Robertson J., Hatton C., Emerson E. & Baines S. (2015) Prevalence of epilepsy among people with intellectual disabilities: A systematic review. Seizure: European Journal of Epilepsy, 29, 46-62.

Prevalence of epilepsy among people with intellectual disabilities: a systematic review

Janet Robertson¹, Chris Hatton¹, Eric Emerson¹² and Susannah Baines¹

¹Centre for Disability Research, Division of Health Research, Lancaster University, LA1 4YT, United Kingdom

² Centre for Disability Research and Policy, University of Sydney, Australia

Corresponding Author: Janet Robertson, Centre for Disability Research, Division of Health Research, Lancaster University, LA1 4YT, United Kingdom. Email: <u>j.m.robertson@lancaster.ac.uk</u>

Tel: +44 1524 592895. Fax: +44 1524 592658

Prevalence of epilepsy among people with intellectual disabilities: a systematic review

Abstract

<u>Purpose</u>. Epilepsy is more common in people with intellectual disabilities than in the general population. However, reported prevalence rates vary widely between studies. This systematic review aimed to provide a summary of prevalence studies and estimates of prevalence based on meta-analyses.

<u>Method</u>. Studies were identified via electronic searches using Medline, Cinahl and PsycINFO and cross-citations. Information extracted from studies was tabulated. Prevalence rate estimates were pooled using random effects meta-analyses and subgroup analyses were conducted.

<u>Results</u>. A total of 48 studies were included in the tabulation and 46 studies were included in metaanalyses. In general samples of people with intellectual disabilities, the pooled estimate from 38 studies was 22.2% (95% CI 19.6-25.1). Prevalence increased with increasing level of intellectual disability. For samples of people with Down syndrome, the pooled estimate from data in 13 studies was 12.4% (95% CI 9.1-16.7), decreasing to 10.3% (95% CI 8.4-12.6) following removal of two studies focusing on older people. Prevalence increased with age in people with Down syndrome and was particularly prevalent in those with Alzheimer's/dementia.

<u>Conclusion</u>. Epilepsy is highly prevalent in people with intellectual disabilities. Services must be equipped with the skills and information needed to manage this condition.

Keywords: epilepsy; prevalence; intellectual disabilities; Down syndrome

Conflicts of interest: none

Introduction

Intellectual disability (often referred to as 'learning disabilities' in the United Kingdom) refers to a significant general impairment in intellectual functioning that is acquired during childhood, typically operationalised as scoring more than two standard deviations below the population mean on a test of general intelligence (Einfeld and Emerson, 2008). While estimates of the prevalence of intellectual disability vary widely, it has been estimated that approximately 2% of the adult population have intellectual disability (Maulik *et al.*, 2011, Hatton *et al.*, 2014).

In the general population, estimates of the prevalence of epilepsy are in region of 0.6% (Forsgren *et al.*, 2005, Ngugi *et al.*, 2010) to 1% (Linehan *et al.*, 2010, Joint Epilepsy Council, 2011). In people with intellectual disabilities, estimates of the prevalence of epilepsy vary due to differences in the methods used and inherent population biases (Lhatoo and Sander, 2001). Reported rates range, for example, from 16.1% of 1,595 people with intellectual disabilities identified in South Wales (Morgan *et al.*, 2003) to 30.7% in a random sample of 753 people with intellectual disabilities aged 40 or more from Ireland's National Intellectual Disability Database (NIDD) (McCarron *et al.*, 2014). In a systematic review of the prevalence of chronic health conditions in children with intellectual disabilities, the most common condition was epilepsy (Oeseburg *et al.*, 2011) with prevalence rates in the 14 studies identified ranging from 5.5% to 35.0%, with an overall weighted mean prevalence rate of 22.0% (95% CI 20.8–23.2).

Despite variation in reported prevalence figures, it is clear that the prevalence of epilepsy in people with intellectual disabilities is much greater than in the general population. Further, for people with intellectual disabilities and epilepsy, co-morbidities may be common. Over half of a representative sample of children with intellectual disability and active epilepsy were reported to have a psychiatric diagnosis (Steffenburg *et al.*, 1996). However, conflicting findings exist and there is no consensus as to whether people with both intellectual disability and epilepsy are at increased risk of psychiatric

morbidity compared to their peers with either epilepsy or intellectual disability alone (Beavis *et al.,* 2007).

The prevalence of epilepsy also increases with increasing severity of intellectual disabilities. In the Oeseburg et al (2011) review, the lower rate of 5.5% was for children with borderline to moderate intellectual disability (Dekker and Koot, 2003), whilst the rate of 35.0% was for children with mild to profound intellectual disability (Koskentausta *et al.*, 2002). Such wide differences highlight the need to examine prevalence rates taking into account factors such as the degree of intellectual disability services are likely to miss out some people with less severe intellectual disabilities. A further issue is that the ascertainment of epilepsy is not consistent across studies, both in terms of the definition of epilepsy used, and how the information is collected.

The aim of this review is to summarise existing research on the prevalence of epilepsy in people with intellectual disabilities, including studies relating specifically to people with Down syndrome which is the most common genetic cause of intellectual disabilities (Sherman *et al.*, 2007). The review also aims to provide pooled prevalence estimates for studies taking into account factors such as age and level of intellectual disabilities. Whilst existing reviews have considered the prevalence of epilepsy in people with intellectual disabilities, these reviews do not cover more recent studies on prevalence that now provide more data, particularly in relation to adults with intellectual disabilities. As highlighted in one earlier review, adults have previously been underrepresented in research on the epidemiology of epilepsy in people with intellectual disabilities, with the vast majority of published data pertaining to children (Lhatoo and Sander, 2001). As this review aims to estimate epilepsy prevalence in the general population of people with intellectual disabilities or Down syndrome, it does not include studies relating to less common specific genetic conditions has been published (Leung and Ring, 2013).

Method

Electronic literature database searches were conducted in Medline, Cinahl and PsycINFO on EBSCO. In addition, the reference lists of articles meeting the inclusion criteria were searched. The reference lists of key book chapters were also searched (Blake and Kerr, 2014, Brown, 2008, Cardoza and Kerr, 2010). Searches were completed on 19 June 2014. Searches included terms relating to both prevalence and mortality to create a pool of articles on prevalence or mortality, with articles on mortality being retained for a separate review. Searches combined terms for epilepsy, intellectual disabilities, and prevalence/mortality with the Boolean operator 'and'. Full details of the search terms are given in Appendix A.

Inclusion Criteria

- Peer reviewed
- English Language full text
- Published from 1990
- Primary research
- Present exact figures on the prevalence of epilepsy
- Samples where 50% or more have intellectual disabilities or mixed samples where results are disaggregated for people with intellectual disabilities
- Studies using representative samples of people with intellectual disabilities or samples representative of specific sub-groups of people with intellectual disabilities (e.g. specific level of intellectual disability, specific age band)

Exclusion Criteria

- Case studies
- Case series
- Reviews

- Studies based on neonates (new born infants up to 28 days after birth)
- Studies on conditions where intellectual disabilities cannot be assumed (e.g. cerebral palsy) where results not disaggregated for people with intellectual disabilities
- Studies on specific syndromes associated with intellectual disabilities with the exception of Down syndrome
- Studies where ascertainment of epilepsy could be confounded with febrile seizures
- Studies employing samples unrepresentative of specific sub-groups of people with intellectual disability e.g. only those attending for inpatient specialist medical care
- Studies not presenting exact figures

Initially, titles and abstracts were used to exclude those studies which were obviously not within the scope of reviews on prevalence or mortality. Those retained for further screening were those for which relevance could not be assessed without accessing full text, or those that were chosen as potentially within scope. These studies were screened by the first and second author and discussed until consensus was reached on whether or not they met the inclusion criteria. Those relevant to other future planned reviews (e.g. mortality) were filed for future reference.

Where multiple articles used the same sample or samples were likely to have considerable overlap, only the most recent study was included. One exception was a study based on adults with intellectual disabilities registered with the Leicestershire Intellectual Disability Register for the period 1993-2010 which reported a prevalence of 19.1% in a sample of 5,391 (Kiani *et al.*, 2014). As this study focuses on sudden and unexpected death in epilepsy (SUDEP), it does not outline the methodology for obtaining this estimate. As such, it was decided to include an earlier study based on the same register which focused on epilepsy prevalence (McGrother *et al.*, 2006). A further study including only people with Down syndrome which was partly based on the Leicestershire Intellectual Disability Register was also included (Collacott, 1993).

Information from the included studies was extracted by the first author and this information was tabulated (see Table One).

Quality Assessment

A gold standard to evaluate the quality of observational research does not exist (Shamliyan *et al.*, 2010). A method for evaluating aspects of quality considered important in relation to obtaining valid estimates of the prevalence of epilepsy was developed. The selected quality indicators were:

1. Definition of epilepsy:

- Score 2: Definition given (e.g. ILAE)
- Score 1: Partial definition given some information (e.g. database codes used, epilepsy diagnosis) but incomplete
- Score 0: Not stated (no criteria for epilepsy given)

2. Ascertainment of epilepsy – this refers to the identification of those in the sample with epilepsy and not any subsequent follow up of those identified as having possible epilepsy. The following scores were allocated:

- Score 1: Questionnaire self-completion by informant
- Score 2: Interview with informant
- Score 3: Extracted from records or databases
- Score 4: Clinical examination

If multiple methods were used, the highest level was entered as the score.

3. Prevalence figures presented for subgroup(s). A score of 1 was allocated for each of the following subgroups for which prevalence figures were reported.

• Age

- Gender
- Level of intellectual disability
- Other prevalence for other subgroup(s) given (e.g. those with dementia)

A score was awarded if the information was presented in a bar chart, or in an alternative format such as relative risk. Scores could range from 0 to 4. Studies were not excluded based on quality scores and scores are presented in the first column of Table One.

Meta-analysis

For each study, the sample size and number of cases of epilepsy in the sample were entered as effect size data in Comprehensive Meta-Analysis Version 2.2 software (www.Meta-Analysis.com). Prevalence estimates were pooled using random effects meta-analysis. For the main random effects pooled estimates, heterogeneity between studies was summarised using I^2 and Q statistics. Subgroup analyses were conducted using between study moderator variables and within study subgroups. To compare across subgroups, the Q-test was used. Statistical significance was set at p value < .05.

Results

The process of identifying studies for inclusion is summarised in Appendix B. Electronic database searches identified a total of 1,332 references, with 1,099 remaining after removal of duplicates. Following the first examination of studies, 144 remained in a pool of articles relating to prevalence or mortality. After examination of full text articles from this pool and the addition of articles cited within these, 48 articles met the criteria for inclusion in relation to the prevalence of epilepsy and these are summarised in Table One. Studies only including people with Down syndrome are presented separately at the end of Table One.

Geographical Spread

The majority of studies (42) were from high income countries, with just six studies from Low and Middle Income countries. The studies included a wide range of countries, with the greatest number for one country being seven studies from the United States (Jelliffe-Pawlowski *et al.*, 2003, McDermott *et al.*, 2005, Murphy *et al.*, 1995, Schieve *et al.*, 2012, Schieve *et al.*, 2009, Pueschel *et al.*, 1991, Roizen *et al.*, 2014).

A large number were from European countries: five were from England (Gittins and Rose, 2008, McGrother *et al.*, 2006, Pawar and Akuffo, 2008, Collacott, 1993, Prasher, 1995); four from Ireland (McBrien and Macken, 2009, McCarron *et al.*, 2014, McCarron *et al.*, 2005, Tyrrell *et al.*, 2001); four from Sweden (Fernell, 1998, Forsgren *et al.*, 1990, Nordin and Gillberg, 1996, Steffenburg *et al.*, 1995); three from Finland (Airaksinen *et al.*, 2000, Arvio and Sillanpää, 2003, Koskentausta *et al.*, 2002); three from the Netherlands (Dekker and Koot, 2003, van Schrojenstein Lantman-de Valk *et al.*, 1997, van Schrojenstein Lantman-De Valk *et al.*, 2000); two from Wales (Matthews *et al.*, 2008, Morgan *et al.*, 2003); two from Norway (Hove and Havik, 2010, Strømme and Hagberg, 2000); one study each from Scotland (Goulden *et al.*, 1991), Northern Ireland (McVicker *et al.*, 1994), Bosnia and Herzegovina (Memisevic and Sinanovic, 2009), Italy (Benassi *et al.*, 1990), France (David *et al.*, 2014), and Denmark (Johannsen *et al.*, 1996); and one study included 14 European countries (Haveman *et al.*, 2011).

In addition, there were two studies from South Africa (Christianson *et al.*, 2002, Molteno *et al.*, 2001) and two from Australia (Lewis *et al.*, 2000, Wellesley *et al.*, 1992). Finally, one study each was included from the following countries: New Zealand (Hand and Reid, 1996); India (Lakhan, 2013); Taiwan (Lin *et al.*, 2003); Egypt (Temtamy *et al.*, 1994); Israel (Tenenbaum *et al.*, 2012); Hong Kong (Wong, 2011); and Jordan (Yousef, 1995).

Study Design

Studies were almost entirely cross-sectional and based on retrospective review of records, questions completed either by self-report or interview, or clinical examination. There were three prospective cohort studies (Airaksinen *et al.*, 2000, Goulden *et al.*, 1991, van Schrojenstein Lantman-de Valk *et al.*, 1997) although in the latter authors only present prevalence rates for the last data collection round. In one retrospective study people could be included in more than one age-band estimate as there was an average of 12 years of follow-up for those with disabilities (McDermott *et al.*, 2005).

Table One here: Summary of studies

Meta-analysis

Two studies were excluded from meta-analyses as they focused on seizures in the last 12 months rather than epilepsy per se (Schieve *et al.*, 2012, Schieve *et al.*, 2009). For prospective or retrospective cohort studies where people could be included in prevalence estimates at more than one time point, only the most recent data collection point was included. Analyses looked at subgroups using between study moderator variables, and also within study subgroups.

Table Two Here

General Samples versus Samples of people with Down syndrome

An a priori decision was taken to compare studies based solely on samples of people with Down syndrome to general samples of people with intellectual disabilities. This was done in view of evidence suggesting that the prevalence of epilepsy is lower in people with Down syndrome than in general samples of people with intellectual disabilities (although these general sample figures are likely to include a number of people with Down syndrome). Whether or not studies included only people with Down syndrome was used as a between study moderator variable (see Table Two). The pooled estimate for 38 studies of general samples of people with intellectual disabilities was 22.2%

(95% CI 19.6 - 25.1). There was significant heterogeneity between the studies (l^2 = 96.4%, Q = 1025.2, df =37, P < .001). The pooled estimate for studies including only people with Down syndrome was 13.6% (95% CI 9.9 to 18.4). There was significant heterogeneity between studies (l^2 = 91.7%, Q = 84.3, df = 7, p < .001). Figure one presents a forest plot of the 38 studies based on general samples and the 8 studies based on samples of people with Down syndrome only.

Figure One Here

Level of intellectual disability

For studies using general samples of people with intellectual disabilities, level of intellectual disability was used as a between study moderator variable (see Table Two). This classified studies as: 'All' (study representative of all levels of intellectual disability); 'Less' (study representative of those with less severe intellectual disabilities e.g. excludes those with severe/profound intellectual disability); 'More' (study representative of those with more severe intellectual disabilities e.g. excludes those with severe/profound intellectual disability); 'More' (study representative of those with more severe intellectual disabilities e.g. excludes those with mild intellectual disability). The pooled estimate for studies including all levels of intellectual disability was 22.2% (95% Cl 19.6-25.0), whereas the estimate for studies classed as 'less severe' was 7.3% (95% Cl 4.5-11.6) and the estimate for 'more severe' 41.6% (95% Cl 32.1-51.8). In view of the effect of level of intellectual disability on pooled prevalence estimates, subsequent analyses only included those 29 studies which included all levels of intellectual disability.

Age Group

Broad age group was used as a between study moderator variable for the 29 studies which included all levels of intellectual disability and which were not restricted to people with Down syndrome. Age group was classed as adult, child, or mixed (adult and child). This was based on the main age group of the study sample, so for example a study would be classed as 'adult' if it included mainly adults and a small number of 16 year olds, and a study would be classed as 'child' if it included mainly

children and a small number of 20 year olds. Estimates for these broad age groups did not differ significantly (see Table Two).

Country Economy

Country economy (High or Low and Middle Income (LAMI)) was also used as a between study moderator variable for the 29 studies which included all levels of intellectual disability and which were not restricted to people with Down syndrome. Countries in which studies were undertaken were classed as 'high income' or 'low and middle income' based on the World Bank list of economies (World Bank, 2014). This classifies countries according to 2013 gross national income (GNI) per capita: low income, \$1,045 or less; lower middle income, \$1,046–4,125; upper middle income, \$4,126–12,745; and high income, \$12,746 or more. Taiwan (not included in country classification) was classed as High Income. One study included 14 European countries of which one was upper middle income and this study overall was classed as 'high income' (Haveman *et al.*, 2011). There was no significant difference in the pooled estimates (see Table Two).

Within study subgroup analyses

Further meta-analyses were then conducted which included information on prevalence from within study subgroups, for example where studies presented prevalence rates separately by level of intellectual disability, gender or age bands. Studies which only included a relevant subgroup (e.g. a sample including only people with mild intellectual disability) were also included in these analyses.

Level of intellectual disability

For level of intellectual disability, firstly prevalence rates were included for those with mild intellectual disability and the combined prevalence for those with moderate, severe or profound intellectual disability. Combining moderate, severe and profound intellectual disability was done to maximise the number of studies that could be included as few studies presented results for each of these three levels of intellectual disability separately. The pooled estimate for

moderate/severe/profound intellectual disability from 14 studies was 30.4% (95% CI 25.5-35.7) compared to 9.8% (95% CI 7.6-12.4) from 13 studies for those with mild intellectual disability. See Figure Two.

Figure Two: Forest plot for prevalence mild versus moderate/severe/profound intellectual disability

here

Pooled estimates were also calculated for the studies which did provide separate estimates for any of the moderate, severe or profound categories. For moderate intellectual disability, the pooled estimate was 16.7% (95% CI 10.8-25.0), compared to 27.0% (95% CI 16.1-41.5) for severe intellectual disability and 50.9% (95% CI 36.1-65.5) for profound intellectual disability.

Gender

Where male and female prevalence figures were given separately, pooled estimates were male 24.8% (95% CI 19.6-30.8) and female 22.2% (17.3-28.1). One study in the male/female subgroup analysis only included those with mild or moderate intellectual disability but was nonetheless included in the analysis (Memisevic & Sinanovic (2009))

Age Group

Studies presenting results separately for age bands were considered using age band as a subgroup within study. Studies presenting results for only one age band were also included in this analysis. The broad age bands used were 0-18, 19-49, and 50+. However, a 5 year leeway was given for these age bands at both the upper and lower limit so, for example, a figure for those aged 19-54 or 17-54 would be included in the 19-49 category. Age bands from McDermott et al (2005) were not included as due to participants having an average of 12 years of follow-up time a person could be in more than one age band and they were thus not independent subgroups. Figures for a specific age (e.g.

age 22) were included in the appropriate age band. Overall, there was not a significant difference by age band although the prevalence for age band 19-49 (26.0% (95% CI 21.2-31.5)) was slightly higher than that for the 0-18 age band (21.6% (95% CI 17.9-25.9) and the 50+ age group (21.5% (95% CI 17.0-26.9).

Table Three Here

Down syndrome

Eight studies focussed exclusively on people with Down syndrome (Collacott, 1993, Johannsen *et al.*, 1996, McCarron *et al.*, 2005, McVicker *et al.*, 1994, Prasher, 1995, Pueschel *et al.*, 1991, Roizen *et al.*, 2014, Tyrrell *et al.*, 2001). A further eight studies included some results disaggregated for people with Down syndrome in the overall sample. Results from meta-analyses in relation to people with Down syndrome are given in Table Three. In these analyses, prevalence rates from studies looking only at people with Down syndrome were combined with prevalence rates given in other studies which presented results for people with Down syndrome as a within study subgroup (excluding studies which did not include all levels of intellectual disability). No rates disaggregated by gender were identified.

Firstly, pooled prevalence for people with Down syndrome was estimated by combining the prevalence rates from studies looking only at people with Down syndrome with prevalence rates for people with Down syndrome presented as a within study subgroup (excluding studies which did not include all levels of intellectual disability). The pooled estimate was 12.4% (95% CI 9.1-16.7). There was significant heterogeneity between studies, $l^2 = 87.4\%$, Q = 95.3, df = 12, p < .001.

Pooled prevalence was also estimated for age bands. This showed a significant effect of age band, with the pooled estimate rising from 6.9% (95% CI 3.8-12.0) at age 0-18, to 9.0% (95% CI 5.9-13.5) at age 19-49, and 26.0% (95% CI 16.1-39.2) at age 50+.

In view of the increased rate of epilepsy in older people with Down syndrome, overall prevalence was then estimated excluding two studies which looked at samples of people with Down syndrome aged 35+ only (Tyrrell *et al.*, 2001, McCarron *et al.*, 2005). Based on data from 11 studies, the pooled estimate was 10.3% (95% CI 8.4-12.6), $l^2 = 57.0\%$, Q = 23.2, df =10, p < .01. However, it should be noted that these studies did not include all age bands, with some including only adults and other including only children.

Finally, a small number of studies presented prevalence rates separately for those with and without Alzheimer's disease/dementia. The pooled prevalence for those with Alzheimer's/dementia was 53.3% (95% CI 41.9-64.4) compared to 12.8% (95% CI 7.7-20.4) for those specifically noted not to have Alzheimer's/dementia. It is not possible to give the mean age for those with and without Alzheimer's disease/dementia overall. However, the mean age for both groups is available in two studies: 54.7 (SD 7.5) for those with Alzheimer's disease/dementia compared to 45.6 (SD 7.3) for those without (Tyrrell *et al.*, 2001); and 55.4 (SD 7.0) for those with and 50.8 (SD 5.8) for those without (McCarron *et al.*, 2005). See Figure Three.

Figure Three: Forest plot for prevalence by Alzheimer's/dementia for people with Down syndrome

here

Co-morbidity

A number of studies presented data on co-morbidities in people with intellectual disabilities and epilepsy.

Psychiatric and Behavioural Problems

One study reported that epilepsy was associated with higher levels of psychopathology (Molteno *et al.*, 2001) and one study (controlling for age, gender and level of understanding) found associations with epilepsy and some psychological and behaviour problems (McGrother et al., 2006). However, other studies found that people with intellectual disability and epilepsy were not more likely to have co-morbid psychiatric and/or behavioural problems than those with intellectual disabilities without

epilepsy. Reported findings include: being significantly less likely to have behavioural disturbances (17.6% vs 27.9%) (Arvio and Sillanpää, 2003); no significant difference in the prevalence of psychiatric disorders (Koskentausta *et al.*, 2002); no significant differences in behavioural and emotional disturbance when controlling for level of intellectual disability (Lewis *et al.*, 2000); no significant differences in psychopathology between matched epilepsy and non-epilepsy groups (Matthews *et al.*, 2008); no association between epilepsy and mental health concerns, with 46.7% of those with epilepsy reporting mental health problems compared with 48.1% of those without epilepsy (McCarron *et al.*, 2014); no association between epilepsy and no significant difference in maladaptive behaviour scores for those with Down syndrome and epilepsy (Prasher, 1995)

Physical impairments

People with intellectual disabilities and epilepsy were found to have more associated impairments (2.7) than those without epilepsy (1.2) and were more likely to have: speech handicap (73.6% versus 50.0%), motor handicap (54.4% versus 14.4%), and blindness (14.2% versus 1.4%) (Arvio and Sillanpää, 2003). Other reported co-morbidities in those with epilepsy were: cerebral palsy (33.4%) and visual impairment (12.4%) (Forsgren *et al.*, 1990); cerebral palsy (36.4%) (Goulden *et al.*, 1991); and cerebral palsy (43%) and visual impairment (24.5%) (Steffenburg *et al.*, 1995). After adjusting for age, gender and level of understanding, those with epilepsy were more likely to have: a range of physical disabilities (adjusted OR 1.8, 95% CI 1.5-2.2); problems with wetting (OR 2.7, 95% CI 2.1-3.4), soiling (OR 2.2, 95% CI 1.6-3.1) and walking (OR 2.5, 95% CI 2.0-3.2) (McGrother *et al.*, 2006). Those with intellectual disability were also found to be more likely to have joint disease (29.3% versus 16.8% for those with intellectual disability without epilepsy, adjusted OR 2.1, 95% CI 1.5-3.1), gastrointestinal disease (34.5% versus 23.4%, adjusted OR 1.8, 95% CI 1.3-2.5), and stroke (5.2% versus 1.9%, adjusted OR 3.3, 95% CI 1.4-9.0) (McCarron *et al.*, 2014).

Discussion

Despite the variation in reported prevalence rates between studies, it is clear that the prevalence of epilepsy is high in people with intellectual disabilities worldwide. The results suggest that in general samples of people with intellectual disabilities, approximately one in five people will have epilepsy, with the pooled estimate from 38 studies being 22.2% (95% CI 19.6-25.1). For samples of people with Down syndrome excluding two studies focusing on older people, the rate is lower with approximately one in ten people having epilepsy, with the pooled estimate from data in 11 studies being 10.3% (95% CI 8.4-12.6). In studies where this information was available, those with intellectual disabilities and epilepsy had more physical impairments than those without epilepsy. However, whilst psychiatric or behavioural co-morbidity was common, rates were not necessarily higher than in those with intellectual disabilities without epilepsy. A review specifically addressing co-morbidity in people with intellectual disabilities and epilepsy extending beyond studies that present figures on prevalence (e.g. Arshad *et al.*, 2011) would be a useful addition to the literature.

The prevalence of epilepsy is related to level of intellectual disability. In 29 studies which included all levels of intellectual disability, the pooled estimate was 22.2% (95% CI 19.6-25.0), whilst for four studies with samples skewed towards less severe intellectual disability the pooled estimate was 7.3% (95% CI 4.5-11.6) and for five studies skewed towards more severe intellectual disability the pooled estimate was 41.6% (95% CI 32.1-51.8). Similarly, data from 13 studies gives a pooled estimate for those with mild intellectual disability of 9.8% (95% CI 7.6-12.5) compared to 30.4% (95% CI 25.5-35.7) for those with moderate, severe or profound intellectual disability. Few studies give figures separately for those with moderate, severe or profound intellectual disability but it is clear that prevalence increases with level of intellectual disability. The pooled estimate for moderate intellectual disability from five studies was 16.7% (95% CI 10.8-25.0), for severe intellectual disability from three studies 27.0% (95% CI 16.1-41.5) and for profound intellectual disability from four studies 50.9% (95% CI 36.1-65.5).

Age was not found to be a significant factor for general samples of people with intellectual disabilities, although the rate for those aged 19-49 was slightly higher at 26.0% (95% CI 21.2-31.5) than for 0-18 year olds (21.6%, 95% CI 17.9-25.9) and 50+ year olds (21.5%, 95% CI 17.0-26.9). However, for people with Down syndrome there was a clear increase in prevalence with age. Data from two studies for those aged 0-18 gave a pooled estimate of 6.9% (95% CI 3.8-12.0), compared to 9.0% (95% CI 5.9-13.5) for three studies giving data for 19-49 year olds and 26.0% (95% CI 16.1-39.2) for three studies giving data for those aged 50 or more. An increase with age was also found for people with Down syndrome in a study by van Schronjenstein et al (1997), with the rates being 4.9% at age 0-19, rising to 36.4% for those age 60 or more. However, it was not possible to include these figures in the meta-analysis as sample sizes for individual age bands were not identified. Similarly, an increasing prevalence of epilepsy with age was found for a small sample of people with Down syndrome (McDermott *et al.*, 2005) but these figures could not be included in the meta-analysis due to participants being included in more than one age band estimate depending on the number of years the person was followed up for.

Overall, it is clear that for people with Down syndrome, epilepsy prevalence increases with age. This increase is likely to be mainly accounted for by the increasing presence of Alzheimer's disease/dementia in people with Down syndrome as they age. The pooled estimate for those with Alzheimer's disease/dementia from four studies was 53.3% (95% Cl 41.9-64.4) compared to 12.8% (95% Cl 7.7-20.4) for two studies explicitly giving data for those without Alzheimer's/dementia. Further, in one study, epilepsy was found here to be significantly more common in persons at end-stage (84.0%) versus persons at mid-stage Alzheimer's disease (39.4%) (McCarron *et al.*, 2005).

Limitations

There are a number of limitations to this review. Whilst studies were identified from a large range of countries, the review is restricted to English language publications. All data was extracted by one reviewer and extraction of data by two reviewers independently would have reduced the possibility

of errors. In some instances it was necessary to calculate figures from reported data as they were not reported explicitly (e.g. obtaining the number of epilepsy cases from the overall sample number and reported prevalence rate or vice versa) and two minor discrepancies arose. Firstly, calculating figures from McVicker et al (1994) on prevalence by age band resulted in a total number of epilepsy cases of 19 compared to a reported number of 18. Secondly, calculating figures from Wong (2011) on prevalence in a subgroup with Down syndrome resulted in a prevalence rate of 13.1% compared to a rate of 13.2% as reported in the article.

Ideally, the same definition of epilepsy should be used across studies to allow comparison of prevalence rates (Forsgren *et al.*, 2005). However, many of the studies identified did not present a definition of epilepsy, generally referring to either a diagnosis of epilepsy or the presence of epilepsy. The lack of detail given regarding the definition of epilepsy in many studies means that it is not possible to determine whether reported prevalence rates related to active epilepsy or lifetime epilepsy. The issue of defining epilepsy is not straightforward (Fisher *et al.*, 2014). Where definitions were provided, these included standard definitions based on International League Against Epilepsy (ILAE) criteria and other definitions specifying variable criteria in relation to number of seizures, anti-epileptic drug (AED) use and time spans. In addition, the source of information used to ascertain epilepsy is variable between studies which may lead to varying levels of accuracy in obtained rates.

In addition to the variation in prevalence rates that is likely to be due to differences in the definition of epilepsy used and the source of data in studies, there is also likely to be an unknown number of cases where epilepsy has been misdiagnosed due to the misinterpretation of behavioural, physiological, syndrome related, medication related or psychological events by parents, paid carers and health professionals (Chapman *et al.*, 2011).

Finally, the review has focussed on prevalence in the general population of people with intellectual disabilities or Down syndrome and has not included studies on less common syndromes such as

Fragile X syndrome. Future review work could consider prevalence in a greater range of specific syndromes associated with intellectual disabilities.

Conclusion

This review aims to provide an up to date summary of research on the prevalence of epilepsy in people with intellectual disabilities. The pooling of estimates from studies, and the examination of factors which account for some of the heterogeneity of reported prevalence rates between studies, allows for the provision of more robust figures on prevalence. With around one in five people with intellectual disabilities having epilepsy, it is important that services are equipped with the information and skills needed to manage epilepsy in this population. A recent report provides information on reasonable adjustments that can be made to improve epilepsy care for people with intellectual disabilities (Marriott *et al.*, 2014) The ideas, information and examples of good practice in relation to reasonable adjustments provided within this report should help services improve provision for this highly prevalent condition.

<u>Acknowledgements</u>: this work was supported by Public Health England. However, the findings and views reported in this paper are those of the authors and should not be attributed to Public Health England. We would like to thank Howard Ring for comments on the draft of this manuscript.

References

- Airaksinen E. M., Matilainen R., Mononen T., Mustonen K., Partanen J., Jokela V. & Halonen P. (2000) A population-based study on epilepsy in mentally retarded children. *Epilepsia*, 41, 1214-1220.
- Arshad S., Winterhalder R., Underwood L., Kelesidi K., Chaplin E., Kravariti E., Anagnostopoulos D., Bouras N., McCarthy J. & Tsakanikos E. (2011) Epilepsy and intellectual disability: does epilepsy increase the likelihood of co-morbid psychopathology? *Research In Developmental Disabilities,* 32, 353-357.
- Arvio M. & Sillanpää M. (2003) Prevalence, aetiology and comorbidity of severe and profound intellectual disability in Finland. *Journal Of Intellectual Disability Research: JIDR*, 47, 108-112.
- Beavis J., Kerr M., Marson Anthony G. & Dojcinov I. (2007) Pharmacological interventions for epilepsy in people with intellectual disabilities (Assessed as up to date 2011). *Cochrane Database of Systematic Reviews,* Issue 3. Art. No.: CD005399. DOI:

10.1002/14651858.CD005399.pub2.

- Benassi G., Guarino M., Cammarata S., Cristoni P., Fantini M. P., Ancona A., Manfredini M. & D'Alessandro R. (1990) An epidemiological study on severe mental retardation among schoolchildren in Bologna, Italy. *Developmental Medicine And Child Neurology*, 32, 895-901.
- Blake P. & Kerr M. (2014) Epilepsy. In: Health Promotion for People with Intellectual and
 Developmental Disabilities. (Ed.^(Eds. L. Taggart & W. Cousins), pp. 77-87. McGraw Hill
 (Open University Press), Maidenhead.
- Brown S. (2008) Epidemiology of Epilepsy in Persons with Intellectual Disabilities. In: *Epilepsy and Intellectual Disabilities*. (Ed.^(Eds. V. Prasher & M. Kerr), pp. 29-42. Springer, London.
- Cardoza B. & Kerr M. (2010) Diseases of the nervous system I: epilepsy, hydrocephalus and nervous system malformations. In: *Intellectual Disability and III Health: A Review of the Evidence.* (Ed.^(Eds. J. O'Hara, J. McCarthy & N. Bouras). Cambridge University Press, Cambridge.

Chapman M., Iddon P., Atkinson K., Brodie C., Mitchell D., Parvin G. & Willis S. (2011) The misdiagnosis of epilepsy in people with intellectual disabilities: A systematic review. *Seizure -European Journal of Epilepsy*, 20, 101-106.

- Christianson A. L., Zwane M. E., Manga P., Rosen E., Venter A., Downs D. & Kromberg J. G. R. (2002) Children with intellectual disability in rural South Africa: prevalence and associated disability. *Journal Of Intellectual Disability Research: JIDR*, 46, 179-186.
- Collacott R. A. (1993) Epilepsy, dementia and adaptive behaviour in Down's syndrome. *Journal of Intellectual Disability Research*, 37, 153-160.
- David M., Dieterich K., de Villemeur A. B., Jouk P. S., Counillon J., Larroque B., Bloch J. & Cans C. (2014) Prevalence and characteristics of children with mild intellectual disability in a French county. *Journal of Intellectual Disability Research*, 58, 591-602.
- Dekker M. C. & Koot H. M. (2003) DSM-IV disorders in children with borderline to moderate intellectual disability. I: Prevalence and impact. *Journal of American Academy of Child & Adolescent Psychiatry*, 42, 915-922.
- Einfeld S. & Emerson E. (2008) Intellectual disability. In: *Rutter's Child and Adolescent Psychiatry.* (Ed.^(Eds. M. Rutter, D. Bishop, D. Pine, S. Scott, J. Stevenson, E. Taylor & A. Thapar). Blackwell, Oxford.
- Fernell E. (1998) Aetiological factors and prevalence of severe mental retardation in children in a Swedish municipality: the possible role of consanguinity. *Developmental Medicine & Child Neurology*, 40, 608-611.
- Fisher R. S., Acevedo C., Arzimanoglou A., Bogacz A., Cross J. H., Elger C. E., Engel J., Forsgren L.,
 French J. A., Glynn M., Hesdorffer D. C., Lee B. I., Mathern G. W., Moshé S. L., Perucca E.,
 Scheffer I. E., Tomson T., Watanabe M. & Wiebe S. (2014) ILAE Official Report: A practical
 clinical definition of epilepsy. *Epilepsia*, 55, 475-482.
- Forsgren L., Beghi E., Öun A. & Sillanpää M. (2005) The epidemiology of epilepsy in Europe a systematic review. *European Journal of Neurology*, **12**, 245-253.

- Forsgren L., Edvinsson S. O., Blomquist H. K., Heijbel J. & Sidenvall R. (1990) Epilepsy in a population of mentally retarded children and adults. *Epilepsy Research*, 6, 234-248.
- Gittins D. & Rose N. (2008) An audit of adults with profound and multiple learning disabilities within a West Midlands Community Health Trust - implications for service development. *British Journal of Learning Disabilities*, 36, 38-47.
- Goulden K. J., Shinnar S., Koller H., Katz M. & Richardson S. A. (1991) Epilepsy in children with mental retardation: a cohort study. *Epilepsia*, 32, 690-697.
- Hand J. E. & Reid P. M. (1996) Older adults with lifelong intellectual handicap in New Zealand: prevalence, disabilities and implications for regional health authorities. *The New Zealand Medical Journal*, 109, 118-121.
- Hatton C., Emerson E., Glover G., Robertson J., Baines S. & Christie A. (2014) People with Learning Disabilities in England 2013. Public Health England, London.
- Haveman M., Perry J., Salvador-Carulla L., Walsh P. N., Kerr M., Van Schrojenstein Lantman-de Valk
 H., Van Hove G., Berger D. M., Azema B., Buono S., Cara A. C., Germanavicius A., Linehan C.,
 Määttä T., Tossebro J. & Weber G. (2011) Ageing and health status in adults with intellectual
 disabilities: Results of the European POMONA II study. *Journal of Intellectual & Developmental Disability*, 36, 49-60.
- Hove O. & Havik O. E. (2010) Developmental level and other factors associated with symptoms of mental disorders and problem behaviour in adults with intellectual disabilities living in the community. *Social Psychiatry And Psychiatric Epidemiology*, 45, 105-113.
- Jelliffe-Pawlowski L. L., Shaw G. M., Nelson V. & Harris J. A. (2003) Risk of mental retardation among children born with birth defects. *Archives Of Pediatrics & Adolescent Medicine*, 157, 545-550.
- Johannsen P., Christensen J. E. J., Goldstein H., Nielsen V. K. & Mai J. (1996) Epilepsy in Down syndrome: Prevalence in three age groups. *Seizure*, **5**, 121-125.

Joint Epilepsy Council (2011) Epilepsy prevalence, incidence and other statistics. Available at:

http://www.jointepilepsycouncil.org.uk/downloads/2011/Joint%20Epilepsy%20Council%20P revalence%20and%20Incidence%20September%2011.pdf (retrieved 22 July 2014).

- Kiani R., Tyrer F., Jesu A., Bhaumik S., Gangavati S., Walker G., Kazmi S. & Barrett M. (2014) Mortality from sudden unexpected death in epilepsy (SUDEP) in a cohort of adults with intellectual disability. *Journal of Intellectual Disability Research*, 58, 508-520.
- Koskentausta T., Iivanainen M. & Almqvist F. (2002) Psychiatric disorders in children with intellectual disability. *Nordic Journal Of Psychiatry*, 56, 126-131.
- Lakhan R. (2013) Intelligence quotient is associated with epilepsy in children with intellectual disability in India. *Journal of Neurosciences in Rural Practice*, **4**, 408-412.
- Leung H. T. T. & Ring H. (2013) Epilepsy in four genetically determined syndromes of intellectual disability. *Journal of Intellectual Disability Research*, 57, 3-20.
- Lewis J. N., Tonge B. J., Mowat D. R., Einfeld S. L., Siddons H. M. & Rees V. W. (2000) Epilepsy and associated psychopathology in young people with intellectual disability. *Journal Of Paediatrics And Child Health*, 36, 172-175.
- Lhatoo S. D. & Sander J. W. (2001) The epidemiology of epilepsy and learning disability. *Epilepsia*, 42 Suppl 1, 6-9.
- Lin J.-D., Wu J. L. & Lee P. N. (2003) Healthcare needs of people with intellectual disability in institutions in Taiwan: Outpatient care utilization and implications. *Journal of Intellectual Disability Research*, 47, 169-180.
- Linehan C., Kerr M. P., Walsh P. N., Brady G., Kelleher C., Delanty N., Dawson F. & Glynn M. (2010) Examining the prevalence of epilepsy and delivery of epilepsy care in Ireland. *Epilepsia*, 51, 845-852.
- Marriott A., Turner S., Hatton C., Glover G. & Robertson J. (2014) Making reasonable adjustments to epilepsy services for people with learning disabilities. Available on-line at

http://www.improvinghealthandlives.org.uk/gsf.php5?f=313318&fv=20779 (accessed 13 November 2014).

- Matthews T., Weston N., Baxter H., Felce D. & Kerr M. (2008) A general practice-based prevalence study of epilepsy among adults with intellectual disabilities and of its association with psychiatric disorder, behaviour disturbance and carer stress. *Journal of Intellectual Disability Research*, 52, 163-173.
- Maulik P. K., Mascarenhas M. N., Mathers C. D., Dua T. & Saxena S. (2011) Prevalence of intellectual disability: A meta-analysis of population-based studies *Research in Developmental Disabilities*, 32, 419-436.
- McBrien J. & Macken S. (2009) Meeting the health care needs of school-age children with intellectual disability. *Irish Medical Journal*, 102, 252-255.
- McCarron M., Gill M., McCallion P. & Begley C. (2005) Health co-morbidities in ageing persons with Down syndrome and Alzheimer's dementia. *Journal of Intellectual Disability Research*, 49, 560-566.
- McCarron M., O'Dwyer M., Burke E., McGlinchey E. & McCallion P. (2014) Epidemiology of epilepsy in older adults with an intellectual disability in ireland: associations and service implications. *American Journal On Intellectual And Developmental Disabilities*, 119, 253-260.
- McDermott S., Moran R., Platt T., Wood H., Isaac T. & Dasari S. (2005) Prevalence of epilepsy in adults with mental retardation and related disabilities in primary care. *American Journal Of Mental Retardation*, 110, 48-56.
- McGrother C. W., Bhaumik S., Thorp C. F., Hauck A., Branford D. & Watson J. M. (2006) Epilepsy in adults with intellectual disabilities: prevalence, associations and service implications. *Seizure: The Journal Of The British Epilepsy Association*, **15**, 376-386.
- McVicker R. W., Shanks O. E. P. & McClelland R. J. (1994) Prevalence and associated features of epilepsy in adults with Down's syndrome. *The British Journal of Psychiatry*, 164, 528-532.

- Memisevic H. & Sinanovic O. (2009) Epilepsy in children with intellectual disability in Bosnia and Herzegovina: Effects of sex, level and etiology of intellectual disability. *Research In Developmental Disabilities*, 30, 1078-1083.
- Molteno G., Molteno C. D., Finchilescu G. & Dawes A. R. L. (2001) Behavioural and emotional problems in children with intellectual disability attending special schools in Cape Town, South Africa. *Journal of Intellectual Disability Research*, 45, 515-520.
- Morgan C. L. I., Baxter H. & Kerr M. P. (2003) Prevalence of epilepsy and associated health service utilization and mortality among patients with intellectual disability. *American Journal on Mental Retardation*, 108, 293-300.
- Murphy C. C., Yeargin-Allsopp M., Decouflé P. & Drews C. D. (1995) The administrative prevalence of mental retardation in 10-year-old children in metropolitan Atlanta, 1985 through 1987. *American Journal Of Public Health*, 85, 319-323.
- Ngugi A. K., Bottomley C., Kleinschmidt I., Sander J. W. & Newton C. R. (2010) Estimation of the burden of active and life-time epilepsy: A meta-analytic approach. *Epilepsia*, 51, 883-890.
- Nordin V. & Gillberg C. (1996) Autism spectrum disorders in children with physical or mental disability or both .1. Clinical and epidemiological aspects. *Dev. Med. Child Neurol.*, 38, 297-313.
- Oeseburg B., Dijkstra G. J., Groothoff J. W., Reijneveld S. A. & Jansen D. E. M. C. (2011) Prevalence of Chronic Health Conditions in Children With Intellectual Disability: A Systematic Literature Review. *Intellectual and Developmental Disabilities,* 49, 59-85.
- Pawar D. G. & Akuffo E. O. (2008) Comparative survey of comorbidities in people with learning disability with and without epilepsy. *Psychiatric Bulletin*, 32, 224-226.
- Prasher V. P. (1995) Epilepsy and associated effects on adaptive behaviour in adults with Down syndrome. *Seizure*, **4**, 53-56.
- Pueschel S. M., Louis S. & McKnight P. (1991) Seizure disorders in Down syndrome. *Archives of Neurology*, 48, 318-320.

- Roizen N. J., Magyar C. I., Kuschner E. S., Sulkes S. B., Druschel C., van Wijngaarden E., Rodgers L.,
 Diehl A., Lowry R. & Hyman S. L. (2014) A community cross-sectional survey of medical
 problems in 440 children with Down syndrome in New York State. *The Journal Of Pediatrics,*164, 871-875.
- Schieve L. A., Boulet S. L., Boyle C., Rasmussen S. A. & Schendel D. (2009) Health of children 3 to 17
 years of age with Down syndrome in the 1997-2005 national health interview survey.
 Pediatrics, 123, e253.
- Schieve L. A., Gonzalez V., Boulet S. L., Visser S. N., Rice C. E., Van Naarden Braun K. & Boyle C. A.
 (2012) Concurrent medical conditions and health care use and needs among children with learning and behavioral developmental disabilities, National Health Interview Survey, 2006– 2010. *Research In Developmental Disabilities*, 33, 467-476.
- Shamliyan T., Kane R. L. & Dickinson S. (2010) A systematic review of tools used to assess the quality of observational studies that examine incidence or prevalence and risk factors for diseases. *Journal of Clinical Epidemiology*, 63, 1061-1070.
- Sherman S. L., Allen E. G., Bean L. H. & Freeman S. B. (2007) Epidemiology of Down syndrome. Mental Retardation And Developmental Disabilities Research Reviews, 13, 221-227.
- Steffenburg S., Gillberg C. & Steffenburg U. (1996) Psychiatric disorders in children and adolescents with mental retardation and active epilepsy. *Archives of Neurology*, 53, 904-912.
- Steffenburg U., Hagberg G., Viggedal G. & Kyllerman M. (1995) Active epilepsy in mentally retarded children. I. Prevalence and additional neuro-impairments. *Acta Paediatrica (Oslo, Norway:* 1992), 84, 1147-1152.
- Strømme P. & Hagberg G. (2000) Aetiology in severe and mild mental retardation: a population based study of Norwegian children. *Developmental Medicine & Child Neurology*, 42, 76-86.
- Temtamy S. A., Kandil M. R., Demerdash A. M., Hassan W. A., Meguid N. A. & Afifi H. H. (1994) An epidemiological/genetic study of mental subnormality in Assiut Governorate, Egypt. *Clinical Genetics*, 46, 347-351.

Tenenbaum A., Fuchs B. S., Raskas M., Carmeli E., Aspler S. & Merrick J. (2012) National survey 2009 on medical services for persons with intellectual disability in residential care in Israel. *International Journal on Disability and Human Development*, 11, 75-79.

- Tyrrell J., Cosgrave M., McCarron M., McPherson J., Calvert J., Kelly A., McLaughlin M., Gill M. & Lawlor B. A. (2001) Dementia in people with Down's syndrome. *International Journal of Geriatric Psychiatry*, 16, 1168-1174.
- van Schrojenstein Lantman-de Valk H. M., van den Akker M., Maaskant M. A., Haveman M. J., Urlings H. F., Kessels A. G. & Crebolder H. F. (1997) Prevalence and incidence of health problems in people with intellectual disability. *Journal Of Intellectual Disability Research: JIDR,* 41 (Pt 1), 42-51.
- van Schrojenstein Lantman-De Valk H. M. J., Metsemakers J. F. M., Haveman M. J. & Crebolder H. F. J. M. (2000) Health problems in people with intellectual disability in general practice: A comparative study. *Family Practice*, **17**, 405-407.
- Wellesley D. G., Hockey K. A., Montgomery P. D. & Stanley F. J. (1992) Prevalence of intellectual handicap in Western Australia: a community study. *The Medical Journal Of Australia*, 156, 94.
- Wong C. W. (2011) Adults with intellectual disabilities living in Hong Kong's residential care facilities: A descriptive analysis of health and disease patterns by sex, age, and presence of Down syndrome. *Journal of Policy and Practice in Intellectual Disabilities*, **8**, 231-238.

World Bank (2014) World Bank list of economies. July 2014, available online. *siteresources.worldbank.org/DATASTATISTICS/Resources/CLASS.XLS*, last accessed 1/10/2014.

Yousef J. M. S. (1995) Epilepsy in a sample of children with intellectual disability in Jordan. *Australia* & New Zealand Journal of Developmental Disabilities, 20, 63-66.

Table One: Summary of Included Studies giving Prevalence Rates for Epilepsy in People with Intellectual Disabilities. Figures under male, and levels of ID columns relate to characteristics of the study sample. Sorted by author name. Studies only looking at Down syndrome listed separately at end of table

Authors, year & quality score ¹	Country of study	Key Sample Features	Sample Source	Age range (mean (SD); median)	Male %	Borderline ID %	Mild ID %	Moderate ID %	Severe ID %	Profound ID %	Unspecified ID %	Method epilepsy ascertainment	Epilepsy definition	Epilepsy prevalence % in main subgroup conditions	Epilepsy cases n	Sample size N	Epilepsy prevalence %
Airaksinen, Matilainen, Mononen et al (2000) 10 (2/4/4)	Finland (Kuopio Province)	Children with ID born 1969-1972 in one province followed until age 22. CP 11%. LS ns.	School achievement tests & social services register	Prevalence at age 22 yrs given	55ª	-	49ª	51ª	←2	<	-	Parent questionnaire & interview, medical records, examination, EEG	ILAE, epilepsy	CP 62.5%	32	151	21.2
Arvio & Sillanpää (2003) 4 (0/3/1)	Finland	People with SPID. DS 14.3%, AE 19.3%, FXS 3.9%. LS ns	Register of District Centre for ID (all in catchment)	1-72 (ns; ns)	ns	-	-	-	52.5	47.5	-	ns assume medical records	Epilepsy, ns	DS, 30% AE 83% FXS 5.5%	239	461	51.8
Benassi, Guarino, Cammarata et al (1990) 3 (0/3/0)	Italy	Children with 'severe' ID (IQ <=50). DS 22.2%. LS ns.	System recording all school age children with ID	3-13 (ns; ns)	63.3	-	-	100	←	←	-	Medical records & discussion with school health service	Epilepsy, ns	ns	27	90	30.0

¹ Presented as Total score (epilepsy definition score/ascertainment of epilepsy score/subgroup analysis score) ² \leftarrow = included in previous figure; \rightarrow = included in next figure

Authors, year quality score ¹	Country of stu	Key Sample Features	Sample Sourc	Age range (me (SD); median)	Male %	Borderline ID	Mild ID %	Moderate ID %	Severe ID %	Profound ID %	Unspecified IC	Method epilep ascertainment	Epilepsy definition	Epilepsy prevalence % main subgrou conditions	Epilepsy case	Sample size N	Epilepsy prevalence %
Ŷ	đy		•	ăn		%) %	sy		p in	sn		
Christianson, Zwane, Manga et al (2002) 3 (0/2/1)	South Africa	Children with ID in rural households, up to IQ 80. DS 2.1%, CP 8.4%	Rural villages	2-9 (ns; ns)	61.3ª	\rightarrow	81.9ª	18.1ª	←	← 	-	Phase 1 TQQ screening, phase 2 paediatric evaluation	Epilepsy, ns	ns	37	238	15.5
David, Dieterich, de Villemeur et al (2014) 4 (0/3/1)	France (Isère)	Children with mild ID born 1997 living in one county in 2008. LS ns.	Maisons Départementales des Personnes Handicapées (MDPH) & Dept of Education	9-13ª (ns; ns)	ns	-	100	-	-	-	-	Carer telephone interview & medical records	Epilepsy, ns	ns	5	181	2.8
Dekker & Koot (2003) 2 (0/2/0)	Nether- lands	Children with borderline to moderate ID living in family home. DS 5.3%.	Schools for ID	7-20 (12.9 (3.0); ns)	61.8	100	<i>←</i>	<i>←</i>	-	-	-	Parent interview	Epilepsy, ns	ns	26ª	474	5.5
Fernell (1998) 3 (0/3/0)	Sweden	Children with 'severe' ID (IQ < 50-55). CP 23.4%, DS 20.3%. LS ns.	Register of Board for Provision of Services to the Mentally Retarded BPSMR): all in one municipality	3-16 (ns; ns)	62.5	-	-	100	←	←	-	Medical records, author personal knowledge	Epilepsy, ns	ns	17	64	26.6

Authors, year & quality score ¹	Country of study	Key Sample Features	Sample Source	Age range (mean (SD); median)	Male %	Borderline ID %	Mild ID %	Moderate ID %	Severe ID %	Profound ID %	Unspecified ID %	Method epilepsy ascertainment	Epilepsy definition	Epilepsy prevalence % in main subgroup conditions	Epilepsy cases n	Sample size N	Epilepsy prevalence %
Forsgren, Edvinsson, Blomquist et al (1990) 8 (2/2/4)	Sweden	All adults and children with ID in one County on a prevalence day. DS 13.7%, Fragile X 2.3%, RS 0.3%. LS any.	Register of BPSMR, neurology & pediatric departments	All (ns)	ns	ns	ns	ns	ns	ns	100	Asked staff in institutions & letters to parents or carers, medical records examined if reported epilepsy	Active ≥ 1 SZ last 5 yrs &/or on AED	FXS 23.5%, DS 5.9% RS 80% (4/5)	299	1479	20.2
Gittins & Rose (2008) 5 (1/3/1)	England, West Midlands	Adults with PMLD in one health district. LS family home, residential care, family placement	Special needs register of LD service, CLDTs	18-51+ (37 (ns); ns)	ns	-	-	-	-	100	-	Case notes	Epilepsy in case notes	ns	39	61	63.9
Goulden, Shinnar, Koller et al (1991) 9 (2/3/4)	Scotland, Aberdeen	Children with ID born 1951-1955 followed to age 22. CP 14.9%, DS 5.1%. LS ns	Receiving special services for ID prior to leaving school	Prevalence figure given is for age 22	ns	-	78.6ª	21.4ª	←	←	-	Parent interview &/or records (medical, education, social work)	ILAE, epilepsy	CP 37.5%, postnatal injury 73.3%, Genetic or malformation eg DS 12.5%	33	215	15.3
Hand (1996) 1 (0/1/0)	New Zealand (NZ)	All NZ older adults with ID born before 1940, CP 4%, DS 13%. LS any	Multiple agencies & local networking	51-88 (ns; ns)	50.0	4.0	34.5	38.3	15.4	5.1	2.7	Questionnaire completed by carer, staff or GPs	Epilepsy, ns	ns	177	1063	16.7

Authors, year & quality score ¹	Country of study	Key Sample Features	Sample Source	Age range (mean (SD); median)	Male %	Borderline ID %	Mild ID %	Moderate ID %	Severe ID %	Profound ID %	Unspecified ID %	Method epilepsy ascertainment	Epilepsy definition	Epilepsy prevalence % in main subgroup conditions	Epilepsy cases n	Sample size N	Epilepsy prevalence %
Haveman, Perry, Salvador- Carulla et al (2011) 4 (1/2/1)	14 European countries (1 of which upper middle income)	Adults with ID living in Europe. LS any	Mainly service provider registers	19-90 (41 (ns); ns)	50.6	-	22.7	28.2	20.7	11.8	16.6	Carer interview	Diagnosis epilepsy	ns	351ª	1253	28
Hove & Havik (2010) 1 (0/1/0)	Norway	Adults with ID living in community. DS 16.4%, CP 9.1%. LS includes psychiatric wards if part of community care programme	Social services	18-97 (41.8 (14.5); ns)	53.1	-	21.6	41.0	18.0	13.0	6.4	Informant questionnaire (personnel)	Epilepsy, ns	ns	134ª	593	22.6
Jelliffe- Pawlowski, Shaw, Nelson et al (2003) 5 (1/3/1)	US	Children with ID from a larger cohort born with or without birth defects. CP 46.8%. LS ns	ID those receiving services from California Department of Developmental Services	7-9 (ns; ns)	ns	-	52.7	47.3	←	←	-	Service records	Diagnosis epilepsy	ns	160	603	26.5ª
Koskentausta livanainen & Almqvist (2002) 4 (0/3/1)	Finland	All children with ID born 1982 to 1988 in one district. LS mostly parental home	Patient register of Rehabilitation Centre, hospitals, special schools	6-13 (9.7 (ns); ns)	59.4	-	56.1	19.4	11.6	12.9	-	Case records	Epilepsy, ns	Psychiatri- cally non- disturbed 35%, disturbed 37%	55	155	35.5

Authors, year & quality score ¹	Country of study	Key Sample Features	Sample Source	Age range (mean (SD); median)	Male %	Borderline ID %	Mild ID %	Moderate ID %	Severe ID %	Profound ID %	Unspecified ID %	Method epilepsy ascertainment	Epilepsy definition	Epilepsy prevalence % in main subgroup conditions	Epilepsy cases n	Sample size N	Epilepsy prevalence %
Lakhan (2013) 7 (0/4/3)	India	Children with ID living in village households in one of poorest districts. DS 7.3%, CP 31.3%	Door to door survey in 63 villages	3-18 (ns; ns)	52.7	1.9	30.2	38.2	24.0	5.7	-	Examination. EEG if symptoms of epilepsy	Epilepsy, ns	CP 46.3%, DS 10.5%	62	262	23.7
Lewis, Tonge, Mowat et al (2000) 3 (1/2/0)	Australia	Young people with ID, LS any.	Services in five districts of New South Wales	8-22 (ns; ns)	52.0	\rightarrow	29.8ª	40.8ª	24.2ª	5.1ª	-	Carer interview	Seizures or epilepsy, lifetime	ns.	115	392	29.3
Lin, Wu & Lee (2003) 1 (0/1/0)	Taiwan	People with ID registered with day-care institutions, 92.6% age <26. LS ns	Community-based day-care institutions	1-26+ (13.7 (ns); ns)	61.2	-	4.9	17.4	40.9	24.9	-	Parent or carer questionnaire	Epilepsy, ns	ns	262	1116	23.5ª
Matthews, Weston, Baxter et al (2008) 3 (1/2/0)	Wales	Adults with ID registered with GP. LS independent 10%, family home 46%, staffed home 44%	40 general practices	17-86 (41 (ns); ns)	44	ns	ns	ns	ns	ns	100	Carer interview. If epilepsy, visit by epilepsy nurse & information assessed by 2 doctors (& neuro- psychiatrist if needed)	Diagnosis epilepsy	ns	58	318	18.2

Authors, year quality score ¹	Country of stu	Key Sample Features	Sample Sourc	Age range (m (SD); median)	Male %	Borderline ID	Mild ID %	Moderate ID %	Severe ID %	Profound ID %	Unspecified II	Method epilep ascertainmen	Epilepsy definition	Epilepsy prevalence % main subgrou conditions	Epilepsy case	Sample size N	Epilepsy prevalence %
20 Q	udy		ĕ	ean		%		6		6	0%	osy t		d i.	n Si	_	
McBrien & Macken (2009) 3 (0/3/0)	Ireland	Children with moderate, to profound ID. Any chromosonal or genetic cause 48.5%, DS 24.7%. LS ns	Centre providing educational and health services for all individuals with moderate, severe and profound ID in one area	5-19 (ns; 12)	66.0	-	-	64.9 0	35.1 0	<i>←</i>	-	Medical records (moderate), routine medical review (severe or profound)	Epilepsy, ns	ns	35	97	36.1
McCarron, O'Dwyer, Burke et al (2014) 6 (1/2/3)	Ireland	Older adults with ID, 3.1% with DS & dementia. LS all	National database (all ID eligible to receive services)	40 - 65+ (54.8 (9.6); ns)	45	-	24	46	24	5	-	Questionnaire & interview (carer)	Diagnosis epilepsy	DS and dementia 52.2%, DS controlling for dementia 13.4%	229	747	30.7
McDermott, Moran, Platt et al (2005) 6 (2/3/1)	US	Adults with ID receiving primary health care. CP 24.9%, DS 8.9%. LS ns	Large urban or small rural primary care practice	20-60+ (entry age mean 36.5 ⁱ (13.9); ns)	52.0ª	-	35.9	22.9	41.2	<i>←</i>	-	Medical records	≥1 AED	DS 13.6%, CP 40%	186ª	663	28.1
McGrother, Bhaumik, Thorp et al (2006) 6 (1/2/3)	England, Leicester- shire	Adults with ID known to services. LS any	Leicestershire LD Register	20-70+ (ns; ns)	56.6	ns	ns	ns	ns	ns	100	Carer interviews	Suffers epilepsy (ns), seizures ≥ occassionall y, or on AED	ns	620	2393	25.9

Epilepsy prevalence %	37 20.4	5 23.7	95 16.1	174 14.6ª
Epilepsy cases n	34	84	257	157
Epilepsy prevalence % in main subgroup conditions	DS 0%, other genetic cause 31.8%, brain injury 48.6%	ns	ns	ns
Epilepsy definition	Diagnosis epilepsy	Epilepsy, ns	Epilepsy code in inpatient, MH hospital or mortality datasets, or on epilepsy clinic database	Epilepsy, ns
Method epilepsy ascertainment	Medical records	Teacher questionnaire	Codes in multiple databases	Records
Unspecified ID %	-	1.1	100	-
Profound ID %	-	10.7	ns	<i>←</i>
Severe ID %	-	13.8	ns	<i>←</i>
Moderate ID %	49.1	38.6	ns	30.1
Mild ID %	50.9	35.8	ns	69.9
Borderline ID %	-	-	ns	-
Male %	62.9ª	55.5	ns	59.2
Age range (mean (SD); median)	7-15 (ns; ns)	6-18 (ns; ns)	15-85+ (ns; ns)	10 year olds
Sample Source	Two special schools	Two special schools & a training centre	Social services register, inpatient & outpatient databases, MH hospital dataset	Schools, hospitals, other health & social services
Key Sample Features	Children with moderate or mild ID. Organic brain injury 21.0%, DS 20.4%, other genetic syndromes 13.2%. LS ns	Children with ID at special schools. CP 33.8%. LS ns	People with ID mainly age 16+ in contact with health or social services. LS any	Children with ID born 1975 to 1977 living in study area at age 10. CP 12.3%. LS ns
Country of study	Bosnia & Herze- govina, Sarajevo	South Africa, Cape Town	Wales	US
Authors, year & quality score ¹	Memisevic & Sinanovic (2009) 7 (1/3/3)	Molteno, Molteno, Finchilescu et al (2001) 1 (0/1/0)	Morgan, Baxter & Kerr (2003) 7 (1/3/3)	Murphy, Yeargin- Allsopp, Decouflé et al (1995) 4 (0/3/1)

Authors, year & quality score ¹	Country of study	Key Sample Features	Sample Source	Age range (mean (SD); median)	Male %	Borderline ID %	Mild ID %	Moderate ID %	Severe ID %	Profound ID %	Unspecified ID %	Method epilepsy ascertainment	Epilepsy definition	Epilepsy prevalence % in main subgroup conditions	Epilepsy cases n	Sample size N	Epilepsy prevalence %
Nordin & Gillberg (1996) 6 (2/4/0)	Sweden	All children with ID born 1974 to 1988 in one region. CP 8.9%, DS 8.9%. LS ns	Habilitation & educational services	3-18 (ns; ns)	63.4ª	-	56.4	43.6	<i>←</i>	<i>←</i>	-	Clinical interview & medical examination	≥ 1 SZ or AED in last yr or SZs important part of medical history	ns	22	101	21.8
Pawar & Okuffo (2008) 7 (1/3/3)	England, London Borough of Waltham Forest	Adults with ID in contact with services. LS residential homes, supported living, private homes	Adults in contact with one CLDT (active cases)	17-65+ (ns; ns)	53.7	ns	ns	ns	ns	ns	100	Case records	Diagnosis epilepsy	ns	53	177	29.9
Schieve, Boulet, Boyle et al (2009) 4 (1/2/1)	US	Children in households with DS or with ID without DS. DS 19.5%.	National survey of households	3-17 (ns; ns)	59.6ª	ns	ns	ns	ns	ns	100	Family carer interview	SZ past 12 mths	DS 1.4%, non-DS 16.3% (weighted estimates)	98	750	13.1ª
Schieve, Gonzalez, Boulet et al (2012) 3 (1/2/0)	US	Children in households with ID without autism	National survey of households	3-17 (ns; ns)	58.1	ns	ns	ns	ns	ns	100	Carer interview	SZ past 12 mths	ns	ns 36ª	238	15.1 (weighted)
Steffenburg, Hagberg, Viggedal et al (1995) 6 (2/3/1)	Sweden	Children with ID in one city born 1975-1986. CP 15.3%. LS ns	Education, inpatient, outpatient, child habilitation clinic & child neuropsychiatric clinic registers	6-13 (ns; ns)	ns	-	63.0	37.0	←	←	-	Medical files	ILAE Active ≥ 2 unprovoked SZ & ≥ 1 SZ in last 5 yrs	CP 72.4% ^a	98	378	25.9

Authors, year & quality score ¹	Country of study	Key Sample Features	Sample Source	Age range (mean (SD); median)	Male %	Borderline ID %	Mild ID %	Moderate ID %	Severe ID %	Profound ID %	Unspecified ID %	Method epilepsy ascertainment	Epilepsy definition	Epilepsy prevalence % in main subgroup conditions	Epilepsy cases n	Sample size N	Epilepsy prevalence %
Strømme & Hagberg (2000) 7 (2/4/1)	Norway	Children with mild or 'severe' ID (IQ < 50 assumed mod/sev/pro). Genetic cause 35%, CP 14%. LS ns	Multiple sources (education & medical) used to identify all in one County	8-13 (ns; ns)	57.8 7 not used in analy sis	-	55.6	44.4	 ← 	←	-	Parent interview & examination	ILAE, epilepsy	ns	35	178	19.7
Temtamy, Kandil, Demerdash et al (1994) 4 (0/4/0)	Egypt	Children with ID in households. DS 2.6%, MCA 24.1%, primary CNS defect 12.9%	Households in three localities in Egypt	2-18 (ns; ns)	68.1	30.8ª	47.9ª	21.4ª	←	←	-	Clinical examination	Epilepsy, ns	ns	5	116	4.3
Tenenbaum, Fuchs, Raskas et al (2012) 1 (0/1/0)	Israel	All with ID living in residential centres. DS 8.1%, fragile X 1.0%, Rett syndrome 0.2%	Residential care centres	0-60+ (ns; ns)	56.3	-	13.3	41.1	31.6	13.4	0.6	Residential centre report, assumed records	Epilepsy, ns	ns	2313	7067	32.7
van Schrojenstein Lantman-de Valk, Metsemakers , Haveman et al (2000) 4 (1/3/0)	Nether- lands	Any general practice patients with ID. LS ns	Registration Network Family Practices (RNH) of Maastrict University	ns. 20% aged over 50, includes children	62	ns	ns	ns	ns	ns	100	Electronic GP medical records	Epilepsy code N88 ICPC	ns	35	318	11.0

Authors, year & quality score ¹	Country of study	Key Sample Features	Sample Source	Age range (mean (SD); median)	Male %	Borderline ID %	Mild ID %	Moderate ID %	Severe ID %	Profound ID %	Unspecified ID %	Method epilepsy ascertainment	Epilepsy definition	Epilepsy prevalence % in main subgroup conditions	Epilepsy cases n	Sample size N	Epilepsy prevalence %
van Schrojenstein Lantman-de Valk, van den Akker, Maaskant et al (1997) 4 (0/1/3)	Nether- lands	People with ID in institutions or group homes. CP 11.8%, dementia 3.8%, DS 22.3%	Institutions & group homes	0 to 70+ (ns; ns)	ns	ns	ns	ns	ns	ns	100	GP questionnaire	Epilepsy, ns	DS 10.7%, non-DS 17.4%. OR for epilepsy if dementia 8.8 (95% CI 4.8- 16.2)	167ª	1020	16.4
Wellesley, Hockey, Montgomery et al (1992) 7 (2/3/2)	Australia	Children in Western Australia with ID born 1967- 1976. CP 19.8%. LS ns	Multiple services & schools	6-16 (ns; ns)	59.6ª	-	38.5ª	31.0ª	12.6ª	7.1ª	10.7ª	Records. Clarification if needed via examination or contacting doctor (main source records)	≥ 2 major or minor convulsions in absence of fever	ns	208	1590	13.1
Wong (2011) 5 (1/1/3)	Hong Kong	Adults with ID in residential care. DS 13.2%, CP 16.7%	Residential care services	18-79 (44 (ns); ns)	53.3	-	4.9	41.8	51.9	~	-	Nursing staff questionnaire	Diagnosis epilepsy	DS 13.2%, non-DS 37.0%	276	811	34.0
Yousef (1995) 6 (0/3/3)	Jordan	Children at special schools for ID. LS ns	Special education centres in one City	ns; school age	73.8	-	27.2	44.2	28.6	~	-	School records & teachers to clarify if necessary	Epilepsy, ns	ns	75	379	19.8
DOWN SYNDROME STUDIES																	

Authors, quality s	Country	Key San Features	Sample	Age ranı (SD); me	Male %	Borderli	Mild ID %	Moderat	Severe I	Profoun	Unspeci	Method ascertai	Epilepsy definitio	Epilepsy prevaler main sul conditio	Epilepsy	Sample	Epilepsy prevaler
, year & core¹	of study	nple	Source	ge (mean sdian)		ne ID %	8	e ID %	D %	d ID %	fied ID %	epilepsy nment	5	r nce % in bgroup ns	/ cases n	size N	/ 1ce %
Collacott (1993) 7 (2/3/2)	England, Leicester- shire	Adults with DS, dementia 5.1%. LS any	Leicestershire LD Register, health service records, day centres, residential services	<30-60+ (ns; ns)	ns	ns	ns	ns	ns	ns	100	Carer interviews & medical records	≥ 3 SZ in 2 yrs, lifetime	Dementia 27.8%	35	351	10.0
Johannsen, Christensen, Goldstein et al (1996) 7 (2/4/1)	Denmark	DS in age groups 14-16, 23-29 & 50-60. LS ns	All in one County identified via Danish register & city councils	Age groups 14-16, 23- 29, 50-60	62.5	ns	ns	ns	ns	ns	100	Parent/carer interview & examination	ILAE, epilepsy	ns	12	72	16.7
McCarron, Gill, McCallion et al (2005) 4 (0/3/1)	Ireland	Adults with DS aged 35+ in out- of-home placements, AD 50.8%	Care settings (out- of-home placements)	>35-ns (AD 55.4 (7.0); ns. Non-AD 50.8 (5.8); ns)	33.9	-	-	69.4	30.6	-	-	Medical records	Epilepsy, ns	AD 55.5%, non-AD 11.4%, end-stage AD 84.0%, mid-stage AD 39.4%	42	124	33.9
McVicker, Shanks & McClelland (1994) 7 (2/3/2)	Northern Ireland	Adults with DS living in community (82%) or hospital	Adults training centres, social services register, MH hospital	19-50+ (community 33.5 (ns); ns, hospital 54.5 (ns); ns)	ns	ns	ns	ns	ns	ns	100	Medical records	≥ 1 SZ in prior 2 yrs &/or on AED	ns	18	191	9.4

Authors, ye quality scol	Country of	Key Sample Features	Sample Sou	Age range ((SD); media	Male %	Borderline	Mild ID %	Moderate II	Severe ID %	Profound II	Unspecified	Method epi ascertainm	Epilepsy definition	Epilepsy prevalence main subgr conditions	Epilepsy ca	Sample size	Epilepsy prevalence
ſé1 &	study		Irce	mean n)		ID %) %) %	ID %	lepsy ent		% in oup	ises n	N	%
Prasher (1995) 4 (2/2/0)	England, West Midlands	Adults with DS. LS hospital, community or family home	Cohort with DS in West Midlands.	16-72 (44.2 (12.5); ns)	50.7	-	18.9	66.7	13.4	-	1.0	Carer interview	≥ 3 SZ in a 2 yr period &/or on AED (excludes partial complex SZ)	Dementia in 34.4% of those with epilepsy, total n with dementia not identified	32	201	15.9
Pueschel, Louis & McKnight (1991) 4 (1/3/0)	US, Rhode Island	Children & adults with DS. LS family home, other types ns	Child development centre (enables near complete ascertainment of DS)	0.5-45 (ns; ns)	52.1	ns	ns	ns	ns	ns	100	Medical records & parent questionnaire	SZ disorder, exclude single provoked or unprovoked SZ	ns	33	405	8.1
Roizen, Magyar, Kuschner et al (2014) 2 (1/1/0)	US, New York State	Children with DS in New York State. LS ns	Families registered in the New York Congenital Malformations Registry (NYCMR)	3-14 (7.5 (3.1); ns)	51.7	ns	ns	ns	ns	ns	100	Parental questionnaire	Diagnosis seizures	ns	30	440	6.8
Tyrrell, Cosgrave, McCarron et al (2001) 7 (2/4/1)	Ireland	Adults with DS over age 35. Dementia 13.3%. LS institutional, residential, community	Learning disability services	35-70+ (ns; ns)	ns	-	ns	ns	ns	ns	100	Medical notes, assessment (carer present).	ILAE, epilepsy	Dementia 65.8%, non dementia 13.5%	58	283	20.5ª

Abbreviations: ^a = calculated from available figures not reported directly, ns = not stated, SZ = seizures, ILAE = International League Against Epilepsy, AED = antiepileptic drug, DS = Down syndrome, ID = intellectual disabilities, LD = learning disabilities, CLDT = community learning disability team, MH = 'mental handicap', SPID = Severe or profound intellectual disabilities. LS = living situation. CP = cerebral palsy, BPSMR = Board for Provision of Services to the Mentally Retarded, MCA = multiple congenital anomalies, AE = acquired encephalopathy, FXS = Fragile X syndrome, RS = Rett syndrome

Table Two: Random effects meta-analy	vsis n	ooled e	estimates o	of prevalenc	e of epilepsy
Table Two Handom cheets meta ana	/ 5 .5			n prevalene	c or cpricpsy

Subgroup (between study	Number	Prevalence % ^a	95%	95%	
moderators)	of studies		CI	CI	
			lower	upper	
Down syndrome					Q 8.7, df 1, p .003
Mixed sample	38	22.2	19.6	25.1	
Down syndrome only	8	13.6	9.9	18.4	
loval of ID ^b					Q 43.4, df 2,
	29	22.2	19.6	25.0	μ<.001
l ess severe	4	7.3	4.5	11.6	
More Severe	5	41.6	32.1	51.8	
Age ^{bc}		1110	52.1	5110	Q 0.8. df 2. p .661
Adult	12	23.5	19.5	28.0	Q 0.0, 0, p.001
Child	12	21.7	17.9	26.1	
Mixed	5	20.2	15.0	26.7	
High/LAMI ^{bc}					Q 0.2, df 1, p .626
High	25	22.4	19.7	25.4	· · ·
LAMI	4	20.5	14.5	28.2	
Subgroup (including within					
study subgroups)					
Level of ID					Q 56.0, df 1,
					p<.001
Mild	13	9.8	7.6	12.4	
Moderate/severe/profound	14	30.4	25.5	35.7	
Level of ID (where					Q 16.6, df 2,
moderate, severe, profound					p<.001
available separately)					
Moderate	5	16.7	10.8	25.0	
Severe	3	27.0	16.1	41.5	
Protound	4	50.9	36.1	65.5	
Gender (any study where					Q 0.4, df 1, p .524
male/female figures given					
separately)		24.0	10.0	20.0	
Male	9	24.8	19.6	30.8	
	9	22.2	17.5	28.1	O 2 2 df 2 p 220
	11	21.6	17.0	25.0	Q 2.2, ul 2, p .559
0-18	0	21.0	21.3	23.9	
	0	20.0	17.0	26.0	
^a Estimates based on meta-	/	21.5	17.0	20.9	
analysis using random					
effects model					
^b Excludes DS only studies					
^c Excludes less/more severe					
ID studies					

Table Three: Meta-analysis Estimates for people with Down Syndrome

Subgroup	Number	Prevalence % ^a	95%	95%	
	of studies		CI	CI	
			lower	upper	
Overall prevalence					
including subgroups in non-					
DS only studies ^b	13	12.4	9.1	16.7	
Overall prevalence					
including subgroups in non-					
DS only studies ^b excluding					
two studies on older					
people	11	10.3	8.4	12.6	
					Q 15.0, df 2,
Age ^b					p=.001
0-18	2	6.9	3.8	12.0	
19-49	3	9.0	5.9	13.5	
50+	3	26.0	16.1	39.2	
					Q 30.9, df 1,
Has Alzheimer's/dementia					p<.001
Yes	4	53.3	41.9	64.4	
No	2	12.8	7.7	20.4	
^a Estimates based on meta-					
analysis using random					
effects model					
^b Excludes less/more severe					
ID studies					

Group by	Study name		Statist	ics for ea	ach study		Event rate and 95% Cl					
DS		Event	Lower	Upper	7.1/1							
		rate	limit	limit	z-value	p-value						
No	Airaksinen, Matilainen, Mononen et al (2000)	0.212	0.154	0.284	-6.596	0.000				·		
No	Arvio & Sillanpää (2003)	0.518	0.473	0.564	0.792	0.429				t t		
No	Benassi, Guarino, Cammarata et al (1990)	0.300	0.214	0.402	-3.684	0.000						
No	Christianson, Zwane, Manga et al (2002)	0.155	0.115	0.207	-9.460	0.000						
No	David, Dieterich, de Villemeur et al (2014)	0.028	0.012	0.065	-7.852	0.000			-			
No	Dekker & Koot (2003)	0.055	0.038	0.079	-14.112	0.000			•			
No	Fernell (1998)	0.266	0.172	0.386	-3.593	0.000						
No	Forsgren, Edvinsson, Blomquist et al (1990)	0.202	0.182	0.223	-21.204	0.000			-			
No	Gittins & Rose (2008)	0.639	0.512	0.749	2.147	0.032					-	
No	Goulden, Shinnar, Koller et al (1991)	0.153	0.111	0.208	-9.025	0.000						
No	Hand (1996)	0.167	0.145	0.190	-19.562	0.000			•			
No	Haveman, Perry, Salvador-Carulla et al (2011)	0.280	0.256	0.306	-15.003	0.000			· · · ·	•		
No	Hove & Havik (2010)	0.226	0.194	0.261	-12.539	0.000						
No	Jelliffe-Pawlowski, Shaw, Nelson et al (2003)	0.265	0.232	0.302	-11.041	0.000				F		
No	Koskentausta, Iivanainen & Almqvist (2002)	0.355	0.284	0.433	-3.561	0.000						
No	Lakhan (2013)	0.237	0.189	0.292	-8.057	0.000				-		
No	Lewis, Tonge, Mowat et al (2000)	0.293	0.250	0.340	-7.925	0.000				-		
No	Lin, Wu & Lee (2003)	0.235	0.211	0.261	-16.731	0.000			•			
No	Matthews, Weston, Baxter et al (2008)	0.182	0.144	0.229	-10.331	0.000			+			
No	McBrien & Macken (2009)	0.361	0.272	0.461	-2.704	0.007						
No	McCarron, O'Dwyer, Burke et al (2014)	0.307	0.275	0.341	-10.286	0.000				•		
No	McDermott, Moran, Platt et al (2005)	0.281	0.248	0.316	-10.894	0.000			· · ·	•		
No	McGrother, Bhaumik, Thorp et al (2006)	0.259	0.242	0.277	-22.520	0.000			•			
No	Memisevic & Sinanovic (2009)	0.204	0.149	0.271	-7.098	0.000						
No	Molteno, Molteno, Finchilescu et al (2001)	0.237	0.195	0.284	-9.379	0.000				·		
No	Morgan, Baxter & Kerr (2003)	0.161	0.144	0.180	-24.225	0.000			•			
No	Murphy, Yeargin-Allsopp, Decouflé et al (1995)	0.146	0.126	0.169	-20.434	0.000			•			
No	Nordin & Gillberg (1996)	0.218	0.148	0.309	-5.303	0.000				-		
No	Pawar & Okuffo (2008)	0.299	0.237	0.371	-5.179	0.000				-		
No	Steffenburg, Hagberg, Viggedal et al (1995)	0.259	0.218	0.306	-8.945	0.000			-	-		
No	Strømme & Hagberg (2000)	0.197	0.145	0.262	-7.463	0.000						
No	Temtamy, Kandil, Demerdash et al (1994)	0.043	0.018	0.099	-6.781	0.000						
No	Tenenbaum, Fuchs, Raskas et al (2012)	0.327	0.316	0.338	-28.418	0.000				•		
No	van Schrojenstein Lantman-de Valk et al (2000)	0.110	0.080	0.149	-11.665	0.000						
No	van Schrojenstein Lantman-de Valk et al (1997)	0.164	0.142	0.188	-19.272	0.000			•			
No	Wellesley, Hockey, Montgomery et al (1992)	0.131	0.115	0.148	-25.463	0.000			•			
No	Wong (2011)	0.340	0.309	0.374	-8.931	0.000				+		
No	Yousef (1995)	0.198	0.161	0.241	-10.855	0.000						
No		0.222	0.196	0.251	-15.273	0.000			•			
Yes	Collacott (1993)	0.100	0.072	0.136	-12.352	0.000						
Yes	Johannsen, Christensen, Goldstein et al (1996)	0.167	0.097	0.271	-5.089	0.000						
Yes	McCarron, Gill, McCallion et al (2005)	0.339	0.261	0.426	-3.526	0.000				╼╴│		
Yes	McVicker, Shanks & McClelland (1994)	0.094	0.060	0.145	-9.137	0.000			₽		1	
Yes	Prasher (1995)	0.159	0.115	0.216	-8.632	0.000			₩		1	
Yes	Pueschel, Louis & McKnight (1991)	0.081	0.059	0.112	-13.337	0.000					1	
Yes	Roizen, Magyar, Kuschner et al (2014)	0.068	0.048	0.096	-13.826	0.000					1	
Yes	Tyrrell, Cosgrave, McCarron et al (2001)	0.205	0.162	0.256	-9.206	0.000			🖶		1	
Yes		0.136	0.099	0.184	-10.031	0.000			•		1	
Overall		0.178	0.108	0.280	-5.143	0.000	1	1	- I 🍝	·	1	
							-1.00	-0.50	0.00	0.50	1.00	

Figure One: Forest plot of prevalence for mixed samples versus Down syndrome only

Figure Two: Forest plot for prevalence mild versus moderate/severe/profound intellectual disability

Group by	Study name	Subgroup within study		Statisti	cs for eac	chstudy					Eventrate and 95% 0	Eventrate and 95% CI
Subgroup within study			Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Mild	Airaksinen, Matilainen, Mononen etal (2000)	Mild	0.068	0.028	0.152	-5.667	0.000		1	1 1	=-	
Mild	Christianson, Zwane, Manga et al (2002)	Mild	0.133	0.092	0.189	-8.885	0.000				-	
Mild	David, Dieterich, de Villemeur etal (2014)	Mild	0.028	0.012	0.065	-7.852	0.000			1 1	=-	1
Mild	Forsgren, Edvinsson, Blomquistetal (1990)	Mild	0.112	0.084	0.148	-12.665	0.000					
Mild	Goulden, Shinnar, Koller etal (1991)	Mild	0.101	0.063	0.156	-8.566	0.000					
Mild	Jelliffe-Pawlowski, Shaw, Nelson et al (2003)	Mild	0.135	0.102	0.177	-11.315	0.000		1	1 1		
Mild	Lakhan (2013)	Mild	0.038	0.012	0.111	-5.491	0.000		1	í I	i I I=-	í I I e - I
Mild	Memisevic & Sinanovic (2009)	Mild	0.165	0.100	0.259	-5.552	0.000			1 1	-=-	│ │ │
Mild	Murphy, Yeargin-Allsopp, Decouflé etal (1995)	Mild	0.071	0.054	0.091	-18.093	0.000					
Mild	Steffenburg, Hagberg, Viggedal et al (1995)	Mild	0.147	0.107	0.198	-9.605	0.000					
Mild	Strømme & Hagberg (2000)	Mild	0.091	0.048	0.166	-6.586	0.000	I			· · · · · · · · · · · · · · · · · · ·	
Mild	Wellesley, Hockey, Montgomery etal (1992)	Mild	0.113	0.091	0.141	-16.196	0.000					
Mild	Yousef(1995)	Mild	0.068	0.033	0.136	-6.688	0.000					⊕
Mild			0.098	0.076	0.124	-15.943	0.000					
MSP	Airaksinen, Matilainen, Mononen etal (2000)	MSP	0.351	0.253	0.463	-2.580	0.010	I				
MSP	Benassi, Guarino, Cammarata et al (1990)	MSP	0.300	0.214	0.402	-3.684	0.000					
MSP	Christianson, Zwane, Manga etal (2002)	MSP	0.256	0.148	0.405	-3.055	0.002					
MSP	Fernell (1998)	MSP	0.266	0.172	0.386	-3.593	0.000				. –	
MSP	Forsgren, Edvinsson, Blomquistetal (1990)	MSP	0.233	0.209	0.259	-16.728	0.000					
MSP	Goulden, Shinnar, Koller etal (1991)	MSP	0.348	0.225	0.495	-2.031	0.042			1 1	1 1 1	
MSP	Jelliffe-Pawlowski, Shaw, Nelson et al (2003)	MSP	0.411	0.355	0.469	-3.005	0.003					
MSP	Lakhan (2013)	MSP	0.331	0.266	0.404	-4.406	0.000					
MSP	McBrien & Macken (2009)	MSP	0.361	0.272	0.461	-2.704	0.007					
MSP	Murphy, Yeargin-Allsopp, Decouflé etal (1995)	MSP	0.322	0.273	0.375	-6.253	0.000					
MSP	Steffenburg, Hagberg, Viggedal et al (1995)	MSP	0.450	0.370	0.533	-1.181	0.238					
MSP	Strømme & Hagberg (2000)	MSP	0.329	0.235	0.440	-2.974	0.003					
MSP	Wellesley, Hockey, Montgomery et al (1992)	MSP	0.151	0.128	0.178	-17.620	0.000	I				
MSP	Yousef(1995)	MSP	0.247	0.200	0.302	-7.964	0.000					
MSP			0.304	0.255	0.357	-6.706	0.000					
Overall			0.179	0.053	0.461	-2.186	0.029					
										100 -0.50	100 -0.50 0.00	100 0.50 0.00 0.50

Figure Three: Forest plot for prevalence by Alzheimer's/dementia for people with Down syndrome

Group by	Study name_	Subgroup within study		Statis	ics for eac	ch study			Eventrate and 95% CI			
Subgroup within study			Event rate	Lower limit	Upper limit	Z-Value	p-Value					
AD/Dementia	Collacott (1993)	AD/Dementia	0.278	0.121	0.519	-1.816	0.069		1			1
AD/Dementia	McCarron, Gill, McCallion et al (2005)	AD/Dementia	0.556	0.432	0.673	0.880	0.379					
AD/Dementia	Tyrrell, Cosgrave, McCarron etal (2001)	AD/Dementia	0.658	0.496	0.790	1.912	0.056					
AD/Dementia	McCarron, O'Dwyer, Burke etal (2014)	AD/Dementia	0.522	0.325	0.712	0.208	0.835					
AD/Dementia			0.533	0.419	0.644	0.565	0.572				-	
Non AD/Dementia	McCarron, Gill, McCallion et al (2005)	Non AD/Dementia	0.115	0.056	0.222	-5.086	0.000				-	
Non AD/Dementia	Tyrrell, Cosgrave, McCarron etal (2001)	Non AD/Dementia	0.135	0.097	0.183	-9.940	0.000					
Non AD/Dementia			0.128	0.077	0.204	-6.735	0.000			•		
Overall			0.292	0.052	0.755	-0.865	0.387		1			
								-1.00	-0.50	0.00	0.50	1.00

Appendix A: Electronic Search Strategy

MEDLINE AND CINAHL

Limits: 1990; English; Human

(TI (learning N1 (disab* or difficult* or handicap*)) OR TI (mental* N1 (retard* or disab* or deficien* or handicap* or disorder*)) OR TI (intellectual* N1 (disab* or impair* or handicap*)) OR TI development* N1 disab* OR TI (multipl* N1 (handicap* or disab*)) OR TI "Down* syndrome" OR (MH "Developmental Disabilities/EP/MO") OR (MH "Intellectual Disability+/EP/MO") OR (MH "mentally disabled persons")) OR (AB (learning N1 (disab* or difficult* or handicap*)) OR AB (mental* N1 (retard* or disab* or deficien* or handicap* or disorder*)) OR AB (intellectual* N1 (disab* or impair* or handicap*)) OR AB development* N1 disab* OR AB (multipl* N1 (handicap* or disab* or deficien* or handicap*)) OR AB (multipl* N1 (handicap* or disab* or deficien* N1 disab* OR AB (multipl* N1 (handicap* or disab*)) OR AB"Down* syndrome")

AND

(MH "Epilepsy+/MO/EP") OR (TI epilep* OR TI seizure* OR TI convulsi* OR AB epilep* OR AB seizure* OR AB convulsi*)

AND

(TI incidence OR TI prevalence OR TI mortality OR TI death OR AB incidence OR AB prevalence OR AB mortality OR AB death) OR (MH "Incidence") OR (MH "Prevalence") OR (MH "Mortality+")

PSYCINFO

Limits: 1990, Peer review, English, Exclude dissertations

DE "Epilepsy" OR DE "Epileptic Seizures" OR (DE "Seizures" OR DE "Audiogenic Seizures" OR DE "Epileptic Seizures" OR DE "Grand Mal Seizures" OR DE "Petit Mal Seizures" OR DE "Status Epilepticus") OR (TI epilep* OR TI seizure* OR TI convulsi* OR AB epilep* OR AB seizure* OR AB convulsi*)

AND

(TI incidence OR TI prevalence OR TI mortality OR TI death OR AB incidence OR AB prevalence OR AB mortality OR AB death) OR DE "Epidemiology" OR DE "death and dying" OR DE "mortality rate"

AND

DE "Intellectual Development Disorder" OR DE "mental retardation" OR DE "developmental disabilities" OR (TI (learning N1 (disab* or difficult* or handicap*)) OR TI (mental* N1 (retard* or disab* or deficien* or handicap* or disorder*)) OR TI (intellectual* N1 (disab* or impair* or handicap*)) OR TI development* N1 disab* OR TI (multipl* N1 (handicap* or disab*)) OR TI "Down* syndrome") OR AB (mental* N1 (retard* or disab* or deficien* or handicap* or disorder*)) OR AB (mental* N1 (retard* or disab* or deficien* or handicap* or disorder*)) OR AB (intellectual* N1 (disab* or impair* or handicap*)) OR AB development* N1 disab* OR AB (multipl* N1 (handicap* or disab*)) OR AB (multipl* N1 (handicap* or disab*)) OR AB (multipl* N1 (handicap* or disab*)) OR AB "Down* syndrome"

Appendix B: Flowchart of Study Identification

