmol) and cycled onto a Schlenk line. 30 mL of 200 proof ethanol was added to 

diisopropylphosphine followed by potassium hydroxide (475 mg, 8.46 mmol) and elemental 

sulfur (543 mg, 2.12 mmol). The reaction was allowed to stir at room temperature for 12 h to 

yield a colorless solution. The ethanol was removed under vacuum to yield a white precipitate 

and the Schlenk flask was taken inside the glove box. The white precipitate was washed twice 
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with 20 mL of diethyl ether, filtered over a frit, and dried to yield a white powder (1.77 g, 95%). 

1H NMR (D2O, 25 °C): δ 2.22-2.16 (m, 2H, CH(CH3)), 1.18 (dd, 3JP-H = 18.0 Hz, 3JH-H = 7.0 Hz, 

12H, CH(CH3)). 
13C{1H} (D2O, 25 °C, uncorrected): δ 33.03 (d, 1JP-C = 50.3 Hz), 15.74. 31P{1H} 

(D2O, 25 °C): δ 95.6. IR (cm-1): 2982 (s), 2870 (s), 1479 (m), 1388 (m), 1365 (m), 1177 (s), 1124 

(s), 1110 (s), 1025 (s), 804 (m), 625 (s), 612 (s), 520 (m), 473 (m). 

KS2P
t
Bu2.  An oven-dried 120 mL Schlenk flask was charged with tBu2PH (1.0 g, 6.84 mmol) 

followed by THF (3 mL). The Schlenk flask was cycled onto the Schlenk line and 20 mL of 200 

proof ethanol was added followed by potassium hydroxide (384 mg, 6.84 mmol). The mixture 

was stirred until the potassium hydroxide was dissolved followed by addition of element sulfur 

(439 mg, 1.71 mmol). The reaction was stirred until the sulfur was consumed. The solvent was 

removed under vacuum to yield a white solid which was triturated with 20 mL of hexanes to 

yield a white microcrystalline powder (1.46 g, 86%). 1H NMR (D2O, 25 °C): δ 1.37 (d, 3JP-H = 16 

Hz, 18 H, C(CH3)3). 
13C{1H} (D2O, 25 °C, uncorrected): δ 40.97 (d, 1JP-C = 41 Hz), 27.40 (d, 2JP-

C = 2.0 Hz). 31P{1H} (D2O, 25 °C): δ 112.4. IR (cm-1): 2963 (s), 2891 (s), 1473 (m), 1383 (m), 

1358 (m), 1173 (s), 1127 (s), 1108 (s), 1016 (s), 806 (m), 629 (s), 609 (s), 517 (m), 469 (m). 

KSe2P
i
Pr2. Following the same procedure for KS2P

iPr2, diisopropylphosphine (10 g, 8.46 

mmol), potassium hydroxide (475 mg, 8.46 mmol), and elemental selenium (1.34 g, 17.0 mmol) 

to yield a white powder (2.65 g, 99%).  1H NMR (D2O, 25 °C): δ 2.26-2.20 (m, 2H, CH(CH3)), 

1.18 (dd, 3
JP-H = 20.0 Hz, 3

JH-H = 7.0 Hz, 12H, CH(CH3)). 
13C{1H} (D2O, 25 °C, uncorrected): δ 

32.93 (d, 1
JP-C = 36.0 Hz), 16.58 (d, 2

JP-C = 13.0 Hz). 31P{1H} (D2O, 25 °C): δ 70.1 (s + d 

satellites, 1
JSe-P = 553.0 Hz). 77Se{1H} (D2O, 25 °C): δ −192.01  (d, 1

JP-Se = 553 Hz).  IR (cm-1): 

2970 (s), 2913 (s), 2862 (s), 1459 (s), 1379 (s), 1291 (m), 1236 (m), 1160 (w), 1100 (m), 1083 

(w), 1021 (s), 965 (w), 929 (w), 883 (s), 837 (w), 655 (s), 593 (s).  

Page 5 of 39

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 
 

KSe2P
t
Bu2. A 120 mL Schlenk flask was charged with tBu2PH (1.0 g, 6.84 mmol) and THF 

(3mL). The flask was cycled onto a Schlenk line and 20 mL of 200 proof ethanol was added 

followed by potassium hydroxide (384 mg, 6.84 mmol). The mixture was stirred until the 

potassium hydroxide was dissolved followed by addition of elemental selenium (1.08 g, 13.7 

mmol). The reaction was stirred overnight and filtered via cannula. The solvent was removed 

under vacuum to yield a yellow solid which was washed with 20 mL of hexanes, filtered over a 

frit, and dried under vacuum to yield a white microcrystalline powder (1.74 g, 74%). 1H NMR 

(D2O, 25 °C): δ 1.42 (d, 3
JP-H = 17.0 Hz, 18 H, C(CH3)3). 

13C{1H} (D2O, 25 °C, uncorrected): δ 

40.27 (d,1JP-C = 25 Hz), 27.79 (d, 2
JP-C = 2.5 Hz). 31P{1H} (D2O, 25 °C): δ 95.7 (s + d satellites, 

1
JSe-P = 556 Hz). 77Se{1H} (D2O, 25 °C): δ −153.5 (d, 1JP-Se = 556 Hz). IR (cm-1): 2962 (m), 2911 

(m), 1459 (m), 1382 (m), 1357 (m), 1170 (s), 1088 (s), 1019 (s), 803 (m), 599 (w), 578 (w), 537 

(s), 484 (m). 

Th(S2P
i
Pr2)4, 1S-Th-

i
Pr. A 20 mL scintillation vial was charged with ThCl4(DME)2 (174 mg, 

0.314 mmol) and THF (3 mL). A second 20 mL scintillation vial was charged with KS2P
iPr2 

(283 mg, 1.28 mmol) and THF (3 mL). The solution of KS2P
iPr2 was added to a stirring solution 

of ThCl4(DME)2 and allowed to stir for 14 h at room temperature. The reaction solvent was 

removed under vacuum and the precipitate was extracted twice with toluene, filtered over a bed 

of Celite, concentrated, and layered with Et2O to yield a white microcrystalline material (180 

mg, 60%). Colorless X-ray quality crystals were grown from a concentrated Tol/Et2O mixture at 

−20 ºC. 1H NMR (C6D6, 25 °C): δ 2.36 (d sep, 2
JP-H = 10.0 Hz, 3

JH-H = 7.5 Hz, 8H, CH(CH3)2), 

1.23 (dd, 3
JP-H = 20.0 Hz, 3

JH-H = 7.5 Hz, CH(CH3)2). 
13C{1H} (C6D6, 25 °C): δ 35.19 (d, 1

JP-C = 

43.0 Hz), 17.00. 31P{1H} (C6D6, 25 °C): δ 84.9. IR (cm-1): 2960 (s), 2925 (s), 2860 (s), 2427 (w), 

1460 (s), 1387 (s), 1288 (m), 1245 (m), 1160 (w), 1090 (m), 1048 (m), 1026 (m), 930 (m), 881 
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(s), 838 (w), 690 (m), 671 (s), 632 (s), 500 (s). Anal. calcd. for C24H56P4S8Th: C, 30.12%; H, 

5.90%. Found C, 29.90%; H, 5.66%. 

Th(S2P
t
Bu2)4, 2S-Th-

t
Bu. A 20 mL scintillation vial was charged with ThCl4(DME)2 (109 mg, 

0.196 mmol) and THF (3 mL). A second 20 mL scintillation vial was charged with KS2P
tBu2 

(200 mg, 0.805 mmol) and THF (3 mL). The KS2P
tBu2 was added to a stirring solution of 

ThCl4(DME)2 and allowed to stir for 14 h at room temperature. The solvent removed under 

vacuum, extracted with toluene, and filtered over Celite. The toluene was removed under 

vacuum to yield a pale yellow residue which was extracted with THF, filtered over Celite and 

concentrated to yield a white microcrystalline solid (84 mg, 42%). X-ray quality crystals were 

grown from a concentrated THF/hexanes mixture at room temperature. 1H NMR (C6D6, 25 °C): 

δ 1.43 (d, 3
JP-H = 15.0 Hz, 72 H, C(CH3)3). 

13C{1H} (C6D6, 25 °C): δ 42.97 (d, 1
JP-C = 34.0 Hz), 

27.44. 31P{1H} (C6D6, 25 °C): δ 99.1. IR (cm-1): 2990 (m), 2964 (m), 2904 (m), 2868 (m), 1475 

(s), 1390 (m), 1364 (m), 1181 (s), 1082 (s), 1088 (s), 939 (m), 804 (m), 620 (s), 518 (m), 467 

(m), 441 (m). Anal. calcd. for C32H72P4S8Th•0.5(THF): C, 36.94%; H, 6.93%. Found C, 36.99%; 

H, 6.87%. 

Th(Se2P
i
Pr2)4, 1Se-Th-

i
Pr. A 20 mL scintillation vial was charged with ThCl4(DME)2 (97 mg, 

0.175 mmol) and THF (3 mL) A second 20 mL scintillation vial was charged with KSe2P
iPr2 

(225 mg, 0.716 mmol) and THF (3 mL). Both vials were placed inside a −20 ºC freezer for 10 

min. The solution of KSe2P
iPr2 was added to a stirring solution of ThCl4(DME)2 and allowed to 

stir at room temperature for 14 h resulting in a yellow solution. The reaction solvent was 

removed under vacuum and the precipitate was extracted twice with toluene, filtered over a bed a 

Celite, and the solvent removed under reduced pressure to yield a white precipitate (182 mg, 

78%). Colorless X-ray quality crystals were grown from concentrated Tol/Et2O mixture at -23 
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°C. 1H NMR (C6D6, 25 °C): δ 2.41-2.39 (m, 8H, CH(CH3)2), 1.25 (dd, 3
JP-H = 20.0 Hz, 3

JH-H = 

7.0 Hz, 48H, CH(CH3)2). 
13C{1H} (C6D6, 25 °C): δ 34.12 (d, 1

JP-C = 29.0 Hz), 17.69. 31P{1H} 

(C6D6, 25 °C): δ 57.6 (s + d satellites, 1JSe-P = 500 Hz). 77Se{1H} (C6D6, 25 °C): δ 6.4 (d, 1JP-Se = 

500 Hz). IR (cm-1): 2960 (s), 2925 (m), 2867 (m), 1459 (s), 1384 (s), 1237 (m), 1159 (w), 1091 

(w), 1047 (w), 1023 (w), 930 (w), 878 (m), 837 (w), 649 (s), 615 (m), 538 (s). 478 (m). Anal. 

calcd. for C24H56P4Se8Th: C, 21.64%; H, 4.24%. Found C, 21.82%; H, 4.13%. 

Th(Se2P
t
Bu2)4, 2Se-Th-

t
Bu. A 20 mL scintillation vial was charged with ThCl4(DME)2 (77 mg, 

0.138 mmol) and THF (3 mL). A second 20 mL scintillation vial was charged with KSe2P
tBu2 

(194 mg, 0.567 mmol) and THF (3 mL). The KSe2P
tBu2 was added to a stirring solution of 

ThCl4(DME)2 and allowed to stir for 14 h at room temperature. The solvent removed under 

vacuum, extracted with toluene, and filtered over Celite. The toluene was removed under 

vacuum to yield a pale yellow residue which was extracted with THF, filtered over Celite and 

concentrated to yield a white microcrystalline solid (122 mg, 61%). X-ray quality crystals were 

grown from a concentrated THF/hexanes mixture at room temperature. 1H NMR (C6D6, 25 °C): 

δ 1.45 (d, 3
JP-H = 17.0 Hz, 72H, C(CH3)3). 

13C{1H} (C6D6, 25 °C): δ 42.21 (d, 1
JP-C = 18.0 Hz), 

28.29. 31P{1H} (C6D6, 25 °C): δ 78.3 (s + d satellites, 1JSe-P = 491 Hz). 77Se{1H} (C6D6, 25 °C): δ 

90.5 (d, 1
JP-Se = 491 Hz). IR (cm-1): 2984 (s), 2950 (s), 2913 (s), 2860 (s), 1473 (s), 1389 (m), 

1364 (s), 1261 (w), 1175 (s), 1096 (m), 1071 (m), 1021 (m), 938 (w), 802 (m), 583 (s), 534 (s), 

483 (s). Anal. calcd. for C32H72P4Se8Th•C4H8O: C, 28.51%; H, 5.32%. Found C, 28.74%; H, 

5.09%. 

U(S2P
i
Pr2)4, 1S-U-

i
Pr. A 20 mL scintillation vial was charged with UCl4 (99 mg, 0.261 mmol) 

and THF (3 mL). A second 20 mL scintillation vial was charged with KS2P
iPr2 (235 mg, 1.07 

mmol) and THF (3 mL). Both vials were placed in a freezer at −20 ºC for 10 min. The KS2P
iPr2 
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was added to a stirring solution of UCl4 and underwent a color change to green. The reaction was 

allowed to warm to room temperature and stirred for 5 h. The solvent was removed under 

reduced pressure and the solid was extracted with toluene, filtered over Celite, concentrated and 

layered with diethyl ether. Green X-ray quality crystals were grown at room temperature (158 

mg, 63%).1H NMR (C6D6, 25 °C): δ 8.00 (s, br, 8H, CH(CH3)2), 4.20 (s, br, 48H, CH(CH3)2).
 

31P{1H} (C6D6, 25 °C): δ −436.3. IR (cm-1): 2962 (s), 2927 (m), 2869 (m), 1458 (s), 1384 (s), 

1244 (m), 1151 (w), 1088 (m), 1048 (m), 1025 (m), 941 (w), 879 (s), 838 (m), 724 (w), 673 (s), 

646 (s), 505 (m). Anal. calcd. for C24H56P4S8U: C, 29.93%; H, 5.86%. Found C, 30.25%; H, 

5.81%. 

U(S2P
t
Bu2)4, 2S-U-

t
Bu. A 20 mL scintillation vial was charged with UCl4 (88 mg, 0.232 mmol) 

and THF (3 mL). A second 20 mL scintillation vial was charged with KS2P
tBu2 (237 mg, 0.954 

mmol) and THF (4 mL) and placed in a freezer at −20 ºC for 20 min. The KS2P
tBu2 was added to 

a stirring solution of UCl4 and resulted in a green/yellow color change. The reaction mixture was 

allowed to warm to room temperature and stirred for 17 h. The solvent was removed under 

vacuum, extracted with toluene, filtered over a bed of Celite, and solvent removed to yield a 

yellow precipitate (134 mg, 54%). 1H NMR (C6D6, 25 °C): δ −11.90. (s, br, 72H, C(CH3)3). 

31P{1H} (C6D6, 25 °C): δ −467.2. IR (cm-1): 2988 (m), 2965 (m), 2900 (m), 2873 (m), 1473 (s), 

1393 (m), 1360 (m), 1180 (s), 1089 (s), 1082 (s), 939 (m), 804 (m), 621 (s), 518 (m), 466 (m). 

Anal. calcd. for C32H72P4S8U: C, 35.74%; H, 6.75%. Found C, 35.90%; H, 6.82%. 

U(Se2P
i
Pr2)4, 1Se-U-

i
Pr. A 20 mL scintillation vial was charged with UI4(1,4-dioxane)2 (138 

mg, 0.150) mmol). A second 20 mL scintillation vial was charged with KSe2P
iPr2 (192 mg, 

0.611 mmol) and acetonitrile (4 mL). The solution of KSe2P
iPr2 was placed in a freezer at −20 

°C for 20 min. The UI4(1,4-dioxane)2 was added as a solid to a stirring solution of KSe2P
iPr2 and 
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resulted in a red color change. The reaction mixture was allowed to stir at room temperature for 5 

h, filtered over Celite, and the solvent removed under vacuum to yield a red precipitate. The 

precipitate was extracted with diethyl ether, filtered over Celite, and the solvent reduced to yield 

a red precipitate (109 mg, 55%). X-ray quality crystals were grown from a concentrated diethyl 

ether solution at room temperature. 1H NMR (C6D6, 25 °C): δ 7.34 (s, br, 8H, CH(CH3)2), 4.37 

(s, br, 48H, CH(CH3)2). 
31P{1H} (C6D6, 25 °C): δ −618.0 (s + d satellites, 1

JSe-P = 497 Hz). IR 

(cm-1): 2959 (s), 2919 (s), 2867 (s) 1467 (s), 1382 (m), 1359 (m), 1234 (m), 1156 (m), 1087 (m), 

1038 (m), 1018 (m), 920 (w), 875 (m), 645 (m), 613 (s), 538 (s), 469 (w). Anal. calcd. for 

C24H56P4Se8U: C, 21.54%; H, 4.22%. Found C, 21.91%; H, 4.08%.  

U(Se2P
t
Bu2)4, 2Se-U-

t
Bu. A 20 mL scintillation vial was charged with UCl4 (65 mg, 0.171 

mmol) and acetonitrile (2 mL). A second 20 mL scintillation vial was charged with KSe2P
tBu2 

(241 mg, 0.704 mmol) and acetonitrile (3 mL). Both vials were placed in −20 ºC freezer for 20 

min. The KSe2P
tBu2 was added to the UCl4 and the reaction mixture was allowed to stir for 3 h. 

The reaction mixture was centrifuged and the orange precipitate was dried, extracted with 

toluene, and filtered over Celite to yield a red solution. X-ray quality crystals were grown from a 

concentrated toluene solution at −20 ºC (198 mg, 80%). 1H NMR (C6D6, 25 °C): δ 2.74 (d, 3
JP-H 

= 9.0 Hz, 72H, C(CH3)3). 
31P{1H} (C6D6, 25 °C): δ −473.0. IR (cm-1): 2961 (m), 2936 (m), 2900 

(m), 2859 (m), 1470 (m), 1388 (m), 1362 (m), 1173 (m), 1095 (m), 1070 (m), 1020 (m), 929 (m), 

881 (m), 586 (m), 566 (s), 536 (m), 484 (m). Anal. calcd. for C32H72P4Se8U•(C7H8): C, 30.36%; 

H, 5.23%. Found C, 30.63%; H, 5.23%. 

U(Se2P
i
Pr2)3Cl, 3Se-U

iPr
-Cl. A 20 mL scintillation vial was charged with UCl4 (152 mg, 0.400 

mmol) and THF (2 mL). A second 20 mL scintillation vial was charged with KSe2P
iPr2 (390 mg, 

1.24 mmol) and THF (3 mL). Both vials were placed in −23 °C freezer for 10 min and KSe2P
iPr2 
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was added to UCl4 with an immediate color change to dark red. The reaction was allowed to stir 

for 5 h. The solvent was removed under vacuum and the red precipitate was extracted with 

toluene, filtered over a bed of Celite, and concentrated to yield a red microcrystalline solid (352 

mg, 80%). X-ray quality crystals were grown from a concentrated diethyl ether solution at −23 

°C. 1H NMR (C6D6, 25 °C): δ 7.33 (s, br, 6H, CH(CH3)2), 4.36 (s, br, 36H, CH(CH3)2). 
31P{1H} 

(C6D6, 25 °C): δ −610.2 (s + d satellites, 1
JSe-P = 487 Hz). IR (cm-1): 2959 (s), 2925 (m), 2866 

(m), 1459 (s), 1387 (s), 1236 (m), 1158 (w), 1090 (m), 1047 (m), 1023 (m), 925 (w), 878 (m), 

837 (w), 649 (s), 615 (s), 535 (s), 473 (m). Anal. calcd. for 

C18H42ClP3Se6U•0.5(Et2O)•0.5(C7H8): C, 21.07%; H, 3.84%. Found C, 21.38%; H, 3.85%. 

U(S2P
t
Bu2)3Cl, 4S-U

tBu
-Cl. Method A. A 20 mL scintillation vial was charged with UCl4 (76 

mg, 0.200 mmol) and CH3CN (3 mL). A second 20 mL scintillation vial was charged with 

KS2P
tBu2 (154 mg, 0.620 mmol) and CH3CN (3 mL). Both vials were placed in a −23 °C freezer 

for 30 min and the KS2P
tBu2 was added to the UCl4 mixture and allowed to stir for 14 h at room 

temperature to yield a blue/green mixture. The solvent was removed under vacuum and extracted 

with toluene (2 x 5 mL), filtered over Celite, concentrated, and placed in a −23 °C freezer to 

yield a green precipitate (124 mg, 69%). X-ray quality crystals were grown from a concentrated 

toluene/diethyl ether solution at −23 °C. 1H NMR (C6D6, 25 °C): δ −3.36 (s, br, 54H, C(CH3)3). 

31P{1H} (C6D6, 25 °C): δ −495.0. 

Method B. A 20 mL scintillation vial was charged with 2S-U-
t
Bu (128 mg, 0.119 mmol) and 

THF (5 mL). A second 20 mL scintillation vial was charged with ZnCl2 (8 mg, 0.0595 mmol) 

and THF (1 mL) and was added to the 2S-U-
t
Bu solution at room temperature and allowed to stir 

for 14 h to yield a green/yellow solution. The solvent was removed under vacuum, extracted with 

Page 11 of 39

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12 
 

toluene, filtered over Celite, concentrated a placed in a −23 °C freezer to yield a green precipitate 

(59 mg, 55%). NMR spectroscopy data matched spectra reported for Method A. 

U(Se2P
t
Bu2)3Cl, 4Se-U

tBu
-Cl. Method A. A 20 mL scintillation vial was charged with UCl4 (96 

mg, 0.254 mmol) and CH3CN (3 mL). A second 20 mL scintillation vial was charged with 

KSe2P
tBu2 (269 mg, 0.786 mmol) and was added as solid to UCl4 at room temperature. The 

reaction was allowed to stir for 14 h to yield an orange/red precipitate. The solvent was decanted 

and the solid was dried under vacuum. The orange/red solid was extracted with toluene (2 x 4 

mL), filtered over Celite, concentrated, and placed in a −23 ºC freezer to yield a red precipitate 

(234 mg, 78%). X-ray quality crystals were grown from a concentrated toluene solution at −23 

ºC. 1H NMR (C6D6, 25 °C): δ −2.31 (s, br, 54H, C(CH3)3). 
31P{1H} (C6D6, 25 °C): δ −690.0. IR 

(cm-1): 2981 (s), 2960 (s) 2941 (s), 2911 (s), 2899 (s), 2866 (m), 1470 (s), 1389 (m), 1363 (s), 

1171 (s), 1020 (s), 936 (m), 799 (m), 606 (w), 583 (s), 532 (s), 487 (s). Anal. calcd. for 

C24H54ClP3Se6U: C, 24.37%; H, 4.60%. Found C, 24.77%; H, 4.31%.  

Method B. A 20 mL scintillation vial was charged with 2Se-U-
t
Bu (100 mg, 0.0689 mmol) and 

THF (3 mL). A second 20 mL scintillation vial was charged with ZnCl2 (4.7 mg, 0.0345 mmol) 

and added as solid to 2Se-U-
t
Bu at room temperature. The reaction was stirred for 14 h to yield a 

dark red solution. The reaction was filtered over Celite and the solvent was removed under 

vacuum. The dark red solid was washed with hexanes (2 x 3 mL) and dried. The red solid was 

extracted with toluene, filtered over Celite, concentrated and placed in a −23 ºC freezer to yield a 

red precipitate (43 mg, 53%). NMR spectroscopy data matched spectra reported for Method A. 

U(Se2P
t
Bu2)3F, 5Se-U

tBu
-F. A 20 mL scintillation vial was charged with 2Se-U-

t
Bu (174 mg, 

0.120 mmol) and THF (3 mL). A second 20 mL scintillation vial was charged with Hg2F2 (26 
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mg, 0.0592 mmol) and added as solid to 2Se-U-
t
Bu at room temperature. The reaction was 

allowed to stir for 14 h to yield an orange solution. The reaction was filtered over Celite, 

concentrated, layered with hexane, and placed in a −23 ºC freeze overnight to yield an orange 

precipitate (85 mg, 61%). 1H NMR (C6D6, 25 °C): δ −2.71 (s, br, 54H, C(CH3)3). 
31P{1H} (C6D6, 

25 °C): δ −786.0. IR (cm-1): 2953 (s), 2907 (s), 2863 (s), 1463 (s), 1393 (w), 1361 (s), 1171 (s), 

1099 (m), 1071 (m), 1020 (s), 937 (w), 816 (w), 801 (m), 575 (s), 524 (s), 483 (s). Due to the 

similar solubility of 5Se-U
tBu

-F and the transmetalation byproduct, a suitable element analysis 

could not be achieved.   

U(Se2P
t
Bu2)3Br, 6Se-U

tBu
-Br. A 20 mL scintillation vial was charged with 2Se-U-

t
Bu (175 mg, 

0.121 mmol) and THF (5 mL). A second 20 mL scintillation vial was charged with CuBr (17 mg, 

0.121 mmol) and was added as a solid to 2Se-U-
t
Bu at room temperature. The reaction was 

stirred for 14 h, filtered over Celite, concentrated, layered with hexane, and placed in a −23 ºC 

freeze overnight to yield a dark red precipitate (92 mg, 62%). 1H NMR (C6D6, 25 °C): δ −1.39 (s, 

br, 54H, C(CH3)3). 
31P{1H} (C6D6, 25 °C): δ −652.0. IR (cm-1): 2954 (s), 2098 (s), 2864 (s), 1464 

(s), 1390 (w), 1362 (m), 1172 (s), 1070 (m), 1021 (s), 936 (w), 841 (w), 802 (m), 581 (m), 530 

(m), 484 (s). Due to the similar solubility of 6Se-U
tBu

-Br and the transmetalation byproduct, a 

suitable element analysis could not be achieved.   

U(Se2P
t
Bu2)3I, 7Se-U

tBu
-I. A 20 mL scintillation vial was charged with 2Se-U-

t
Bu (326 mg, 

0.225 mmol) and THF (5 mL). A second 20 mL scintillation vial was charged with CuI (86 mg, 

0.856 mmol) and added as a solid to 2Se-U-
t
Bu at room temperature. The reaction was stirred for 

14 h and filtered over Celite, and the solvent was removed under vacuum. The red solid was 

extracted with hexanes (2 x 3 mL), decanted, and the red precipitate was dried under vacuum. 

The red solid was extracted with toluene, filtered over Celite, concentrated, and placed in a −23 
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ºC freeze overnight to yield a dark red precipitate (195 mg, 68%). X-ray quality crystals were 

grown from a toluene/hexanes mixture at −23 ºC. 1H NMR (C6D6, 25 °C): δ −0.30 (s, br, 54H, 

C(CH3)3). 
31P{1H} (C6D6, 25 °C): δ −635.0. IR (cm-1): 2960 (s), 2914 (s), 2899 (s), 2863 (s), 

1471 (s), 1389 (m), 1364 (s), 1172 (s), 1079 (m), 1020 (s), 936 (m), 800 (s), 636 (w), 606 (w), 

583 (s), 531 (s), 483 (s). Anal. calcd. for C24H54IP3Se6U: C, 22.62%; H, 4.27%. Found C, 

22.60%; H, 4.02%. 

[Cu(Se2P
t
Bu2)]4, 8Se-Cu-

t
Bu. A 20 mL scintillation vial was charged with [Cu(NCMe)4][PF6] 

(109 mg, 0.292 mmol) and acetonitrile (3 mL). KSe2P
tBu2 (100 mg, 0.292 mmol) was added to 

the mixture as a solid at room temperature and the reaction was allowed to stir for 14 h. The 

solvent was removed under vacuum and the solid was extracted with toluene, filtered over Celite 

and concentrated. X-ray quality yellow crystals were grown from toluene/hexanes mixture at −23 

ºC (two crops, 80 mg, 75%). 1H NMR (C6D6, 25 °C): δ 1.51 (d, 3
JP-H = 17.0 Hz, 72H, C(CH3)3). 

13C{1H} (C6D6, 25 °C): δ 42.18 (d, 1JP-C = 18.0 Hz), 29.32. 31P{1H} (C6D6, 25 °C): δ 90.6 (s + d, 

satellites, 1
JSe-P = 533 Hz). IR (cm-1): 2995 (s), 2978 (s), 2961 (s), 2913 (s), 2867 (s), 1465 (s), 

1388 (m), 1362 (s), 1173 (s), 1020 (s), 937 (w), 801 (s), 730 (m), 695 (w), 596 (w), 577 (s), 528 

(s), 484 (s). Anal. calcd. for C32H72P4Se8Cu4•0.5(C7H8): C, 28.19%; H, 5.06%. Found C, 

28.47%; H, 5.04%. 

Table 1. X-ray crystallographic data shown for complexes homoleptic Th(E2PR2)4, E = S, Se; R 
= iPr, tBu; and U(S2P

iPr)4 

 1S-Th-iPr 2S-Th-tBu 1Se-Th-iPr 2Se-Th-tBu 1S-U-iPr 

CCDC deposit number 1404305 1404306 1404307 1404308 1406602 

Empirical formula C28H64OP4S8Th C32H72P4S8Th C24H56P4Se8Th C32H72P4Se8Th C24H56P4S8U 
Formula weight (g/mol) 1029.19 1069.29 1332.28 1444.49 963.16 

Crystal habit, color Brick, colorless Prism, colorless Brick, colorless Prism, colorless Needle, green 
Temperature (K) 100(2) 100(2) 173(2) 100(2) 100(2) 

Space group P21/n P-4n2 Cc  P-4n2 Pnn2 
Crystal system Monoclinic Tetragonal Monoclinic Tetragonal Orthorhombic 
Volume (Å3) 4371.1(7) 5194(9) 4143.3(14) 5491.4(9) 8443(3) 

Page 14 of 39

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15 
 

a (Å) 16.756(2) 18.090(15) 16.854(3) 18.3858(14) 21.242(4) 
b (Å) 13.249(1) 18.090(15) 13.348(3) 18.3858(14) 36.150(6) 
c (Å) 20.758(2) 15.871(13) 18.538(4) 16.2449(12) 10.995(2) 
α (˚) 90.00 90 90.00 90.00 90.00 
β (˚) 108.461(1) 90 96.522(2) 90.00 90.00 
γ (˚) 90.00 90 90.00 90.00 90.00 

Z 4 4 4 4 4 
Calculated density (Mg/m3) 1.564 1.368 2.136 1.747 1.518 

Absorption coefficient (mm-1) 3.962 3.336 10.796 8.153 4.407 

Final R indices [I > 2σ(I)] 
R = 0.0171 

RW = 0.0401 
R = 0.0139 

RW = 0.0315 
R = 0.0209 

RW = 0.0434 
R = 0.0131 

RW = 0.0297 
R = 0.0474 

RW = 0.1272 

 

Table 2. X-ray crystallographic data shown for complexes U(Se2PR2)4, R = iPr, tBu; 
U(Se2PR2)3Cl, R = iPr, tBu; U(Se2P

tBu2)3I, and [Cu(Se2P
tBu2)]4. 

 2Se-U-iPr 2Se-U-tBu 3Se-UiPr-Cl 4Se-UtBu-Cl 7Se-UtBu-I 8Se-Cu-tBu 

CCDC deposit number 1404310 1404312 1404309 1404311 1406600 1404303 
Empirical formula C24H56P4Se8U C32H72P4Se8U C25H50ClP3Se6U C24H54ClP3Se6U C24H54IP3Se6U C32H72P4Se8Cu4 

Formula weight (g/mol) 1338.27 1450.48 1190.80 1182.82 1182.82 1466.61 
Crystal habit, color Prism, red Prism, red Prism, red Prism, red Prism, red yellow 
Temperature (K) 100(2) 100(2) 173(2) 100(2) 100(2) 100(2) 

Space group Cc P-4n2 P212121 P212121 P212121 C2/c 
Crystal system Monoclinic Tetragonal Orthorhombic Orthorhombic Orthorhombic Monoclinic 
Volume (Å3) 4069.7(4) 5480.4(9) 3825.3(6) 3843.9(9) 3843.9(9) 5984.5(14) 

a (Å) 16.7142(10) 18.3367(14) 12.4588(12) 10.7542(15) 10.7542(15) 20.874(3) 
b (Å) 13.2787(8) 18.3367(14) 14.4390(14) 16.203(2) 16.203(2) 18.581(3) 
c (Å) 18.4521(11) 16.2992(12) 21.264(2) 22.059(3) 22.059(3) 16.759(2) 
α (˚) 90 90 90 90 90 90 
β (˚) 96.4050(10) 90 90 90 90 112.976(2) 
γ (˚) 90 90 90 90 90 90 

Z 4 4 4 4 4 4 
Calculated density 

(Mg/m3) 
2.184 1.758 2.068 2.044 2.044 1.628 

Absorption coefficient 
(mm-1) 

11.316 8.411 10.162 10.112 10.112 6.393 

Final R indices [I > 2σ(I)] 
R = 0.0159 
RW = 0.0341 

R =  0.0145  
RW = 0.0315 

R = 0.0187 
RW = 0.0386 

R = 0.0175 
RW = 0.0391 

R = 0.0277 
RW = 0.0647 

R =  0.0203 
RW = 0.0452 

 

Computational Details.  All calculations were performed at the density functional theoretical 

(DFT) level using version 6.6 of the TURBOMOLE quantum chemistry software package.18 

XRD-derived structural parameters were used as the basis for geometry optimizations. The 

hybrid-GGA PBE019 exchange-correlation functional, which incorporates a perturbatively 

derived 25% contribution of exact exchange, was used throughout. In all calculations, basis sets 

of polarized triple-ζ quality were used. For geometry optimizations, Ahlrichs-style basis sets20,21 

were employed, incorporating an effective core potential replacing 60 core electrons of the 
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actinide ion22. We have successfully applied this model chemistry in previous studies of f-

element complexes.23,24 All complexes considered in this study were identified as energetic 

minima through vibrational frequency analysis. 

For subsequent analysis of the electron density, all-electron single point energy calculations 

were performed at the optimized geometries. These calculations replaced the Ahlrichs basis set 

on the actinide with the SARC basis set of Pantazis and Neese25 and incorporated scalar 

relativistic effects via the 2nd order Douglas-Kroll-Hess Hamiltonian. Topological and integrated 

properties of the resulting electron densities were obtained via application of the Quantum 

Theory of Atoms in Molecules26 (QTAIM) as implemented in version 14.11.23 of the AIMAll 

code.27  

Results and Discussion 

The potassium salts of the dithio- and diselenophosphinate, KS2P
tBu2, KSe2P

iPr2, and 

KSe2P
tBu2 were synthesized using previously reported procedures, i.e. the deprotonation of the 

secondary phosphine with potassium hydroxide followed by addition of two equivalents of the 

elemental chalcogen.28 All were obtained as white solids in good to excellent yields. 

The synthesis of complexes (1S-Th-
i
Pr)-(1Se-Th-

t
Bu) was achieved through the 

stoichiometric salt metathesis reactions at room temperature (eq 1). Compounds (2S-Th-
t
Bu)-

(2Se-Th-
t
Bu) have not been reported previously. The salt metathesis reactions of complexes 1S-

Th-
i
Pr and 2S-Th-

t
Bu yielded colorless solutions while complexes 1Se-Th-

i
Pr and 2Se-Th-

t
Bu 

were a yellow hue.  The solubility of the diisopropyldichalogenophosphinates and di-tert-

butyldichalogenophosphinates was greater in toluene and THF, but not soluble in aliphatic 

hydrocarbons, diethyl ether, or acetonitrile. Synthesis of the U[S2P
iPr2]4 (1S-U-

i
Pr) and 
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U[S2P
tBu2]4 (2S-U-

t
Bu) was accomplished through the salt metathesis reactions of K[S2PR2], R 

= iPr and tBu, respectively, and UCl4 in THF at −20 ºC (eq 2).  

 

 

Complex 1S-U-
i
Pr was recrystallized from concentrated diethyl ether solution to yield green 

crystals while complex 2S-U-
t
Bu was isolated as a yellow precipitate. The U(IV) homoleptic 

complex was the exclusive product isolated in reasonable yields: 63% and 54% for 1S-U-
i
Pr and 

2S-U-
t
Bu, respectively. The diisopropyldiselenophosphinate and di-tert-

butyldiselenophosphinate ligands demonstrated various reactivity dependent on uranium starting 

material and solvent used. For example, the reaction between UCl4 and three equivalents of 

K[Se2P
iPr2] in THF at −20 ºC yielded U[Se2P

iPr2]3Cl, 3Se-U
iPr

-Cl, (eq 3).  However, when 
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UI4(1,4-dioxane)2 was used, the homoleptic product, U[Se2P
iPr2]4, 1Se-U-

i
Pr, (eq 4) was 

isolated. Analogous to these reactions, the tBu analogs displayed similar coordination, i.e. 

U[Se2P
tBu2]3Cl, 4Se-U

tBu
-Cl (eq 5), and U[Se2P

tBu2]4, 2Se-U-
t
Bu (eq 4), were obtained with 

UCl4 and UI4(1,4-dioxane)2, respectively.  The homoleptic complexes can be produced from 

UCl4 and four equivalents of the respective potassium salts when acetonitrile is used as a solvent.  

When the reaction between UCl4 and K[Se2P
tBu2] was attempted in THF, a bridging µ2-oxo 

complex, µ2-O{U[Se2P
tBu2]3}2, was isolated (see Supporting Information). 

-20 oC

THF

- 3 KCl

U

Se
Se

P

Se

Se
PUCl4 + 3.1 K[Se2PiPr2]

Se
P

Se

Cl

3Se-UiPr-Cl

(3)
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The 1H and 13C{1H} spectra for complexes (1S-Th-
i
Pr)-(2Se-Th-

t
Bu) were similar; 

however, the 31P{H} spectra displayed two significant shifts (Table 3). The 31P{1H} chemical 

resonances of 1S-Th-
i
Pr and 2S-Th-

t
Bu occurred at 84.9 and 99.1 ppm, respectively, while 

31P{1H} chemical resonances of 1Se-Th-
i
Pr and 2Se-Th-

t
Bu occurred at 57.6 and 78.3 ppm, 

respectively. The upfield shift in chemical resonances of 1Se-Th-
i
Pr and 2Se-Th-

t
Bu can be 

attributed to the decrease in electronegativity of the selenium atom as compared to the 

electronegativity of the sulfur atom.29 The small decrease in the 1
JSe-P

 of 2Se-Th-
t
Bu as 

compared to 1Se-Th-
i
Pr demonstrates the better σ-donating ability of the tert-butyl groups to 

transfer electron density to the phosphorus atom. The 77Se{1H} NMR chemical resonances for 

1Se-Th-
i
Pr and 2Se-Th-

t
Bu were 6.4 and 90.5 ppm, respectively, however, no observable trend 

could be determined. The only other 77Se{1H} chemical resonance reported for a thorium 

complex containing a Th-Se bond is Th[Se2P(OMe)Ph]4 (δ = 222 ppm, 1JSe-P = 580 Hz).6 

Table 3. 31P{1H} and 77Se{1H} NMR data for complexes (1S-Th-
i
Pr)- (2Se-Th-

t
Bu) 

 
31

P{
1
H} (δ) 

77
Se{

1
H} (δ) 

Th(S2P
iPr2)4 (1S-Th-

i
Pr) 84.9 --- 

Th(S2P
tBu2)4 (2S-Th-

t
Bu) 99.1 --- 

Th(Se2P
iPr2)4 (1Se-Th-

i
Pr) 57.6 (s + d satellites, 1JSe-P = 500 Hz) 6.4 (d, 1JP-Se = 500 Hz) 

Th(Se2P
tBu2)4 (2Se-Th-

t
Bu) 78.3 (s + d satellites, 1JSe-P = 491 Hz) 90.5 (d, 1JP-Se = 491 Hz) 
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Table 4. 1H and 31P{1H} NMR data for complexes (1S-U-
i
Pr)-(2Se-U-

t
Bu) 

 
1
H (δ) 

31
P{

1
H} (δ) 

U(S2P
iPr2)4 (1S-U-

i
Pr) 8.00 (CH(CH3)2), 4.20 (CH(CH3)2) −436.3 

U(S2P
tBu2)4 (2S-U-

t
Bu) −11.90 −467.2 

U(Se2P
iPr2)3Cl (3Se-U

iPr
-Cl) 7.33 (CH(CH3)2), 4.36 (CH(CH3)2) −610.2 

U(Se2P
tBu2)3Cl (4Se-U

tBu
-Cl) −2.31 −690.0 

U(Se2P
iPr2)4 (1Se-U-

i
Pr) 7.34 (CH(CH3)2), 4.37 (CH(CH3)2) −618.0 

U(Se2P
tBu2)4 (2Se-U-

t
Bu) 2.74 −473.0 

 

The 1H and 31P{1H} NMR spectroscopy of complexes (1S-U-
i
Pr)-(2Se-U-

t
Bu) are listed in 

Table 4. The 1H spectra for complexes (1S-U-
i
Pr)-(2Se-U-

t
Bu) all exhibited paramagnetically 

shifted resonances for their respective alkyl groups. The 31P{1H} resonances were also 

paramagnetically shifted. One noticeable feature in the 31P{1H} is the downfield shift in the 

chemical resonance of the homoleptic of U[S2P
iPr2]4 and U[S2P

tBu2]4 as compared to complexes 

7-10. The downfield shift can be explained by the more electronegative sulfur atom bound to the 

phosphorus as previously mentioned with the homoleptic thorium complexes. The IR 

spectroscopy experiments were conducted for complexes (1S-Th-
i
Pr)-(2Se-Th-

t
Bu) and selected 

results are tabulated in Table S3.  

The solid-state structures of (1S-Th-
i
Pr)-(2Se-Th-

t
Bu) were determined through X-ray 

crystallography analysis. Complexes (1S-Th-
i
Pr)-(2Se-Th-

t
Bu) were homoleptic with pseudo 

C4v symmetry (Figure 1). Each chalcogenide atom is bonded to the thorium metal center given 

rise to a coordination number of eight for complexes (1S-Th-
i
Pr)-(2Se-Th-

t
Bu) and the 

geometry can be best described at a triangular dodecahedron for all four complexes.30 Each 

[E2PR2]
- (E = S, Se; R = iPr, tBu) ligand is nearly coplanar with the other with a Se1-Se2-Se3-
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Se4 dihedral angle of 2.10º and almost orthogonal to the other two with a Se2-Th1-Se4-P2 

dihedral angle of 96.90º. No observable Th-P bond was found in complexes (1S-Th-
i
Pr)-(2Se-

Th-
t
Bu). A slight deviation in the Th-E bond distances was observed for each [E2PR2]

- ligand, 

one short and one long. This feature was observed for other homoleptic thorium dichalogenide 

complexes, Th[S2P(4-MeOC6H4)(OMe)]4 and Th[Se2P(C6H5)(OMe)]4.
6 The Th-E and E-Th-E 

bond distances and angles are listed in Table 5.  

 

Figure 1. Complex 3 is shown as a representative thermal ellipsoid plot of homoleptic 
Th[E2P

iPr2]4, E = S, Se, complexes. Thermal ellipsoids at 50% and hydrogens omitted for clarity. 

 

 

Table 5. Selected bond distances (Å) and angles (º) for Th[S2P
iPr2]4 (1S-Th-

i
Pr), Th[S2P

tBu2]4 

(2S-Th-
t
Bu), Th[Se2P

iPr2]4 (1Se-Th-
i
Pr), and Th[Se2P

tBu2]4 (2Se-Th-
t
Bu). 

 1S-Th-
i
Pr 2S-Th-

t
Bu  1Se-Th-

i
Pr 2Se-Th-

t
Bu 

Th1-S1 2.8780(6) 2.929(3) Th1-Se1 3.0576(7) 3.0636(6) 
Th1-S2 2.9190(6) 2.944(2) Th1-Se2 3.0107(6) 3.0612(7) 
Th1-S3 2.9307(6) 2.915(2) Th1-Se3 3.0023(6) 3.0291(6) 
Th1-S4 2.9338(6) 2.940(2) Th1-Se4 3.0477(7) 3.0653(7) 
Th1-S5 2.9198(5) - Th1-Se5 3.0379(6) - 
Th1-S6 2.8882(5) - Th1-Se6 3.0492(7) - 
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Th1-S7 2.8728(5) - Th1-Se7 3.0308(6) - 
Th1-S8 2.9182(5) - Th1-Se8 3.0659(6) - 

S1-Th1-S2 69.465(14) 67.07(4) Se1-Th1-Se2 71.561(15) 69.189(16) 
S3-Th1-S4 68.393(14) 67.30(5) Se3-Th1-Se4 71.829(16) 69.544(16) 
S5-Th1-S6 68.985(15) - Se5-Th1-Se6 70.737(17) - 
S7-Th1-S8 69.195(15) - Se7-Th1-Se8 70.454(16) - 
S1-P1-S2 109.76(3) 106.79(10) Se1-P1-Se2 109.08(5) 105.63(7) 
S3-P2-S4 109.59(3) 106.74(10) Se3-P2-Se4 109.87(5) 105.55(7) 
S5-P3-S6 109.30(3) - Se5-P3-Se6 108.64(5) - 
S7-P4-S8 109.33(3) - Se7-P4-Se8 108.32(5) - 

 

The average Th-S bond distance was 2.9075(5) Å and 2.932(2) Å for complexes 1S-Th-
i
Pr and 

2S-Th-
t
Bu, respectively, while the average Th-Se bond distance was 3.0377(6) Å and 3.0548(8) 

Å for complexes 1Se-Th-
i
Pr and 2Se-Th-

t
Bu, respectively. Complexes 1Se-Th-

i
Pr and 2Se-Th-

t
Bu represent only the second and third structurally characterized homoleptic complexes 

containing a Th-Se linkage and compares well to the first homoleptic thorium complex with 

selenium atoms, Th[Se2P(C6H5)(OMe)]4, the average Th-Se distance of 3.0261(4) Å.6  These 

bond distances are longer than those in (1,2,4-tBu3C5H2)2Th(SePh)2 and (1,2,4-

tBu3C5H2)Th(SePh)3(bipy) reported average Th-Se distances of 2.938(8)31 and 2.877 Å,32 

respectively.  The elongated Th-Se bonds in the homoleptic compounds arise from the negative 

charge spread over two donor atoms. 

The homoleptic U(IV) complexes (1S-U-
i
Pr, 1Se-U-

i
Pr and 2Se-U-

t
Bu) are isostructural 

with the thorium analogs (Figure 2) with selected bond distances and angles listed in Table 6. 

The IR spectroscopy experiments were conducted for complexes 1S-U-
i
Pr, 2S-U-

t
Bu, 1Se-U-

i
Pr, and 2Se-U-

t
Bu and selected results are tabulated in Table S4.  
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Figure 2. Complex 1Se-U-
i
Pr is shown as a representative thermal ellipsoid plot of homoleptic 

U[E2P
iPr2]4, E = S, Se, complexes. Thermal ellipsoids at 50% and hydrogens omitted for clarity. 

 

 

Table 6. Selected bond distances (Å) and angles (º) for U[S2P
iPr2]4 (1S-U-

i
Pr), U[Se2P

iPr2]4 

(1Se-U-
i
Pr), and U[Se2P

tBu2]4 (2Se-U-
t
Bu). 

 1S-U-
i
Pr  1Se-U-

i
Pr 2Se-U-

t
Bu 

U1-S1 2.885(3) U1-Se1 3.0076(4) 2.9973(10) 
U1-S2 2.809(3) U1-Se2 2.9859(4) 3.0204(11) 
U1-S3 2.809(3) U1-Se3 3.0263(4) 3.0318(11) 
U1-S4 2.879(4) U1-Se4 3.0477(7) 2.9601(10) 
U1-S5 2.876(3) U1-Se5 2.9362(4) - 
U1-S6 2.840(3) U1-Se6 3.0192(4) - 
U1-S7 2.843(4) U1-Se7 2.9343(4) - 
U1-S8 2.842(4) U1-Se8 3.0092(4) - 

S1-U1-S2 70.49(9) Se1-U1-Se2 71.561(15) 69.90(3) 
S3-U1-S4 70.37(10) Se3-U1-Se4 71.017(10) 70.10(3) 
S5-U1-S6 70.03(10) Se5-U1-Se6 72.575(10) - 
S7-U1-S8 70.28(11) Se7-U1-Se8 71.302(11) - 
S1-P1-S2 109.01(19) Se1-P1-Se2 106.99(4) 104.44(11) 
S3-P2-S4 109.1(2) Se3-P2-Se4 106.99(4) 104.06(11) 
S5-P3-S6 109.1(2) Se5-P3-Se6 108.24(4) - 
S7-P4-S8 104.6(3) Se7-P4-Se8 108.70(4) - 
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Complexes 3Se-U
iPr

-Cl and 4Se-U
tBu

-Cl both contain one chloride ligand, however, the 

remaining [Se2PR2]
- (R = iPr, tBu) ligands adopt very different geometries around the uranium 

metal center (Figures 3 and 4). For complex 3Se-U
iPr

-Cl, two of the [Se2P
iPr2]

- ligands are nearly 

coplanar with each other with Se3-Se4-Se6-Se5 dihedral angle of 2.42º. The third [Se2P
iPr2]

- 

ligand is almost orthogonal to the other two with a Se6-U1-Se2-P1 dihedral angle of 87.02º. This 

geometric arrangement is the likely result of minimizing the unfavorable interactions between 

the isopropyl groups on the phosphorus atoms. Another unique feature exclusive to 3Se-U
iPr

-Cl 

is the U1-Se1 and U1-Se2 bond distances (Table 7). The U1-Se1 bond length is 2.9003(5) Å 

while the U1-Se2 3.0038(5) Å.  As in the thorium complexes, these are elongated with respect to 

other mononuclear U(IV) complexes such as 2.7897(7) and 2.8597(8) Å in [K(18-crown-

6)][(R2N)3U(η2-Se2)], R = SiMe3,
33 or 2.8432(7) Å in (C5Me5)2U(SePh)2.

34 In complex 4Se-U
tBu

-

Cl, the Se3-Se4-Se6-Se5 dihedral angle of 68.39º and a U1-Se1 and U1-Se2 bond distances of 

2.9548(10) and 2.9507(11) Å, respectively. The U1-Cl1 distances in 3Se-U
iPr

-Cl and 4Se-U
tBu

-

Cl are 2.5632(12) and 2.587(2) Å, respectively and shorter than 2.637 Å in (C5Me4H)3UCl,35 

2.6099(15) Å in (C5Me5)2U(Cl)(NPh2),
36 and 2.6783(10) Å in {U[MeC(NCy)2]3Cl}.37    
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Figure 3. Thermal ellipsoid plot of U(Se2P
iPr2)3Cl (3Se-U

iPr
-Cl). Thermal ellipsoids at 50% and 

hydrogens omitted for clarity. 

 

Figure 4. Thermal ellipsoid plot of U(Se2P
tBu2)3Cl (4Se-U

tBu
-Cl). Thermal ellipsoids at 50% 

and hydrogens omitted for clarity. 

 

Table 7. Selected bond distances (Å) and angles (º) for U(Se2P
iPr2)3Cl (3Se-U

iPr
-Cl) and 

U(Se2P
tBu2)3Cl (4Se-U

tBu
-Cl). 

 3Se-U
iPr

-Cl 4Se-U
tBu

-Cl 

U1-Cl1 2.5632(12) 2.587(2) 
U1-Se1 2.9003(5) 2.9548(10) 
U1-Se2 3.0038(5) 2.9507(11) 
U1-Se3 2.9228(5) 2.9773(10) 
U1-Se4 2.9146(5) 2.9136(11) 
U1-Se5 2.9599(5) 2.9329(11) 
U1-Se6 2.9410(5) 2.9483(10) 

Cl1-U1-Se1 173.09(3) 77.41(6) 
Cl1-U1-Se2 98.18(3) 149.67(6) 
Se1-U1-Se2 75.374(13) 69.90(3) 
Se3-U1-Se4 74.228(14) 72.51(3) 
Se5-U1-Se6 73.479(14) 73.35(3) 
Se1-P1-Se2 111.54(5) 106.34(11) 
Se3-P2-Se4 108.18(5) 106.55(11) 
Se5-P3-Se6 108.58(5) 107.53(11) 

    

The reactivity of 2Se-Th-
t
Bu was investigated through transmetalation reactions with various 

copper salts (CuCl2, CuBr, and CuI). Interestingly, based on the 1H NMR spectrum, only starting 

material was observed after letting the reaction stir for 24 h at room temperature. In an attempt to 
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explain the dearth of reactivity exhibited by 2Se-Th-
t
Bu, we compared the averaged difference 

in the An-Se bond (∆, [Th-Se] – [U-Se]) in 2Se-Th-
t
Bu and 2Se-U-

t
Bu to the decrease in ionic 

radii from an eight coordinate Th4+ (1.190 Å) to U4+ (1.140 Å).38 The difference in ionic radii for 

an eight coordinate Th4+ to U4+ is c.a. 0.050 Å and the ∆ value we obtained was 0.052 Å 

showing there is no difference in the An-Se bond distance between Th and U. A closer 

comparison of the Th-Se and U-Se bond ranges between 2Se-Th-
t
Bu and 2Se-U-

t
Bu resulted in 

a greater range for U[Se2P
tBu2]4. The U-Se bond lengths span from 2.9973(10) to 3.0318(11) Å 

and the Th-Se bond lengths from 3.0291(6) to 3.0653(7) Å. We also compared the average U-Se 

bond length of [U(Se2PPh2)4]
5 to the average U-Se bond lengths in 1Se-U-

i
Pr and 2Se-U-

t
Bu. 

We found that replacement of the phenyl ligand for iso-propyl and tert-butyl ligands resulted in 

an increase of the U-Se bond length by 0.0279 Å and 0.0345 Å, respectively. The increase in U-

Se bond distances for 1Se-U-
i
Pr and 2Se-U-

t
Bu can be attributed to the steric repulsions 

provided by the iso-propyl and tert-butyl ligands making 2Se-U-
t
Bu better suited to undergo 

transmetalation reactions. 

Presumably due to steric considerations of the dithio- and diselenophosphinate complexes of 

uranium, complex 2Se-U-
t
Bu displayed a wide array of reactivity with various Cu(I) salts (eq 6). 

The transmetalation reactions with Cu(I) halides resulted in dark red color change with 

concomitant formation of [Cu(Se2P
tBu2)]4, 8Se-Cu-

t
Bu. Complex 8Se-Cu-

t
Bu was 

independently synthesized from the stoichiometric reaction between [Cu(NCMe)4][PF6] and 

K(Se2P
tBu2) in acetonitrile. The 1H NMR spectrum showed one doublet centered at 1.51 ppm 

with 3
JP-H = 17.0 Hz representing the tert-butyl protons. The 31P{1H} spectrum displayed a 

singlet at 90.6 ppm with 77Se satellites and 1
JSe-P = 533 Hz. The solid-state structure of 8Se-Cu-

t
Bu was solved using X-ray quality crystals grown from a concentrated toluene/hexanes mixture 

Page 26 of 39

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27 
 

at −20 ºC (Figure 5). Complex 8Se-Cu-
t
Bu is a tetranuclear cluster with Cu1-Se1 bond distance 

of 2.3862(14) Å and Cu2-Se4 bond distance of 2.3986(14) Å (Table 8). Each [Se2P
tBu2]

- ligand 

is bridging rather than chelating. In one [Se2P
tBu2]

- motif, each selenium atom is bound to a 

phosphorus atom and two different copper atoms, while one selenium atom is bound to one 

copper metal and a phosphorus atom in the second [Se2P
tBu2]

- ligand. Therefore, each copper 

center is coordinated by three selenium atoms resulting in a cubane structure. The Se-Cu-Se 

angles span from 126.54(5) to 104.55(5)º placing the copper atoms a distorted trigonal planar 

geometry. A similar structure, [Cu(Se2P
iPr2)]4, has been previous characterized.39 

To rule out the possibility of a redox reaction occurring between uranium and copper, a non-

redox active metal, Zn2+, was attempted (eq 7). The reaction between 2Se-U-
t
Bu and half 

equivalent of ZnCl2 resulted in a red solution and the 1H and 31P{1H} NMR spectra showed the 

formation of 4Se-U
tBu

-Cl as well as a second product (Figure S9). The product was identified as 

Zn(Se2P
tBu2)2 and was independently synthesized from the reaction between ZnCl2 and two 

equivalents of KSe2P
tBu2 (See Supporting Information). 1H and 31P{1H} NMR spectroscopy as 

well as X-ray crystallography confirmed the identity of the Zn(Se2P
tBu2)2 product. An additional 

transmetalation reaction was attempted using Hg2F2 to yield the mono-fluoride complex, 5Se-

U
tBu

-F (eq 7). To disseminate the mercury byproduct, the independent stoichiometric reaction 

between Hg2F2 and KSe2P
tBu2 was conducted and 1H and 31P{1H} NMR spectroscopy matched 

the resonance in the transmetalation reaction (See Supporting Information). We are still unclear 

as to the reason for reactivity of 2Se-U-
t
Bu with Cu(I), ZnCl2, and Hg2F2 salts. It would seem 

that an redox event involving a U(V) intermediate can be ruled out on the basis of a successful 

transmetalation reaction with non-redox active ZnCl2 salt. Given that 2Se-Th-
t
Bu and 2Se-U-

t
Bu 

have nearly identical actinide-selenium bond distances, we make the argument that because of 
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the smaller ionic radius of U(IV), 2Se-U-
t
Bu is undergoing something similar to a sterically 

induced transmetalation reaction with Cu(I), ZnCl2, and Hg2F2 salts to yield the heteroleptic 

mono-halide complexes to relieve steric strain. This type of sterically induced reactivity is 

known to f elements,40-44 and has been argued before in the coordination chemistry of Cyanex 

301 with actinides.45 

This is not the first time group 11 salts have been used in actinide chemistry.  For example, 

previous reports have used copper and gold salts to oxidize U(III) to U(IV)46-49 or U(IV) to 

U(V).50-53 Alternatively, the Evans group made use of copper (CuX) and silver (AgX) salts for 

transmetalation reactions with (C5Me5)2U(CH3)2 to yield complexes of the form 

(C5Me5)2U(CH3)X, X = Br, I, OTf.54,55  We are unaware of any reports of actinides with mercury 

salts and this provides a new avenue into synthesizing non-organometallic uranium(IV)-fluoride 

bonds56-60 which are important in the nuclear fuel cycle. 
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Figure 5. Thermal ellipsoid plot of [Cu(Se2P
tBu2)]4 (8Se-Cu-

t
Bu). Thermal ellipsoids at 50% 

with tert-butyl carbons and hydrogens omitted for clarity. 

 

Table 8. Selected bond distances (Å) and angles (º) for [Cu(Se2P
tBu2)]4 (8Se-Cu-

t
Bu). 

Cu1-Se1 2.3862(14) 
Cu1-Se2 2.4233(13) 
Cu1-Se4 2.4325(13) 
Cu2-Se1 2.4233(13) 
Cu2-Se3 2.4216(14) 
Cu2-Se4 2.3986(14) 
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P1-Se1 2.227(2) 
P1-Se2 2.9198(13) 
P2-Se3 2.161(2) 
P2-Se4 2.232(2) 

Se1-Cu1-Se2 126.54(5) 
Se1-Cu1-Se4 117.82(5) 
Se2-Cu1-Se4 107.85(5) 
Se1-Cu2-Se3 104.55(5) 
Se1-Cu2-Se4 123.48(5) 
Se3-Cu2-Se4 125.21(5) 
Se1-P1-Se2 113.35(10) 
Se3-P2-Se4 113.89(10) 

 

Complexes 5Se-U
tBu

-F, 4Se-U
tBu

-Cl, 6Se-U
tBu

-Br, and 7Se-U
tBu

-I were characterized 

spectroscopically. Table 9 lists the 1H and 31P{1H} chemical shifts and the relationship between 

the chemical shift of the tert-butyl protons and the ancillary X-type ligand (X = F, Cl, Br, I) can 

be observed. The chemical shift of the tert-butyl protons is more upfield with substitution of a 

stronger π-donor halide ligand (F > Cl > Br >I). This effect can be explained through the stronger 

shielding experienced by the tert-butyl protons as a result of more electron density at the 

uranium center (i.e. the stronger π-donor, the more electron density at the uranium center). A 

similar feature is observed the 31P{1H} resonances for the same reason. Similar trends have been 

noted for various U(III)61 and U(IV)36,62,63 complexes.  

Table 9. 1H  31P{1H} and NMR data for complexes 5Se-U
tBu

-F, 4Se-U
tBu

-Cl, 6Se-U
tBu

-

Br, and 7Se-U
tBu

-I 

 
1H (δ), tBuH 

31P{1H} (δ) 
U(Se2P

tBu2)3F (5Se-U
tBu

-F) −2.71 −786.0 

U(Se2P
tBu2)3Cl (4Se-U

tBu
-Cl) −2.31 −690.0 

U(Se2P
tBu2)3Br (6Se-U

tBu
-Br) −1.39 −652.0 

U(Se2P
tBu2)3I (7Se-U

tBu
-I) −0.30 −635.0. 

 

The solid-state structure of 7Se-U
tBu

-I is shown in Figure 6. The U1-I1 bond distance is 

3.1187(9) Å and is comparable to other U(IV)-I bond lengths of 3.0603(13) and  3.034(2) Å for 
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UI(DME) (NC[tBu]Mes)3 and (C5
tBu4H)3UI, respectively.64,65 Table 10 lists the selected bond 

lengths (Å) and angles (º) for 7Se-U
tBu

-I. Complex 7Se-U
tBu

-I has a Se3-Se4-Se6-Se5 dihedral 

angle of 119.4º and is larger than 4Se-U
tBu

-Cl. The U-Se bond lengths range from 2.9312(13)-

2.8940(13) Å for 7Se-U
tBu

-I and are marginally shorter than 4Se-U
tBu

-Cl. The increase in 

dihedral angle of 7Se-U
tBu

-I and shorter U-Se bonds can be related to weaker π-donor abilities of 

the iodide ligand compared to those of the chloride ligand. 

 

Table 10. Selected bond distances (Å) and angles (º) for U(Se2P
tBu2)3I (7Se-U

tBu
-I). 

U1-I1 3.1187(9) 
U1-Se1 2.9038(14) 
U1-Se2 2.9312(13) 
U1-Se3 2.9263(13) 
U1-Se4 2.9293(13) 
U1-Se5 2.9198(13) 
U1-Se6 2.8940(13) 

I1-U1-Se1 72.15(3) 
I1-U1-Se2 138.53(3)) 

Se1-U1-Se2 73.83(4) 
Se3-U1-Se4 73.48(4) 
Se5-U1-Se6 74.19(4) 
Se1-P1-Se2 106.50(15) 
Se3-P2-Se4 106.57(13) 
Se5-P3-Se6 106.93(14) 
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Figure 6. Thermal ellipsoid plot of U(Se2P
tBu2)3I (7Se-U

tBu
-I). Thermal ellipsoids at 50% and 

hydrogens omitted for clarity. 

 

Electronic Structure Calculations. M-E bond lengths, averaged over the eight bonds in each 

complex, are compared in Table S5. Theoretical values are in very good agreement with 

experiment, with the largest difference being 0.016 Å in 1Se-Th-
i
Pr and many values differing 

by less than 0.01 Å. When taking the mean average deviation in bond length for a given complex 

into account, experimental and theoretical values overlap, justifying the choice of model 

chemistry. 

To examine the electronic structure of these complexes, the Quantum Theory of Atoms in 

Molecules (QTAIM) approach was performed, in analogy with previous studies.  Properties of 

the electron density at QTAIM derived An-E bond critical points (BCPs) are summarized in 

Table 11. While these properties are indicative of predominantly ionic interactions, BCP 

densities are higher in uranium complexes than in thorium analogues, implying greater 

covalency in the former. Coordination by sulfur also results in BCP densities higher than those 

found for metal-selenium bonds. These trends, which are mirrored by the BCP energy densities 

H, are as seen previously,6 although the difference between values obtained for uranium and 
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thorium complexes is less pronounced here. Interestingly, all iPr derivatives exhibit higher 

degrees of covalency than tBu derivatives. This is commensurate with the variation in bond 

lengths, but is presumably due to steric rather than electronic effects. 

 

Table 11. Topological properties at the M-E bond critical points (BCPs) of the PBE0-derived 

electron densities. ρ = electron density, ∇2ρ = Laplacian of the density, H = energy density. All 

values are in a.u.  

Complex ρρρρ ∇∇∇∇
2ρρρρ H 

 E = S E = Se E = S E = Se E = S E = Se 
Th(E2P

tBu2)4 0.044 0.040 0.065 0.050 -7.4×10-3 -6.5×10-3 
U(E2P

tBu2)4 0.047 0.042 0.076 0.059 -7.9×10-3 -6.9×10-3 
Th(E2P

iPr2)4 0.046 0.041 0.068 0.051 -8.0×10-3 -6.8×10-3 
U(E2P

iPr2)4 0.050 0.043 0.080 0.060 -8.9×10-3 -7.2×10-3 
 

The QTAIM definition of an atom allows for the evaluation of both one- and two-electron 

integrated properties. The atomic charge q (a one-electron property) and the localization and 

delocalization indices λ and δ (two-electron properties) are summarized for U, Th, S and Se in 

Table 12. These data again support the characterization of uranium as exhibiting greater covalent 

character than thorium. In all complexes, delocalization indices (the number of electrons shared 

between two atoms), which can be considered an alternative measure of covalent character,6,66,67 

are ~0.05 a.u. greater in uranium complexes than in the thorium analogues. It has previously 

been noted that the difference between atomic number Z and localization index λ correlates with 

oxidation state in f-element complexes66,67 and we also find this correlation here: Z - λ values fall 

in the range 4.15 - 4.29, close to the formal +4 oxidation state. 

 

Table 12. Integrated QTAIM properties of the PBE0-derived electron densities. q = atomic 

charge, λ = localization index, δ = delocalization index. All values are in a.u.  

Complex E = S E = Se 

 q(An) λλλλ(M) q(E) δδδδ(An, E) q(An) λλλλ(An) q(E) δδδδ(An, E) 

Th(E2P
tBu2)4 +2.45 85.77 -0.883 0.414 +2.29 85.85 -0.563 0.431 
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U(E2P
tBu2)4 +2.27 87.74 -0.857 0.461 +2.09 87.82 -0.533 0.481 

Th(E2P
iPr2)4 +2.45 85.75 -0.923 0.420 +2.29 85.84 -0.577 0.432 

U(E2P
iPr2)4 +2.27 87.71 -0.905 0.471 +2.10 87.81 -0.549 0.484 

 

In contrast to ρBCP values, delocalization indices suggest the An-Se bonds to be more 

covalent than the An-S bonds. This was previously observed in other dithiophosphinate and 

diselenophosphinate actinide complexes,6 and was rationalized by arguing that ρBCP is strongly 

sensitive to bond length, in which there is significant variation between the An-S and An-Se 

bonds. Bearing in mind the delocalization indices and previous analysis,6 we therefore conclude 

the An-Se bonds in these complexes to exhibit marginally more covalent character than the An-S 

analogues. 

Overall, we have synthesized a series of dithio- and diselenophosphinate complexes of 

thorium(IV) and uranium(IV).  The alkyl-substituents on the phosphinate ligands provide insight 

into the structure and bonding of Cyanex 301 as an extractor ligand.  Further spectroscopic 

analysis is needed to verify the nature of the calculations presented; however, the nature of 

actinide-ligand bonding remains a fascinating and emerging field. 

Conclusions 

In summary, we have synthesized and characterized a series of homoleptic An[E2PR2]4 (An = 

Th, U; E = S, Se; R = iPr, tBu) complexes spectroscopically and determined their structures using 

X-ray crystallography.  Using the QTAIM approach, the electronic structure of these complexes 

showed increasing covalent bonding character in actinide-selenium bonds than in the 

corresponding actinide-sulfur bonds.  Interestingly, the isopropyl complexes showed a higher 

degree of covalency than the tert-butyl substituents. For the first time, reactivity was 

demonstrated with these type of complexes using transmetalation reactions between 

U(Se2P
tBu2)4 and Cu1+, ZnCl2, Hg2F2 or  HgCl2 salts, resulting in the formation of U[Se2P

tBu2]3-
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X (X = F, Cl, Br, I).  The coordination chemistry of soft donor ligands with thorium and uranium 

is becoming an increasingly studied area and the results presented here add to the intrigue that 

such oxophilic metal centers can show more covalent bonding character with increasing softer 

donor atoms. 

Supporting Information 

Crystallographic details, synthesis and characterization of Zn(Se2P
tBu2)2, Hg(Se2P

tBu2)2, and 

thermal ellipsoid plots as well as tables of IR spectroscopy are available free of charge via the 

Internet at http://pubs.acs.org. 
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Alkyl-substituted dithio- and diselenophosphinate complexes have been synthesized and their molecular and electronic structure examined 

using spectroscopic techniques, X-ray crystallography, and DFT calculations.  Additionally, reactivity has been observed in which late 

transition metal salts can be used to displace one dithio- or diselenophosphinate ligand in U(IV) complexes. 
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