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 1 

The bioavailability of organic chemicals in soil and sediment is an important area of scientific 2 

investigation for environmental scientists, although this area of study remains only partially 3 

recognized by regulators and industries working in the environmental sector. Regulators have 4 

recently started to consider bioavailability within retrospective risk assessment frameworks for 5 

organic chemicals; by doing so, realistic decision-making with regard to polluted environments 6 

can be achieved, rather than relying on the traditional approach of using total-extractable 7 

concentrations. However, implementation remains difficult because scientific developments on 8 

bioavailability are not always translated into ready-to-use approaches for regulators. Similarly, 9 

bioavailability remains largely unexplored within prospective regulatory frameworks that 10 

address the approval and regulation of organic chemicals. This article discusses bioavailability 11 

concepts and methods, as well as possible pathways for the implementation of bioavailability 12 

into risk assessment and regulation; in addition, this article offers a simple, pragmatic and 13 

justifiable approach for use within retrospective and prospective risk assessment. 14 

15 
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INTRODUCTION 16 

 17 

Straightforward approaches are required to assess the risks associated with contaminated sites 18 

and chemicals that require regulation. However, realistic assessments must also include the 19 

consideration of bioavailability. To enable regulatory decisions, the fraction of a chemical 20 

present in soil or sediment that is available for uptake, and for causing adverse effects to biota 21 

within a given time span, should be explicitly considered. Moreover, such decisions must rely 22 

on measurements made using established and, preferably, standardized methods. In this paper, 23 

we summarize the current state of knowledge on bioavailability science and translate this 24 

knowledge into a simple, pragmatic and justifiable approach for use in prospective and 25 

retrospective assessment and management of risk. 26 

 A recent search of articles published since 1996, carried out using the Web of ScienceTM 27 

data-base and the search-terms "bioavailability/organic/pollutant", identified 2,028 papers with 28 

59,776 citations.1 Despite this, the application of “bioavailability” in the risk assessment (RA) 29 

of soil and sediments remains very limited, and assessments are routinely based on the total 30 

extractable chemical concentrations alone, even if it can be shown that most of the chemical 31 

burden is either non-mobile or non-bioavailable. At the moment, risk characterization, which is 32 

based on total contaminant loading, is an overly protective, conservative approach that 33 

minimizes liability should something go wrong and transfers cost to the owners of the 34 

contaminated sites. In spite of the recent shift to a more risk-based assessment strategy, the 35 

implementation of bioavailability knowledge for the production of a more pragmatic, site-36 

specific approach is still uncommon.  37 

Retrospective RA targets the identification and evaluation of the potential negative 38 

effects of chemical substances (e.g., from contaminated soil and water) and is implemented 39 

through national legislation on soil contamination.2, 3 In contrast, prospective RA is carried out 40 
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in the context of the market authorizations of chemicals. In Europe, the latter is implemented at 41 

the legislative level mainly by means of regulations (e.g., REACH Regulation,4 Plant 42 

Protection Products Regulation,5 and Biocidal Products Regulation).6 At present, total 43 

extractable concentrations are used for both forms of regulatory RA. However, over the last 44 

few years there has been growing acknowledgement of the need to include bioavailability in 45 

risk assessment frameworks. Methods that consider bioavailability have also been promoted for 46 

the purpose of water and sediment monitoring.7 This has led to the inclusion of a 47 

bioavailability-specific method (passive sampling - see below) in the guidance provided under 48 

the Water Framework Directive.8, 9 However, this approach is only included as a 49 

complementary method. Similarly, the guidance of regulatory frameworks based on prospective 50 

RA highlights the relevance of bioavailability.10, 11 The European Centre for Ecotoxicology and 51 

Toxicology of Chemicals (ECETOC) has recently proposed chemical-residue extraction 52 

approaches for use in soil/sediment degradation studies that fractionate the total residue on the 53 

basis of biological relevance rather than on the basis of extraction efficiency alone. These 54 

approaches are designed to differentiate the concentrations of the residue that is bioavailable 55 

and hence relevant from that which is non-bioavailable and hence not relevant in the RA.12  56 

As the knowledge base of bioavailability science continues to grow, new possibilities 57 

and refinements may be identified, expanding the potential for implementation. To facilitate the 58 

inclusion of bioavailability within RA frameworks, agreement between scientists, regulators 59 

and industry is required regarding the incorporation of bioavailability knowledge into existing 60 

structures, to obtain a more realistic estimation of risk. One major question remains: are we 61 

ready for this? In a brief but unconstrained presentation of the most established scientific 62 

knowledge on bioavailability, this article aims to bridge the gap between the scientific and 63 

regulatory community.               64 

 65 
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THE STATE-OF-THE-ART IN BIOAVAILABILITY SCIENCE  66 

 67 

For bioavailability to be accepted by environmental regulators and incorporated into RA 68 

frameworks, two questions must be addressed: (1) what is meant by  “bioavailability”, and (2) 69 

how should it be measured? Over the last 30 years, numerous publications have discussed the 70 

concepts and definitions of bioavailability. These are illustrated in Figure 1. However, the 71 

discussions have not always considered how these definitions might be used to provide relevant 72 

and measurable data to support RA and remediation. This uncertainty has fuelled the reluctance 73 

of the regulatory/RA community to include "bioavailability" within RA and management 74 

procedures. For example, a survey conducted in the UK on the applicability of bioavailability 75 

in risk-based regulation contacted 375 local authorities, with the results revealing that 70% of 76 

the respondents thought bioavailability would be useful in supporting decision making.13 77 

However, 78% expressed concern that the lack of statutory guidelines was hampering the 78 

application of bioavailability to the RA and management of contaminated land.  79 

Depending on the scientific approach, different definitions of bioavailability have been 80 

developed. Figure 1 shows several of the definitions accepted by scientists. The main schools 81 

of thought consider bioavailability (focusing on the aqueous or dissolved contaminant), 82 

bioaccessibility (incorporating the rapidly desorbing contaminant in the exposure), and 83 

chemical activity (determining the potential of the dissolved contaminant for biological 84 

effects).14-16 Ehlers and Luthy (2003) summarized the findings, for retrospective situations,  of 85 

the NRC Committee on Bioavailability of Contaminants in Soil and Sediments, in which 86 

“bioavailability” was not defined; rather, the merits of “bioavailability processes” in assessing 87 

contaminated soils and sediments were discussed.14 The concept of bioavailability was further 88 

discussed by Semple et al.,15, 17 who identified and defined the "bioaccessible" and 89 

"bioavailable" fractions: after a certain exposure time, bioaccessibility extends beyond 90 
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bioavailability, encapsulating what is bioavailable, as well as potentially bioavailable (rapidly 91 

desorbing contaminant), which may be determined using chemical methods.17 With the 92 

development of passive samplers, Reichenberg and Mayer applied the concepts of chemical 93 

activity and bioaccessibility to the description of bioavailability.16 Similarly, the International 94 

Organization for Standardization (ISO) perceived bioavailability as a relevant issue by 95 

highlighting that exposure time is important, particularly with regard to the choice of method.18  96 

For prospective situations, the regulatory approval of chemicals, particularly pesticides, 97 

has involved the use of 14C-labelled chemicals in well-defined systems.19-21 For most 98 

chemicals, persistent, residual 14C-activity often remains in the soil, even after the most 99 

aggressive solvent extractions have been performed. This residual 14C-activity is defined as the 100 

non-extractable residue (NER). NERs can usually be quantified only if 14C-labelled (and also 101 

13C-labelled) chemicals are used,22 and they are not a measurable parameter in retrospectively 102 

contaminated soil or sediments. NERs may be defined as the chemical itself associated with 103 

mineral and/or organic matter fractions. However, if care is not applied, NERs may also 104 

describe the transformation products of 14C within microbial biomass (biochemical 105 

components), or even 14C-carbonates, and undefined 14C-transformation products. These 106 

assimilated residues (known as biogenic NERs) are of no ecotoxicological concern.22 Thus, in 107 

prospective RA, it is important that the potential for the extensive formation of such residues is 108 

taken into account when considering the significance of NER and bound residues. 109 

In this section, four key concepts have been introduced: bioavailability, bioaccessibility, 110 

chemical activity and NERs. Bioaccessibility, chemical activity and NERs are well-known 111 

terms within the research community but are less commonly used or understood in the 112 

public/regulatory domains, compared with bioavailability. Therefore, it is important to be 113 

aware of the differences between scientific and regulatory perception; these differences serve as 114 

key motivation for this paper. In regulatory decision-making scenarios, a greater degree of 115 
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clarity, predictability and, perhaps, greater simplicity are required than in science. In addition to 116 

characterizing the risks, an estimation of the uncertainties of the methods is required for robust 117 

and pragmatic regulatory decision making. However, other factors may influence the decision 118 

making process. For example, who is responsible, what are the costs, and for what purpose will 119 

the land be used? The complexities of the science of bioavailability should not make decision 120 

making more complex or uncertain. To implement bioavailability within RA and management, 121 

decisions must be clearly articulated and well-justified, so that they can be understood by non-122 

experts and incorporated into existing frameworks. 123 

In our proposal, the concept of bioavailability considers the importance of an 124 

organism’s cell membrane (Figure 2). Only the molecules of the chemical that can interact with 125 

or pass across a biological membrane are considered to be bioavailable. Of course, this is 126 

dependent on the morphological and physiological properties of the organisms, the 127 

soil/sediment-contaminant contact time, the physico-chemical characteristics of the chemical(s) 128 

and the properties of the soil or sediment, as well as the properties of other phase materials, 129 

such as tar, oil or black carbon. To have bioavailability included within the RA and 130 

management of contaminated systems, the following should be understood by interested 131 

parties: (1) organic chemicals are sorbed to soil/sediment and sorption becomes stronger with 132 

time (ageing); (2) desorption and remobilization from these sites will take more time and, 133 

therefore, putative toxicity will decline; and (3) only the rapidly desorbing and the aqueously 134 

dissolved molecules of the chemical are bioavailable, as illustrated in Figure 2. The 135 

assessments of soil/sediment and the target chemical should be based on two measurable 136 

values: the total extractable concentration measured with a suitable method, and the 137 

bioavailable concentration as measured with a well-defined and explainable chemical method 138 

(desorption extraction, passive sampling or aqueous extraction) or the effect of the bioavailable 139 

concentration on an organism (biological tests). In our model, we consider slowly desorbing 140 
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chemicals not to be bioavailable. We understand that this is a simplification, in scientific terms. 141 

However, this simplification is powerful because it enables the regulator to discriminate risks. 142 

Maintaining this distinction will facilitate the substitution of our proposed model for the old 143 

model, which is based on total concentrations. 144 

 145 

CHEMICAL METHODS FOR MEASURING BIOAVAILABILITY  146 

 147 

Figure 2 mentions the chemical and biological approaches that can be used to measure the 148 

bioavailability of organic chemicals. The principles and application of chemical methods have 149 

been reviewed elsewhere.23, 24 The choice of method depends on the objectives and may differ 150 

for scientific research, as opposed to investigations for regulatory purposes. For regulatory 151 

purposes, methods must be suitable for all soils or sediments and chemicals and, preferably, 152 

should be standardized.19, 25  153 

 The pioneering work on bioavailability originally used mild extractants (e.g., methanol-154 

water mixtures and butanol) to measure the bioavailable fractions of organic chemicals in 155 

soil.26 These and other methods have had an important role in demonstrating the environmental 156 

relevance of bioavailability. These methods later evolved into mechanistically based to 157 

determine bioavailability, providing data suitable for use in fate models. During the recent 158 

development of the ISO guideline on bioavailability, it was decided that these methods should 159 

be standardized.18 For organic chemicals, two possible approaches were identified:23, 24 (1) 160 

methods based on the desorption of the target chemicals from soil or sediment by an extractant 161 

operating as an infinite sink, and (2) methods that measure the chemical concentration freely 162 

dissolved solely in the aqueous phase. 163 

The results of infinite sink methods using Tenax28-33 and cyclodextrin 34-38 extraction 164 

during approximately 20 hours are currently used to predict toxicity and biodegradation, and 165 
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are in the process of being standardized.39 The results of these methods represent and define 166 

what is referred to as the rapidly desorbing fraction. The second complementary approach is the 167 

use of passive sampling to determine the freely dissolved concentration as a measure of the 168 

chemical activity of organic chemicals in soils and sediments.16 This approach proposes that 169 

chemical activity drives bioavailability (Figure 1). Passive sampling has been performed with 170 

different systems in which chemicals partition between the dissolved phase and a solid or liquid 171 

sampling phase without significantly affecting the soil-water or sediment-water equilibrium. 172 

Different materials have been tested for non-polar chemicals and polymers such as 173 

polyoxymethylene, polydimethyl siloxane and polyethylene, which are routinely used.40 Polar 174 

organic chemical integrative samplers and solid phase microextraction with materials such as 175 

polyacrylate are used for the passive sampling of polar chemicals. 41, 42 Using these methods, 176 

the measured concentrations of the freely dissolved chemicals are often orders of magnitude 177 

lower than those calculated using the distribution coefficients (Koc) of the chemicals, and 178 

therefore, their bioavailability can be considered to be lower than predicted.43 179 

 180 

BIOLOGICAL METHODS FOR MEASURING BIOAVAILABILITY  181 

 182 

Protecting an organism from a toxic chemical means that the bioavailability of the chemical for 183 

that organism should be known. There is only one way to assure that a chemical method is 184 

representative for the actual exposure (and, potentially, the effects) suffered by an organism, 185 

i.e., showing that such chemical measurements are closely linked to the biological process 186 

driven by exposure. As ISO 17402 states, this can be directly accomplished by using that 187 

organism to measure the effect, accumulation or degradation of a given chemical.18 Several 188 

(mostly standardized by ISO and OECD) ecotoxicological test methods are available to 189 

determine bioavailability in the soil and sediment compartments.44 These methods were 190 



11 
 

developed in the context of prospective RA, but they are also applicable in retrospective RA. 191 

They focus primarily on invertebrates and, to a lesser degree, on plants or microorganisms (the 192 

latter, only in soil). The bioavailability of a wide range of specific chemicals for these 193 

biological groups is relatively well studied. Examples include polycyclic aromatic 194 

hydrocarbons (PAHs),45 pentachlorophenol,46 and pesticides in general.47 It is obvious that, 195 

because of the high number of organic chemicals (which may end up in soils), the large range 196 

in soil properties (which may influence the availability of these chemicals) and the taxonomic, 197 

physiological and behavioral diversity of soil biota (which may react quite differently to 198 

chemical pollution), there is no single test method that can be used. Therefore, a battery of 199 

tests, which consists of methods that reflect the various combinations of chemicals, soils and 200 

organisms, as well as the different putative exposure pathways, is necessary.44  201 

The European (prospective) regulation on plant-protection products48 already uses a 202 

suite of tests, including an earthworm reproduction test,49 collembolan reproduction test,50 203 

predatory mite reproduction test,51 plant seedling emergence test,52 and plant vegetative vigor 204 

test.53 These tests include the two main biotic groups that must be protected in soils 205 

(invertebrates and plants) and consider the different putative exposure pathways, i.e., via  pore 206 

water and soil (earthworms and Collembola), via food (mites), and via pore water and air 207 

(plants). Different taxonomic groups (e.g., Arthropoda, Oligochaeta) and morphological / 208 

physiological (i.e., hard- and soft-bodied) groups are also included. Comparable requirements 209 

also exist for pharmaceuticals.54 Other standardized tests (e.g., Enchytraeidae, Nematoda) 210 

might be needed to establish robust relationships between bioavailable fractions and to conduct 211 

assessments for other groups of chemicals. In some cases,  test methods that have not yet been 212 

standardized may be helpful (e.g., with Isopoda).55 213 

Information on the potential for the biodegradation of chemicals is relevant for both 214 

prospective RA and retrospective RA, and this process may also be affected by bioavailability. 215 
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The OECD biodegradation guidelines are the most widely used for regulatory purposes and are 216 

the basis for the biodegradation testing demanded in the USA and EU.4, 56, 57 Methods for 217 

assessing biodegradability in soil (OECD 304) using 14C-labelled chemicals are suitable for 218 

studying the kinetics of biodegradation and the transformation pathways. As mentioned above, 219 

the results of these biodegradability tests are very comparable with those of the infinite sink 220 

chemical methods; therefore, biodegradability tests are suitable biological methods for 221 

estimating the bioavailability of biodegradable chemicals.30, 38, 58, 59 If both measurements are 222 

made, the more conservative result (corresponding to the higher amount of the chemical 223 

released, and therefore bioavailable) can be used as the indicator of risk. 224 

 225 

APPLICATIONS OF BIOAVAILABILITY IN RETROSPECTIVE RISK 226 

ASSESSMENT  227 

 228 

Retrospective management of contaminated soil has been commonly practiced in the 229 

industrialized world since the 1970s. Measurements of the (total) concentrations of 230 

contaminants, such as metals, PAHs, polychlorinated biphenyls (PCBs) and pesticides, made it 231 

clear that a large number of sites have been contaminated. In many countries, quantifying the 232 

total, maximum allowable and background concentrations of chemicals in soil and sediments 233 

has made it possible to identify contaminated sites. However, the risks tend to be overestimated 234 

when total extractable concentrations have been used, resulting in the remediation of 235 

potentially contaminated sites that did not pose significant risk to receptors. Although 236 

bioavailability is not commonly used, there are a relatively small number of examples in which 237 

such measurements have been considered in the management of contaminated sites. Examples 238 

from two countries, (1) The Netherlands, with a focus on risk-related values, and (2) Australia, 239 

where the focus was on remediation, are presented. 240 
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In The Netherlands, the list of maximum allowable concentrations addresses specific 241 

land uses, such as natural areas, agriculture, living, playgrounds and industrial sites. The values 242 

are defined for a standard soil having 10% organic matter (OM) and measured values are 243 

required to be corrected by the actual % OM of the soil to accommodate different soil types. 244 

Although this was not the explicit intention when developing the system, the correction factor 245 

in practice turned out to be a first attempt to to apply standard values on the basis of the 246 

bioavailable fractions, and in combination with land use, they are more risk based. Sequestering 247 

and strong specific binding are not accounted for by this correction, and the corrected value 248 

does not always explain the bioavailability and risks. As a step toward the implementation of 249 

bioavailability in this model, a general protocol for considering bioavailability in a higher-tier 250 

risk evaluation was agreed upon by experts in The Netherlands 2 and has been applied to 251 

specific sites with contaminated sediments (including harbors) and a large area (450 ha) of 252 

diffuse contaminated soil using desorption extraction and/or passive sampling methods as 253 

described in this paper.  The sites were contaminated mainly with hydrophobic persistent 254 

chemicals like PAHs, PCBs and/or mineral oil.  The proposal for the inclusion of 255 

bioavailability in the generic regulation in retrospective RA has not yet been implemented.  256 

Australia is an example of pioneering work on the introduction of bioavailability in full-257 

scale land management given the recent introduction of bioavailability and in particular metal 258 

and metalloid bioavailability in its National Environment Protection Measure (NEPM). While 259 

organic contaminant bioavailability is yet to be incorporated in the Assessment of Site 260 

Contamination (ACS) at the NEPM, it is nevertheless included in contaminated site risk 261 

characterisation.60, 61 Research towards the development of standard operating procedures is the 262 

focus of Australian studies with a view to inclusion of bioavailability in the next revision of the 263 

ACS-NEPM. Indeed, up to 60% of contaminated sites, with the majority in the urban 264 

environment, are likely to include organic contaminants. Despite an expenditure for 265 
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remediation exceeding three billion Australian dollars per annum, less than 10% of the sites 266 

have been remediated over the past 20 years, with most of the remediation carried out through 267 

excavation and disposal in landfills. It has also been recognized that some remediated sites 268 

were most likely otherwise safe from an exposure perspective. Therefore, it was necessary to 269 

change the governing policies. One important tool was the explanation of bioavailability to 270 

regulators using the concepts given in this paper, which made it possible to design new 271 

remediation methods. If organic chemicals are immobilized, the flux from the soil to the pore 272 

water is low, usually too low for the contaminant to pose risks. The underlying basis for this 273 

approach is to demonstrate to regulators using appropriate indicators, that the toxic 274 

contaminant, once immobilized, will not be bioavailable over time and hence poses no risk to 275 

receptors.62 Jurisdiction in Australia now recognizes that the process of ageing can be 276 

accelerated via chemically-induced immobilization, which results in a rapid decline in 277 

bioavailability. An example of successful immobilization-based remediation using a modified 278 

clay sorbent in Australian soils has been documented for pollution by perfluorooctane 279 

sulfonate, a highly recalcitrant contaminant.63 After treatment, the bioavailable concentration of 280 

the chemical, measured as the concentration in the water phase, remained below the detection 281 

limit, and no toxicity for earthworms was observed. Another example is the successful 282 

immobilization of DDT in soil by a modified clay.64 Activated carbon has also been used in 283 

Australia, as is the case in the USA and EU,65, 66 to decrease the bioavailability of PCBs and 284 

PAHs in soils and sediments.62  285 

The global exchange of experience will be important for future developments. 286 

Guidelines are necessary for further applications of remediation in which modifying 287 

bioavailability has a central role. A good example of such a guideline is the so-called TRIAD 288 

approach (only recently completed as an ISO standard).67 The tiered approach described in this 289 

standard is also an important part of our proposal. 290 
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 291 

APPLICATIONS OF BIOAVAILABILITY IN PROSPECTIVE RISK 292 

ASSESSMENT  293 

 294 

Legislation addressing the prospective RA of chemicals usually requires companies to provide 295 

data on basic substance properties (e.g., vapor pressure, log Kow and solubility), basic fate 296 

properties (e.g., hydrolysis, degradation, bioaccumulation) and information on (eco)toxicity and 297 

exposure, which are then used to assess the risks that a chemical may pose for human health or 298 

the environment. For example, under the European REACH regulation companies are 299 

responsible for providing information throughout the supply chain regarding the hazards, 300 

exposure, risks and safe use of chemical substances that they manufacture or import. The 301 

follow-up regulatory action is then the responsibility of public authorities, with obligations and 302 

responsibilities of the companies in some processes. Usually, RA approaches start with 303 

simplified, worst-case assumptions that do not require significant amounts of detailed 304 

information, e.g., the use of total concentrations as a first estimation of exposure. Higher-tier, 305 

more realistic RA might be necessary if there is a clear need.  306 

Many of the regulatory frameworks on chemicals allow for weight-of-evidence 307 

approaches or the use of several lines of evidence, which may include the determination of 308 

bioavailability. For example, REACH allows for such substance-specific approaches to be used 309 

by registrants by adapting the standard information requirements to their substance.4  Similarly, 310 

bioavailability can play a role in other regulatory RA procedures, e.g., in the assessment of 311 

chemicals leading to restrictions. Such adaptations must be scientifically valid, well-312 

documented and justified, with the uncertainties described and addressed. Furthermore, when a 313 

substance falls under different regulatory regimes because it is used as a pesticide, a biocide or 314 

a veterinary medicine, different exposure scenarios may exist and must be taken into account.  315 
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 The Plant Protection Products Regulation3 and related guidance documents do not 316 

currently take bioavailability into account in their calculations of potential exposure. An EFSA 317 

scientific opinion on the comparative usefulness of total soil and pore water concentrations 318 

concluded that for soft-bodied soil organisms and plants, pore-water-mediated uptake was 319 

mainly responsible for the effects caused.10 The opinion also acknowledged the limitation of 320 

the use of total soil concentrations based on publications demonstrating reduced toxicity with 321 

time, even though soil residues remained constant. A software tool (PERSAM) was 322 

subsequently developed to calculate the total soil and pore-water exposure values.68 This tool 323 

relies on the use of soil/water equilibrium-partitioning values to calculate pore-water 324 

concentrations even after many years of ageing. This is a reasonable first-tier approach, but the 325 

option to use aged sorption values or desorption measurements would be a straightforward way 326 

to improve the realism of the predicted exposure values by introducing elements of 327 

bioavailability. However, extrapolations of approaches from other regulatory frameworks may 328 

not always be possible, or may be complex. For example, the EU sets rules for the sustainable 329 

use of pesticides to reduce the risks and impacts of pesticide use on human and environmental 330 

health.69 Including bioavailability in the RA of these different regulatory frameworks could add 331 

to the complexity of the RA. Therefore, a clear explanation of the steps to be taken when 332 

including bioavailability in the RA is required. 333 

 334 

THE WAY FORWARD: INTELLIGENT AND PRAGMATIC 335 

APPROACHES FOR RISK ASSESSMENT 336 

 337 

For regulatory purposes, it is necessary to use a straightforward approach to assess 338 

contaminated sites, to inform the development of new chemicals, and to determine the risks to 339 

human and environmental health posed by chemicals. The present retrospective risk assessment 340 
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uses total concentrations and has been the standard for over 30 years, despite being overly 341 

conservative and overly protective, especially when decisions on the remediation of soil and its 342 

re-use are required. 343 

 Depending on the case, an appropriate selection of the methods and test organisms must 344 

be made for retrospective and prospective risk assessments. The data used for decision-making 345 

must be clearly and understandably connected to the presence of organic chemicals in the soil 346 

or sediment environment (Figure 2). As with chemical methods, there should be a restricted 347 

number of bioassays used, and where possible, these should be validated and preferably 348 

standardized in combination with proper quality assurance and control procedures.  In this 349 

context, it is important that transparent criteria, commonly defined beforehand by risk assessors 350 

and stakeholders alike, are used when selecting the most appropriate biological test methods. 351 

These criteria include the possible pathways, site-specific conditions, ease of application, 352 

sensitivity, costs of the tests and interpretation of the results by non-ecotoxicologists.  353 

To include the results of tests on bioavailability in decision making a weight-of-354 

evidence approach should be used. To date, the TRIAD approach, which consists of three lines 355 

of evidence, namely, environmental chemistry, (eco)toxicology and ecology, represents the 356 

most enlightened approach.  It has been used extensively and successfully in sediment 357 

ecotoxicology for approximately 30 years70 and is currently being standardized by the ISO.67 In 358 

a tiered approach, it is neither practical nor economically feasible to use all of the available 359 

methods. Therefore, a stepwise, tiered, approach, similar to that used for metals,71 is proposed. 360 

A decision is made after each tier on whether further investigation is necessary (Figure 3). 361 

According to this scheme, bioavailability can be included at a higher tier to provide additional 362 

site-specific data. Under the regime proposed in this paper, bioavailability will be part of a 363 

second-tier of assessment. This new proposal provides an opportunity for the inclusion of a 364 
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more detailed interrogative assessment procedure in which bioavailability plays a role and that 365 

will potentially lead to more realistic RA.  366 

 So, are we ready for this new approach? Our conclusion is yes. The system we propose 367 

is simple and is limited to measuring the totally extractable chemical, as well as the 368 

bioavailable concentration, which is represented by the freely dissolved concentration and the 369 

fraction that rapidly desorbs and moves into the water phase. Under normal circumstances, 370 

NERs would not be considered within this proposed RA framework because the risk comes 371 

from the extractable fractions in the soils and sediments. Measurement means the application of 372 

validated and preferably standardized chemical and biological methods. In the authors´ opinion, 373 

the knowledge already provided by science supports the proposed simplification. 374 
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FIGURE LEGENDS 1 

 2 

Figure 1. Overview of scientific concepts of the bioavailability of organic chemicals, as 3 

explained by Ehlers and Luthy (2003),14 Semple et al. (2004),15 and Reichenberg and Mayer 4 

(2006).16 Using the same framework, the figure places different schools of thought that have 5 

dissected bioavailability into the different processes that are involved (A to E), the dissimilar 6 

endpoints (bioaccessibility and chemical activity), and the different methodologies 7 

(desorption extraction, passive sampling and biological tests). Each of these processes, 8 

endpoints and methods has been considered differently in a wide variety of bioavailability 9 

scenarios. Depending on the schools and processes investigated, bioavailability can be 10 

examined through chemical activity, the potential of the contaminant for direct transport and 11 

interaction with the cell membrane (processes B, C and D), or bioaccessibility measurements, 12 

which incorporate the time-dependent phase exchange of the contaminant between the 13 

soil/sediment and the water phase (process A). Depending on biological complexity, the 14 

passage of the contaminant molecule across the cell membrane (process D) may represent 15 

multiple stages within a given organism before the site of biological response is reached 16 

(process E). 17 

 18 

Figure 2. Measurement of bioavailability: a simplified scheme for use in regulation. The 19 

colour boxes at the left of the cell membrane represent the distribution of pollutant molecules 20 

among four classes (non-extractable, very slowly/slowly desorbing, rapidly desorbing and 21 

water-dissolved) in soils and sediments. In our scheme, the bioavailable chemical is 22 

represented by the rapidly desorbing and dissolved concentrations. The chemical methods 23 

able to measure the pollutant present in each specific fraction are given in the grey boxes. The 24 

green box to the right of the cell membrane represents the processes that occur within the 25 
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organism exposed to the pollutant. These biological processes can also serve as the basis for 26 

standard methods bioavailability measurements. Modified from Brand et al. (2013).2 27 

 28 

Figure 3. Proposed tiered framework for including bioavailability in risk assessment (RA). 29 

Initially, the total extractable concentrations of the target chemicals in soils or sediments is 30 

measured (Tier 1). In most countries, the measured concentrations are compared to the 31 

available environmental quality standards to determine whether further action is required. 32 

If standard values are exceeded, then RA progresses to Tier 2. For prospective RA, toxicity 33 

data can be used to estimate safe levels of chemical concentrations. If the first tier fails, 34 

further chemical and biological tests are required to provide additional data on the case, 35 

including bioavailability (Tier 2). If the second tier fails, further action can be used in Tier 36 

3 to define the actions. This can include tests to obtain more detailed case-specific 37 

parameters, including monitoring biodiversity, and site-specific chemical fate modeling 38 

that also incorporates bioavailability. If the risk is deemed unacceptable, then risk 39 

management approaches (e.g., remedial actions) are required, in which bioavailability can 40 

play a role. Adapted from ISO (2014).67 41 

  42 
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