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Abstract

This thesis considers aspects of nonlinear electromagnetism and the

effects of spin under the influence of extreme fields. Born-Infeld-like

theories are studied in the context of possible slow light experiments.

Maximum amplitude plasma waves are considered as a possible testing

ground for nonlinear electrodynamics with regards to electron energy

gain. Finally the effects of the coupling between the electromagnetic

field and the spin of a relativistic classical particle are considered

via a new derivation of the relativistic Stern-Gerlach and Thomas-

Bargmann-Michel-Telegdi equations. These equations are then paired

with the Nakano-Tulczyjew condition and, as the Stern-Gerlach-type

terms in the equations of motion are most prominent in a field with

a high field gradient, the impact of spin is investigated in the context

of a maximum amplitude plasma wave.
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Chapter 1

Introduction

A brief note on units and conventions: this thesis uses units where ε0 = µ0 = c =

1 unless otherwise stated (see Section 5.3.4), and the flat spacetime metric η has

signature {−,+,+,+}. The Einstein summation convention is used throughout:

Latin indices are summed over 0 to 3, i.e. XaYa = X0Y0 +X1Y1 +X2Y2 +X3Y3.

Notation {x, y, z} is used to denote a set containing elements x, y, z. Quantities

with indices will have these indices in italics, whereas quantities with labels will

be in normal text; for instance the electron current je.

The classical theory of electrodynamics is one of the most celebrated physical

theories in terms of its usefulness in physics and engineering. It is known, how-

ever, that classical Maxwell theory is not without its problems (see Ref. [2] for

discussion); since the Coulomb law is a key part of the theory, the electric field

of charged particles is ∼ 1/~r, which diverges as one approaches the particle itself.

This leads to singular self-energy of classical charged particles. Quantum electro-

dynamics (QED) also has similar issues, and hence the theory requires methods

such as renormalisation and regularisation to avoid these singularities.

Maxwell theory is called a linear theory of electromagnetism, since its La-

grangian density depends on the electromagnetic Lorentz invariants

X = ~E2 − ~B2, (1.1)

and Y = 2 ~E · ~B, (1.2)
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1 Introduction

in a linear fashion (in fact LM = X/2). It is equivalent to say that the constitutive

relations are linear in X and Y since

~D =
∂L

∂ ~E
, ~H = − ∂L

∂ ~B
, (1.3)

(and clearly with LM, the linear relations ~D = ~E and ~H = ~B are retrieved).

Nonlinear electrodynamics originated in the early 20th century with the aim

of classically improving upon some of the failings of classical electrodynamics

by introducing a nonlinear dependence of the Lagrangian on X and Y . The

most famous of these theories developed in the last century is Born-Infeld theory

[3]. There are also nonlinear theories of electrodynamics arising from quantum

mechanical approaches, such as Euler-Heisenberg theory [4], which arises from

one loop calculations of the quantum vacuum. With experiments such as the

Extreme Light Infrastructure (ELI) [5] and the European High Power laser Energy

Research facility (HiPER) [6] approaching completion, with anticipated laser field

strength approaching 1025 Wcm−2 [7], for the first time it may be possible to test

for any nonlinearity of electrodynamics outside of the predictions of QED through

effects such as photon-photon scattering [8]. For a review of QED and nonlinear

electrodynamics see Ref. [9].

In the early 20th century, before the development of renormalised QED, Max

Born and Leopold Infeld attempted to fix the problem of the infinite self-energy

of the electron by extending Maxwell electrodynamics into nonlinearity. As previ-

ously stated, Maxwell theory can be written as the Lagrangian density LM = X/2.

Born and Infeld decided to keep the theory manifestly Lorentz invariant and hence

wrote their theory in terms of the electromagnetic invariants X and Y , arriving

at the Lagrangian density

LBI =b2

(
1−

√
− det

(
η +

F

b

))
(1.4)

=b2

(
1−

√
1− X

b2
− Y 2

4b4

)
. (1.5)

Here η is the flat spacetime metric, F is the electromagnetic 2-form and the

constant b acts as a dimensional scale constant, determining the energy scale at

2



1 Introduction

which the non-linearities become significant (and serving to give a maximum to

the electric field). The main difference between this new theory of electromag-

netism and Maxwell theory was that electron now had a finite self energy due to

the limit on the maximum possible electric field EBI
max ∼ b. Significant attention

was not given to Born-Infeld theory at the time however due to advances of QED,

which shifted the focus of the theoretical physics community away from classical

modifications of Maxwell theory and into the field quantisation of Maxwell-Dirac

theory.

Quantum electrodynamics is most often a perturbative theory1 of the quantum

vacuum, using operator theory or functional path integrals to calculate probabil-

ity amplitudes. The specifics of QED are beyond the scope of this thesis, although

the successes of QED in predicting phenomena like the Lamb shift of electron or-

bitals and the anomalous magnetic moment of the electron2 are an indicator that

any nonlinearity of the underlying classical electromagnetic Lagrangian must be

very small in such regimes. Thus the parameter b in the Born-Infeld Lagrangian

(1.5) must be such that the non-linearities only become significant at much higher

electric fields.

While quantum electrodynamics attempted to fully quantise Maxwell-Dirac

theory, Hans Euler and Werner Heisenberg used a semi-classical approach. By

incorporating the quantisation via operator theory and assuming that the elec-

tromagnetic fields were classical (for more detail, see (the translation of) the

original paper by Euler and Heisenberg [4]), resulting in an effective (one loop)

Lagrangian:

L
(1)
EH =

1

8π2

∫ ∞
0

ds

s3
e−im

2
es

(
2

3
(qes)

2X − 1

+(qes)
2 |Y |

2
cot

qes
√
X +

√
X2 +

Y 2

4

 coth

qes
√
−X +

√
X2 +

Y 2

4

 .

(1.6)

1Since the vast majority of non-perturbative problems in QED appear to be impossible to

solve analytically.
2First found by Schwinger in 1948 [10] and as of 1996 known analytically up to third order

in the fine structure constant αfs [11].
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The Euler-Heisenberg Lagrangian describes the phenomenon of vacuum polarisa-

tion, which occurs when the electric field is almost large enough to separate the

virtual electron-positron pairs of the quantum vacuum. Euler-Heisenberg theory

has gained a considerable following and is still studied widely today (for more

details, see Ref. [12]).

To give some comparison of how this theory compares with Born-Infeld theory,

it is interesting to note that the weak-field approximations of the two Lagrangians

are

LWeak
EH =

2α2
fs~3

45m4
e

[X2 +
7

4
Y 2], (1.7)

LWeak
BI =

X

2
+

1

8b2
[X2 + Y 2]. (1.8)

Firstly it is clear that while Born-Infeld includes the Maxwell Lagrangian X/2,

the Euler-Heisenberg Lagrangian does not. This is because the Euler-Heisenberg

Lagrangian is an additional contribution to the Maxwell Lagrangian while Born-

Infeld theory is a replacement, which becomes Maxwell theory in the limit b→∞.

Secondly, the nonlinear contributions of (1.7) and (1.8) are not the same, so the

theories are distinct (seen via the different Y 2 coefficients).

Indeed, it has been suggested [13] that a quantum Born-Infeld theory should

display the effects of Euler-Heisenberg theory, and hence the overall electromag-

netic Lagrangian should be Leff ≈ LBI + LEH. This has implications for tests of

nonlinear electrodynamics; Ref. [13] has shown that background magnetic field

can be used to test vacuum birefringence, the absence of which only the Born-

Infeld Lagrangian (among regular nonlinear Lagrangians) is known to demon-

strate. The lack of birefringence in Born-Infeld theory is one of the properties

uncovered by Boillat [14] and Plebanski [15], whose study of the theory’s wave

propagation properties contributed to a resurgence of interest in Born-Infeld the-

ory in the 1970s. Their discovery that Born-Infeld theory alone among the class of

(non-singular) Lagrangians L(X, Y ) ensured the absence of birefringence meant

that Born-Infeld theory demonstrates exceptional causal properties (single light

cones) and absence of shock waves (see Ref. [16] for more details).

Further interest developed as work in string/M theory showed that the low

energy dynamics of strings and branes share similarities with Born-Infeld theory
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[17], leading to more recent work (see for instance Refs. [18, 19]). This Born-

Infeld Lagrangian motivates the maximum electric field via replacing the Born-

Infeld constant b with κ via b = 1
κ

in (1.5), where 1
κ
∼ the string tension (of

unknown value). Hence the scales on which the nonlinearities become significant

are unknown. It is hoped, however, that performing experiments such as the slow

light experiment [1, 20, 21] (using strong magnetic fields in an optical cavity),

or by using the high field strengths of experiments such as at ELI [5], it will be

possible to determine the constant κ and confirm that such classical phenomena

play a role alongside corrections expected from quantum effects.

This thesis investigates the uses of extreme fields to test the edges of known

physics, starting with Chapter 31, which extends the slow light experiment [20, 21]

to explore the properties of Born-Infeld theory relative to a family of similar

nonlinear theories of electromagnetism. This chapter investigates the propagation

of plane waves through regions of constant magnetic fields in order to argue

that the experiment should be modified to have magnetic fields with nonzero

components parallel to the wave’s own magnetic field. Similarly experiments

involving plane waves propagating though regions of constant electric field are

recommended to include a component of electric field parallel to the wave’s own

electric field. The results are then considered in the context of the desirability of a

nonlinear theory to retain properties of Maxwell theory such as electric-magnetic

duality invariance [22].

Chapter 4 then moves to study the energy gained by a charged particle in an

electric field in the context of distinguishing nonlinear electromagnetic theories.

The context chosen for this investigation is that of electron energy gain in max-

imum amplitude plasma waves2; an extension of the work done in Ref. [23]. By

appealing to the stress balance law rather than the field equations method used in

Ref. [23], the electron energy gain in a maximum amplitude plasma wave is shown

to be dependent on only the mass of the particle and the speed of the plasma

wave. Though this appears to be independent of theory, Chapter 3 indicates

1Chapter 3 is a more detailed account of the work presented in the publication in EPL, Ref.

[1].
2Note that the maximum field strength here is due to field-matter interaction, not due to

Born-Infeld etc. (see Chapter 4.)
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that this speed will depend on the background field and the theory of electro-

magnetism. Since repeating the calculation for Chapter 3 would require delving

into advanced numerics, this is left for future study and the thesis progresses to

investigate other areas open to analytical approaches.

The final part of this thesis focuses on the effects of spin on a classical charged

particle in an electromagnetic field. Both spin and radiation reaction (the force

on an accelerating charged particle due to its own emitted radiation) are consid-

ered to be small effects [24]. Radiation reaction forces are being considered at

present as the cumulative radiative contributions of accelerated electron bunches

are expected to play a role in future accelerators. The effects of Stern-Gerlach

forces on charged particles in high field situations such as those of maximum

amplitude plasma waves have not, however, received much attention.

Chapter 5 shows a new derivation (via de Rham currents and balance laws)

of the covariant Stern-Gerlach and Thomas-Bargmann-Michel-Telegdi (TBMT)

equations [25, 26] of motion for a relativistic spinning charged particle, and then

proceeds to investigate the motion of charged particles in the electromagnetic

field produced by the maximum amplitude plasma wave discussed in Chapter 4.

By perturbing around a known exact solution trajectory, the perturbative solu-

tions are found to be linearly unstable. Since the particular solution in question

is orthogonal to the motion of the plasma electrons and is unstable, the electrons

following such trajectories could cause undesirable properties in (for instance)

the bunching properties of electrons in laser wakefield accelerators. These tra-

jectories exist only when spin is taken into account and since the electrons are

non-accelerating, the radiation reaction forces are negligible; hence the Stern-

Gerlach forces are shown to be important.

6



Chapter 2

Introduction to Differential

Geometry

This chapter introduces the mathematical notation and machinery used through-

out this thesis. This chapter is not intended to be a rigorous introduction to

differential geometry and exterior calculus; the intention is simply to establish

the conventions required to follow the calculations in the proceeding chapters.

For a more expansive introduction to the relevant topics, see Refs. [27–31].

2.1 Introduction

Many of the calculations in this thesis are presented in the coordinate-free lan-

guage of differential forms. This chapter will introduce the basic framework and

concepts required to follow these calculations.

Spacetime is modelled as a smooth Lorentzian manifold; that is an n-dimensional

pseudo-Riemannian manifold M on which a metric of signature (1, (n− 1)) is de-

fined. The signature of the metric can be thought of as the relative numbers of

negative and positive signs in the metric terms. This requirement on the met-

ric is imposed in order to distinguish the temporal coordinate from the spatial

coordinates.

7



2.1. Introduction

Coordinates xa are sets of maps taking points in M to real numbers. In general

no one coordinate system can cover the entire manifold, though in the case of

Minkowski space this is not so, as is described later.

Vector fields (4-vector fields) are introduced as V = V a∂a. Here the Einstein

summation convention is used, summing a from 0 to 3; ∂a is a basis vector,

pointing in the direction of increasing xa. In general, a set of basis vectors of a

space is called a frame and is written {Xa}.
Vectors can be evaluated on scalar functions f and h, and obey the Leibniz

rule:

V (f) = V a ∂f

∂xa
, (2.1)

V (fh) = fV (h) + hV (f). (2.2)

The metric g is a rank 2 tensor that takes two vectors and gives a real number

as an analogue of the standard vector dot product:

g(U, V ) = gabU
aV b. (2.3)

Orthonormal frames satisfy g(Xa, Xb) = ηab, where

ηab =


−1 for a = b = 0,
1 for a = b = 1, 2, 3,
0 otherwise.

(2.4)

The metric is nondegenerate, f -linear and symmetric, that is for vectors U, V

and functions f, h

g(fU, hV ) = fhg(U, V ), (2.5)

g(U, V ) = 0 for all U then V = 0. (2.6)

The metric allows the classification of three kinds of vector field:

• Timelike g(V, V ) < 0,

• Spacelike g(V, V ) > 0,

• Null (lightlike) g(V, V ) = 0.

8
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If two vectors U and V satisfy g(U, V ) = 0, they are said to be orthogonal.

The simplest example of a spacetime is Minkowski spacetime; this has one set

of coordinates covering the entire manifold, which are the standard coordinates

{t, x, y, z} with the straightforward metric gab = ηab. On Minkowski spacetime

the natural frame is {∂t, ∂x, ∂y, ∂z}. Special relativity is the study of physics in

Minkowski spacetime; there are no gravitational effects in this theory.

1-form fields take vectors and give real numbers; they are elements of the

dual space, which is a vector space. The object g(V,−) is an example of a 1-

form, called the metric dual of V and is written Ṽ . Every 1-form can be written

as the dual of a vector and vice versa, since the metric is nondegenerate (2.6).

The square of the dual operation is the identity map and allows the definition of

the dual metric g̃, which acts on two 1-forms α, β via

g̃(α, β) = g
(
α̃, β̃

)
. (2.7)

In inertial Cartesian coordinates {xa} on Minkowski spacetime, gab = ηab and

g̃ab = ηab where [ηab] = [ηab]. Vectors and 1-forms can act upon each other via

α(V ) = g (α̃, V ) = g̃
(
α, Ṽ

)
= Ṽ (α̃) . (2.8)

In general for every frame {Xa} there is a naturally dual coframe ea, a basis

for 1-forms, where ea(Xb) = δab , where δab is the Kronecker delta. The coframe

naturally dual to an orthonormal frame is called an orthonormal coframe. With

an orthonormal frame-coframe pair, X̃a = ea where ea = ηabe
b and so X̃0 = −e0,

X̃1 = e1, X̃2 = e2, X̃3 = e3. On Minkowski spacetime, the natural orthonormal

frame is {∂t, ∂x, ∂y, ∂z} with naturally dual orthonormal coframe {dt, dx, dy, dz}.
There are also higher degree forms: the wedge product (also called the exterior

product) ∧ combines two 1-forms to make a 2-form; using notation where α(1)

indicates a 1-form etc.

α(1) ∧ β(1) = ω(2). (2.9)

For scalar functions f , the wedge product satisfies

α ∧ (β1 + β2) = α ∧ β1 + α ∧ β2, (2.10)

α ∧ fβ = fα ∧ β = f(α ∧ β), (2.11)

α(1) ∧ β(1) = −β(1) ∧ α(1), (2.12)

9
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and in particular, α(1)∧α(1) = 0. Functions (scalar fields) are also called 0-forms,

though 0-forms can also have indices (for instance the components of a vector).

The basis of 2-forms is hence {dxa ∧ dxb, for 1 ≤ a ≤ n and a < b ≤ n}. For

instance on Minkowski spacetime, the basis of 2-forms can be written {dt ∧ dx,

dt ∧ dy, dt ∧ dz, dx ∧ dy, dx ∧ dz, dy ∧ dz}. In order to avoid double counting,

2-forms α(2) are written using the summation convention as

α(2) =
1

2
αabdx

a ∧ dxb =
1

2
αabdx

ab, (2.13)

where the last notation is used in this thesis when brevity is called for.

Higher degree forms can also be constructed using the wedge product. A p-

form is made by wedging together p 1-forms; the degree of a p-form is p, and

(2.12) is extended to higher degree forms via

α(p) ∧ β(q) = (−1)pqβ(q) ∧ α(p), (2.14)

where the superscript label on α(p) simply indicates that α is a p-form, used when

the degree of the form is important. A general p-form is written in terms of the

appropriate basis

α(p) =
1

p!
αa . . . b︸ ︷︷ ︸
p indices

p 1-forms︷ ︸︸ ︷
dxa ∧ . . . dxb =

1

p!
αa...bdx

a...b. (2.15)

Note that due to the properties of the wedge product, an n-dimensional manifold

can only support forms of degree n or less. Forms of degree n on an n-dimensional

manifold are called top forms. Attempting to wedge a non-zero form to a top form

returns zero. For instance Minkowski spacetime can support 0-forms to 4-forms,

but not p-forms with p > 4.

2.2 The Exterior Derivative, Internal Contrac-

tion and Hodge Map

The exterior derivative d increases the degree of a form by one. On 0-forms f , d

acts via

df =
∂f

∂xa
dxa. (2.16)
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The exterior derivative acts in general on a wedge product of a p-form α(p) and

any form β via

d(α(p) ∧ β) = (dα(p)) ∧ β + (−1)pα(p) ∧ (dβ). (2.17)

In particular, d2 = 0. Any form which satisfies dα = 0 is called a closed form,

and applying d to a top form α(n) results in dα(n) = 0.

The internal contraction operator iV reduces the degree of a form by 1 via

contraction on vector V . As should be expected, applying the internal contraction

to a 0-form gives 0. Applying iV to a 1-form α gives the contraction;

iV α = V aαa, (2.18)

and the internal contraction operator commutes with the wedge product via

iV
(
α(p) ∧ β

)
= iV α

(p) ∧ β + (−1)pα(p) ∧ iV β, (2.19)

where β is of arbitrary degree. Hence iV can be applied to any form. The internal

contraction obeys

ifV α = fiV α, (2.20)

iU iV α = −iV iUα, (2.21)

and the wedge product and internal contraction satisfy the identity

ea ∧ iXaα(p) = pα(p). (2.22)

The Hodge operator ? maps p-forms to (n− p)-forms on n-dimensional man-

ifolds; it is distributive and obeys

?(fα) = f ? α, (2.23)

for 0-forms f . Applying the Hodge map twice to a p-form on an n-dimensional

manifold gives

? ? α(p) = (−1)p(n−p)
det(gab)

|det(gab)|
α(p), (2.24)

11
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and in particular on Minkowski spacetime,

? ? α =

{
α for deg(α) odd,
−α for deg(α) even,

(2.25)

so that ? is almost self-inverse.

The object ?1 is a special top form on a manifold as it defines the orientation

of the manifold. The object ?1 is called the volume form, and for orthonormal

coframe {ea}, it can be written

?1 = e1 ∧ . . . en, (2.26)

which on Minkowski spacetime with the natural orthonormal frame is simply

?1 = dt ∧ dx ∧ dy ∧ dz. (2.27)

The Hodge map is defined on p-forms inductively via

p = 0 : ? f = f ? 1 (2.28)

p = 1 : ? α = ?(1 ∧ α) = iα̃ ? 1. (2.29)

. . .

Using the Hodge map, the dot product may be generalised to forms of equal degree

via

α · β = ?−1(α ∧ ?β), (2.30)

though it is sometimes helpful to use the component notation

α(p) · β(p) =
1

p!
αn1...npβn1...np . (2.31)

Note that for 1-forms, this can be rewritten as the more convenient metric product

α · β = ?−1(α ∧ ?β) = iα̃β = g̃(α, β) = αaβa. (2.32)

Two helpful identities involving the Hodge map ? are

?(iV α
(p)) = (−1)p+1Ṽ ∧ ?α(p), (2.33)

α(p) ∧ ?β(p) = β(p) ∧ ?α(p), (2.34)

where the latter is known as the star-pivot.

12



2.3. Differentiation on Manifolds: Lie Derivatives and Connections

2.3 Differentiation on Manifolds: Lie Deriva-

tives and Connections

The Lie derivative LV with respect to vector V acts on vector U via

(LVU) f = V (Uf)− U (V f) , (2.35)

for some 0-form f . The Lie derivative can be applied to differential forms α via

the Cartan identity

LV α = diV α + iV dα, (2.36)

in particular on 0-forms f

LV f = iV df = V f. (2.37)

A clear consequence of (2.36) is that the exterior derivative d commutes with the

Lie derivative: dLV = LV d.

The Lie derivative obeys

LV (U +W ) = LVU + LVW, (2.38)

LV (fU) = (LV f)U + fLVU, (2.39)

and commutes with contractions via

LV iUα = iULV α + iLV Uα, (2.40)

for any p-form α. In particular, the Lie derivative acts on wedge and tensor

products by a Leibniz rule:

LV (T ⊗ S) = (LV T )⊗ S + T ⊗ (LV S), (2.41)

LV (α ∧ β) = (LV α) ∧ β + α ∧ (LV β). (2.42)

For example the Lie derivative can be applied to a metric product:

LV (g(U,W )) = (LV g)(U,W ) + g(LVU,W ) + g(U,LVW ). (2.43)
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2.3. Differentiation on Manifolds: Lie Derivatives and Connections

Equation (2.43) also allows the definition of a Killing vector K:

LKg = 0. (2.44)

Killing vectors preserve the metric and indicate symmetries; each Killing vector

corresponds to a symmetry of the spacetime. In Minkowski spacetime for in-

stance, the Killing vectors {∂t, ∂x, ∂y, ∂z} (translations) correspond to energy and

momentum conservation respectively, while {x∂y−y∂x, y∂z−z∂y, x∂z−z∂x} (ro-

tations) correspond to angular momentum conservation and {x∂t+ t∂x, y∂t+ t∂y,

z∂t + t∂z} (boosts) correspond to another conserved quantity1. Killing vectors

also have the property that LK? = ?LK .

Connections ∇V allow differentiation along prescribed vector field V . There

are different kinds of connection and each one encodes information as to how the

vector being acted on is transported along the vector V ; whether it is rotated or

not for instance.

Connections are distributive in both arguments as well as obeying

∇U(fV ) = ∇U(f)V + f∇U(V ), (2.45)

∇fU(V ) = f∇U(V ), (2.46)

for 0-forms f and vectors U and V where

∇U(f) = Uf, (2.47)

and hence ∇Uf = LUf .

The Levi-Civita connection is a particular kind of connection; for a prescribed

metric the Levi-Civita connection is uniquely defined as the only connection sat-

isfying metric compatibility and is torsion-free. In other words, ∇ satisfies

∇Ug(V,W ) = g(∇UV,W ) + g(V,∇UW ), (2.48)

∇UV −∇VU = UV − V U = LUV, (2.49)

1Since in relativistic mechanics two different observers may not agree on which is a Lorentz

boost and which is a rotation, the conserved quantity for both of these together is sometimes

considered to be conservation of 4-angular momentum, just as the translational Killing vectors

give conservation of energy and 3-momentum, hence 4-momentum. The quantity conserved in

a given frame by boosts is sometimes called “centre of energy” or “centre of momentum”.
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2.4. The Tangent to a Curve

for all vectors U, V,W . Metric compatible connections preserve information about

lengths and angles under transport, while torsion induces additional rotation.

Metric compatible connections such as the Levi-Civita connection also commute

with the Hodge map, that is ?∇V = ∇V ?, since the Hodge map ? depends only

on the metric.

On Minkowski spacetime, with the rectilinear inertial frame {∂a} and coframe

{dxa}, the connection is defined on vectors U = Ua∂a and 1-forms α = αadx
a by

∇VU = V (Ua)∂a, (2.50)

∇V α = V (αa)dx
a, (2.51)

and in particular ∇V dx
a = 0. The connection commutes with contractions via

∇V iUα = iU∇V α + i∇V Uα, (2.52)

and the connection can be applied to wedge products via

∇V (α ∧ β) = (∇V α) ∧ β + α ∧ (∇V β). (2.53)

A parallel vector U satisfies ∇VU = 0 for all V , and hence iU∇V = ∇V iU .

The Levi-Civita connection allows Killing’s equation to be written

g(U,∇VK) + g(V,∇UK) = 0, (2.54)

for all vectors U and V ; this is equivalent to (2.44), seen via (2.49) and (2.48).

2.4 The Tangent to a Curve

Curves C in spacetime are used to denote (for instance) trajectories of particles.

At each point on the curve C(τ) there is a tangent vector Ċ(τ) defined, where τ

is the curve parameter. In coordinate system {xa} this can be written

Ċ(τ) =
dCa

dτ

∂

∂xa

∣∣∣∣
C(τ)

. (2.55)

As with the vector fields above, the metric can be used to classify curves. All

massive particle trajectories are timelike and have g(Ċ, Ċ) < 0 for all τ . Particles
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2.4. The Tangent to a Curve

travelling at the speed of light have trajectories satisfying g(Ċ, Ċ) = 0. Curves

satisfying g(Ċ, Ċ) > 0 would represent particles travelling faster than the speed

of light and hence are non-physical trajectories.

A curve C is an integral curve of a vector field V if at each point p on C,

Ċ
∣∣∣
p

= V |p, as Figure 2.1 illustrates.

In order to model physical trajectories C on differential manifolds, the nor-

malisation condition

g(Ċ, Ċ) = −1, (2.56)

is imposed in order to maintain the length of the time-like 4-vector Ċ. For such

a normalisation, the curve parameter τ is called the proper time.

Note that since the magnitude of Ċ is constant, the 4-acceleration C̈, which

on flat spacetime with global Lorentzian coordinates is given by

C̈ =
d

dτ
Ċ =

d2Ca

dτ 2

∂

∂xa

∣∣∣∣
C(τ)

, (2.57)

must be orthogonal to the velocity Ċ since:

g

(
d

dτ
Ċ, Ċ

)
= −g

(
Ċ,

d

dτ
Ċ

)
= 0, (2.58)

and since the metric is symmetric. Note that for 0-forms f , the connection ∇Ċ

acts as a simple derivative along the curve via

∇Ċf = Ċf =
d

dτ
f. (2.59)

Metric compatible connections like the Levi-Civita connection also satisfy the

identity

∇V Ṽ = iV dṼ , (2.60)

for normalised V , i.e. g(V, V ) is constant.

Given any vector V , the parallel and orthogonal projection operators Π
‖
V and

Π⊥V can be defined on 1-form α(1) as follows;

Π
‖
V α

(1) = −α(1)(V )Ṽ , (2.61)

Π⊥V α
(1) = α(1) − Π

‖
V α

(1). (2.62)
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2.5. Integration

M

C

Figure 2.1: Illustration of C (blue curve), an integral curve of a field represented

by a field of black arrows on manifold M.

Clearly the parallel projection operator Π
‖
V projects out the components of α

perpendicular to Ṽ , whereas the orthogonal projection operator Π⊥V projects out

the parallel part. In component notation these are given by(
Π
‖
V

)a
b

= −V aVb, (2.63)(
Π⊥V
)a
b

= ηab −
(

Π
‖
V

)a
b
. (2.64)

2.5 Integration

On an n-dimensional manifold M with coordinate system xa, an n-form (top

form) α = fdx1 ∧ . . . ∧ dxn can be integrated via∫
M

α =

∫
M

fdx1 ∧ . . . ∧ dxn (2.65)

=

∫
. . .

∫
f(x1 . . . xn)dx1 . . . dxn. (2.66)
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2.6. De Rham Currents

From here it is clear why ?1 is known as the volume form; it is also important to

specify the volume form since, for instance with global Lorentzian coordinates,

the distinction between dt ∧ dx ∧ dy ∧ dz and dx ∧ dt ∧ dy ∧ dz is an overall sign

with regards to orientation of the volume. One of the most powerful results in

exterior differential calculus is the generalised Stokes’ theorem on (n − 1)-forms

α: ∫
M

dα =

∫
∂M

α, (2.67)

where ∂M is the boundary of M. The generalised Stokes’ theorem (2.67) contains

both the usual Gauss’ divergence theorem and the usual Stokes’ theorem.

An example of integrating a form is as follows. Consider integrating a 1-form

α over a curve C(τ) on the manifold; in this case the integral can be written∫
C

α =

∫ 1

0

(iĊα) dτ, (2.68)

where the endpoints of the curve are xa = Ca(τ = 0) and xa = Ca(τ = 1).

2.6 De Rham Currents

De Rham currents are a class of linear functional; they act on functions and

return numbers. De Rham currents act on test forms, which are differential

forms that are both smooth (infinitely differentiable) and have compact support

on the manifold in question1. Test functions are denoted f̂ and test p-forms are

denoted ϕ̂(p). There are two kinds of de Rham current: regular distributions and

submanifold distributions.

Regular distributions are associated with differential forms as follows: given

a smooth p-form α and a test form ϕ̂(q), the distribution αD associated with α is

αD[ϕ̂(q)] =

{ ∫
M
α ∧ ϕ̂(q) if q = n− p,

0 if q 6= n− p, (2.69)

where n is the dimension of the manifold M. Here αD has degree n− p.
1Functions with compact support are zero outside some finite region; hence at the bound-

aries of the manifold test functions must be zero.

18



2.7. Physics on Differential Manifolds

Submanifold distributions are also useful in physics; in particular on a space-

time manifold, the 3-current CD acts on the test 1-form ϕ̂(1) via

CD[ϕ̂(1)] =

∫
C

ϕ̂(1). (2.70)

All de Rham currents TD satisfy the following identities

dTD[ϕ̂] = −(−1)pTD[dϕ̂], (2.71)

(TD ∧ α)[ϕ̂] = TD[α ∧ ϕ̂], (2.72)

leading to the properties

iV TD[ϕ̂] = −(−1)pTD[iV ϕ̂], (2.73)

(?TD)[ϕ̂] = (−1)p(n−p)TD[?ϕ̂], (2.74)

where p is the degree of TD and n is the dimension of the manifold. For subman-

ifold distributions, there is one more property seen from (2.71):

CD[dϕ̂] = ∂CD[ϕ̂], (2.75)

where C represents a curve over the the manifold.

2.7 Physics on Differential Manifolds

Physics uses the language of differential forms in order to represent quantities

such as the electromagnetic 2-form (also called the Faraday 2-form) F . Given an

observer Ċ, this 2-form can be written

F = E ∧ ˜̇C + ?(B ∧ ˜̇C), (2.76)

where E is the 1-form E = Exdx+Eydy+Ezdz, where the components Ex, Ex, Ez

are the components of the electric field 3-vector in the frame of the observer with

worldline C (likewise for magnetic field B). E and B, the 1-forms representing

the electric and magnetic fields measured by the observer, are defined uniquely

in terms of F via

E = iĊF, B = −iĊ ? F. (2.77)
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2.7. Physics on Differential Manifolds

For instance in Minkowski spacetime in the lab frame i.e. Ċ = ∂t, F is written

F = Exdt ∧ dx+ Eydt ∧ dy + Ezdt ∧ dz

−Bxdy ∧ dz −Bydz ∧ dx−Bzdx ∧ dy. (2.78)

In order to manifestly satisfy the Maxwell equation dF = 0, the Faraday 2-form

can be written as an exact form F = dA, where A is the electromagnetic potential

1-form, related to the traditional electric and magnetic potentials Φ and ~A via

Ã =
(

Φ, ~A
)

.

The electromagnetic invariants X and Y can also be written concisely in terms

of F , via

X = ? (F ∧ ?F ) , (2.79)

Y = ? (F ∧ F ) , (2.80)

which upon computation gives the standard results (1.1) and (1.2).

The stress-energy-momentum tensor (also simply called the stress tensor) T is

a rank 2 tensor containing information about energy density, momentum density

and stress of any event as measured by any observer in spacetime.

The stress-energy-momentum forms Ta (also simply called the stress forms)

are related to the stress tensor via

Ta = ?(T (−, Xa)). (2.81)

20



Chapter 3

Properties of Born-Infeld-like

Theories in Strong Fields

3.1 Introduction

As mentioned in Chapter 1, Born-Infeld theory has been the focus of some inter-

est in recent years [13, 20, 21, 23, 32, 33] due to its uncommonly good physical

properties [14, 15] and the fact that string theory predicts Born-Infeld electro-

magnetism as an effective Lagrangian for low energy branes [17]. String theory

also, however, motivates a larger family of possible Lagrangians and this thesis

conjectures that “Born-Infeld-like” Lagrangians of the form

L = F(X + λY 2), (3.1)

may be relevant, where F is a smooth function, X and Y are the electromagnetic

invariants (1.1) and (1.2) and λ is a parameter of the theory. Hence it would be

desirable to know whether Born-Infeld theory can be set apart from the other

members of its family, (3.1), by some physical experiment.

It is already well known that when passing through a region of background

electromagnetic field, the speed of an electromagnetic wave changes in nonlinear

electrodynamics [14, 15, 20, 21]. In particular, Ref. [20] (and [21]) showed that in
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3.2. Born-Infeld Waves as Exact Solutions to the Field Equations

a constant magnetic field on flat spacetime, the phase speed of a plane Born-Infeld

wave is given by

v =

√
1− κ2B2

L

1− κ2B2
, (3.2)

where κ is the Born-Infeld constant, BL is the longitudinal component of the

background magnetic field and B2 is the modulus squared of the background

field. Similarly for a background electric field, they showed that the phase speed

of an EM wave is

v =
√

1− κ2 (E2 − E2
L). (3.3)

Since the Born-Infeld constant κ (∼ (string tension)−1) is a parameter of unknown

size, a measurement of a slow Born-Infeld wave could not only validate Born-Infeld

theory as the successor to Maxwell theory, but also help to pin down an elusive

unknown of string theory.

In this chapter the exact Born-Infeld solutions and slow light experiment of

Refs. [20, 21] are extended to investigate the properties of Born-Infeld theory

relative to its family (3.1) of similar theories. After studying various field con-

figurations, it is concluded that a more general configuration of electromagnetic

field than the slow light experiment proposed by Ref. [21] would provide a more

effective theory discriminant.

The work presented in Section 3.3 has been published in EPL - see [1].

3.2 Born-Infeld Waves as Exact Solutions to the

Field Equations

Firstly it is demonstrative to show that the Born-Infeld plane wave introduced

in [20, 21] is indeed a solution to the field equations. The vacuum Born-Infeld

equations are

dF = 0, (3.4)

d ? GBI = 0, (3.5)
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3.2. Born-Infeld Waves as Exact Solutions to the Field Equations

where F is the electromagnetic 2-form and GBI is the excitation 2-form given by

GBI =
1√

1− κ2X − κ4

4
Y 2

(
F − κ2Y

2
? F

)
, (3.6)

since the Born-Infeld Lagrangian can be written

LBI =
1

κ2

(
1−

√
1− κ2X − κ4

4
Y 2

)
. (3.7)

As described in Chapter 2, the electromagnetic invariants X and Y can be

written in terms of the Faraday 2-form F :

X = ?(F ∧ ?F ), (2.79 revisited)

Y = ?(F ∧ F ). (2.80 revisited)

The exact Born-Infeld wave solution given in [21], an electromagnetic plane wave

propagating at constant speed v through a constant magnetic field B in flat

spacetime, is given by

F = E(z − vt) (dz − vdt) ∧ dx−Bdy ∧ dz. (3.8)

Now to show that this F solves the field equations (3.4) and (3.5); the former is

satisfied automatically by lieu of the dependence of E on z− vt alone. The latter

equation is not so trivial.

The electromagnetic invariants for the Born-Infeld wave (3.8) are given by

X = E2(v2 − 1)−B2, (3.9)

Y = −2BEv. (3.10)

As ? ? F = −F on Minkowski spacetime, ?GBI can be written

?GBI =
1√

1− κ2X − κ4

4
Y 2

(
?F +

κ2Y

2
F

)
. (3.11)

Using the abbreviated notation dxab = dxa ∧ dxb, where dx0 = dt, dx1 = dx,

dx2 = dy and dx3 = dz, X, Y and F are substituted into ?GBI, resulting in

?GBI =
B [v2κ2E2 − 1] dx01 + Edx02 + κ2BvE2dx13 + Ev [1 + κ2B2] dx23√

[1 + κ2B2] + κ2E2 (1− v2[1 + κ2B2])
. (3.12)
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3.3. Solving the Field Equations with Constant Background Magnetic Fields

Since a solution of the Born-Infeld equation d ?GBI = 0 is sought, in order to

proceed a velocity v is chosen such that square root divisor is simply a constant.

Choosing to set the coefficient of E2 in the denominator equal to zero results in

the choice of phase velocity given in [21], i.e. v = 1√
1+κ2B2 , leading to

1√
[1 + κ2B2] + κ2E2 (1− v2[1 + κ2B2])

= v. (3.13)

Thus ?GBI becomes

?GBI = v
(
B
[
v2κ2E2 − 1

]
dx01 + Edx02 + κ2BvE2dx13 + Ev−1dx23

)
. (3.14)

Applying the exterior derivative d and noting that the only non-constant param-

eter is E = E(z − vt),

d ? GBI = dE ∧
[
dx23 + vdx02 +

(
2κ2Bv2E

) (
dx13 + vdx01

)]
. (3.15)

Now to consider dE = dE(z − vt);

dE(z − vt) = ∂tE(z − vt)dt+ ∂zE(z − vt)dz

= E′
(
dx3 − vdx0

)
, (3.16)

where E′ = dE(ξ)
dξ

and ξ = z − vt. Substituting this into (3.15), it is clear (due

to the fact that dxi ∧ dxi = 0) that (3.5) is satisfied. Hence the solution F =

E(z−vt) (dz − vdt)∧dx−Bdy∧dz corresponding to a plane Born-Infeld wave in

a constant magnetic field B is indeed a solution to the field equations given that

the wave travels with constant velocity v = (1 + κ2B2)−
1
2 , confirming the prior

work of Refs. [20, 21].

3.3 Solving the Field Equations with Constant

Background Magnetic Fields

Having shown that the Born-Infeld plane wave is a solution to the Born-Infeld

field equations, a reasonable question to ask is the following: is Born-Infeld the

only theory whose nonlinear field equations possess exact plane wave solutions?
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3.3. Solving the Field Equations with Constant Background Magnetic Fields

The general electromagnetic field equations are

dF = 0, (3.17)

d ? G = 0, (3.18)

where G is given by

G = 2

(
∂L

∂X
F − ∂L

∂Y
? F

)
, (3.19)

and

L = L(X, Y ) (3.20)

is the electromagnetic Lagrangian of the theory in question. The electromag-

netic Lagrangian is assumed to be dependent only on the electromagnetic field

invariants, X and Y , defined by (2.79) and (2.80).

3.3.1 Background Magnetic Field Parallel to the Wave’s

Electric Field

Firstly, consider the electromagnetic plane wave propagating at constant speed v

through a constant magnetic field B, oriented so as to be parallel to the wave’s

electric field (in this instance in the x-direction). Then F , X and Y remain as in

the previous section, i.e.

F = E(z − vt) (dz − vdt) ∧ dx−Bdy ∧ dz, (3.21)

X = E2
(
v2 − 1

)
−B2, (3.22)

Y = −2BEv. (3.23)

Since using (3.21), (3.22) and (3.23) clearly restricts solutions to a subspace of

X and Y , it is prudent to use different notation to denote the restricted and

unrestricted Lagrangians. Hence the notation L for free Lagrangians and

L̂ = L|X=E2(v2−1)−B2

Y=−2BEv

, (3.24)

and so on for the restrictions of L and its derivatives. The aim of this section is to

use the field equations in order to arrive at a partial differential equation (P.D.E.)
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3.3. Solving the Field Equations with Constant Background Magnetic Fields

for the Lagrangian L exclusively in terms of the electromagnetic invariants X and

Y and to solve the resulting P.D.E. for a theory of nonlinear electromagnetism.

Substituting F , ?F and d?F into 1
2
d?G using abbreviated notation as before;

1

2
d ? G =

∂̂L

∂X

E′

γ2
dx023 +

(
−Bd ∂̂L

∂X
− vEd ∂̂L

∂Y

)
∧ dx01 + Ed

∂̂L

∂X
∧ dx02

+

(
−Ed ∂̂L

∂Y

)
∧ dx13 +

(
vEd

∂̂L

∂X
−Bd ∂̂L

∂Y

)
∧ dx23. (3.25)

Noting that ∂L
∂X

is a 0-form, then applying the exterior derivative d results in

d
∂L

∂X
= ∂a

∂L

∂X
dxa. (3.26)

As L = L(X, Y ), use of the chain rule results in

d
∂L

∂X
=

(
∂2L

∂X2

∂X

∂xa
+

∂2L

∂X∂Y

∂Y

∂xa

)
dxa. (3.27)

Thus in order to write the derivatives in the field equation (3.25) in terms of X

and Y alone, the derivatives ∂aX and ∂aY are needed. As both X̂ and Ŷ depend

only on the variable quantity E = E(z − vt), it can immediately be seen that

∂̂xX = ∂̂xY = ∂̂yX = ∂̂yY = 0. Noting that γ = 1√
1−v2 is the Lorentz factor of

the wave, the remaining derivatives are

∂̂aXdx
a = −2E

γ2
∂aEdx

a, (3.28)

∂̂aY dx
a = −2vB∂aEdx

a, (3.29)

leaving the E derivative

∂aEdx
a = ∂tEdt+ ∂zEdz

= −vE′dt+ E′dz = E′(dz − vdt). (3.30)

Combining this with (3.28) and (3.29) and inserting into (3.27) (and similarly for

the Y derivatives),

d
∂̂L

∂X
= −2E′

(
E

γ2

∂̂2L

∂X2
+ vB

∂̂2L

∂X∂Y

)
(dz − vdt), (3.31)

d
∂̂L

∂Y
= −2E′

(
E

γ2

∂̂2L

∂X∂Y
+ vB

∂̂2L

∂Y 2

)
(dz − vdt). (3.32)
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3.3. Solving the Field Equations with Constant Background Magnetic Fields

Hence inserting (3.31) and (3.32) into (3.25) simplifies 1
2
d ? G to

1

2
d ? G = 2BE′

(
E

γ2

∂̂2L

∂X2
+ vB

∂̂2L

∂X∂Y

)
dx013

+
E′

γ2

(
∂̂L

∂X
− 2E

γ2

∂̂2L

∂X2
− 2v2B2γ2 ∂̂

2L

∂Y 2
− 4vBE

∂̂2L

∂X∂Y

)
dx023. (3.33)

Hence the field equations are satisfied if two conditions are satisfied: assuming

B 6= 0, E′ 6= 0 and v 6= c, the first condition (from the dx013 component of (3.33))

is

E

γ2

∂̂2L

∂X2
+ vB

∂̂2L

∂X∂Y
= 0, (3.34)

and the second (from the dx023 component of (3.33)) is

∂̂L

∂X
− 2E

γ2

∂̂2L

∂X2
− 2v2B2γ2 ∂̂

2L

∂Y 2
− 4vBE

∂̂2L

∂X∂Y
= 0. (3.35)

The field equations are still not yet written in terms of X and Y alone, hence

the substitution E = − Y
2Bv

is used to reduce these equations functions of (and

derivatives with respect to) X and Y . Making the assumption that this result can

be extended outside the solution subspace given by (3.24), the hats are removed.

Hence (3.34) and (3.35) become two conditions that the Lagrangian must meet

in order to satisfy the nonlinear field equations. These condition are:

Y
∂2L

∂X2
− 2v2B2γ2 ∂2L

∂X∂Y
= 0, (3.36)

∂L

∂X
+

Y

vBγ2

∂2L

∂X2
− 2v2B2γ2 ∂

2L

∂Y 2
+ 2Y

∂2L

∂X∂Y
= 0. (3.37)

Integrating (3.36) with respect to X gives

Y
∂L

∂X
− 2v2B2γ2 ∂L

∂Y
= F1(Y ), (3.38)

where F1(Y ) is some (unknown) function of Y . Assuming that this is an integrable

function, with dF2(Y )
dY

= F1(Y ), this equation can be written

∂Y (L− F2(Y ))− 1

2B2v2γ2
Y ∂X (L− F2(Y )) = 0, (3.39)

27



3.3. Solving the Field Equations with Constant Background Magnetic Fields

and, by inspection, this is solved by

L− F2(Y ) = F3

(
X +

Y 2

4B2v2γ2

)
. (3.40)

Inputting this solution into (3.37) restricts F2 further to a linear function of Y ,

hence plane waves (3.21) solve the field equations of Lagrangians of the form

L = C1 + C2Y + F3

(
X +

Y 2

4B2v2γ2

)
, (3.41)

where 1
4B2v2γ2

is a constant, as are the (integration) constants C1 and C2.

Notice that this class of solutions contains the Born-Infeld field system (choos-

ing v = 1√
1+κ2B2 as before), and the Maxwellian system in the limit that the

constant 1
4B2v2γ2

becomes zero; i.e. κ→ 0 or v → 1 (γ →∞) as expected. Both

of these cases also require C1 and C2 to be zero. As Y ? 1 = −F ∧ F is a closed

form, the C2Y term in fact does not contribute to the Maxwell action regardless

of the value of C2.

Hence, given the assumption that the solutions of equations (3.34) and (3.35)

on the (X, Y ) subspace described by (3.22) and (3.23) are also valid outside this

(X, Y ) subset, it follows that all Lagrangians of the form

L = C1 + C2Y + F3

(
X + λY 2

)
, (3.42)

where λ is a constant of the theory, satisfy the field equations for the wave (3.21),

with phase speed v = 1√
1+4λB2 . In other words all Born-Infeld-like theories, that

is theories with Lagrangians of the form (3.1), support the plane wave solution

(3.21).

It is important to note that this is not a complete set of all possible theories

to which (3.21) is an exact solution; there could be terms in the family (3.42)

which are zero when X and Y are given by (3.22) and (3.23) but are non-zero

outside this solution subspace.

3.3.2 Background Magnetic Field Orthogonal to the Wave’s

Magnetic Field with Transverse Electric Component

Now it is natural to ask if the result of the previous section remains true if the

magnetic field is extended to include a component parallel to the wave vector. In
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order to include this component of the magnetic field, it is necessary to include

an extra longitudinal electric field component:

F = E(z − vt) (dz − vdt) ∧ dx−Bxdy ∧ dz −Bzdx ∧ dy

+ Ω1E(z − vt)dt ∧ dz, (3.43)

where Ω1 is a real constant. This extra term is present to allow for some interac-

tion of the wave with the background field as in Ref. [20]. As before, the first field

equation dF = 0 is automatically satisfied, leaving only the second field equation

to satisfy. By the definition of the excitation 2-form (3.19), the field equation

(3.18) becomes (on substitution of the 2-form (3.43))

1

2
? G = − (Bx∂XL+ Ev∂YL) dt ∧ dx+ ∂XLEdt ∧ dy

− (Bz∂XL− Ω1E∂YL) dt ∧ dz − (Ω1E∂XL+Bz∂YL) dx ∧ dy

− ∂YLEdx ∧ dz + (Ev∂XL−Bx∂YL) dy ∧ dz. (3.44)

Proceeding as before, the electromagnetic invariants in this case are

X =
(
Ω2

1 − γ−2
)
E2 −

(
B2
x +B2

z

)
, (3.45)

Y = 2E (Ω1Bz − vBx) , (3.46)

and as in the previous section, the restricted and unrestricted Lagrangians are

denoted by L̂ and L respectively (but using (3.45) and (3.46) as the subspace

restriction). Substituting (3.45) and (3.46) into (3.44) and applying ?d results
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the 1-form ?d ? G:

?d ? G = E′

[
2Ω1

∂̂L

∂X
+ 4Ω1E

2(Ω2
1 − γ−2)

∂̂2L

∂X2
+ 4Bz(Ω1Bz − vBx)

∂̂2L

∂Y 2

+4E(Bz(2Ω2
1 − γ−2)− vBxΩ1)

∂̂2L

∂X∂Y

]
dt

+ E′

[
−2γ−2 ∂̂L

∂X
− 4E2γ−2(Ω2

1 − γ−2)
∂̂2L

∂X2
− 4vBx(Ω1Bz − vBx)

∂̂2L

∂Y 2

+8E

(
Bz

2
Ω1γ

−2 + vBx(γ
−2 +

1

2
Ω2

1)

)
∂̂2L

∂X∂Y

]
dx

+ E′

[
−4BxE

(
Ω2

1 − γ−2
) ∂̂2L

∂X2
− 4Bx (Ω1Bz − vBx)

∂̂2L

∂X∂Y

]
dy

− E′

v

[
2Ω1

∂̂L

∂X
+ 4Ω1E

2(Ω2
1 − γ−2)

∂̂2L

∂X2
+ 4Bz(Ω1Bz − vBx)

∂̂2L

∂Y 2

+4E(Bz(2Ω2
1 − γ−2)− vBxΩ1)

∂̂2L

∂X∂Y

]
dz. (3.47)

In order to satisfy the field equation (3.18) (equivalently ?d ?G = 0), each of the

components of (3.47) must independently be equal to zero. Since the dt and dz

coefficients are multiples of each other, this results in three independent equations

(again assuming E′ 6= 0):

Ω1
∂̂L

∂X
+ 2Ω1E

2(Ω2
1 − γ−2)

∂̂2L

∂X2
+ 2Bz(Ω1Bz − vBx)

∂̂2L

∂Y 2

+2E(Bz(2Ω2
1 − γ−2)− vBxΩ1)

∂̂2L

∂X∂Y
= 0, (3.48)

γ−2 ∂̂L

∂X
+ 2E2γ−2(Ω2

1 − γ−2)
∂̂2L

∂X2
+ 2vBx(Ω1Bz − vBx)

∂̂2L

∂Y 2

−4E

(
Bz

2
Ω1γ

−2 + vBx(γ
−2 +

1

2
Ω2

1)

)
∂̂2L

∂X∂Y
= 0, (3.49)

BxE
(
Ω2

1 − γ−2
) ∂̂2L

∂X2
+Bx (Ω1Bz − vBx)

∂̂2L

∂X∂Y
= 0. (3.50)

Since these equations still contain explicit E dependence, the substitution

E =
Y

2 (Ω1Bz − vBx)
(3.51)
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is made1 with the assumption as before to extend outside the solution subspace

given by (3.45) and (3.46), resulting in the (final) P.D.E.s to solve:

Ω1
∂L

∂X
+ Y 2 Ω1(Ω2

1 − γ−2)

2 (Ω1Bz − vBx)
2

∂2L

∂X2
+ 2Bz(Ω1Bz − vBx)

∂2L

∂Y 2

+Y
(Bz(2Ω2

1 − γ−2)− vBxΩ1)

(Ω1Bz − vBx)

∂2L

∂X∂Y
= 0, (3.52)

γ−2 ∂L

∂X
+ Y 2 (Ω2

1 − γ−2)

2γ2 (Ω1Bz − vBx)
2

∂2L

∂X2
+ 2vBx(Ω1Bz − vBx)

∂2L

∂Y 2

−Y (BzΩ1γ
−2 + vBx(2γ

−2 + Ω2
1))

(Ω1Bz − vBx)

∂2L

∂X∂Y
= 0, (3.53)

BxY
(Ω2

1 − γ−2)

2 (Ω1Bz − vBx)

∂2L

∂X2
+Bx (Ω1Bz − vBx)

∂2L

∂X∂Y
= 0. (3.54)

The simplest approach to solving this system of equations is via (3.54): assuming

Bx 6= 0 and integrating once with respect to X gives

Y
(Ω2

1 − γ−2)

2 (Ω1Bz − vBx)

∂L

∂X
+ (Ω1Bz − vBx)

∂L

∂Y
= F1(Y ), (3.55)

for some function F1. This is clearly an analogue of (3.38), and the equation is

solved to give

L = F2(Y ) + F3

(
X +

(
γ−2 − Ω2

1

4(Ω1Bz − vBx)2

)
Y 2

)
. (3.56)

Inserting this into the other two components of ?d ?G (3.52) and (3.53) restricts

the family of Lagrangians to

L = C1 + C2Y + F3

(
X + λY 2

)
, (3.57)

with Ω1 =
Bz

vγ2Bx

, (3.58)

where

v2 =
1 + 4λB2

z

1 + 4λ(B2
x +B2

z )
. (3.59)

1It is also possible to replace the E2 terms with an X-like term, resulting in different P.D.E.s.

The above substitution is made for simplicity.
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Notice that if λ = κ2

4
= 1

4b2
, where κ = 1/b is the Born-Infeld constant, then

condition (3.59) agrees with equation (17) & (18) of Ref. [20].

By using the polar decomposition Bx = B sin θ and Bz = B cos θ for the angle

θ between the wavevector and the magnetic field, (3.58) and (3.59) become

Ω1 =
cot θ

vγ2
and v2 = 1− 4λB2 sin2 θ

1 + 4λB2
, (3.60)

so it is clear that the background field has maximum effect on the wave when

θ = π
2
, i.e. Bz = Ω1 = 0, and v2 = 1

1+4λB2
x

as before.

3.3.3 Background Magnetic Field in an Arbitrary Direc-

tion

Performing a similar calculation with all three components of the magnetic field

active proves to be much more difficult. Indeed no simple F can be written such

that a family of Lagrangians can be derived from the field equations. However

Ref. [20] shows that a wave of the form

F = E(z − vt) (dz − vdt) ∧ dx−Bxdy ∧ dz −Bydz ∧ dx−Bzdx ∧ dy

+ Ω2E(z − vt)dt ∧ dz, (3.61)

where Ω2 is a coupling constant, satisfies the Born-Infeld field equations (the

general field equations (3.17) and (3.18) with L = LBI) with the constants

Ω2 =
BxBz

vγ2
(
B2
x +B2

y

) , (3.62)

and v2 =
1− 4λB2

z

1 + 4λ
(
B2
x +B2

y +B2
z

) . (3.63)

In fact using these constants and a Lagrangian of the form found previously, i.e.

L = F(X + λY 2) with λ = κ
4
,

L = F

(
X +

κ2

4
Y 2

)
, (3.64)
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the dt and dz components of ?d ? G are zero immediately and the dx and dy

components are actually multiples of each other. The resulting condition on

(3.64) is then

−γ−2F′
(
X +

κ2

4
Y 2

)
+ 2

(
B2
x +B2

y − γ−2ByE
)2

B2
x +By2

F′′
(
X +

κ2

4
Y 2

)
= 0. (3.65)

Now parametrising the argument of the function as Λ = X+ κ2

4
Y 2, then inserting

X and Y explicitly, E can be written in terms of Λ;

E =
B2
x +B2

y ±
√(

B2
x +B2

y)(v
2(B2

x +B2
y)− γ−2(B2

z + Λ)
)

γ−2By

. (3.66)

Substituting either solution into the differential equation gives

−F′ (Λ) + 2
[
v2γ2

(
B2
x +B2

y

)
−B2

z − Λ
]
F′′ (Λ) = 0, (3.67)

i.e. F′ (Λ)− 2

κ2

(
1− κ2Λ

)
F′′ (Λ) = 0. (3.68)

The solution to this equation is simply

L = F(Λ) = C1 +
C2

κ

√
1− κ2Λ, (3.69)

and choosing C1 = 1
κ2

and C2 = − 1
κ
, the Born-Infeld Lagrangian emerges1. Hence

the Born-Infeld Lagrangian does indeed satisfy the field equations for a wave of the

form (3.61), and is the only Lagrangian of the form (3.64) whose field equations

are solved by the wave (3.61) with the constants (3.62) and (3.63).

3.4 Solving the Field Equations with Constant

Background Electric Fields

3.4.1 Background Electric Field Parallel to the Wave’s

Magnetic Field

Having considered a nonlinear wave in a constant magnetic field, it is natural to

ask if the presence of a constant background electric field instead of a magnetic

1For a more detailed method, see Section 3.4.3 for an in-depth analogous calculation.
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field1 makes a difference to which theories have exact plane wave solutions that

satisfy the field equations (3.17) and (3.18). Hence using the same wave profile

as in the previous sections but using a constant electric field Ey, the appropriate

F is

F = E (dz − vdt) ∧ dx+ Eydt ∧ dy, (3.70)

with invariants

X = E2
y − γ−2E2, (3.71)

Y = −2EyE. (3.72)

As in the previous section, the four components of ?d ? G are written in terms

of X and Y by substituting the E terms for Y via (in this instance) E = − Y
2Ey

.

The notation L̂ is again used to show the restriction to the subspace where X

and Y are given by (3.71) and (3.72). Since the dt and dz components of ?d ? G

are zero, all that remains is

?d ? G =
1

γ2

[
1

E2
yγ

2
Y 2 ∂̂

2L

∂X2
− 4Y

∂̂2L

∂Y ∂X
+ 4γ2E2

y

∂̂2L

∂Y 2
− 2

∂̂L

∂X

]
dx

+ 2v

[
−γ−2Y

∂̂2L

∂X2
+ 2E2

y

(
∂̂2L

∂Y ∂X

)]
dy. (3.73)

Field equation (3.17) is satisfied automatically once again, and field equation

(3.18) implies that the two coefficients in (3.73) must also be zero. Integration of

the dy component, with the same previous assumption of extension beyond the

subspace given by (3.71) and (3.72), gives

L = F1(Y ) + F2

(
X +

1

4γ2E2
y

Y 2

)
, (3.74)

for smooth functions F1 and F2. Insertion into the equation corresponding to the

dx component restricts F1 gives the resultant Lagrangian as

L = C1 + C2Y + F2

(
X + λY 2

)
, (3.75)

1Note that it is not possible to use a duality transform to adapt the B-field case into the

constant E-field case. The duality transform entangles the varying E into all of the components,

so that constant components are impossible.
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where λ = 1
4γ2E2

y
, in analogue to (3.42), or equivalently

v2 = 1− 4λE2
y . (3.76)

Hence the larger the electric field parallel to the electromagnetic wave’s magnetic

component, the lower the phase speed of the wave.

3.4.2 Background Electric Field Orthogonal to the Wave’s

Electric Field with Transverse Electric Component

Extending the background E field to the y − z plane, F is of the form

F = E (dz − vdt) ∧ dx+ Eydt ∧ dy + Ezdt ∧ dz + Ω3Edt ∧ dz, (3.77)

with constant Ω3 and invariants

X = E2
y + E2

z + 2EzΩ3E +
(
Ω2

3 − γ−2
)
E2, (3.78)

Y = −2EyE. (3.79)

Upon substituting E = − Y
2Ey

and as before extending beyond the subspace where

X and Y are given by (3.78) and (3.79), the field equations can be studied.

Consulting d?G = 0, one of the four components is zero and the three remaining

linearly independent equations, corresponding to the dx, dy and dz components

of ?d ? G, are (assuming v 6= 0,E′ 6= 0)

−2
∂L

∂X
+

1

γ2E2
y

(
2EyEzΩ3 −

(
Ω3

2 − γ−2
)
Y
)
Y
∂2L

∂X2
+ 4Ey

2 ∂
2L

∂Y 2

−2
(
2EyEzΩ3 −

(
Ω2

3 − 2γ−2
)
Y
) ∂2L

∂Y ∂X
= 0,

(3.80)

−2v
(
2EyEzΩ3 −

(
Ω3

2 + γ−2
)
Y
) ∂2L

∂X2
+ 4vE2

y

∂2L

∂Y ∂X
= 0,

(3.81)

−2vE2
yΩ3

∂L

∂X
− v

E2
y

(2EyEz + Ω3Y )
(
2EyEzΩ3 −

(
Ω3

2 − γ−2
)
Y
) ∂2L

∂X2

+2v (2EyEz + Ω3Y )
∂2L

∂Y ∂X
= 0.

(3.82)
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Integration of (3.81), the dy component of ?d ? G, results in

L = F1(Y ) + F2

(
X +

Ez
Ey

Ω3Y −
Ω2

3 − γ−2

4E2
y

Y 2

)
, (3.83)

for smooth functions F1 and F2. As before, insertion into the equation corre-

sponding to the dx component restricts F1, leading to the condition Ω3 = 0 and

a linear F1, i.e.

L = C1 + C2Y + F2

(
X + λY 2

)
, (3.84)

where λ = −Ω2
3−γ−2

4E2
y

or equivalently

v2 = 1− 4λE2
y , (3.85)

identical to (3.76). Interestingly, note the lack of Ez dependence here; no matter

the strength of the electric field parallel to the direction of propagation of the

wave, the speed of the wave is unchanged.

3.4.3 Background Electric Field in an Arbitrary Direction

Extending the background electric field to an arbitrary direction relative to the

wave, i.e. using the electromagnetic 2-form

F = E (dz − vdt) ∧ dx+ Exdt ∧ dx+ Eydt ∧ dy + Ezdt ∧ dz

+ Ω4E (dt ∧ dz) , (3.86)

as before, again results in difficulties. There is no simple dy component of ?d ?G

as in the previous cases, and hence there is no obvious way to proceed analytically.

Using Maple software it is possible to show that the three linearly independent

components of ?d ? G give the three solutions

L1 = F1

(
X − vEx

Ey
Y +

1

4γ2E2
y

Y 2

)
, (3.87)

L2 = F2

(
X + v

Ey
Ex
Y

)
, (3.88)

L3 = F3 + F4

(
X +

1

Ey
(EzΩ4 − vEx)Y −

1

4E2
y

(
Ω2

4 − γ−2
)
Y 2

)
. (3.89)
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Each of these solutions however only satisfies one of the three necessary conditions

(one of the components of ?d ? G = 0) and hence it is necessary to plug each of

these into the remaining two equations in order to acquire solutions satisfying all

three equations.

In order for L1 to satisfy the field equations, Ω4 = Ex = 0, i.e. L1 reverts to

the Ey alone case, (see (3.75)). For L2 to satisfy the field equations, Ex and Ey

must be equal to zero, i.e. L2 = 0. L3 satisfies the field equations if F3 is linear

and either

a) Ey = 0 so that L3 = F5(Y ) or

b) Ex = Ω4 = 0 so that

L3 = C1 + C2Y + F4

(
X +

1

4γ2E2
y

Y 2

)
. (3.90)

Hence there is no clear way to derive a family of theories supporting a wave

passing through a region of arbitrarily aligned electric field. However as per Ref.

[20], it is again possible to show that wave (3.86) is a solution to the Born-Infeld

equations as in the magnetic field case. Hence, given the constants (from Ref.

[20])

Ω4 =
ExEz

vγ2(E2
x + E2

y)
(3.91)

and v2 = 1− κ2(E2
x + E2

y), (3.92)

it is possible to show that the Born-Infeld Lagrangian satisfies the field equations

via the following method.

Firstly, given the electromagnetic 2-form F (3.86) with invariants

X =
(
Ω2

4 − γ−2
)
E2 + 2 (Ω4Ez − vEx)E + E2

x + E2
y + E2

z , (3.93)

Y = −2EyE, (3.94)

the usual ?d ? G equations are derived. Then Ω4 from (3.91) is inserted, and the

choice L = C1 + C2Y + F
(
X + κ2

4
Y 2
)

is made, where

κ2 =
1

γ2
(
E2
x + E2

y

) (3.95)
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from (3.92). Here it becomes clear that the four equations (from the four compo-

nents of ?d ?G) are all linearly dependent hence the problem collapses to solving

− 2
1

γ2
F′
(
X +

κ2

4
Y 2

)
+ aF′′

(
X +

κ2

4
Y 2

)
= 0, (3.96)

where

a =

[
v2
(
E2
x + E2

y + E2
z

)
− E2

z

] [
2vEy

(
E2
x + E2

y

)
− Exγ−2Y

]2
v2E2

y

(
E2
x + E2

y

)2 . (3.97)

The argument of F is then parametrised via X + κ2

4
Y 2 = Λ, which via insertion

of X (3.93) and Y (3.94) enables E to be written in terms of Λ:

E = −
vγ2

(
E2
x + E2

y

)
Ex

± vγ2

√(
E2
x + E2

y − γ−2Λ
) (
v2
(
E2
x + E2

y + E2
z

)
− E2

z

)
Ex
(
v2
(
E2
x + E2

y + E2
z

)
− E2

z

) .

(3.98)

Inserting Y in terms of E and hence in terms of Λ into (3.96) (and (3.97))

simplifies the condition to

− 1

γ2
F′(Λ) + 2

(
E2
x + E2

y − γ−2Λ
)
F′′(Λ) = 0, (3.99)

and recalling that E2
x + E2

y = κ−2γ−2 via (3.95), the condition becomes

−F′(Λ) + 2
(
κ−2 − Λ

)
F′′(Λ) = 0. (3.100)

This is simple to solve, and yields

F = C3 + C4

√
Λ− 1

κ2
= C3 + C4

√
X +

κ2

4
Y 2 − 1

κ2
, (3.101)

which is simply the Born-Infeld Lagrangian using C3 = 1
κ2

and C4 = −i 1
κ2

.

Hence while the direct approach does not yield any Lagrangians whose field

equations are satisfied by the plane wave in an arbitrary configuration of a back-

ground electric field, it is possible to show that this wave does satisfy the Born-

Infeld field equations.
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3.5 Duality Transform Invariance

The previous sections have used a wave propagating through a region of constant

background electromagnetic field in order to test the properties of Born-Infeld-like

theories with Lagrangians of the form

L = C1 + C2Y + F
(
X + λY 2

)
. (3.42 revisited)

While it is argued that the presence of certain components of field (in the above

configuration, By or Ex) would aid in discriminating between these theories, it is

also possible that invoking other laws or invariances could be of assistance. This

section shows that the family of Lagrangians (3.42) can be reduced even down to

a single member of the family.

When extending Maxwell theory into nonlinearity, it is necessary to consider

which properties of linear Maxwell theory should be preserved. For instance by

writing Lagrangians in terms of the Lorentz invariants X and Y , overall Lorentz-

transform invariance can be preserved. Now consider electric-magnetic duality

transformations, i.e.

E→ cos(ϑ)E− sin(ϑ)B, (3.102)

B→ cos(ϑ)B + sin(ϑ)E, (3.103)

for some real constant ϑ and the usual electric and magnetic field 3-vectors E and

B, under which vacuum Maxwell theory is invariant. This duality invariance can

be thought of as a consequence of special relativity (applying Lorentz transforma-

tions to electric fields results in magnetic fields etc.) and again also has interest

from string theory, since electric-magnetic duality is a 4 dimensional reduction of

S-duality, which switches the strong and weak string couplings (see page 374 of

Ref. [34]). This property may be maintained by elevating electric-magnetic dual-

ity invariance to a fundamental property of the electromagnetic field. Following

the work of Ref. [22], the covariant generalisation of the electric-magnetic duality

transforms can be written

Fϑ = cos(ϑ)F + sin(ϑ) ? G, (3.104)

Gϑ = cos(ϑ)G+ sin(ϑ) ? F. (3.105)
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3.5. Duality Transform Invariance

Hence

? (Fϑ ∧ Fϑ) = ? [(cos(ϑ)F + sin(ϑ) ? G) ∧ (cos(ϑ)F + sin(ϑ) ? G)]

= ?
[
cos2(ϑ)F ∧ F − sin2(ϑ)G ∧G+ 2 sin(ϑ) cos(ϑ)F ∧ ?G

]
(3.106)

and similarly

? (Gϑ ∧Gϑ) = ? [(cos(ϑ)G+ sin(ϑ) ? F ) ∧ (cos(ϑ)G+ sin(ϑ) ? F )]

= ?
[
− sin2(ϑ)F ∧ F + cos2(ϑ)G ∧G+ 2 sin(ϑ) cos(ϑ)F ∧ ?G

]
.

(3.107)

Subtracting (3.107) from (3.106):

? (Fϑ ∧ Fϑ)− ? (Gϑ ∧Gϑ) = ? (F ∧ F )− ? (G ∧G) . (3.108)

Hence the quantity ? (Fϑ ∧ Fϑ) − ? (Gϑ ∧Gϑ) is independent of ϑ, and can be

written

? (Fϑ ∧ Fϑ)− ? (Gϑ ∧Gϑ) = C, (3.109)

where C is independent of ϑ. Since this is true for any choice of ϑ and Maxwell

electrodynamics has the relationship F = G, (3.109) is satisfied for C = 0 case.

To preserve this, C = 0 is assumed from this point. The condition

? (F ∧ F ) = ? (G ∧G) (3.110)

is known as the Gaillard-Zumino condition (first considered in [22], but first

used with C = 0 in [35], though more straightforward to see in [36]). Using the

definition of G (3.19), this condition becomes the P.D.E.

Y = 4Y

[(
∂L

∂X

)2

−
(
∂L

∂Y

)2
]
− 8X

∂L

∂X

∂L

∂Y
. (3.111)

Now consider which members of the family (3.42) satisfy the proposed condi-

tion of electric-magnetic duality invariance; the assumption that C2 = 0 results

in

Y
(

1− 4
(
1− 4λ

(
X + λY 2

)) (
F′
(
X + λY 2

))2
)

= 0, (3.112)
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which is solved algebraically to give

F′
(
X + λY 2

)
= ± 1√

1− 4λ (X + λY 2)
, (3.113)

i.e. F
(
X + λY 2

)
= ∓ 1

4λ

√
1− 4λ (X + λY 2) + C3. (3.114)

Choosing the negative sign here ensures that, in the weak field case, Maxwell

theory is retrieved from L. Choosing λ = 1
4
κ2 and the integration constant

C3 = 1
κ2

, results in the Born-Infeld Lagrangian

L =
1

κ2

(
1−

√
1− κ2X − κ4Y 2

4

)
. (3.115)

Hence the only member of the family F (X + λY 2) that satisfies electric-

magnetic duality invariance (with the duality constant C = 0 as per the Gaillard-

Zumino condition) is the Born-Infeld Lagrangian.

3.6 Summary

This chapter has shown that a plane electromagnetic wave travelling through a

region of constant magnetic field (F of the form (3.61)) is an exact solution of

the field equations of the family of theories with Lagrangians given by

L = C1 + C2Y + F
(
X + λY 2

)
, (3.42 revisited)

so long as By (the component of the background field parallel to the wave’s

magnetic field) is zero. The same can be said for a plane EM wave travelling

through a region of constant electric field (F of the form (3.86)) so long as Ex

(the component of the background field parallel to the wave’s electric field) is zero.

The speed of the wave does not depend on the theory in question, and hence there

is no way to distinguish between theories of the form (3.42) using a slow-light

experiment such as those considered in Ref. [21] or [20] without imposing electric-

magnetic duality invariance. Insisting on electric-magnetic duality invariance

restricts this family to just Born-Infeld theory.

41



3.6. Summary

Inclusion of a non-zero By (or Ex) component to the background field means

that (3.61) (or (3.86)) is no longer a solution to the field equations generated

by the family of theories (3.42). The only theory found whose equations these

waves solve was Born-Infeld theory. Hence if one aims to distinguish Born-Infeld

from the family (3.42), it is desirable to ensure that the background field includes

a magnetic component parallel to the wave’s own magnetic field or an electric

component parallel to the wave’s own electric field.

Sections 3.3 and 3.5 have been published in EPL in 2012 (see Ref. [1]). Section

3.4 is also original work, but has yet to be published.
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Chapter 4

Electron Energy Gain in a

Maximum Amplitude Plasma

Wave

4.1 Introduction

Since nonlinear electromagnetic theories such as Born-Infeld and Euler-Heisenberg

are not equivalent to Maxwell theory at high energy scales, it is important to

consider scenarios with the potential to distinguish between nonlinear theories.

Such a potential experiment is considering the energy gained by an electron in a

maximum amplitude plasma wave.

Sufficiently short, high-intensity laser pulses can form longitudinal waves within

the electrons of a plasma. Such oscillations in the plasma electrons travel with

speed comparable to the group speed of the laser pulse. Not all plasma electrons

form this wave, however; some of the free plasma electrons are caught up in the

wave and accelerated by its high fields. When large numbers of electrons are

accelerated the wave breaks due to damping. This wave breaking is fundamen-

tally nonlinear and hence is an ideal place to study extensions to Maxwell theory.

This chapter hence focuses on a plasma near to wave-breaking. Since upcoming
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4.2. Maximum Amplitude Plasma Waves

lasers [5, 6] are hoped to be powerful enough to investigate quantum phenomena,

it could also be possible to investigate whether the effects of nonlinear classical

theories need to be accounted for first.

Some preliminary work on the subject of electrons in maximum amplitude

plasma waves has already been done [23, 37] in the context of Born-Infeld theory,

though only an estimate for the electron energy gain was found. This chapter aims

to study this energy gain not only for Born-Infeld theory but for a general non-

linear theory with Lagrangian L(X, Y ), where X and Y are the electromagnetic

invariants, by appealing to the stress balance law (see Appendix A for motiva-

tion). Additionally, the presence of a background magnetic field is considered.

4.2 Maximum Amplitude Plasma Waves

4.2.1 Preliminaries

In order to find the energy gained by an electron in a half-wavelength of a max-

imum amplitude plasma wave, it is necessary to first set up several tools which

will be needed later. This chapter is inspired by Ref. [23], though uses a different

approach for the main calculation and the final result is more general.

Since this chapter is investigating the properties of a plasma wave propagating

along the z-direction with velocity v, it is helpful to use the orthonormal coframe

{γdζ, dx, dy, γdξ} where ξ = z − vt is the wave’s phase, ζ = −t + vz and

γ = 1√
1−v2 is the Lorentz factor of the plasma wave. This orthonormal coframe

is adapted to the wave frame1 just as the coframe {dt, dx, dy, dz} is adapted to

the lab frame.

This chapter assumes a cold plasma, and since the scales involved are such

that the electron motion is much greater than that of the ions, the plasma ions

are considered to be a stationary background. As such the plasma ion worldlines

are the trajectories of Vion = ∂
∂t

and the plasma ion density nion is a constant.

1In the wave frame there is no time evolution of the wave.
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4.2. Maximum Amplitude Plasma Waves

The plasma electrons constituting the wave1 have worldlines given by the tra-

jectories of the vector field Ve with number density ne. Using the quasi-static

approximation, Ve is supposed to have the form

Ṽe = ν(ξ)dζ + χ(ξ)dξ, (4.1)

for some smooth functions ν and χ. Insistence that Ve be normalised according

to g(Ve, Ve) = −1 results in

Ṽe = νdζ −
√
ν2 − γ2dξ (4.2)

=
(
−ν + v

√
ν2 − γ2

)
dt+

(
vν −

√
ν2 − γ2

)
dz. (4.3)

Note that ν must be positive in order for Ve to be future-pointing. Hence the

electrons move slower than the plasma wave except at the wave-breaking limit

when the electrons catch the wave (when ν = γ).

4.2.2 Introducing the Plasma Wave

Consider a wave of plasma electrons with a background of plasma ions in a region

of constant magnetic field B = (Bx, By, Bz). Hence the Faraday 2-form of the

plasma wave is

F = E(ξ)dt ∧ dz −Bxdy ∧ dz −Bydz ∧ dx−Bzdx ∧ dy, (4.4)

and the electromagnetic invariants are

X = E2 − (B2
x +B2

y +B2
z ), (4.5)

Y = 2EBz. (4.6)

The appropriate2 field equations and the Lorentz-force equation are

dF = 0, (4.7)

d ? G = −qene ? Ṽe − qionnion ? Ṽion, (4.8)

∇VeṼe =
qe

me

iVeF, (4.9)

1The free plasma electrons constituting the accelerated electrons which cause the wave-

breaking will not be modelled in this chapter.
2These are well established, but Appendix B shows the variation of a sample Lagrangian

to justify them.
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where G is the excitation 2-form

G = 2

(
∂L

∂X
F − ∂L

∂Y
? F

)
. (3.19 revisited)

Since g(Ve, Ve) = −1, it is possible to rewrite ∇VeṼe = iVedṼe and thus (4.9)

becomes

iVedṼe =
qe

me

iVeF. (4.10)

Inserting (4.4) and (4.3) into (4.10) results in the four conditions(
−ν + v

√
ν2 − γ2

)( qe

me

E − 1

γ2
ν ′
)

= 0, (4.11)

qe

me

(
vν −

√
ν2 − γ2

)
By = 0, (4.12)

qe

me

(
vν −

√
ν2 − γ2

)
Bx = 0, (4.13)(

vν −
√
ν2 − γ2

)( qe

me

E − 1

γ2
ν ′
)

= 0, (4.14)

which for a non-constant ν result in Bx = By = 0 and

E =
meν

′

qeγ2
. (4.15)

It is also possible to relate the plasma electron number density ne to the

background ion density nion via (4.8). As F (and hence G) depends on ξ alone,

d ? G must be of the form dξ ∧ . . ., thus wedging dξ to the source part of (4.8)

results in the condition:

dξ ∧
(
qene ? Ṽe + qionnion ? Ṽion

)
= 0. (4.16)

Breaking dξ into dz − vdt and inserting (4.3) and Vion = ∂
∂t

into (4.16) results in

qene(vν −
√
ν2 − γ2)dz ∧ ?dz − v

(
qene(−ν + v

√
ν2 − γ2)− qionnion

)
dt ∧ ?dt = 0,

(4.17)

and since dz ∧ ?dz = ?1 = −dt ∧ ?dt,

qene(−
√
ν2 − γ2 + vν) + v

(
qene(−ν + v

√
ν2 − γ2)− qionnion

)
= 0, (4.18)
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E

ν

ξ
ξIIξI

Figure 4.1: Electric field (red) and ν (blue) plotted along ξ (not to scale). Since

the electron has a negative charge, (4.15) gives E ∼ −ν ′. The points ξI and ξII are

also shown (adapted from Ref. [37]).

and solving for ne gives

ne = − vγ2qionnion

qe

√
ν2 − γ2

. (4.19)

The overall sign on this term will be positive since the charge of the electron

qe = −e, where e is the elementary charge1.

1Equation (4.19) can also be written in terms of the degree of ionisation, Z = − qionqe thus:

ne = vγ2Znion√
ν2−γ2

.
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4.2.3 Solving the Stress Balance Equation

To summarise the previous section, the information acquired so far is as follows:

F = Edt ∧ dz −Bzdx ∧ dy, (4.20)

E =
me

qeγ2
ν ′, (4.15 revisited)

Ṽe =
(
−ν + v

√
ν2 − γ2

)
dt+

(
vν −

√
ν2 − γ2

)
dz, (4.3 revisited)

ne = − vγ2qionnion

qe

√
ν2 − γ2

. (4.19 revisited)

One more tool is necessary to proceed; the stress-energy-momentum 3-forms

for a cold plasma1 in a nonlinear electromagnetic theory are given by

Ta = iXaF ∧ ?G+ iXa ? L+meneiXaṼe ? Ṽe, (4.21)

which, on Killing frame Xa given by {∂t, ∂x, ∂y, ∂z}, obey the balance law 2

dTa = qionnioniVioniXaF ? 1. (4.22)

Inserting F (4.20) and Ṽe (4.3) into the four stress form components τXa gives

T0 = F1(ξ)dx ∧ dy ∧ dz + F2(ξ)dt ∧ dx ∧ dy, (4.23)

T1 = F3(ξ)dt ∧ dy ∧ dz, (4.24)

T2 = F4(ξ)dt ∧ dx ∧ dz, (4.25)

T3 = F5(ξ)dt ∧ dx ∧ dy + F6(ξ)dx ∧ dy ∧ dz, (4.26)

1See Appendix B for motivation of this via variation of a sample action.
2For justification, see Appendix B.5.
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4.2. Maximum Amplitude Plasma Waves

where

F1(ξ) = −2E

(
E
∂L

∂X
+Bz

∂L

∂Y

)
+ L−mene

(
−ν + v

√
ν2 − γ2

)2

, (4.27)

F2(ξ) = −mene

(
−ν + v

√
ν2 − γ2

)(
vν −

√
ν2 − γ2

)
, (4.28)

F3(ξ) = 2Bz

(
E
∂L

∂Y
−Bz

∂L

∂X

)
− L, (4.29)

F4(ξ) = −2Bz

(
E
∂L

∂Y
−Bz

∂L

∂X

)
− L, (4.30)

F5(ξ) = 2E

(
E
∂L

∂X
+Bz

∂L

∂Y

)
− L−mene

(
vν −

√
ν2 − γ2

)2

, (4.31)

F6(ξ) = −mene

(
vν −

√
ν2 − γ2

)(
−ν + v

√
ν2 − γ2

)
. (4.32)

Since the only variable quantity in any Fn is ξ = z − vt, dFn = ∂Fn
∂ξ
dz − v ∂Fn

∂ξ
dt,

and thus

dT0 = dF1(ξ) ∧ dx ∧ dy ∧ dz + dF2(ξ) ∧ dt ∧ dx ∧ dy

= − ∂

∂ξ
(vF1(ξ) + F2(ξ)) ? 1, (4.33)

dT1 = dF3(ξ) ∧ dt ∧ dy ∧ dz = 0, (4.34)

dT2 = dF4(ξ) ∧ dt ∧ dx ∧ dz = 0, (4.35)

dT3 = dF5(ξ) ∧ dt ∧ dx ∧ dy + dF6(ξ) ∧ dx ∧ dy ∧ dz

= − ∂

∂ξ
(F5(ξ) + vF6(ξ)) ? 1. (4.36)

The four components of the RHS of (4.22) with Vion = ∂
∂t

are

qionnioniVioniX0F ? 1 = 0, (4.37)

qionnioniVioniX1F ? 1 = 0, (4.38)

qionnioniVioniX2F ? 1 = 0, (4.39)

qionnioniVioniX3F ? 1 = −qionnionE ? 1. (4.40)

Hence the x and y components of (4.22) are immediately satisfied leaving the t

and z components:

dT0 = − ∂

∂ξ
(vF1(ξ) + F2(ξ)) ? 1 = 0, (4.41)

dT3 = − ∂

∂ξ
(F5(ξ) + vF6(ξ)) ? 1 = −qionnionE ? 1. (4.42)
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Since E = me

qeγ2
ν ′ = me

qeγ2
dν
dξ

, these equations can be written

dT0 = − ∂

∂ξ
(vF1(ξ) + F2(ξ)) ? 1 = 0, (4.43)

dT3 = − ∂

∂ξ

(
F5(ξ) + vF6(ξ)−menion

qion

qe

ν

γ2

)
? 1 = 0. (4.44)

Inserting the functions Fn, E (4.15) and ne (4.19), it becomes clear that (4.43)

and (4.44) are multiples of one another; thus the stress balance law (4.22) reduces

to the single partial differential equation

∂

∂ξ

[
2

(
meν

′

qeγ2

)2
∂L

∂X
+ 2

meν
′

qeγ2
Bz

∂L

∂Y
− L−menion

qion

qe

(
ν − v

√
ν2 − γ2

)]
= 0.

(4.45)

A brief aside: using X and Y given by (4.5) and (4.6), the factors in (4.45) in

front of the derivatives of the Lagrangian can be rewritten as;

d

dξ

[
2
(
X +B2

z

) ∂L
∂X

+ Y
∂L

∂Y
− L−menion

qion

qe

(
ν −

√
ν2 − γ2

)]∣∣∣∣
S

= 0, (4.46)

where S is the subspace defined by X = E2 − B2
z , Y = 2EBz. This equation is

consistent with the prior result in Ref. [37] though now with extra terms due to

the background magnetic field, though Ref. [37] used the field equations instead

of working from the stress balance law (4.22).

Returning to (4.45), integration gives[
2

(
meν

′

qeγ2

)2
∂L

∂X
+ 2

meν
′

qeγ2
Bz

∂L

∂Y
− L−menion

qion

qe

(
ν − v

√
ν2 − γ2

)]
= C,

(4.47)

for some integration constant C (to be found). As in [37], the square root in (4.45)

places a lower bound on ν. For a maximum amplitude plasma wave, ν attains

its lowest possible value (see Figure 4.1), which the square root term shows to be

νI = γ. With the assumption that ν attains its lowest possible value some ξI, i.e.

ν(ξI) = νI = γ and ν ′I = dν
dξ

∣∣∣
ξ=ξI

= 0, (4.47) can be evaluated to find C during a

maximum amplitude oscillation. The first two terms vanish on turning points of

ν, leaving

−menion
qion

qe

γ − L0 = C, (4.48)
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where L0 = L|ν=γ,ν′=0 (or = L|X=−B2,Y=0 on S). Hence (4.47) becomes

2

(
meν

′

qeγ2

)2
∂L

∂X
+ 2

meν
′

qeγ2
Bz

∂L

∂Y
− (L− L0)

−menion
qion

qe

(
ν − γ − v

√
ν2 − γ2

)
= 0. (4.49)

It is now possible to use (4.49) to find the turning points of ν, νI and νII, in

the maximum amplitude oscillation. Since these are turning points of ν, they

correspond to the zeroes of E and hence half a wavelength of the plasma wave.

In order to find these turning points, it is necessary to substitute ν ′ = 0 into

(4.49), resulting in

−menion
qion

qe

(
ν − γ − v

√
ν2 − γ2

)
= 0,

i.e. ν± = γ3(1± v2). (4.50)

Hence the lower value is νI = γ and the upper value is νII = γ3(1 + v2), and

νII − νI = 2v2γ3. (4.51)

4.3 Relativistic Energy Gain

Now it is possible to calculate the energy gained by the test electron in a maximum

amplitude plasma wave. The relativistic energy of a particle of mass me and

charge qe with trajectory Ċ in the inertial frame of observer U is defined by

WU = −meg(U, Ċ). (4.52)

In order to find the energy gained by a charged particle in an electromagnetic

field F , consider the following.

As seen in previously, the Lorentz force equation satisfied by the plasma elec-

trons is written

∇VeṼe =
qe

me

iVeF, (4.9 revisited)
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where Ve describes the motion of the electrons, F the electromagnetic field of the

plasma wave and ∇ is the Levi-Civita connection. A test electron inserted into

the system1 then must obey the equation of motion

∇Ċ
˜̇C =

qe

me

iĊF, (4.53)

where C(τ) is the curve representing the trajectory of the test electron, satisfying

the normalisation condition g(Ċ, Ċ) = −1. Contracting (4.53) on a parallel2

unit timelike future pointing vector U and noting that the interior contraction is

antisymmetric gives:

∇Ċ

(
g(U, Ċ)

)
= − qe

me

iĊiUF. (4.54)

Since τ is defined along Ċ, this can be rewritten

d

dτ
g(U, Ċ) =

qe

me

iUiĊF = − qe

me

iĊiUF. (4.55)

By integrating over the interval [τI, τII] and noting that for a 1-form α,∫
C

α =

∫ τII

τI

iĊα dτ, (4.56)

(4.55) can be written ∫ τII

τI

d

dτ
g(U, Ċ) dτ = − qe

me

∫
C

iUF. (4.57)

From (4.52), this is simply

∆WU = q

∫
C

iUF. (4.58)

4.3.1 Energy Gain in a Maximum Amplitude Plasma Wave

The equation for the change in energy experienced by a charged particle in an

electromagnetic field described by F requires an inertial observer to act as a

frame of reference. It is most convenient to choose the wave frame for U; as

1The test electron’s effect on the overall system is assumed negligible.
2A parallel vector U satisfies ∇U = 0, and hence iU∇V = ∇V iU.
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mentioned in Section 4.2.1, the orthonormal coframe {γdζ, dx, dy, γdξ} is adapted

to an observer moving in the z-direction with speed v and is ideal for the wave

frame. Hence choosing U = γd̃ζ and rewriting F in the wave frame: F =

Eγ2dξ ∧ dζ −Bzdx ∧ dy, (4.58) becomes

∆W = qeγ

∫
C

id̃ζ
(
Eγ2dξ ∧ dζ −Bzdx ∧ dy

)
= qeγ

∫
C

Edξ. (4.59)

Since the form of E is already known from (4.15), the integral can be written

using the chain rule to give

∆W = qeγ

∫ νII

νI

me

qeγ2
dν =

me

γ
(νII − νI), (4.60)

for some νI and νII.

For a maximum amplitude plasma wave over a half-wavelength, the value of

νII − νI is known (see (4.51)) and hence

∆W = 2meγ
2v2. (4.61)

This value for the energy gained by the test electron was found in Ref. [37] as

an estimate of the energy gained for Born-Infeld theory in the background-field-

free case, but in the lab frame not in the wave frame as is the case here. It

can now be asserted that (4.61) is exact not only for Born-Infeld theory, but for

any electromagnetic theory with Lagrangian L(X, Y ). Also, the presence of a

background magnetic field Bz does not change the amount of energy gained by

the electron even though the background magnetic field affects the plasma wave.

4.4 Summary

This chapter has shown that the energy gained by a test electron in a maximum

amplitude plasma wave bathed in a constant longitudinal background field is

dependent only on the group speed of the plasma wave and the mass of the

electron.

This result was found by appealing to the stress balance law (4.22) and then

choosing the electric field E and the plasma electron density ne such that the
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field equation (4.8) and the Lorentz-force equation (4.9) were satisfied. Finally,

by finding the value of ν at the two zeroes of the electric field, νI and νII, the

energy in the wave frame was calculated via (4.58).

Additional components of the background magnetic field perpendicular to the

propagation of the wave were found not to solve the equation of motion (4.9) and

hence inclusion of these components will require modification of the ansatz of the

plasma electron fluid (4.2).

Since the group speed of the driving laser pulse (and the subsequent speed of

the plasma wave) will depend on the background fields and the electromagnetic

theory in question (see Chapter 3), the energy gain of an electron in a maximum

amplitude is nonlinear theory dependent. Since, however, finding the dependence

of the group velocity of the laser pulse will almost certainly require extensive

numerical study, precisely how the energy gain of an electron in a maximum

amplitude plasma wave depends on the electromagnetic theory is left for future

study.
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Chapter 5

Relativistic Spinning Particles

5.1 Introduction

Alongside the effects of classical nonlinear electrodynamical theories, such as

Born-Infeld theory, there are other effects that must be taken into account when

considering strong fields such as ELI [5] and HiPER [6], or for instance when

accelerating over short distances, such as laser wakefield acceleration [38].

Two such effects are the Stern-Gerlach-type forces and radiation reaction. Ra-

diation reaction, the interaction of the radiation emitted when a charged particle

undergoes acceleration and the particle itself, has been taken into consideration

in various particle-in-cell (PIC) codes by studying the Landau-Lifshitz equation1

and is known [39] to become important when optical laser intensities exceed

5 × 1022 W cm−2. However the impact of the quantum mechanical spin of par-

ticles in high field environments, such as maximum amplitude plasma waves, is

generally neglected despite the estimation that the Stern-Gerlach forces can be

of (and indeed above) the order of the radiation reaction terms (see Section 2 of

Ref. [24]).

The concept of attempting to model a quantum mechanical electron as an

analogue of a covariant classical spinning particle is not a new one. There have

1The inconsistencies of radiation reaction theory with regards to Lorentz-Abraham-Dirac

versus Landau-Lifshitz are not within the scope of this thesis.
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been various approaches from the work of Frenkel [40] and Thomas [41] in the

1920s through the work of Nakano [42], Tulczyjew [43], Dixon [44–46], Corben [47,

48], Suttorp and de Groot [49, 50] and Ellis [51] in the 1950-70s. The approaches

used to derive these equations are varied, but this chapter aims to contribute a

new method via an approach using de Rham currents and distributional methods.

After deriving the equations of motion, this Chapter also studies the particular

situation of the motion of a classical electron in a maximum amplitude plasma

wave. Using the equations of motion with the electric field used in Chapter 4,

solutions where the impact of spin is greater than the radiation reaction force are

explored. Such a case is pinpointed and found to have adverse consequences for

the size of electron bunches in proposed laser-plasma wakefield accelerators [38].

Since this chapter includes objects which have different aspects, the notation

will be made clear as follows: 3-vectors will be denoted with an arrow ~V , 4-

vectors V (with the appropriate metric dual 1-form as Ṽ ) and distributions will

be written with a subscript VD.

5.2 Deriving Equations of Motion for a Classical

Spinning Particle Using Distributions

This section contains a new derivation of the equations of motion for a relativistic

spinning charged particle via an approach using de Rham currents. In order to

begin, it is necessary to find the distributional analogues of physical quantities

(analogous to moving from a continuum to particle approach).

5.2.1 Writing Polarisation and Magnetisation as de Rham

Currents

Consider a system of a charged continuum with polarisation ~p and magnetisation

~m 3-vectors given by

~p(~r, t) = n(~r, t)~µe(~r, t), (5.1)

~m(~r, t) = n(~r, t)~µm(~r, t), (5.2)
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where n is the particle number density and ~µe and ~µm are the electric and magnetic

dipole moments respectively. Using the fact that the excitation 2-form G can be

written G = F + Π, the polarisation 2-form Π is introduced:

Π = −Ṽ ∧ p̃ + #m̃. (5.3)

Here p̃ and m̃ are the 1-form metric duals of their vector equivalents and the #

notation is shorthand for

#α = ?(Ṽ ∧ α), (5.4)

where V is the 4-vector describing the motion of the fluid.

In order to move from the continuum model to a single-particle model, de

Rham currents1 are introduced. Firstly, in order to establish the notation in

a simple setting2, it is assumed that the fluid is at rest and hence described by

V = ∂t. Then the distributional current associated with the worldline of a particle

is introduced via; ∫
M

f̂n ? 1→
∫
C

f̂dt, (5.5)

analogous to using the particle density as a Dirac delta function to only pick out

the integral over the particle worldline C rather than integrating over the full

manifold M. Here C is the curve representing the worldline of the particle with

constant x, y, z (due to the temporary choice of V ) and f̂ is a test form. Since the

aim of this method is to induce the equation of motion of a particle from a fluid

description, C is assumed to be an integral curve of V . As in previous chapters,

spacetime is assumed to be flat, i.e. the metric is ηab.

In order to find the appropriate distributions for the particle versions of the

magnetisation and polarisation, consider the following. Given a Killing 3-vector

~K ∈ {~i,~j,~k}, where ~i ·~i = 1, ~j ·~j = 1, ~k · ~k = 1 and ~i ·~j =~i · ~k = ~j · ~k = 0, it is

1See Section 2.6 for the essentials or [30] for detail.
2It is simple to extend this to any vector V , though it distracts from the point of the

method.
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natural to associate (
~p · ~K

)
D

[f̂ ? 1] =

∫
C

~µe · ~Kf̂dt, (5.6)(
~m · ~K

)
D

[f̂ ? 1] =

∫
C

~µm · ~Kf̂dt, (5.7)

where · represents the usual scalar product on 3-vectors and
(
~p · ~K

)
D

represents

the distribution associated with the scalar ~p · ~K. Expanding on the first of these

equations: (
~p · ~K

)
D
? 1[f̂ ] =

∫
C

~µe · ~Kf̂dt

= CD[~µe · ~Kf̂dt]

= −
(
~µe · ~K

)
(dt ∧ CD) [f̂ ]. (5.8)

Stripping off the test function and noting that in this case Ċ = ∂t and ??1 = −1:(
~p · ~K

)
D

= −
(
~µe · ~K

)
?
(˜̇C ∧ CD) . (5.9)

Introducing the 4-vector µe = µex∂x+µey∂y+µez∂z, where µex is the x-component

of the vector ~µe etc., (5.9) for A = {1, 2, 3} can be written

pD =
(
~p · ~KA

)
D
dxA

= (iĊ ? CD) µ̃e, (5.10)

and similarly

mD = (iĊ ? CD) µ̃m. (5.11)

Hence the polarisation distribution (analogous to (5.3)) can be written;

ΠD = −Ṽ ∧ pD + #mD (5.12)

= − ˜̇C ∧ iĊ ? CD ∧ µ̃e + ?( ˜̇C ∧ iĊ ? CD ∧ µ̃m), (5.13)

since C is an integral curve of V . Since it is possible to simplify the above

expression using ˜̇C ∧ iĊ ? CD = − ? CD, the polarisation distribution can be

written in the succinct form

ΠD = ?CD ∧ µ̃e − ?(?CD ∧ µ̃m) (5.14)

= ?CD ∧ µ̃e − iµmCD. (5.15)

58



5.2. Deriving Equations of Motion for a Classical Spinning Particle Using
Distributions

5.2.2 Writing Free and Bound Currents as de Rham Cur-

rents

The field equations for a continuum are given by

dF = 0, (5.16)

d ? F = d ? G− d ? Π (5.17)

= jfree + jbound, (5.18)

where the current jbound encapsulates the information regarding the currents in-

side the particles. The currents can hence be written

jfree = d ? G = −qn ? Ṽm, (5.19)

jbound = −d ? Π, (5.20)

for matter described by vector field Vm with number density n and charge q.

Currents (5.19) and (5.20) may be used as a basis for constructing the particle

distributions1 jfree
D and jbound

D using the general form of (5.5), i.e.∫
M

f̂n ? 1→ −
∫
C

f̂ ˜̇C =

∫ τmax

τmin

f̂dτ, (5.21)

since

∫
C

α(1) =

∫ τmax

τmin

iĊα
(1)dτ, (5.22)

where τ is the curve parameter, the proper time of the particle, running from

τmin to τmax to define the whole curve C(τ). Acting on a test 1-form ϕ̂(1) using

jfree
D gives

jfree
D [ϕ̂(1)] =

∫
M

−qn ? Ṽm ∧ ϕ̂(1)

=

∫
M

qnϕ̂(1)(Vm) ? 1,

1The free current distribution corresponds to the usual motion of the particle, whereas

the bound current distribution indicates some kind of internal structure to the particle to

incorporate the moments µe and µm.
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since ϕ̂(1) ? Ṽm = iVmϕ̂
(1) ? 1. Using (5.21), and noting that C is an integral curve

of Vm, this becomes

jfree
D [ϕ̂(1)] = −

∫
C

qiĊϕ̂
(1) ˜̇C =

∫
C

qϕ̂(1), (5.23)

since the integral projects out the Ċ-orthogonal components of the integrand,

and hence

jfree
D = qCD. (5.24)

As for the bound current jbound, it is helpful to first introduce a polarisation

2-form

Σ = − ˜̇C ∧ µ̃e + ?( ˜̇C ∧ µ̃m), (5.25)

analogous to the relationship between E and B and the Faraday 2-form. From

this, note that µ̃e = iĊΣ and µ̃m = iĊ ? Σ and hence jbound
D can be written

jbound
D = −d ? ΠD = −d ? (?CD ∧ µ̃e − ?(?CD ∧ µ̃m))

= −d ? (?CD ∧ iĊΣ)− d (?CD ∧ iĊ ? Σ) . (5.26)

5.2.3 The Stress Balance Law

There are several balance laws motivated via considering the invariances of a

general class of actions1 that can nevertheless be independently considered for

systems without explicit actions. One of these balance laws is the stress balance

equation

dTa = iXaF ∧ jfree + iXaF ∧ jbound, (5.27)

where Ta are the stress-energy-momentum 3-forms of the classical spinning charged

particle and {Xa} represents a Killing frame. In order to adapt this law for use

on a single particle, consider the distributional analogue of (5.27):

dTaD = iXaF ∧ jfree
D + iXaF ∧ jbound

D , (5.28)

1See Appendix A for details.
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where TaD (to be found) are the stress distributions associated with stress 3-forms

Ta, and the current distributions are defined as in the previous section. In order

to use this balance law, consider consider source terms individually. Acting on a

test function f̂ , the free current component of (5.28) can be written

iXaF ∧ jfree
D [f̂ ] =

∫ τmax

τmin

−qiĊiXaF f̂dτ, (5.29)

where jfree
D = qCD has been used. The bound current term of (5.28) is not so

trivial however and requires more analysis. Acting on a test form f̂ ,

iXaF ∧ jbound
D [f̂ ] = (d ? (?CD ∧ iĊΣ) ∧ iXaF + d (?CD ∧ iĊ ? Σ) ∧ iXaF ) [f̂ ].

(5.30)

Consider the first term of (5.30); using the properties of de Rham currents (see

Section 2.7), it is instructive to rewrite this in detail:

d ? (?CD ∧ iĊΣ) ∧ iXaF [f̂ ] = d ? (?CD ∧ iĊΣ) [f̂ iXaF ]

= − ? (?CD ∧ iĊΣ)
[
d
(
f̂ iXaF

)]
= − (?CD ∧ iĊΣ)

[
?d
(
f̂ iXaF

)]
= − ? CD

[
iĊΣ ∧ ?d

(
f̂ iXaF

)]
= CD

[
?
(
iĊΣ ∧ ?d

(
f̂ iXaF

))]
. (5.31)

Similarly, the second term can be rewritten;

d (?CD ∧ iĊ ? Σ) ∧ iXaF [f̂ ] = d (?CD ∧ iĊ ? Σ) [f̂ iXaF ]

= − (?CD ∧ iĊ ? Σ)
[
d
(
f̂ iXaF

)]
= − ? CD

[
iĊ ? Σ ∧ d

(
f̂ iXaF

)]
= CD

[
?
(
iĊ ? Σ ∧ d

(
f̂ iXaF

))]
. (5.32)

Using (5.31) and (5.32), (5.30) becomes

iXaF ∧ jbound
D [f̂ ] =

∫
C

{
?
(
iĊΣ ∧ ?d

(
f̂ iXaF

))
+ ?

(
iĊ ? Σ ∧ d

(
f̂ iXaF

))}
=

∫ τmax

τmin

{
− ?

(˜̇C ∧ iĊΣ ∧ ?d(f̂ iXaF )
)

− ?
(˜̇C ∧ iĊ ? Σ ∧ d(f̂ iXaF )

)}
dτ. (5.33)
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Since ˜̇C∧ iĊΣ = ˜̇C∧ µ̃e and ˜̇C∧ iĊ ?Σ = ?−1 ? ( ˜̇C∧ µ̃m) = −?#C µ̃m, it is possible

to simplify (5.33) via star-pivoting the first term

iXaF ∧ jbound
D [f̂ ] =

∫ τmax

τmin

{
− ?

(
d(f̂ iXaF ) ∧ ?

(˜̇C ∧ iĊΣ
))

− ?
(
d(f̂ iXaF ) ∧ ?

(˜̇C ∧ iĊ ? Σ
))}

dτ

=

∫ τmax

τmin

?
(
d(f̂ iXaF ) ∧ ?Σ

)
dτ. (5.34)

Expanding out the exterior derivative using the Leibniz rule gives

iXaF ∧ jbound
D [f̂ ] =

∫ τmax

τmin

{
?
(
df̂ ∧ iXaF ∧ ?Σ

)
+ ? (LXaF ∧ ?Σ) f̂

}
dτ, (5.35)

since dF = 0.

Consider now the df̂ term of (5.35); this can be split into its Ċ-parallel and

-orthogonal parts via

df̂ = Π
‖
Ċ
df̂ + Π⊥

Ċ
df̂ , (5.36)

to give∫ τmax

τmin

?
(
df̂ ∧ iXaF ∧ ?Σ

)
dτ =

∫ τmax

τmin

{
?
(

Π
‖
Ċ
df̂ ∧ iXaF ∧ ?Σ

)
+ ?

(
Π⊥
Ċ
df̂ ∧ iXaF ∧ ?Σ

)}
dτ, (5.37)

where the parallel and orthogonal parts of df̂ are given by

Π
‖
Ċ
df̂ = −iĊdf̂

˜̇C, (5.38)

Π⊥
Ċ
df̂ = df̂ + iĊdf̂

˜̇C. (5.39)

The Ċ-parallel term corresponds to the components along the worldline, whereas

the Ċ-orthogonal terms correspond to components off the worldline of the particle.

Note that since iĊdf̂ = df̂
dτ

, for curve parameter τ , the parallel part of (5.37) can

be written

−
∫ τmax

τmin

?
(˜̇C ∧ iXaF ∧ ?Σ

)
iĊdf̂dτ =

∫ τmax

τmin

iĊd ?
(˜̇C ∧ iXaF ∧ ?Σ

)
f̂dτ,

(5.40)
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using integration by parts and the fact that f̂ has compact support. Then since

iĊdh = ∇Ċh for 0-form h and

?( ˜̇C ∧ iXaF ∧ ?Σ) = i
ĩXaF

iĊΣ = (iXaF ) · iĊΣ, (5.41)

where · represents the generalised scalar product on forms1, (5.35) can be written

iXaF ∧ jbound
D [f̂ ] =

∫ τmax

τmin

{
? (Σ ∧ ?LXaF ) f̂ + iĊd ?

(˜̇C ∧ iXaF ∧ ?Σ
)
f̂

+ ?
(

Π⊥
Ċ
df̂ ∧ iXaF ∧ ?Σ

)}
dτ

=

∫ τmax

τmin

{
−Σ · (LXaF ) f̂ −∇Ċ((iXaF ) · iĊΣ)f̂

+ ?
(

Π⊥
Ċ
df̂ ∧ iXaF ∧ ?Σ

)}
dτ. (5.42)

This can then be added to the free current term (5.29) to give

dTaD[f̂ ] = iXaF ∧ jfree
D [f̂ ] + iXaF ∧ jbound

D [f̂ ]

=

∫ τmax

τmin

{
−qiĊiXaF f̂ − Σ · (LXaF ) f̂ −∇Ċ((iXaF ) · iĊΣ)f̂

+ ?
(

Π⊥
Ċ
df̂ ∧ iXaF ∧ ?Σ

)}
dτ. (5.43)

5.2.4 Choosing the Stress-Energy-Momentum Distribu-

tions

The stress-energy-momentum distributions are chosen2 to be of the form

TaD = −g(π,Xa)CD + ςa ∧ ?CD, (5.44)

where π is a candidate momentum 4-vector3 and ςa are 2-form coefficients to

the off-worldline components attached to ?CD. These coefficients are included in

1Where α · β = ?−1 (α ∧ ?β) for forms α and β of equal degree.
2Note that this is simply a choice for the stress forms; it is possible that another choice for

the stress forms may lead to different equations of motion than those shown in the subsequent

sections.
3The physical meaning of this candidate momentum vector is expanded on in Section 5.2.7.
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order to absorb the Π⊥
Ċ
df̂ term of the bound current (see (5.43)). Applying the

exterior derivative to ςa ∧ ?CD acting on a test function f̂ gives

d (ςa ∧ ?CD) [f̂ ] = ςa ∧ ?CD[df̂ ] = −
∫ τmax

τmin

?
(
ςa ∧ df̂ ∧ ˜̇C) dτ

= −
∫ τmax

τmin

?
(

Π⊥
Ċ
df̂ ∧ Π⊥

Ċ
ςa ∧ ˜̇C) dτ. (5.45)

Hence for this to absorb the df̂ term from (5.43), ςa must satisfy

−Π⊥
Ċ
df̂ ∧ Π⊥

Ċ
ςa ∧ ˜̇C = Π⊥

Ċ
df̂ ∧ iXaF ∧ ?Σ, (5.46)

which after contracting along Ċ and rearranging becomes

Π⊥
Ċ
df̂ ∧

[
Π⊥
Ċ
ςa − iĊ (iXaF ∧ ?Σ)

]
= 0. (5.47)

The LHS of (5.47) is a 3-form in the Ċ-orthogonal projection of the space of

3-forms. Since Π⊥
Ċ
df̂ can be chosen to be any of the three members of a frame of

Ċ-orthogonal forms, the condition on ςa becomes

Π⊥
Ċ
ςa = iĊ (iXaF ∧ ?Σ) . (5.48)

Hence one example of a 2-form ςa satisfying this criterion is when iĊς
a = 0 so

that Π⊥
Ċ
ςa = ςa, giving

ςa = iĊ (iXaF ∧ ?Σ) . (5.49)

Hence let the stress distributions be

TaD = −g(π,Xa)CD + iĊ (iXaF ∧ ?Σ) ∧ ?CD. (5.50)

5.2.5 Deriving the Equation of Motion for the Candidate

Momentum π

Returning now to the stress balance equation (5.43), the choices for the stress-

energy-momentum distribution TaD (5.50) are inserted, hence removing the Π⊥
Ċ
df̂

term from the integral through the careful choice of ςa (5.49):

−d(g(π,Xa)CD)[f̂ ] =

∫ τmax

τmin

{−qiĊiXaF − Σ · (LXaF )−∇Ċ((iXaF ) · iĊΣ)} f̂dτ.

(5.51)
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Noting that dCD = 0, the LHS of this equation can be written:

−d(g(π,Xa)CD)[f̂ ] = −diXa π̃ ∧ CD[f̂ ]

=

∫
C

diXaπ̃f̂

=

∫ τmax

τmin

∇ĊiXaπ̃f̂dτ, (5.52)

since iĊdh = ∇Ċh for 0-form h. The stress balance law (5.51) is now∫ τmax

τmin

∇ĊiXaπ̃f̂dτ =

∫ τmax

τmin

{−qiĊiXaF − Σ · (LXaF )−∇Ċ((iXaF ) · iĊΣ)} f̂dτ,

(5.53)

and hence by stripping off the integral, the test function, and gathering up the

derivatives, the stress balance equation becomes

∇Ċ (iXaπ̃ + (iXaF ) · iĊΣ) = −qiĊiXaF − Σ · (LXaF ) . (5.54)

5.2.6 Deriving the Equation of Motion for the Spin 2-

Form Components Sab

To study the evolution of the spin of the particle, another balance law is invoked,

the spin balance law1

dσab =
1

2

(
dxa ∧ Tb − dxb ∧ Ta

)
, (5.55)

for a Killing frame Xa given by {∂t, ∂x, ∂y, ∂z} and where σab are the spin 3-

forms. As in the case of the stress balance law, the distributional analogue of this

equation is invoked, i.e.

dσabD =
1

2

(
dxa ∧ TbD − dxb ∧ TaD

)
. (5.56)

Since the stress distributions TaD have been specified in the previous section, the

RHS can be analysed, whereas the spin distributions σabD are to be specified.

1See Appendix A for details.
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Substituting the stress distributions (5.50) into one of the terms of (5.56)

acting on a test function f̂ gives

dxa ∧ TbD[f̂ ] = −
(
πbdxa ∧ CD

)
[f̂ ]− ?CD[dxa ∧ iĊ (iXbF ∧ ?Σ) f̂ ], (5.57)

which can be written in integral form as

dxa ∧ TbD[f̂ ] =

∫ τmax

τmin

[(
πbĊa

)
+ iĊ ? (dxa ∧ iĊ (iXbF ∧ ?Σ))

]
f̂dτ. (5.58)

The second term in this expression can be simplified by using the properties of

the Hodge map and internal contraction to give

iĊ ? (dxa ∧ iĊ (iXbF ∧ ?Σ)) = −(iĊiXbF )(iĊiXaΣ) + iĊiXa ?
[
?(Σ ∧ ˜̇C) ∧ iXbF

]
,

(5.59)

and with more manipulation, it is possible to write

iĊiXa ?
[
?(Σ ∧ ˜̇C) ∧ iXbF

]
= −(iXaiĊΣ)(iĊiXbF ) + Ċa(iXbF ) · iĊΣ

+ (iXbF ) · iXaΣ. (5.60)

Substituting this back into (5.59) gives

iĊ ? (dxa ∧ iĊ (iXbF ∧ ?Σ)) = Ċa(iXbF ) · iĊΣ + (iXbF ) · iXaΣ

= (iXbF ) ·
[
ĊaĊciXcΣ + iXaΣ

]
= (iXbF ) ·

[
ĊaĊc + ηac

]
iXcΣ. (5.61)

The object in the square brackets is the projection operator
(
Π⊥
Ċ

)ac
, and hence

iĊ ? (dxa ∧ iĊ (iXbF ∧ ?Σ)) = (iXbF ) ·
[(

Π⊥
Ċ

)ac
iXcΣ

]
. (5.62)

Substituting (5.62) into (5.58) gives

dxa ∧ TbD[f̂ ] =

∫ τmax

τmin

[(
πbĊa

)
+ (iXbF ) ·

[(
Π⊥
Ċ

)ac
iXcΣ

]]
f̂dτ, (5.63)

hence the the balance law (5.56) can be written

dσabD =
1

2

∫ τmax

τmin

(
πbĊa + (iXbF ) ·

[(
Π⊥
Ċ

)ac
iXcΣ

]
−πaĊb − (iXaF ) ·

[(
Π⊥
Ċ

)bc
iXcΣ

])
dτ f̂ , (5.64)
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or equivalently

dσabD [f̂ ] =

∫ τmax

τmin

1

2

[
Ċa
(
πb + (iXbF ) · iĊΣ

)
+ (iXbF ) · iXaΣ

− Ċb (πa + (iXaF ) · iĊΣ)− (iXaF ) · iXbΣ
]
f̂dτ. (5.65)

Analogous to (5.21) (and indeed (5.24)), suppose that σabD are of the form

σabD = 1
2
SabCD where the 0-forms Sab represent the components of the spin 2-

form. Then dσabD acting on a test form can be written

dσabD [f̂ ] =
1

2
SabCD[df̂ ] =

∫
C

1

2
Sabdf̂ , (5.66)

which can be rewritten

dσabD [f̂ ] = −
∫ τmax

τmin

∇Ċ

1

2
Sabf̂dτ, (5.67)

using integration by parts and since the boundary terms vanish because f̂ has

compact support. Hence the spin balance law (5.64) becomes

−
∫ τmax

τmin

∇Ċ

1

2
Sabf̂dτ =

∫ τmax

τmin

1

2

[
Ċa
(
πb + (iXbF ) · iĊΣ

)
+ (iXbF ) · iXaΣ

− Ċb (πa + (iXaF ) · iĊΣ)− (iXaF ) · iXbΣ
]
f̂dτ. (5.68)

Stripping off the integrals and test forms, the resulting equation for Sab is

∇ĊS
ab = −Ċa

(
πb + (iXbF ) · iĊΣ

)
− (iXbF ) · iXaΣ

+ Ċb (πa + (iXaF ) · iĊΣ) + (iXaF ) · iXbΣ. (5.69)

5.2.7 Relating Momenta π and P

The two equations of motion for a classical spinning charged particle are given

by (5.54) and (5.69), i.e.

∇Ċ (iXaπ̃ + (iXaF ) · iĊΣ) =− qiĊiXaF − Σ · (LXaF ) , (5.54 revisited)

∇ĊS
ab =− Ċa

(
πb + (iXbF ) · (iĊΣ)

)
− (iXbF ) · (iXaΣ)

+ Ċb (πa + (iXaF ) · (iĊΣ)) + (iXaF ) · (iXbΣ).
(5.69 revisited)
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The component forms of (5.54) and (5.69) given by

∇Ċ

(
πa − F abΣbcĊ

c
)

= −qF abĊb −
1

2
Σbc∂aFbc, (5.70)

∇ĊS
ab = −Ċa

(
πb − F bcΣcdĊ

d
)

+ Ċb
(
πa − F acΣcdĊ

d
)

+ F bcΣ a
c − F acΣ b

c .

(5.71)

These equations agree with those derived by Suttorp and de Groot, i.e. equations

(38) and (39) in Ref. [49] with a simple matching of symbols1, given that the

momenta satisfy the condition

πa = P a + F abΣbc

(
P c

ĊdP d
+ Ċc

)
, (5.72)

where P a are the components of the momentum used by Suttorp and de Groot.

As to what is behind this relationship between π and P , note that the defini-

tion of the momentum P used by Suttorp and de Groot [49] (and similarly used

in the Nakano-Tulczyjew condition (see Section 5.2.8)) is

P a(λ) = −
∫

Σλ

T abNb ? Ñ, (5.73)

where T ab is the stress-energy-momentum tensor and Σλ is a family of spacelike

hyperplanes for different values of λ along C (see Figure 5.1) with unit normal

1The equations given in Suttorp and de Groot [49] are

dPα/ds = (e/c)Fαβ(X)Uβ +
1

2
{∂αF βγ}Mβγ + (d/ds){Fαβ(X)MβγP

γ/UεP
ε},

dSαβ/ds = Fαγ(X)M β
γ − F βγ(X)M α

γ + PαUβ − P βUα−

− Fαγ(X)MγεP
εUβ/UζP

ζ + F βγ(X)MγεP
εUα/UζP

ζ .

The above equations are written as presented in Ref. [49] and hence the notation in this footnote

is independent of the notation in the rest of this thesis. The relations between these quantities

and those in the rest of the thesis are as follows: particle velocity Uα corresponds to Ċa, dipole

components Mαβ correspond to Σab, spin components Sαβ correspond to Sab. The momentum

Pα is related to the candidate momentum πa as is shown in (5.72). Also important to note is

that the electromagnetic field tensor used in Ref. [49] is of the opposite sign to that used in

this thesis, i.e. Fαβ(X) corresponds to −F ab.
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N = P
|P | . Since the stress-energy-momentum tensor T ab is related to the stress-

energy-momentum forms Ta via Ta = ? (T (Xa,−)), note that for test 0-form

f̂ , ∫
M

Ta ∧ Ñ f̂ =

∫
M

? (T (Xa,−)) ∧ Ñ f̂ , (5.74)

which via a star-pivot and a manipulation of the interior operator gives∫
M

Ta ∧ Ñ f̂ = −
∫
M

(T (Xa, N)) ? 1f̂ . (5.75)

The vector N is normalised as g(N,N) = −1, so the volume form can be written

?1 = −Ñ ∧ ?Ñ and hence∫
M

Ta ∧ Ñ f̂ =

∫
M

(T (Xa, N)) Ñ ∧ ?Ñ f̂ . (5.76)

Since Ñ = − dλ
|dλ| , the integral can be split into a piece along the worldline C

and another over the hyperplane Σλ via∫
M

Ta ∧ Ñ f̂ = −
∫
C

dλ

|dλ|

∫
Σλ

T abNb ? Ñ f̂

= −
∫
C

P a dλ

|dλ|
f̂ , (5.77)

and stripping off the test forms yields the relation

TaD ∧ Ñ = −P aCD ∧ Ñ (5.78)

with Na = Pa

|P | .

Hence given the stress tensor TaD, the momentum 4-vector components Pa

crossing the leaves of a local spacetime foliation with unit future-pointing timelike

normal 4-vector n are given by

TaD ∧ ñ = −PaCD ∧ ñ, (5.79)

the relationship between P and π begins to clear. Suttorp and de Groot [49] (as

well as Nakano [42] and Tulczyjew [43]) chose the foliation such that the normal

N restricted to C pointed in the direction of the particle’s 4-momentum. In this
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C

N
N1

N2

N3

λ = 1

λ = 2

λ = 3

Figure 5.1: Illustrating multiple possible foliations with normals N , N. N here is

parallel to Ċ, similar to the foliation which gave πa rather than P a. Several such

slices along the worldline are shown, each with a corresponding constant λ.
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chapter, the foliation was chosen such that the normal points in the direction of

the worldline C. Indeed, examination of (5.79) using n = P and TaD given by

(5.50) yields

TaD ∧ P̃ = −P aCD ∧ P̃ (5.80)

(−g(π,Xa)CD + iĊ (iXaF ∧ ?Σ) ∧ ?CD) ∧ P̃ = −P aCD ∧ P̃ , (5.81)

which after expanding and star-pivoting the second term on the LHS becomes

−g(π,Xa)CD ∧ P̃ − CD ∧ ?
(
iĊ (iXaF ∧ ?Σ) ∧ P̃

)
= −P aCD ∧ P̃ . (5.82)

Since CD ∧α = −CD ∧
(
α̃ · Ċ

) ˜̇C for 1-forms α, the distributions can be stripped

from (5.82) leaving

πa
(
P · Ċ

)
+ iĊ ?

(
iĊ (iXaF ∧ ?Σ) ∧ P̃

)
= P a

(
P · Ċ

)
. (5.83)

The second term of (5.83) can be simplified as follows:

iĊ ?
(
iĊ (iXaF ∧ ?Σ) ∧ P̃

)
= iĊ ? iĊ

(
iXaF ∧ ?Σ ∧ Π⊥

Ċ
P̃
)

(5.84)

= iĊ ? iĊ

(
Σ ∧ ?

(
iXaF ∧ Π⊥

Ċ
P̃
))

(5.85)

= iĊ ? iĊ

(
−i

ĩXaF
iΠ⊥

Ċ
PΣ ? 1

)
, (5.86)

using a star-pivot and properties of the internal contraction. Since i
ĩXaF

iΠ⊥
Ċ
PΣ is

a 0-form and ? ? ˜̇C = ˜̇C, (5.86) is simply

i
ĩXaF

iΠ⊥
Ċ
PΣ = F ab

(
Π⊥
Ċ
P
)c

Σcb, (5.87)

which substituting back into (5.83) gives

πa
(
P · Ċ

)
+ F ab

(
Π⊥
Ċ
P
)c

Σcb = P a
(
P · Ċ

)
. (5.88)

Noting that (
Π⊥
Ċ
P
)c

= P c +
(
P · Ċ

)
Ċc, (5.89)

equation (5.88) can be rewritten to become

πa = P a − F abΣcb

 P c(
P · Ċ

) + Ċc

 , (5.90)

71



5.2. Deriving Equations of Motion for a Classical Spinning Particle Using
Distributions

which is nothing more than relationship (5.72) after an adjustment of indices.

Having confirmed that these equations match those found in the literature, a

choice remains as to which momentum to use. Since the momentum P is pre-

ferred by the form of the Nakano-Tulczyjew condition, henceforth the equations

of motion will be stated in terms of P , rather than π.

5.2.8 Spin Conditions and Relating the Magnetic Dipole

Moment to Quantum Mechanical Spin

The equations of motion in terms of momentum P a and spin Sab are given in

component form by

d

dτ

(
P a +

F abΣbcP
c

ĊdPd

)
= −qF abĊb −

1

2
Σbc∂aFbc, (5.91)

d

dτ
Sab = −Ċa

(
P b +

F bcΣcdP
d

ĊePe

)
+ Ċb

(
P a +

F acΣcdP
d

ĊePe

)
+ F bcΣ a

c − F acΣ b
c .

(5.92)

These equations are not, however, a complete system. A relationship between

P a and Sab is required, as well as a relationship between P a and Ċa, and ad-

ditional information about Σab. The relationship between P a and Sab has been

considered before and two main choices have come to light; firstly the Frenkel

condition [40] iĊS = 0 = ĊaSab and then the Nakano-Tulczyjew [42, 43] condi-

tion iPS = 0 = P aSab. The Frenkel condition, whilst being simple and intuitive,

has been found to have issues when modelled fully; for instance particles have

helical solutions in field-free systems (sometimes called Zittebewegung) [47, 48]

and hence the Nakano-Tulczyjew condition is preferred (see for instance Dixon

[44–46] and Suttorp and de Groot [49]).

A particle with quantum mechanical spin has a magnetic dipole moment re-

lated to the spin by the gyromagnetic ratio gq
2M0

. Hence it is supposed that the

electric dipole moment µe of the particle is zero and hence Σab = gq
2M0

Sab where g
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is the so-called g-factor of the particle. The system of equations is now

d

dτ

(
P a +

gq

2M0

F abSbcP
c

ĊdPd

)
= −qF abĊb −

gq

4M0

Sbc∂aFbc, (5.93)

d

dτ
Sab = −Ċa

(
P b +

gq

2M0

F bcScdP
d

ĊePe

)
+ Ċb

(
P a +

gq

2M0

F acScdP
d

ĊePe

)
+

gq

2M0

F bcS a
c −

gq

2M0

F acS b
c , (5.94)

P aSab = 0. (5.95)

Using the Nakano-Tulczyjew condition (5.95), the system simplifies somewhat:

d

dτ
P a = −qF abĊb −

gq

4M0

Sbc∂aFbc, (5.96)

d

dτ
Sab = −ĊaP b + ĊbP a +

gq

2M0

F bcS a
c −

gq

2M0

F acS b
c , (5.97)

P aSab = 0. (5.95 revisited)

The Nakano-Tulczyjew condition (5.95) can also be differentiated in order to

find the relationship between P and Ċ (as per the method in [49]):

d

dτ
P aSab + P a d

dτ
Sab = 0, (5.98)

and inserting (5.96) and (5.97) gives

− qF acĊcSab −
gq

4M0

(∂aFcd)S
cdSab − P aĊaPb + ĊbP

aPa −
gq

2M0

P aF c
a Scb = 0.

(5.99)

Dividing through by P eĊe results in the condition that P must satisfy:

Pb = −qF
acĊcSab

P eĊe
− gq

4M0

(∂aFcd)S
cdSab

P eĊe
+
ĊbP

aPa

P eĊe
− gq

2M0

P aF c
a Scb

P eĊe
. (5.100)

The P aPa term can be replaced as follows: by multiplying (5.99) by Ċb and noting

that ĊaĊa = −1, P aPa is found to be of the form

P aPa = −qF acĊcSabĊ
b − gq

4M0

(∂aFcd)S
cdSabĊ

b − (P aĊa)
2 − gq

2M0

P aF c
a ScbĊ

b.

(5.101)
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Inserting this into the momentum condition (5.100) and rearranging gives:

Pb = −P aĊaĊb −

(
Sab + SadĊ

dĊb

)
P eĊe

(
qF acĊc +

gq

4M0

∂aFcdS
cd +

gq

2M0

P cF a
c

)
.

(5.102)

Hence the full system of equations of a particle with spin is

d

dτ
P a = −qF abĊb −

gq

4M0

Sbc∂aFbc, (5.96 revisited)

d

dτ
Sab = −ĊaP b + ĊbP a +

gq

2M0

F bcS a
c −

gq

2M0

F acS b
c , (5.97 revisited)

P aSab = 0, (5.95 revisited)

P a = −P bĊbĊ
a −

(
S a
b + SbdĊ

dĊa
)

P eĊe

(
qF bcĊc +

gq

4M0

∂bFcdS
cd +

gq

2M0

P cF b
c

)
.

(5.102 revisited)

Note that the first term of (5.96) on the RHS corresponds to the usual Lorentz

force, while the second term corresponds to a Stern-Gerlach field-spin interaction,

particularly evident in electromagnetic fields with high field gradients. The equa-

tion (5.97) is a generalisation of the Thomas-Bargmann-Michel-Telegdi (TBMT)

equation (see Ref. [25] or p561-565 of Ref. [26]).

5.2.9 Linearising the Equations of Motion for an Electron

Consider now the motion of a classical electron with charge q = qe, rest mass

M0 = me and g = 2. The equations of motion are hence

d

dτ
P a = −qeF

abĊb −
qe

2me

Sbc∂aFbc, (5.103)

d

dτ
Sab = −ĊaP b + ĊbP a +

qe

me

F bcS a
c −

qe

me

F acS b
c , (5.104)

P aSab = 0, (5.105)

P a = −P bĊbĊ
a −

(
S a
b + SbdĊ

dĊa
)

P eĊe

(
qeF

bcĊc +
qe

me

∂bFcdS
cd +

qe

me

P cF b
c

)
.

(5.106)
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These equations of motion do not explicitly give P a in terms of Ċa, since (5.106)

is merely a condition that P a must satisfy. In order to negate this problem,

the equations of motion are linearised. There are two options for linearisation;

linearise the equations in F ab similar to the approach used in Ref. [49] or linearise

in Sab, since spin is inherently such a small quantity. Since the F ab-linearised

equations of motion are already considered in Ref. [49], this chapter is concerned

with linearising in Sab.

Firstly consider that in the spin-free case, the equations of motion are

d

dτ
P a = −qF abĊb, (5.107)

0 = −ĊaP b + ĊbP a, (5.108)

P a = −P bĊbĊ
a = meĊ

a. (5.109)

So with the ansatz P a = meĊ
a + Pa(S) + O(S2), where Pa(S) contains terms

of first order in Sab, consider the P a condition (5.106). This yields

Pa = PbĊbĊ
a + O(S2) (5.110)

and hence to first order in Sab, Pa must be parallel to Ċa. Hence the ansatz

becomes

P a = (me + M(S)) Ċa, (5.111)

where M(S) = −PaĊa is first order in Sab. M can be found explicitly since

me + M(S) = −P aĊa (5.112)

and noting that the rest mass me is constant, i.e. dme

dτ
= 0,

dM(S)

dτ
= −dP

a

dτ
Ċa − P adĊa

dτ

= qeĊaF
abĊb +

qe

2me

SbcĊa∂
aFbc − (me + M(S)) ĊadĊa

dτ
. (5.113)

The first term here is zero since F ab is antisymmetric and the last term is zero

since the 4-velocity Ċa and 4-acceleration C̈a of the particle are orthogonal. For

the remaining term, noting that Ċa∂
a = d

dτ
,

SbcĊa∂
aFbc = Sbc

d

dτ
Fbc =

d

dτ

(
SbcFbc

)
− Fbc

d

dτ
Sbc, (5.114)
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and substituting (5.104) with (5.111) gives

SbcĊa∂
aFbc =

d

dτ

(
SbcFbc

)
− 2

qe

me

FbcF
cdS b

d . (5.115)

Since FbcF
cd is symmetric, FbcF

cdS b
d = 0; hence

SbcĊa∂
aFbc =

d

dτ

(
SbcFbc

)
, (5.116)

so mass M(S) can be written

M(S) =
qe

2me

SbcFbc + O(S2). (5.117)

The ansatz for P a to first order in Sab is thus

P a =

(
me +

qe

2me

SbcFbc

)
Ċa. (5.118)

Inserting (5.118) into (5.104) gives

d

dτ
Sab =

qe

me

(
F bcS a

c − F acS b
c

)
+ O(S2). (5.119)

In order to find the analogous equation for P a, note that applying d
dτ

to (5.118)

gives

d

dτ
P a =

qe

2me

d

dτ

(
SbcFbc

)
Ċa +

(
me +

qe

2me

SbcFbc

)
d

dτ
Ċa

=
qe

2me

SbcĊaĊd∂
dFbc +

(
me +

qe

2me

SbcFbc

)
d

dτ
Ċa, (5.120)

using (5.118). Substituting (5.120) into (5.103) and rearranging gives

d

dτ
Ċa =

1

me + qe
2me

SbcFbc

[
−qeF

abĊb −
qe

2me

Sbc∂aFbc −
qe

2me

SbcĊaĊd∂
dFbc

]
.

(5.121)

Noting that Sbc∂aFbc + SbcĊaĊd∂
dFbc = Sbc

(
Π⊥
Ċ

)ad
∂dFbc, linearising (5.121) re-

sults in

d

dτ
Ċa = −

(
1− qe

2m2
e

SbcFbc

)
qe

me

F abĊb −
qe

2m2
e

Sbc
(
Π⊥
Ċ

)ad
∂dFbc + O(S2).

(5.122)
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To first order in Sab, the system of equations governing the motion of a classical

electron with spin are hence

d

dτ
Ċa = −

(
1− qe

2m2
e

SbcFbc

)
qe

me

F abĊb −
qe

2m2
e

Sbc
(
Π⊥
Ċ

)ad
∂dFbc, (5.123)

d

dτ
Sab =

qe

me

(
F bcS a

c − F acS b
c

)
, (5.124)

with momentum and spin satisfying the conditions

P a =

(
me +

qe

2me

SbcFbc

)
Ċa, (5.118 revisited)

P aSab = 0. (5.95 revisited)

Interestingly, since to first order in Sab the momentum is parallel to the velocity,

satisfying the Nakano-Tulczyjew condition also satisfies the Frenkel condition

ĊaSab = 0.

Hence in order for the Stern-Gerlach terms of (5.123) to be noticeable, a

physical situation with high field gradient is required.

5.3 Motion of an Electron with Spin in a Plasma

Wave

Since the electric field generated by a plasma wave near wave breaking has very

large gradients, the behaviour of the equations of motion due to the spin terms

should be noticeable in this context. This section hence applies the equations

of motion (5.123) and (5.124) to a system of a plasma wave moving in the z-

direction as in Section 4.2. Note that since the equation for the plasma wave

from Chapter 4 is used, the spin effects of the particles that make up the wave

itself are neglected.

Hence the system contains plasma wave electrons with 4-velocity 1-form

Ṽe = ν(ξ)dζ −
√
ν(ξ)2 − γ2dξ, (4.2 revisited)

where γ is the Lorentz factor of the wave, ν is a dimensionless quantity akin to the

electric potential, and ξ = z−vt, ζ = −t+vz are coordinates for the plasma wave

77



5.3. Motion of an Electron with Spin in a Plasma Wave

frame moving in the z direction with speed v. The electric field of the plasma

wave is Ez = me

qeγ2
ν ′(ξ) where ν satisfies the equation (4.49). Despite the fact that

Chapter 4 considers a nonlinear electrodynamical theory, this chapter uses only

the linear Maxwell Lagrangian L = LM = X/2. By neglecting the higher order

terms that arise from nonlinear electrodynamics, it is possible to focus solely on

the effects of the Stern-Gerlach-like terms in the equations of motion. Thus (4.49)

for Maxwell electrodynamics is simply

m2
e

2q2
eγ

4
ν ′2 −meZnion

(
v
√
ν2 − γ2 − ν + γ

)
= 0, (5.125)

for a maximum amplitude wave, where Z = − qion
qe

= qion
e

is the degree of ionisa-

tion of the plasma. For a system where the only nonzero electromagnetic field

component is

Ez =
me

qeγ2
ν ′, (4.15 revisited)

i.e.

F03 = −F30 = Ez and Fab = 0 otherwise, (5.126)

the components {C0, C1, C2, C3} i.e. {t, x, y, z} of the equation of motion (5.123)

become

C̈0 = −
(

1− qe

m2
e

S03F03

)
qe

me

F 03Ċ3 −
qe

m2
e

(
v + Ċ0

(
Ċ3 − vĊ0

))
F ′03S

03,

(5.127)

C̈1 = − qe

m2
e

Ċ1
(
Ċ3 − vĊ0

)
F ′03S

03, (5.128)

C̈2 = − qe

m2
e

Ċ2
(
Ċ3 − vĊ0

)
F ′03S

03, (5.129)

C̈3 =

(
1− qe

m2
e

S03F03

)
qe

me

F 03Ċ0 −
qe

m2
e

(
1 + Ċ3

(
Ċ3 − vĊ0

))
F ′03S

03, (5.130)

since d
dτ
Ċ = C̈ and

Ċd∂dF03 = Ċ0∂0F03 + Ċ3∂3F03

=
(
Ċ3 − vĊ0

)
F ′03. (5.131)
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Interestingly the S03 component is the only spin component that appears

in these equations and hence the only component of (5.124) it is necessary to

consider is the S03 one. For completeness, however, all components of the spin

equation of motion are

Ṡ01 = − qe

me

F 03S 1
3 , Ṡ13 = − qe

me

F 03S 1
0 , (5.132)

Ṡ02 = − qe

me

F 03S 2
3 , Ṡ23 = − qe

me

F 03S 2
0 , (5.133)

Ṡ03 = 0, Ṡ12 = 0, (5.134)

the solutions to which are found to be

S01 = −C3 coshX− C4 sinhX, S13 = C4 coshX + C3 sinhX, (5.135)

S02 = −C5 coshX− C6 sinhX, S23 = C6 coshX + C5 sinhX, (5.136)

S03 = C1, S12 = C2, (5.137)

where X = − qe
me

∫
F 03dτ = 1

γ2

∫
dµ
dξ
dτ and each Cn is simply an integration con-

stant. Since, however, the equations of motion depend only on S03, the main fact

of importance is that S03 is constant. The other components are irrelevant so

long as the constants Cn are chosen to satisfy the Frenkel condition ĊaS
ab = 0.

Henceforth it is assumed that S03 and S12 are arbitrary and that the constants

C3,C4,C5,C6 have been chosen to satisfy these conditions. Choosing S03 to be

a non-zero constant, the spin equations can hence be neglected, condensing the

system of equations to (5.127), (5.128), (5.129) and (5.130). Converting these

into the wave frame presents some simplification. The wave-frame coordinates

are {γζ, x, y, γξ} for a plasma wave travelling at speed v in the z direction, where

ζ = −t+ vz and ξ = z− vt. Hence writing Cξ = C3− vC0 and Cζ = −C0 + vC3

the equations of motion (5.127), (5.128), (5.129) and (5.130) become

C̈0 = −
(

1− qe

m2
e

S03F03

)
qe

me

F 03Ċ3 − qe

m2
e

(
v + Ċ0Ċξ

)
F ′03S

03, (5.138)

C̈1 = − qe

m2
e

Ċ1ĊξF ′03S
03, (5.139)

C̈2 = − qe

m2
e

Ċ2ĊξF ′03S
03, (5.140)

C̈3 = −
(

1− qe

m2
e

S03F03

)
qe

me

F 03Ċ0 − qe

m2
e

(
1 + Ċ3Ċξ

)
F ′03S

03, (5.141)
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and since C̈ξ = C̈3 − vC̈0 and C̈ζ = −C̈0 + vC̈3, these equations can be written

C̈ζ =

(
1− qeS

03

m2
e

F03

)
qe

me

F 03Ċξ − qeS
03

m2
e

ĊζĊξF ′03, (5.142)

C̈1 = −qeS
03

m2
e

Ċ1ĊξF ′03, (5.143)

C̈2 = −qeS
03

m2
e

Ċ2ĊξF ′03, (5.144)

C̈ξ =

(
1− qeS

03

m2
e

F03

)
qe

me

F 03Ċζ − qeS
03

m2
e

(
γ−2 + (Ċξ)2

)
F ′03. (5.145)

Substituting in (4.15), the equations of motion for a classical electron with spin

in the electric field of a maximum amplitude plasma wave are

C̈ζ = −
(

1− S03

meγ2
ν ′
)
ν ′

γ2
Ċξ − S03

meγ2
ĊζĊξν ′′, (5.146)

C̈1 = − S03

meγ2
Ċ1Ċξν ′′, (5.147)

C̈2 = − S03

meγ2
Ċ2Ċξν ′′, (5.148)

C̈ξ = −
(

1− S03

meγ2
ν ′
)
ν ′

γ2
Ċζ − S03

meγ2

(
γ−2 + (Ċξ)2

)
ν ′′, (5.149)

where ν satisfies (5.125), and to distinguish the derivatives, dots represent proper

time derivatives and dashes represent derivatives with respect to ξ.

5.3.1 A Particular Solution to the Equations of Motion

for a Plasma

In order to simplify notation, note that on the worldline C of the particle, C1 = x,

C2 = y etc. Since the equations of motion of a particle must be restricted only

to its worldline, the equations of motion (5.146)-(5.149) are written

ζ̈ = −
(
1− S̄ν ′

) ν ′
γ2
ξ̇ − S̄ζ̇ ξ̇ν ′′, (5.150)

ẍ = −S̄ẋξ̇ν ′′, (5.151)

ÿ = −S̄ẏξ̇ν ′′, (5.152)

ξ̈ = −
(
1− S̄ν ′

) ν ′
γ2
ζ̇ − S̄

(
γ−2 + (ξ̇)2

)
ν ′′, (5.153)
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where S̄ = S03

meγ2
.

Since a general solution to these equations is not apparent, a particular solu-

tion is sought in order to investigate the impact of spin on the path of a particle.

Clearly a particular solution can be found for constant ξ = ξC. These solutions

correspond to particles moving at the same speed as the plasma wave in the z-

direction so the particle experiences a constant electric field EC = me

qeγ2
dν
dξ

∣∣∣
ξ=ξC

.

This section is hence concerned with the stability of this particular solution.

Firstly, the particular solution for constant ξ (equal to ξC), is given by solving

the equations (5.150)-(5.153) with ξ̇ = ξ̈ = 0:

ζ̈ = 0, (5.154)

ẍ = 0, (5.155)

ÿ = 0, (5.156)

0 = −
(
1− S̄ν ′C

) ν ′C
γ2
ζ̇ − S̄γ−2ν ′′C, (5.157)

where ν ′C = dν
dξ

∣∣∣
ξ=ξC

and so on. Integrating these equations gives

ζ(τ) = − S̄(
1− S̄ν ′C

) ν ′′C
ν ′C
τ + ζ0, (5.158)

x(τ) = ẋ0τ + x0, (5.159)

y(τ) = ẏ0τ + y0, (5.160)

ξ = ξC, (5.161)

where ζ0, x0, y0, ẋ0 and ẏ0 are also constants. It is possible to substitute one of

ẋ0, ẏ0 for the other since the particular solution is normalised, i.e.

−

(
S̄(

1− S̄ν ′C
) ν ′′C
ν ′C

)2

+ ẋ2
0 + ẏ2

0 = −1. (5.162)

Note that it is impossible to satisfy the normalisation condition with S̄ = 0;

i.e. this normalisable trajectory does not exist for a spinless particle. Similarly

the derivatives ν ′C and ν ′′C must be nonzero. In order to simplify notation it is

assumed that ẋ0 and ẏ0 have been chosen to satisfy (5.162). Since the equations
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E C1

C2

C3

ξ
x

New
trajectories

Figure 5.2: Illustration of several trajectories C1, C2, C3 given by different choices

of ξC. Whilst the plasma electrons travel along ξ, these solutions travel transverse

to the wave’s velocity, “surfing” along the wave.

of motion depend on the velocity and not position of the particles (other than

ξC), the particular solution considered henceforth is

ζsol(τ) = − S̄(
1− S̄ν ′C

) ν ′′C
ν ′C
τ, (5.163)

xsol(τ) = ẋ0τ, (5.164)

ysol(τ) = ẏ0τ, (5.165)

ξsol = ξC. (5.166)

This solution corresponds to a particle travelling in the z-direction with speed

v but with the transverse motion given by x0 and y0; in essence such a particle

would “surf” along the wave. Three sample trajectories are shown in Figure 5.2.

Note that due to the normalisation condition (5.162), the transverse trajectories

cannot exist for all ξC : the minima and maxima of the wave correspond to zeroes

of ν ′C for instance. These choices of ν ′C lead to no solutions of the normalisation

condition and are hence invalid.
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5.3.2 Perturbing around the Particular Solution

In order to perturb around these solutions, consider

ζ(τ) = ζsol(τ) + ε∆ζ(τ) = − S̄(
1− S̄ν ′C

) ν ′′C
ν ′C
τ + ε∆ζ(τ), (5.167)

x(τ) = xsol(τ) + ε∆x(τ) = ẋ0τ + ε∆x(τ), (5.168)

y(τ) = ysol(τ) + ε∆y(τ) = ẏ0τ + ε∆y(τ), (5.169)

ξ(τ) = ξsol + ε∆ξ(τ) = ξC + ε∆ξ(τ), (5.170)

where ε is a small constant and the ∆ terms correspond to perturbations. Sub-

stituting (5.170) into ν and its derivatives and taking Taylor series gives:

ν(ξC + ε∆ξ) = νC + εν ′C∆ξ + O(ε2), (5.171)

ν ′(ξC + ε∆ξ) = ν ′C + εν ′′C∆ξ + O(ε2), (5.172)

ν ′′(ξC + ε∆ξ) = ν ′′C + εν ′′′C ∆ξ + O(ε2). (5.173)

Hence inserting the perturbed solutions (5.167)-(5.170) along with ν and its

derivatives (5.171)-(5.173) into the equations of motion (5.150)-(5.153) can be

simplified to

ε∆̈ζ =

[
−
(
1− S̄ν ′C

) ν ′C
γ2

+
S̄2

1− S̄ν ′C
(ν ′′C)2

ν ′C

]
ε∆̇ξ + O(ε2), (5.174)

ε∆̈x =
[
−S̄ẋ0ν

′′
C

]
ε∆̇ξ + O(ε2), (5.175)

ε∆̈y =
[
−S̄ẏ0ν

′′
C

]
ε∆̇ξ + O(ε2), (5.176)

ε∆̈ξ =

[
−(1− S̄ν ′C)

ν ′C
γ2

]
ε∆ζ̇ +

[(
1− 2S̄ν ′C
1− S̄ν ′C

)
S̄

(ν ′′C)2

γ2ν ′C
− S̄ ν

′′′
C

γ2

]
ε∆ξ + O(ε2).

(5.177)

Equation (5.174) can be integrated to give

∆̇ζ =

[
−
(
1− S̄ν ′C

) ν ′C
γ2

+
S̄2

1− S̄ν ′C
(ν ′′C)2

ν ′C

]
∆ξ + O(ε), (5.178)

and hence (5.177) can be written

ε∆̈ξ =

[
−(1− S̄ν ′C)

ν ′C
γ2

] [
−
(
1− S̄ν ′C

) ν ′C
γ2

+
S̄2

1− S̄ν ′C
(ν ′′C)2

ν ′C

]
ε∆ξ

+

[(
1− 2S̄ν ′C
1− S̄ν ′C

)
S̄

(ν ′′C)2

γ2ν ′C
− S̄ ν

′′′
C

γ2

]
ε∆ξ + O(ε2). (5.179)

83



5.3. Motion of an Electron with Spin in a Plasma Wave

Collecting like terms, this can be written

ε∆̈ξ =

[
(1− S̄ν ′C)2 (ν ′C)2

γ4
+

(
1− S̄ν ′C
ν ′C

− S̄

1− S̄ν ′C

)
S̄(ν ′′C)2

γ2
− S̄ ν

′′′
C

γ2

]
ε∆ξ + O(ε2),

(5.180)

hence the equations of motion to first order in ε are

∆̈ζ =

[
−
(
1− S̄ν ′C

) ν ′C
γ2

+
S̄2

1− S̄ν ′C
(ν ′′C)2

ν ′C

]
∆̇ξ, (5.181)

∆̈x =
[
−S̄ẋ0ν

′′
C

]
∆̇ξ, (5.182)

∆̈y =
[
−S̄ẏ0ν

′′
C

]
∆̇ξ, (5.183)

∆̈ξ =

[
(1− S̄ν ′C)2 (ν ′C)2

γ4
+

(
1− S̄ν ′C
ν ′C

− S̄

1− S̄ν ′C

)
S̄(ν ′′C)2

γ2
− S̄ ν

′′′
C

γ2

]
∆ξ. (5.184)

Clearly these equations can be written in the form

∆̈ζ = A1∆̇ξ, (5.185)

∆̈x = A2∆̇ξ, (5.186)

∆̈y = A3∆̇ξ, (5.187)

∆̈ξ = A4∆ξ, (5.188)

where the constants An are given by

A1 =−
(
1− S̄ν ′C

) ν ′C
γ2

+
S̄2

1− S̄ν ′C
(ν ′′C)2

ν ′C
, (5.189)

A2 =− S̄ẋ0ν
′′
C, (5.190)

A3 =− S̄ẏ0ν
′′
C, (5.191)

A4 =(1− S̄ν ′C)2 (ν ′C)2

γ4
+

(
1− S̄ν ′C
ν ′C

− S̄

1− S̄ν ′C

)
S̄(ν ′′C)2

γ2
− S̄ ν

′′′
C

γ2
. (5.192)

Since these An are constant for a given choice of ξC, the equations of motion

prove simple to integrate. Clearly ∆̇χ = A1∆ξ + C1, ∆̇x = A2∆ξ + C2 and

∆̇y = A3∆ξ + C3 for some integration constants Cn and

∆ξ = C4e
√
A4τ + C5e

−
√
A4τ . (5.193)
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The full set of perturbed solutions are hence

∆ζ = A1
C4√
A4

e
√
A4τ + A1

C5√
A4

e−
√
A4τ , (5.194)

∆x = A2
C4√
A4

e
√
A4τ + A2

C5√
A4

e−
√
A4τ , (5.195)

∆y = A3
C4√
A4

e
√
A4τ + A3

C5√
A4

e−
√
A4τ , (5.196)

∆ξ = C4e
√
A4τ + C5e

−
√
A4τ , (5.197)

where the An are defined (5.189)-(5.192) and the Cn are integration constants.

In general the perturbations also contain a linear component in τ , though these

are omitted here for brevity.

5.3.3 Stability of the Perturbed Solutions

The stability of the system thus depends on the sign of A4, that is (5.192). If A4

is positive, the perturbations will diverge exponentially (unless the integration

constant C4 is zero); if A4 is negative, the perturbations will oscillate. Hence A4

must be studied more closely;

A4 = (1− S̄ν ′C)2 (ν ′C)2

γ4
+

(
1− S̄ν ′C
ν ′C

− S̄

1− S̄ν ′C

)
S̄(ν ′′C)2

γ2
− S̄ ν

′′′
C

γ2
,

(5.192 revisited)

however attempting to find the overall sign of this quantity is not a simple task.

In order to simplify matters, (5.192) is written

A4 =

(
ν ′C
γ2

)2

+

((
ν ′′C
ν ′C

)2

− 2

(
ν ′C
γ

)2

− ν ′′′C

ν ′C

)
S̄ν ′C
γ2

+ O(S̄2), (5.198)

and then it is assumed that that O(S̄2) can be neglected1 since S̄ is assumed to

be small. As the square root of (5.192) is given by

√
A4 =

|ν ′C|
γ2

+
1

2

ν ′C
|ν ′C|

((
ν ′′C
ν ′C

)2

− 2

(
ν ′C
γ

)2

− ν ′′′C

ν ′C

)
S̄ + O(S̄2), (5.199)

1The validity of this assumption is tested in the next section.
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the first exponential of (5.197) is

e
√
A4τ = exp

[(
|ν ′C|
γ2

+
1

2

ν ′C
|ν ′C|

((
ν ′′C
ν ′C

)2

− 2

(
ν ′C
γ

)2

− ν ′′′C

ν ′C

)
S̄ + O(S̄2)

)
τ

]

= e
|ν′C|
γ2

τ × exp

[
1

2

ν ′C
|ν ′C|

((
ν ′′C
ν ′C

)2

− 2

(
ν ′C
γ

)2

− ν ′′′C

ν ′C

)
S̄τ

]
× eO(S̄2). (5.200)

Since S̄ is considered to be a small parameter, exp
[
O(S̄2)

]
≈ 1 and

e
√
A4τ ≈

(
1 +NCS̄τ

)
e
|ν′C|
γ2

τ
, (5.201)

to first order in S̄, where NC = 1
2

ν′C
|ν′C|

((
ν′′C
ν′C

)2

− 2
(
ν′C
γ

)2

− ν′′′C
ν′C

)
. Hence the ξ

perturbation (5.197) to first order in S̄ is

∆ξ = C4

(
1 +NCS̄τ

)
e
|qeEC|
me

τ + C5

(
1−NCS̄τ

)
e−
|qeEC|
me

τ . (5.202)

Hence the perturbation ∆ξ is unstable (to first order in S03) as the first expo-

nential will diverge as τ increases, unless C4 = 0. Since the other three perturba-

tions are closely linked to ∆ξ, the complete perturbation is also divergent (unless

C4=0).

5.3.4 Consistency Check

To confirm that the assumption made in the previous section is valid, this section

confirms the relative sizes of the O(S̄2) terms of A4 relative to the zeroth and

first order terms.

Hence consider the O(S̄2) part of A4, given by subtracting the zeroth and first

order terms (5.198) from the full expression (5.192) and dropping the C subscripts

for notational simplicity:

A4(S2) =
S̄2

γ2(1− S̄ν ′)

[
(1− S̄ν ′)(ν ′)4

γ2
− (2− S̄ν ′)(ν ′′)2

]
. (5.203)

Since the assumption was made that the second order and above terms were much

smaller than the first and zeroth order, dividing (5.203) by (5.198) gives the size

of the second order terms relative to the first and zeroth order. The relative size
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R of the second order and higher terms compared to the first and zeroth order

terms of A4 can hence be written

R =
S̄2ν ′

(1− S̄ν ′)

[
(ν ′)4 − 2γ2(ν ′′)2 + S̄ν ′ (γ2(ν ′′)2 − (ν ′)4)

(ν ′)3 + S̄ (γ2(ν ′′)2 − 2(ν ′)4 − γ2ν ′′′ν ′)

]
. (5.204)

Analytical investigation of (5.204) is not a simple task, however, and in order to

progress numerical methods must be used. In order to find appropriate values for

the quantities involved, the ν ′ terms can be replaced with electric field E terms,

and similarly ν ′′ and ν ′′′ can be replaced via the plasma wave equation (5.125)

and its derivatives. Consulting equation (5.125) constraining ν,

m2
e

2q2
eγ

4
ν ′2 −meZnion

(
v
√
ν2 − γ2 − ν + γ

)
= 0, (5.125 revisited)

differentiation yields the relationships

ν ′′ =
q2

eγ
4Znion

me

(
v

ν√
ν2 − γ2

− 1

)
, (5.205)

ν ′′′ = −q
2
eγ

6vZnion

me

ν ′

(ν2 − γ2)3/2
. (5.206)

Solving (5.125) algebraically for ν in terms of ν ′ gives

ν = −γ2
(
k1(ν ′)2 − γ

)
± γ2v

√
(k1(ν ′)2 − γ)2 − 1, (5.207)

where k1 = me

2q2eγ
4Znion

. Hence the system of equations depends on the quantities

S03 = −S03 = −Stz, me, v, qe, Z, nion, E. However, scaling ξ via the substitution

ξ = ξ̂S̄ so that d
dξ

= 1
S̄
d

dξ̂
, and so on for the higher derivatives, allows (5.204) to

be written

R =
ν̂ ′

(1− ν̂ ′)

(ν̂ ′)4 − 2γ2(ν̂ ′′)2 + ν̂ ′
(
γ2(ν̂ ′′)2 − (ν̂ ′)4

)
(ν̂ ′)3 + γ2(ν̂ ′′)2 − 2(ν̂ ′)4 − γ2ν̂ ′′′ν̂ ′

 , (5.208)

where ν̂ ′ = d

dξ̂
ν(ξ). Thus ν and its higher derivatives become

ν = −γ2
(
k2(ν̂ ′)2 − γ

)
± γ2v

√(
k2(ν̂ ′)2 − γ

)2

− 1 = ν±, (5.209)

ν̂ ′′ =
1

2k2

(
v

ν√
ν2 − γ2

− 1

)
, (5.210)

ν̂ ′′′ = − 1

2k2

vγ2 ν̂ ′

(ν2 − γ2)3/2
, (5.211)
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where k2 = k1
S̄2 . Hence R now depends on the three parameters

v → v

c
, (5.212)

ν̂ ′ = − qe

m2
e

EStz → −
qe

m2
ec

3
EStz, (5.213)

k2 =
m3

e

2q2
eZnionS2

tz

→ m3
ec

4ε0
2q2

eZnionS2
tz

, (5.214)

where the final expressions are given in SI units via restoration of the speed of light

c and the permittivity of free space ε0. Introducing the Schwinger limit ES = m2
ec

3

qe~

and the maximum electric field1 for a cold plasma, Emax = c
√

2(γ−1)meZnion

ε0
, the

free parameters can then be written

v → v

c
, (5.212 revisited)

ν̂ ′ → − E

ES

Stz
~
, (5.215)

k2 →
(

ES

Emax

)2( ~
Stz

)2

(γ − 1). (5.216)

Writing k3 = γ−1
k2

, ν and its derivatives are given by

ν = −γ2

(
γ − 1

k3

(ν̂ ′)2 − γ
)
± γ2v

√(
γ − 1

k3

(ν̂ ′)2 − γ
)2

− 1, (5.217)

ν̂ ′′ =
1

2

k3

γ − 1

(
v

ν√
ν2 − γ2

− 1

)
, (5.218)

ν̂ ′′′ = −1

2

k3

γ − 1
vγ2 ν̂ ′

(ν2 − γ2)3/2
, (5.219)

1The idea of a wavebreaking limit is well known (see Ref. [52]). The wave-breaking limit

may be obtained from (5.125) by integrating from ξI, the minimum of ν and hence a zero of E,

to ξII, the maximum of E and turning point of ν′. Since νI = γ (from (5.125)) and νII = γ2

(from the derivative of (5.125)), the result follows.
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which along with (5.208) form a system dependent on the parameters

v → v

c
, (5.212 revisited)

ν̂ ′ → − E

ES

Stz
~
, (5.220)

k3 →
(
Emax

ES

)2(
Stz
~

)2

. (5.221)

Then since E << ES, Emax < ES and Stz ∼ ~, −1 < ν̂ ′ < 1 and 0 < k3 < 1.

It should be noted that the square root in (5.217) is real and non-zero since

(
γ − 1

k3

(ν̂ ′)2 − γ
)2

=

(
(γ − 1)

E2

E2
M

− γ
)2

, (5.222)

leaving the condition

ν > γ, (5.223)

in order to keep the square root in (5.218) and (5.219) real and non-zero1.

Figures 5.3 and 5.4 show that there are indeed regions for which the second

order terms are smaller than the first and zeroth order; in particular the regions

in Figure 5.3(b,d,e) and Figure 5.4(b,d,e) coloured from blue to green are ideal2.

While the assumption that the second and higher order terms is clearly not valid

for all values of v, k3 and ν̂ ′, it is not difficult to find parameters such that the

expansion, and hence the conclusions of Section 5.3.3, are valid.

1The case ν < −γ is neglected since ν > 0 in order to keep the 4-velocity of the plasma

electrons future-pointing.
2It is important to note that some of the regions where |R| in these plots becomes very

large (red) may be artefacts of numerical error. However, the presence and relative abundance

of |R| < 1 is all that is required for this consistency check.
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Figure 5.3: (a,c,e): The size ofR with ν = ν+ across a range of the free parameters

ν̂ ′ = − E
ES

Stz
~ and k3 =

(
Emax
ES

)2 (
Stz
~
)2

over a range of speeds v: 0.1c (a), 0.5c

(c) and 0.9c (e). (b,d,f): Heat charts showing detail of (a,c,e). The black region

where |R| becomes imaginary is excluded by E < Emax. (g): Key for (b,d,f).
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Figure 5.4: (a,c,e): The size ofR with ν = ν− across a range of the free parameters

ν̂ ′ = − E
ES

Stz
~ and k3 =

(
Emax
ES

)2 (
Stz
~
)2

over a range of speeds v: 0.1c (a), 0.5c

(c) and 0.9c (e). (b,d,f): Heat charts showing detail of (a,c,e). The black region

where |R| becomes imaginary is excluded by E < Emax. (g): Key for (b,d,f).
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5.4. Summary

5.4 Summary

This chapter has shown an alternative derivation of the covariant Stern-Gerlach

and TBMT equations governing the motion of a classical particle with spin under

the influence of electromagnetic fields. By using de Rham currents a pair of

covariant equations of motion were derived using the stress and spin balance

laws. By comparison with known equations in Ref. [49], the equations of motion

found were seen to be equivalent to that found in the literature up to choice of

4-momentum. The pair of equations were then converted to use the momentum

P used in the wider literature and in particular used in the Nakano-Tulczyjew

condition (5.95), which was added to complete the system. By linearising the

equations of motion in the spin components Sab, equations for d
dτ
Ċa and d

dτ
Sab

were obtained.

Using the maximum amplitude plasma wave from Chapter 4, a solution of the

equations of motion was sought such that the spin of a particle was significant.

Such a solution was found for a trajectory moving transverse to the motion of the

plasma electrons; the spinning particle moved with constant speed and hence it is

suggested that radiation reaction will not play a significant role. This particular

solution was investigated and found to be linearly unstable; a fact which could

(for instance) affect the quality of electron bunches for proposed laser-plasma

wakefield accelerators (see [38] for an outline of laser wakefield acceleration),

since electrons can move in and out of these trajectories once they have reached

speed equal to the phase speed of the wave. Since these trajectories are linearly

unstable it is likely that these solutions will only contribute on large timescales,

causing electron bunches to spread out in the transverse directions.
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Chapter 6

Conclusion

This thesis has explored several aspects of electrodynamics in extreme situations;

both at high electromagnetic field strength and at high electromagnetic field

gradient. A new derivation of the relativistic equations of motion for a spinning

charged particle in a background electromagnetic field (the relativistic Stern-

Gerlach and TBMT equations) has also been presented.

Through studying the properties of plane waves in constant background fields,

Chapter 4 sought to discriminate between the members of the family of Born-

Infeld-like theories, that is nonlinear electrodynamical theories whose Lagrangians

are of the form

L = F(X + λY 2). (3.1 revisited)

It was shown that plane electromagnetic waves in constant background magnetic

fields, solutions that satisfy the nonlinear field equations of Born-Infeld theory,

also satisfy the nonlinear field equations of all Born-Infeld-like theories (3.1),

unless the background magnetic field had a nonzero component parallel to the

electromagnetic wave’s own magnetic field. Similarly with a plane wave in a con-

stant background electric field, the Born-Infeld-like family’s field equations are

satisfied unless the background field includes a nonzero component parallel to

the wave’s own electric field, in which case only the Born-Infeld field equations

are known to be solved. It is therefore recommended that these components of

field be active in any slow light experiment seeking to distinguish members of
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6 Conclusion

the family (3.1) from one another. It is also noted that the only member of the

family of nonlinear theories (3.1) that satisfies electric-magnetic duality invari-

ance, i.e. the Gaillard-Zumino condition, is the Born-Infeld Lagrangian. Hence

Born-Infeld theory is the only duality invariant nonlinear electromagnetic theory

whose field equations are solved by plane electromagnetic waves in background

fields of arbitrary direction.

Chapter 4 studied the phenomenon of maximum amplitude plasma waves in

order to find the energy gained by an electron in half a wavelength of such a

wave. By doing so, it was hoped that the result would prove to be a theory

discriminant, with different energy gain in different theories. While the result in

the wave frame was found to be strikingly simple, i.e. energy gain W is

∆W = 2mev
2γ2, (4.61 revisited)

where γ is the Lorentz factor of the plasma wave with speed v, the relationship

between the plasma wave speed v and the nonlinear theories (and background

fields) is not known in the context of a plasma. Indeed such an investigation is

likely to involve significant numerical machinery and is hence left for future study.

Chapter 5 returned to areas of promising analytic study by investigating the

equations of motion for a charged classical particle with spin in a background

electromagnetic field. Firstly, however, the equations of motion were derived

using a new approach involving de Rham currents and the balance laws for the

stress-energy-momentum Ta and spin σab 3-forms:

dTa = iXaF ∧ jfree + iXaF ∧ jbound, (5.28 revisited)

dσab =
1

2

(
dxa ∧ Tb − dxb ∧ Ta

)
. (5.55 revisited)

Upon comparison with existing equations in Suttorp and de Groot [49], the newly

derived equations of motion were found to be consistent up to choice of momen-

tum.

Using the gyromagnetic ratio to relate the quantum mechanical spin to the

classical dipole moment, the equations of motion for a classical electron with spin

were acquired. For ease of use the equations were linearised in the spin 2-form

components Sab and the Nakano-Tulczyjew condition was used to complete the

system.
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6 Conclusion

In order to demonstrate a situation in which the Stern-Gerlach-like terms in

the equations of motion would play a significant role (more so than for instance

the effects of radiation reaction terms) the maximum amplitude plasma wave

studied in Chapter 4 was considered once again. A particular solution of the

equations of motion were found where the test electron propagated in a direction

transverse to the motion of the plasma wave; a solution which exists only for

non-zero spin. Since this particular solution has constant speed, the impact of

radiation reaction should be negligible and hence the effects of the spin could

prove important in situations where only longitudinal electron motion is desired.
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Appendix A

Noether Identities

A.1 Noether Identities from an Action

Noether identities can be regarded as balance laws obtained from local invariances

of an action. This appendix shows how U(1), SO(1,3) and local diffeomorphism

invariance for an extended particle leads to balance laws used in chapters 4 and

5.

For any infinitesimal transformation δu, the action can be written [53, 54]

δuS[e, ω,A,Φ] =

∫
M

[
Ta ∧ δuea + σ b

a ∧ δuωab + je ∧ δuA+ E ∧ δuΦ
]
, (A.1)

where Ta are the stress 3-forms, e is the coframe, σ b
a are the spin 3-forms, ωab

are the connection 1-forms corresponding to the metric compatible connection ∇,

je is the electric current, A is the electromagnetic potential 1-form and E is the

Euler-Lagrange equation of Φ, the matter field of the extended particle. Since the

connection ∇ is metric compatible, it can be shown that the connection 1-forms

are antisymmetric.

A.1.1 U(1) Invariance

Consider the U(1) gauge invariance of the electromagnetic field A → A + df .

Introduce a 1-parameter family Aε = A+εδU(1)A where δU(1)A = df is some small
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A.1. Noether Identities from an Action

variation with compact support on M. The action variation δU(1)S is defined as

δU(1)S ≡
d

dε
S
[
e, ω, A+ εδU(1)A, Φ

]∣∣∣∣
ε=0

, (A.2)

which can be expanded using (A.1) to give

δU(1)S =

∫
M

je ∧ δU(1)A

=

∫
M

je ∧ df

=

∫
M

fdje, (A.3)

where the last step uses integration by parts and the fact that f has compact

support on M. Requiring δU(1)S = 0 then gives (since (A.3) holds for any f with

compact support) the conservation of electric current: dje = 0.

A.1.2 SO(1,3) Invariance

A.1.2.1 Variations δSO(1,3)e
a and δSO(1,3)ω

a
b

Consider the SO(1,3) Lorentz group invariance of the spacetime metric. Lorentz

transforms Λa
b are given by

Λa
b = δab + εW a

b, (A.4)

where W a
b transform the frame/coframe such that the metric product g(Xa, Xb)

is unchanged. Consider the infinitesimal SO(1,3) transformation ea → ea+εW a
be
b

and introduce a 1-parameter family eaε = ea + εδSO(1,3)e
a where δSO(1,3)e

a = W a
be
b

is some variation with compact support on M. Since the metric is invariant under

frame transformations, W a
b must satisfy δSO(1,3)g = 0, i.e.

δSO(1,3)g = δSO(1,3)ηabe
a ⊗ eb + ηabδSO(1,3)e

a ⊗ eb + ηabe
a ⊗ δSO(1,3)e

b

= ηabW
a
ce
c ⊗ eb + ηabe

a ⊗W b
ce
c

= (Wba +Wab) e
a ⊗ eb, (A.5)

and thus in order to satisfy δSO(1,3)g = 0, W a
b must be antisymmetric, that is

Wba = −Wab.
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A.1. Noether Identities from an Action

The transformation δSO(1,3)Xa can be found by insisting that the condition

ea(Xb) = δab, where δab is the Kronecker delta, is invariant under the infinitesimal

SO(1,3) transformation. Thus

d

dε
(eaε(Xεb))

∣∣∣∣
ε=0

=
d

dε
δab

∣∣∣∣
ε=0

, (A.6)

where eaε = ea + εδSO(1,3)e
a, Xεb = Xb + εδSO(1,3)Xb and δSO(1,3)e

a = W a
be
b. Ex-

panding (A.6) results in the condition

ea(δSO(1,3)Xb) + δSO(1,3)e
a(Xb) = 0, (A.7)

which noting that δSO(1,3)e
a = W a

be
b results in

δSO(1,3)Xa = −W b
aXb = W b

a Xb, (A.8)

since Wab is antisymmetric.

The connection 1-forms are defined via the connection ∇ acting on frame Xa

∇XaXb = ωcb(Xa)Xc. (A.9)

Hence by applying the SO(1,3) variation to both sides of (A.9),

∇δSO(1,3)XaXb +∇XaδSO(1,3)Xb = δSO(1,3)ω
c
b(Xa)Xc + ωcb(δSO(1,3)Xa)Xc

+ ωcb(Xa)δSO(1,3)Xc, (A.10)

and since ∇fXa = f∇Xa , using (A.9) a common term is found and removed:

∇XaδSO(1,3)Xb = δSO(1,3)ω
c
b(Xa)Xc + ωcb(Xa)δSO(1,3)Xc. (A.11)

Using (A.8), this is

∇Xa(W
c
b Xc) = δSO(1,3)ω

c
b(Xa)Xc + ωcb(Xa)W

d
c Xd, (A.12)

and applying the Leibniz rule to the LHS:

∇Xa(W
c
b Xc) = (∇XaW

c
b )Xc +W c

b (∇XaXc)

= XaW
c
b Xc +W c

b ω
d
c(Xa)Xd. (A.13)

98



A.1. Noether Identities from an Action

Hence (A.12) is rearranged to give

δSO(1,3)ω
c
b(Xa)Xc = XaW

c
b Xc +W c

b ω
d
c(Xa)Xd − ωcb(Xa)W

d
c Xd. (A.14)

Inspecting the components of (A.14) gives

δSO(1,3)ω
h
b(Xa) = XaW

h
b +W c

b ω
h
c(Xa)− ωcb(Xa)W

h
c . (A.15)

Since V f = df(V ), wedging with ea gives

δSO(1,3)ω
h
b = dW h

b +W c
b ω

h
c − ωcbW h

c . (A.16)

Introducing the covariant exterior derivative D, which acts on αa...bc...d via

Dαa...bc...d = dαa...bc...d + ωaeα
e...b

c...d . . .+ ωbeα
a...e

c...d

− ωecαa...be...d . . .− ωedαa...bc...e, (A.17)

it is clear that

δSO(1,3)ω
a
b = DW a

b = −DW a
b. (A.18)

A.1.2.2 The Spin Noether Identity

The action variation δSO(1,3)S is defined as

δSO(1,3)S ≡
d

dε
S
[
e+ εδSO(1,3)e, ω + εδSO(1,3)ω, A, Φ

]∣∣∣∣
ε=0

, (A.19)

which can be expanded using (A.1) to give

δSO(1,3)S =

∫
M

[
Ta ∧ δSO(1,3)e

a + σ b
a ∧ δSO(1,3)ω

a
b

]
. (A.20)

Then (A.20) can be written in terms of W a
b:

δSO(1,3)S =

∫
M

[
Ta ∧W a

be
b − σ b

a ∧DW a
b

]
, (A.21)

since W a
b = −W a

b because Wab is antisymmetric. Then, since∫
M

σ b
a ∧DW a

b =

∫
M

D(σ b
a W

a
b) +

∫
M

W a
bDσ

b
a , (A.22)
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where ∫
M

D(σ b
a W

a
b) =

∫
M

d(σ b
a W

a
b) = 0, (A.23)

and the final step follows because W a
b has compact support on M. So∫

M

σ b
a ∧DW a

b =

∫
M

W a
bDσ

b
a , (A.24)

and hence

δSO(1,3)S =

∫
M

[
Ta ∧ eb −Dσ b

a

]
W a

b. (A.25)

Since W a
b is antisymmetric, the symmetric part of

[
Ta ∧ eb −Dσ b

a

]
is projected

out, leaving the antisymmetric part:

δSO(1,3)S =
1

2

∫
M

[
Ta ∧ eb −Dσ b

a − Tb ∧ ea +Dσba
]
W a

b

=
1

2

∫
M

[
Ta ∧ eb − 2Dσ b

a − Tb ∧ ea
]
W a

b, (A.26)

where the last step uses the fact that the spin 3-forms satisfy σab = −σba. Insisting

that δSO(1,3)S = 0 then gives the identity

Dσ b
a =

1

2

(
Ta ∧ eb − Tb ∧ ea

)
, (A.27)

A.1.3 Local Diffeomorphism Invariance

Diffeomorphisms are isomorphisms on smooth manifolds. Lie derivatives cor-

respond to infinitesimal diffeomorphisms; hence considering an action invariant

under local diffeomorphisms is equivalent to considering an action invariant under

the Lie derivative LW, where the components of W have compact support on M.

Hence using (A.1),

δDiff(M)S =

∫
M

[
Ta ∧ LWe

a + σ b
a ∧ LWω

a
b + je ∧ LWA+ E ∧ LWΦ

]
. (A.28)

Using Cartan’s identity,

LWA = diWA+ iWdA

= diWA+ iWF

= δU(1)A+ iWF, (A.29)
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A.1. Noether Identities from an Action

since diWA = d(iWA), analogous to df . Introducing the structure equations [27]

defining the torsion 2-forms T a and curvature 2-forms Ra
b,

dea = T a − ωab ∧ eb (A.30)

dωab = Ra
b − ωac ∧ ωcb, (A.31)

consider the expression

LWe
a = diWe

a + iWde
a

= diWe
a + iW

(
T a − ωab ∧ eb

)
= diWe

a + iWT
a − iWωabeb + ωabiWe

b

= DiWe
a + iWT

a − iWωabeb. (A.32)

Since iWω
a
b is an element of the algebra so(1, 3) (as the connection 1-forms ωab

are antisymmetric) and since the components of X have compact support on M,

(A.32) can be written

LWe
a = DiWe

a + iWT
a − δSO(1,3)e

a, (A.33)

where δSO(1,3)e
a = iWω

a
be
b. Finally the connection 1-form term:

LWω
a
b = diWω

a
b + iWdω

a
b

= diWω
a
b + iW (Ra

b − ωac ∧ ωcb)

= DiWω
a
b + iWR

a
b

= iWR
a
b − δSO(1,3)ω

a
b, (A.34)

where δSO(1,3)ω
a
b = −DiWωab (see (A.18)).

Inserting (A.29), (A.33) and (A.34) into the variation of the action under local

diffeomorphisms (A.28) gives

δDiff(M)S =

∫
M

[
Ta ∧DiWea + Ta ∧ iWT a + σ b

a ∧ iWRa
b + je ∧ iWF + E ∧ LWΦ

−Ta ∧ δSO(1,3)e
a − σ b

a ∧ δSO(1,3)ω
a
b + je ∧ δU(1)A

]
. (A.35)

The gauge invariances in the previous sections remove the last three terms:

δDiff(M)S =

∫
M

[
Ta ∧DiWea + Ta ∧ iWT a + σ b

a ∧ iWRa
b + je ∧ iWF + E ∧ LWΦ

]
.

(A.36)
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A.1. Noether Identities from an Action

Since vector components Wa = iWe
a have compact support on M, the covariant

exterior derivative D can be shifted to the stress tensor via integration by parts

and Stokes’ theorem:

δDiff(M)S =

∫
M

[
DTaW

a + Ta ∧ iWT a + σ b
a ∧ iWRa

b + je ∧ iWF + E ∧ LWΦ
]
,

(A.37)

and stripping the components from W gives

δDiff(M)S =

∫
M

[
DTa + Tb ∧ iXaT b + σ c

b ∧ iXaRb
c + je ∧ iXaF + E ∧ LXaΦ

]
Wa.

(A.38)

Hence requiring δDiff(M)S = 0 gives the balance law

DTa = −Tb ∧ iWaT
b − σ c

b ∧ iWaR
b
c − je ∧ iWaF − E ∧ LWaΦ. (A.39)

A.1.4 In Lorentz Coordinates on Minkowski Spacetime

Since this thesis deals with flat spacetime, the three balance laws (A.27) and

(A.39) are significantly simplified. Choosing the Levi-Civita connection gives

T a = 0 since the Levi-Civita connection is torsion-free. Minkowski spacetime

has no curvature, so Ra
b = 0, and choosing the orthonormal coframe {ea = dxa}

where {xa} are inertial cartesian coordinates, the connection 1-forms ωab are also

zero. Finally, since E correspond to the Euler-Lagrange equation for Φ, E = 0.

The balance laws hence take the simple form

dσ b
a =

1

2

(
Ta ∧ eb − Tb ∧ ea

)
, (A.40)

dTa = −je ∧ iXaF. (A.41)

Note that the balance law used in Chapter 4 uses a fluid model instead of

the extended particle model above, and also has non-background electromagnetic

fields to consider. The stress tensor in this section does not include electromag-

netic stress terms (see Section B.4.4 and B.5 for details).
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Appendix B

Action variation for Nonlinear

Electrodynamics

A sample action S for a cold plasma is given by

S[A, e, φ] =

∫
M

(
−L(X, Y ) ? 1 +me

√
je·je ? 1 + qeA ∧ je + qionA ∧ jion

)
, (B.1)

where the first term encapsulates the electromagnetic field theory, the second

the mass energies of the electrons, the third coupling of the electrons and the

electromagnetic field and the final term couples the electromagnetic field to a

background of ions. The arguments of the action are A, the electromagnetic

potential 1-form, e the coframe and φ, a map between the spacetime manifold

M and a body manifold B. The map φ is an example of a matter field Φ from

the previous appendix. The electromagnetic part of the Lagrangian is written in

terms of the invariants

X = ?(F ∧ ?F ), (B.2)

Y = ?(F ∧ F ), (B.3)

where F = dA is the electromagnetic 2-form defined on the 4-dimensional space-

time manifold M. By using variational principles, several quantities of physical

importance can be found, including the field equations, the stress tensor and the

Lorentz equation. Note that in this appendix lower case Latin indices indicate an
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Einstein sum over 0 to 3 associated with coordinates on M, whereas upper case

Latin indices are summed 1 to 3 associated with coordinates on B.

B.1 Preliminaries

B.1.1 Pullbacks

Consider two manifolds M and N (of different dimension) with a mapping ψ

between them such that ψ maps a point p in M to a point q in N:

ψ : M→ N, (B.4)

p→ q = ψ(p). (B.5)

Each manifold also has associated with it a set of coordinates x̂µ and ŷa respec-

tively, which are injective maps taking points in their manifold to a set of real

numbers. For instance on m-dimensional manifold M there are m coordinate

maps x̂µ:

x̂µ : M→ Rm (B.6)

p→ {xµp} = {x̂µ(p)}. (B.7)

There are also a set of a maps ψ̂a which relate the two sets of coordinates, defined

by

ψ : Rm → Rn (B.8)

{xµ} → {ya} = {ψ̂a({xµ})}. (B.9)

Given this structure, the pullback of f ∈ N is defined as

ψ∗f = f ◦ ψ (B.10)

i.e. p ∈M→ (ψ∗f)(p) = f(ψ(p)), (B.11)

so-called as the map ψ∗f now maps from M to R instead of from N to R, so the

pullback map pulls objects from N back onto M. The pullback can be generalised

104



B.1. Preliminaries

to forms by using the properties

ψ∗df = d(ψ∗f), (B.12)

ψ∗(hdf) = ψ∗h ψ∗df, (B.13)

ψ∗(α + β) = ψ∗α + ψ∗β, (B.14)

ψ∗(α ∧ β) = ψ∗α ∧ ψ∗β, (B.15)

ψ∗(S ⊗ T ) = ψ∗S ⊗ ψ∗T. (B.16)

B.1.2 Defining je and φ

The electron current je and the map φ of (B.1) are defined as follows. Given

that M is a 4-dimensional flat spacetime manifold over which the normalised

vector field Ve (i.e. g(Ve, Ve) = −1) representing the worldlines of electrons is

defined, let B be a 3-dimensional manifold such that each integral curve of Ve

in M is mapped to a point in B (see Figure B.1). For more on body manifolds

(also called “material” manifolds), see Ref. [55], though the concept was first

introduced by Maugin [56].

Now consider the map φ defined between the two manifolds M and B to be a

submersion, i.e.

φ : M→ B (B.17)

p→ φ(p) (B.18)

xa → yA = φA(p), (B.19)

where xa and yA are the coordinates on M and B respectively, and dφA is non-

vanishing by definition1. From the relationship between B and M, it is clear that

the map φ contains information about the vector field Ve.

Now define a 3-form Θ on B:

Θ =
1

3!
ΘABC(y)dyA ∧ dyB ∧ dyC . (B.20)

1Since φ is a submersion.
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B

C1

pC1

φ

M

Figure B.1: Illustration of the relationship between the integral curves of vector

field V on manifold M to points in the body manifold B. Each integral curve of V

(represented by a different colour) is mapped to a point in B. For instance integral

curve C1 is mapped to point pC1 in B. The pullback map φ∗ encodes the vector

field V in the way the points and curves are related.

Since Θ is a top form on B, it follows that dΘ = 0. Introduce a 3-form je on M

derived by pulling back Θ:

je = φ∗Θ (B.21)

=
1

3!
(ΘABC ◦ φ) dφA ∧ dφB ∧ dφC . (B.22)

Noting that φ∗dyA = dφA, which implies that Veφ
A = 0 as Veφ

A = dφA(Ve) and

φA is constant along the integral curves of Ve,

iVe (φ∗Θ) = iVe

(
1

3!
(ΘABC ◦ φ) dφA ∧ dφB ∧ dφC

)
= 0, (B.23)

i.e. iVeje = 0. However since je is a 3-form, i.e. the Hodge dual of a 1-form, say

α,

iVe ? α = ?
(
α ∧ Ṽe

)
= 0, (B.24)

and applying the inverse Hodge map to both sides, it is clear that α∧ Ṽe = 0, i.e.

α = neṼe for some 0-form ne. The 3-form je can hence be written

je = ne ? Ṽe. (B.25)

Interpreting ne as the proper number density of the electron fluid, ne ≥ 0 is

required and is satisfied by choosing Θ and φ appropriately.
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Since the dot product between two 2-forms is defined as

α·β = ?−1(α ∧ ?β), (B.26)

using (B.25),

je·je = n2
e ?
−1
(
?Ṽe ∧ Ṽe

)
. (B.27)

Consider now the expression

iVe

(
?1 ∧ Ṽe

)
= (iVe ? 1) ∧ Ṽe + ?1 ∧ iVeṼe. (B.28)

The LHS of this equation is identically zero (since ?1 is a top form), and on the

RHS, iVeṼe = g(Ve, Ve) = −1. Hence

(iVe ? 1) ∧ Ṽe = ?1, (B.29)

and therefore ne =
√
je · je.

B.2 The Field Equations

In order to find the field equations, the action (B.1) is varied with respect to the

electromagnetic potential 1-form A. Introduce a 1-parameter family of 1-forms

Aε, i.e. for every value of ε in a range (for example ε ∈ (−1, 1)) there exists a

1-form associated with this value. Aε is chosen to be

Aε = A+ εδA, (B.30)

where δA is the variation of A. Variational methods aim to find the stationary

‘points’ (in fact 1-forms) of the action S:

d

dε
S[Aε, e, φ]

∣∣∣∣
ε=0

= 0. (B.31)

For brevity, the quantity in (B.31) is named δAS, where S is the action B.1. As

X(Aε) = Xε and Y (Aε) = Yε, where X and Y are given by (B.2) and (B.3) with

F = dA, the first step is to apply the chain rule on the electromagnetic term.

The purely matter term contains no A dependence and hence the variation yields
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no result and the variation of the coupling of the potential A with the electron

and ion currents is trivial;

δAS =

∫
M

(
−
[
∂L

∂X
δAX +

∂L

∂Y
δAY

]
? 1 + δA ∧ (qeje + qionjion)

)
. (B.32)

Simplifying δAX:

δAX ? 1 = δA(X ? 1) = δA ? X = δA(? ? (F ∧ ?F )), (B.33)

and noting

? ? α =
det gab
| det gab|

(−1)(n−q)qα, (B.34)

where α is a q-form on an n-dimensional manifold M (n = 4 in this thesis),

δAX ? 1 = δA(? ? (F ∧ ?F )) = −δA(F ∧ ?F ), (B.35)

and similarly

δAY ? 1 = −δA(F ∧ F ). (B.36)

Hence (B.32) can be rewritten

δAS =

∫
M

([
∂L

∂X
δA(F ∧ ?F ) +

∂L

∂Y
δA(F ∧ F )

]
+ δA ∧ (qeje + qionjion)

)
.

(B.37)

Expanding the wedge products:

δA(F ∧ ?F ) =
d

dε
(d(Aε) ∧ ?d(Aε))

∣∣∣∣
ε=0

=
d

dε
(dA ∧ ?dA+ dA ∧ ?εdδA+ εdδA ∧ ?dA+ εdδA ∧ ?εdδA)

∣∣∣∣
ε=0

=
d

dε
(dA ∧ ?dA+ ε(dA ∧ ?dδA+ dδA ∧ ?dA) + ε2dδA ∧ ?dδA)

∣∣∣∣
ε=0

= (dA ∧ ?dδA+ dδA ∧ ?dA+ 2εdδA ∧ ?dδA)|ε=0

= dA ∧ ?dδA+ dδA ∧ ?dA

= 2dδA ∧ ?dA, (B.38)

where the final step comes about using the star-pivot, that is for forms α and β

of equal degree, α ∧ ?β = β ∧ ?α. Similarly

δA(F ∧ F ) = 2dδA ∧ dA, (B.39)
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so that (B.37) is now

δAS =

∫
M

(
2

[
∂L

∂X
dδA ∧ ?dA+

∂L

∂Y
dδA ∧ dA

]
+ δA ∧ (qeje + qionjion)

)
.

(B.40)

The key method in variational calculations is to separate the δA term from the

other terms. The two terms in the square brackets in the above expression can

be written as

∂L

∂X
dδA ∧ ?dA = d

(
∂L

∂X
δA ∧ ?dA

)
− d

(
∂L

∂X

)
∧ δA ∧ ?dA

+
∂L

∂X
δA ∧ d ? dA, (B.41)

and

∂L

∂Y
dδA ∧ dA = d

(
∂L

∂Y
δA ∧ dA

)
− d

(
∂L

∂Y

)
∧ δA ∧ dA+

∂L

∂Y
δA ∧ d2A.

(B.42)

Hence choosing δA with compact support so that it vanishes on the boundary

of the manifold, two terms can be removed from the action integral (by using

Stokes’ theorem on forms), leaving

δAS =

∫
M

(
2

[
−d
(
∂L

∂X

)
∧ δA ∧ ?dA+

∂L

∂X
δA ∧ d ? dA− d

(
∂L

∂Y

)
∧ δA ∧ dA

+
∂L

∂Y
δA ∧ d2A

]
+ Lqj

)
, (B.43)

where for brevity the charge-current term δA ∧ (qeje + qionjion) is relabelled Lqj.

Permuting the wedge products using α(p) ∧ β(q) = (−1)pqβ(q) ∧ α(p),

δAS =

∫
M

(
−2

[
d

(
∂L

∂X

)
∧ ?dA+

∂L

∂X
d ? dA+ d

(
∂L

∂Y

)
∧ dA+

∂L

∂Y
d2A

]
∧ δA

+Lqj) . (B.44)

Then, as

Lqeje = δA ∧ (qeje + qionjion)

= −(qeje + qionjion) ∧ δA, (B.45)
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and as the variation δA can be any smooth variation of A with compact support,

2

(
d

(
∂L

∂X

)
∧ ?F +

∂L

∂X
d ? F + d

(
∂L

∂Y

)
∧ F +

∂L

∂Y
dF

)
+ (qeje + qionjion) = 0.

(B.46)

This can be written

d ? 2

(
∂L

∂X
F − ∂L

∂Y
? F

)
+ (qeje + qionjion) = 0. (B.47)

Hence (as F = dA) the nonlinear generalisation of the Maxwell equations are

given by;

dF = 0, d ? G = −qeje − qionjion, (B.48)

where

G = 2

(
∂L

∂X
F − ∂L

∂Y
? F

)
. (B.49)

B.3 The Lorentz Force Equation

To find the Lorentz force equation, the action (B.1) is varied with respect to the

map φ between M and the body manifold B (effectively varying the structure of

Ve whilst maintaining the normalisation condition g(Ve, Ve) = −1). As only the

current je is not invariant under variation of φ,

δφS[A, φ, e] =

∫
M

[
δφ(me

√
je·je ? 1) + δφ(qeA ∧ je)

]
, (B.50)

and using the chain rule,

δφS[A, φ, e] =

∫
M

[
me

(δφje)·je√
je·je

? 1 + qeA ∧ δφje

]
. (B.51)

Since the dot product is defined on forms of equal degree by α·β ? 1 = α ∧ ?β,

δφS[A, φ, e] =

∫
M

[
me

δφje ∧ ?je√
je·je

+ qeA ∧ δφje

]
=

∫
M

[
qeA−me

?je√
je·je

]
∧ δφje. (B.52)
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Note that the current is defined in (B.22) as the pullback of a top form Θ on B,

where coordinates in B are denoted with upper case Latin letters running from

1 to 3. Focussing 1 on δφje:

δφje = δφ

(
1

3!
(ΘABC ◦ φ) dφA ∧ dφB ∧ dφC

)
=

1

3!

(
∂ΘABC

∂yE
◦ φ
)
δφEdφA ∧ dφB ∧ dφC +

1

2!
(ΘABC ◦ φ) dδφA ∧ dφB ∧ dφC .

(B.53)

This is equivalent to the statement

δφje = iWdje + diWje, (B.54)

where Ṽe(W) = 0. To see this, consider

iWdje + diWje = δφAiWA
dje + dδAφ iWA

je, (B.55)

where the frame {Ve,WA} is naturally dual to coframe {−Ṽe, dφ
A}, i.e.

dφA(WB) = δAB, (B.56)

Ṽe(WA) = 0. (B.57)

Since the current je is the pullback of a top form from the body manifold B,

dje = 0. It is instructive, however, to deconstruct this term in order to show the

relation (B.54) from (B.53). The first term of (B.55) is

δφEiWE
dje = δφEiWE

d

[
1

3!
(ΘABC ◦ φ) dφA ∧ dφB ∧ dφC

]
= δφEiWE

[
1

3!
d (ΘABC ◦ φ) ∧ dφA ∧ dφB ∧ dφC

]
. (B.58)

Applying d to (ΘABC ◦ φ) gives

d (ΘABC ◦ φ) =
∂ΘABC ◦ φ

∂φE
dφE, (B.59)

and hence

δφF iWF
dje = δφF

1

3!

∂ΘABC ◦ φ
∂φE

iWF

[
dφE ∧ dφA ∧ dφB ∧ dφC

]
, (B.60)

1N.b. Used in this calculation is the fact that ΘABC = −ΘBAC is totally antisymmetric.
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where

iWF
(dφ)EABC = δEF (dφ)ABC − δAF (dφ)EBC + δBF (dφ)EAC − δCF (dφ)EAB, (B.61)

and (dφ)ABC is shorthand for dφA ∧ dφB ∧ dφC . It follows

δφF iWF
dje = δφF

1

3!

∂ΘABC ◦ φ
∂φE

[
δEF (dφ)ABC − δAF (dφ)EBC

+δBF (dφ)EAC − δCF (dφ)EAB
]
. (B.62)

By the fact that Θ is totally antisymmetric, (B.62) can be rewritten

δφF iWF
dje =

1

3!

∂ΘABC ◦ φ
∂φE

δφE(dφ)ABC − 1

2!

∂ΘABC ◦ φ
∂φE

δφA(dφ)EBC . (B.63)

Now the second term of (B.55):

dδFφ iWF
je = d

(
δφF

1

2!
(ΘABF ◦ φ) (dφ)AB

)
= dδφF ∧ 1

2!
(ΘABF ◦ φ) (dφ)AB + δφF

1

2!

∂ΘABF ◦ φ
∂φE

(dφEAB). (B.64)

Hence by relabelling and permuting indices,

iWdje + diWje =
1

3!

(
∂ΘABC

∂yF
◦ φ
)
δφF (dφ)ABC +

1

2!
(ΘABC ◦ φ) dδφA ∧ (dφ)BC ,

(B.65)

and therefore

δφje = iWdje + diWje. (B.66)

Since je = φ∗Θ, clearly dje = dφ∗Θ = φ∗dΘ = 0 as Θ is a top form on B. Hence

from (B.66), clearly δφje = diWje. Using this fact, the variation of the action,

(B.52), becomes

δφS[A, φ, e] =

∫
M

[
qeA−me

?je√
je·je

]
∧ diWje. (B.67)

To proceed, consider the integral∫
M

d

([
qeA−me

?je√
je·je

]
∧ iWje

)
=

∫
M

d

[
qeA−me

?je√
je·je

]
∧ iWje

−
∫
M

[
qeA−me

?je√
je·je

]
∧ diWje.

(B.68)
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By Stokes’ theorem, however, the LHS of this equation is zero as the components

WA are chosen to have compact support on M. Thus (B.67) becomes

δφS =

∫
M

(
meiWje ∧

(
d(qeA)− d ?je√

je·je

))
. (B.69)

Since je = ne ? Ṽe and
√
je·je = ne,

δφS =

∫
M

(
iWje ∧

(
d(qeA)−medṼe

))
=

∫
M

(
δφAiWA

je ∧
(
d(qeA)−medṼe

))
. (B.70)

Now, requiring (as per usual in variational calculus) that δφS = 0 for suitable

variations of δφA results in the condition

iWA
je ∧ d

(
qeA−meṼe

)
= 0. (B.71)

Substituting in je = ne ? Ṽe gives

iWA
ne ? Ṽe ∧ d

(
qeA−meṼe

)
= 0

so iWA
iVe ? 1 ∧ d

(
qeA−meṼe

)
= 0. (B.72)

Now consider

iWA
iVe

(
?1 ∧ d

(
qeA−meṼe

))
= iWA

iVe ? 1 ∧ d
(
qeA−meṼe

)
+ ?1 ∧ iWA

iVed
(
qeA−meṼe

)
, (B.73)

and as the LHS (?1 is a top form) (B.72) can be rewritten

?1 ∧ iWA
iVed

(
qeA−meṼe

)
= 0, (B.74)

and star-pivoting gives

iWA
iVed

(
qeA−meṼe

)
= 0. (B.75)

Now consider the 1-form α = iVed
(
qeA−meṼe

)
. Two things become apparent;

firstly iVeα = 0 as iVeiVe = 0 and secondly from (B.75), iWA
α = 0. However since

{Ve,W1,W2,W3} forms a frame1 on M then α must be zero and hence

iVed
(
qeA−meṼe

)
= 0, (B.76)

1Since WA span the V -orthogonal subspace of the tangent space of M by (B.56), (B.57) .
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and since dA = F ,

iVedṼe =
qe

me

iVeF. (B.77)

Using the identity d = ea ∧ ∇Xa , it can be shown that iVedṼe = ∇VeṼe for Levi-

Civita ∇:

iVedṼe = iVe

(
ea ∧∇XaṼe

)
= (iVee

a)∇XaṼe − ea
(
iVe∇XaṼe

)
= (Ve)

a∇XaṼe − ea
(
∇XaṼe

)
(Ve). (B.78)

Now note two things; firstly as (Ve)
a is a 0-form it can moved into the first

argument of the connection via f∇Ve = ∇fVe . Secondly since Ã(B) = g(A,B)

and ∇ is metric compatible, rewrite ∇XaṼe = ∇̃XaVe. Hence

iVedṼe = ∇(Ve)aXaṼe − eag (∇XaVe, Ve) . (B.79)

The metric compatibility of ∇ gives

∇A (g(B,C)) = g (∇AB,C) + g (B,∇AC) , (B.80)

and hence

∇Xa (g(Ve, Ve)) = 2g (∇XaVe, Ve) . (B.81)

Using this, (B.79) can be rewritten as

iVedṼe = ∇VeṼe −
1

2
ea∇Xa (g(Ve, Ve)) , (B.82)

and since g(Ve, Ve) = −1, the second term is zero, leaving iVedṼe = ∇VeṼe. Thus

(B.77) becomes

∇VeṼe = ∇̃VeVe =
qe

me

iVeF, (B.83)

the covariant Lorentz force equation for an electron fluid.
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B.4 The Stress 3-Forms

In order to find the stress-energy momentum 3-forms, note that as per Appendix

A, varying the Action with respect to the orthonormal coframe e results in

δeS =
d

dε
S[A, eε, φ]

∣∣∣∣
ε=0

=

∫
M

Ta ∧ δea, (B.84)

since action (B.1) does not depend on the connection 1-forms ωab. The stress

form in Appendix A does not include electromagnetic stress components since

the Lagrangian used in that appendix only has a background electromagnetic

field and the kinetic term L(X, Y ) ? 1 for A is not included. This appendix will

derive the expression for the stress form (including electromagnetic components)

for action (B.1).

Since only terms involving the Hodge map ? in the action (B.1) are not in-

variant under orthonormal coframe variation,

δeS[A, e, φ] =

∫
M

δe(−L ? 1 +me

√
je·je ? 1). (B.85)

Expanding this using the fact that the variation operator has properties of a

derivative gives

δeS[A, e, φ] =

∫
M

[
−δe(L) ? 1− Lδe(?1) +meδe

(√
je·je

)
? 1 +me

√
je·jeδe(?1)

]
=

∫
M

[
−
(
∂L

∂X
δe(X) +

∂L

∂Y
δe(Y )

)
? 1− Lδe(?1)

+meδe

(√
je·je

)
? 1 +me

√
je·jeδe(?1)

]
. (B.86)

Now the variations of X, Y and
√
je·je with respect to the coframe can be con-

sidered separately.

B.4.1 The Variation δeX

Consider the orthonormal coframe variation of X:

δeX = δe (?(F ∧ ?F )) . (B.87)
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Rewriting F in terms of the coframe F = 1
2
Fabe

ab;

δeX = δe

(
?

(
1

2
Fabe

ab ∧ ?1

2
Fcde

cd

))
=

1

4
δe
(
FabFcd ? (eab ∧ ?ecd)

)
, (B.88)

and using the differential nature of the variation operator,

δeX =
1

4
Fcd?(eab∧?ecd)δe(Fab)+

1

4
Fab?(eab∧?ecd)δe(Fcd)+

1

4
FcdFabδe(?(e

ab∧?ecd)).
(B.89)

Consider now the second term in (B.89). Relabelling indices (a↔ c and b↔ d):

1

4
Fcd ? (ecd ∧ ?eab)δe(Fab), (B.90)

which is identical to the first term in (B.89), seen by using the star-pivot;

1

4
Fcd ? (ecd ∧ ?eab)δe(Fab) =

1

4
Fcd ? (eab ∧ ?ecd)δe(Fab), (B.91)

hence (B.89) simplifies to

δeX =
1

2
Fcd ? (eab ∧ ?ecd)δe(Fab) +

1

4
FcdFabδe(?(e

ab ∧ ?ecd)). (B.92)

In order to proceed, the Levi-Civita alternating symbol εabcd is introduced, where

εabcd =


1 if abcd is an even permutation of 0123,
−1 if abcd is an odd permutation of 0123,
0 if abcd is not a permutation of 0123 .

(B.93)

The Levi-Civita alternating symbol is necessary to write the Hodge map in terms

of the orthonormal coframe; the volume element ?1 is written

?1 =
1

4!
εabcde

a ∧ eb ∧ ec ∧ ed =
1

4!
εabcde

abcd, (B.94)

for instance. Contracting ?1 on vector Xf ,

iXf ? 1 =
1

3!
εfbcde

bcd. (B.95)

Since

iXf ? 1 = ?X̃f , (B.96)
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and

X̃f = ηabe
aeb(Xf ) = ηafe

a. (B.97)

Hence ?ea is simply

?ea =
1

3!
ηafεfbcde

bcd =
1

3!
εabcde

bcd. (B.98)

Similarly, ?eab can also be written in terms of the Levi-Civita alternating symbol:

?eab =
1

2!
εabcde

cd. (B.99)

Considering the final term in (B.92),

δe(?(e
ab ∧ ?ecd)) = δe

(
?

(
eab ∧ 1

2
εcdghe

gh

))
= δe

(
1

2
εcdgh ? (eabgh)

)
= δe

(
1

2
εcdghε

abgh

)
, (B.100)

which is zero, as the alternating symbols ε are invariant with respect to changes

of orthonormal coframe. Thus

δeX =
1

2
Fcd ? (eab ∧ ?ecd)δe(Fab). (B.101)

As δe(Fab) is just a scalar, it can be taken inside the Hodge map:

δeX =
1

2
Fcd ? (δe(Fab)e

ab ∧ ?ecd). (B.102)

In order to proceed further, consider

δe(F ) =
1

2
δe(Fabe

ab) =
1

2
δe(Fab)e

ab +
1

2
Fabδe(e

ab). (B.103)

By expanding the final term of this equation, as well as permuting indices,

δe(F ) =
1

2
δe(Fab)e

ab + Fabδe
a ∧ eb. (B.104)

Since F is independent of coframe, δe(F ) is zero, hence

δe(Fab)e
ab = −2Fabδe

a ∧ eb. (B.105)
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Substituting (B.105) into (B.102) gives

δeX = −FabFcd ? (δea ∧ eb ∧ ?ecd). (B.106)

The placement of δeX in the action equation (B.86) allows for further simplifica-

tion;

δe(X) ? 1 = −FabFcd ? (δea ∧ eb ∧ ?ecd) ? 1. (B.107)

Because ?(δea ∧ eb ∧ ?ecd) is a 0-form, it can be buried in ?1. This results in a

double Hodge map, which for a 4-form on a 4-dimensional manifold is just given

by the expression

? ? α = −α, (B.108)

hence

δe(X) ? 1 = FabFcdδe
a ∧ eb ∧ ?ecd

= 2Fabδe
a ∧ eb ∧ ?F. (B.109)

B.4.2 The Variation δeY

Consider the orthonormal coframe variation of Y :

δeY = δe (?(F ∧ F )) . (B.110)

As in the previous section, rewrite F in terms of the orthonormal coframe;

δeY = δe

(
?

(
1

2
Fabe

ab ∧ 1

2
Fcde

cd

))
= δe

(
FabFcd ? (eabcd)

)
, (B.111)

and using the differential nature of the variation operator,

δeY =
1

4
Fcd ? (eabcd)δe(Fab) +

1

4
Fab ? (eabcd)δe(Fcd) +

1

4
FcdFabδe(?(e

abcd)). (B.112)

Similar to the working in the previous section, the second term in (B.112) is equal

to the first term and the third term is identically zero due to the invariance of

the Levi-Civita symbols ε under orthonormal coframe variation. Thus

δeY =
1

2
Fcd ? (eabcd)δe(Fab) (B.113)

=
1

2
Fcd ? (δe(Fab)e

abcd). (B.114)
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From the previous section, substitute in (B.105), that is

δe(Fab)e
ab = −2Fabδe

a ∧ eb, (B.115)

hence (B.114) becomes

δeY = −FabFcd ? (δea ∧ ebcd) (B.116)

= −2Fab ? (δea ∧ eb ∧ F ). (B.117)

The placement of δeY in the action equation (B.86) allows for further simplifica-

tion:

δe(Y ) ? 1 = −Fab ? (δea ∧ eb ∧ F ) ? 1. (B.118)

Again, since ?(δea ∧ eb ∧ F ) is a 0-form, it can be buried in the ?1:

δe(Y ) ? 1 = 2Fabδe
a ∧ eb ∧ F. (B.119)

B.4.3 The Variation δe
(√
je·je

)
Consider the orthonormal coframe variation of ne =

√
je·je:

δene = δe
√
je·je =

1

2

1√
je·je

δe(je·je)

=
1

2ne

δe
(
?−1(je ∧ ?je)

)
. (B.120)

As je ∧ ?je is a 4-form,

δene =
1

2ne

δe (− ? (je ∧ ?je)) . (B.121)

Rewriting je in terms of the orthonormal coframe je = 1
3!

(je)abce
abc:

δene =
1

2ne

1

36
δe
(
− ? ((je)abce

abc ∧ ?(je)dfge
dfg)
)

= − 1

2ne

1

36
δe
(
(je)abc(je)dfg ? (eabc ∧ ?edfg)

)
, (B.122)

and using the differential nature of the variation operator,

δene = − 1

2ne

1

36

[
δe ((je)abc) (je)dfg ? (eabc ∧ ?edfg) + (je)abcδe ((je)dfg) ? (eabc ∧ ?edfg)

+(je)abc(je)dfgδe
(
?(eabc ∧ ?edfg)

)]
. (B.123)
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Relabelling indices and star-pivoting the second term gives the first term. The

third term gives no contribution, similar to in the δeX and δeY cases. Hence

δene = − 1

2ne

1

18
δe (jabc) jdef ? (eabc ∧ ?edef ), (B.124)

and bringing the variation part into the Hodge dual gives

δene = − 1

2ne

1

18
(je)dfg ? (δe ((je)abc) e

abc ∧ ?edfg). (B.125)

Now consider δe(je):

δe(je) =
1

3!
δe ((je)abc) e

abc +
1

3!
(je)abcδe

(
eabc
)

= 0

i.e. δe ((je)abc) e
abc = −(je)abcδe

(
eabc
)
. (B.126)

Applying this to (B.125) results in

δene =
1

2ne

1

18
(je)dfg ?

(
(je)abcδe

(
eabc
)
∧ ?edfg

)
=

1

2ne

1

3!
(je)dfg ?

(
(je)abcδe

a ∧ ebc ∧ ?edfg
)

=
1

2ne

?
(
(je)abcδe

a ∧ ebc ∧ ?je

)
. (B.127)

The placement of δene in the action equation (B.86) allows for further simplifica-

tion;

δene ? 1 =
1

2ne

?
(
(je)abcδe

a ∧ ebc ∧ ?je
)
? 1. (B.128)

Because ?
(
(je)abcδe

a ∧ ebc ∧ ?je
)

is a 0-form, it can be buried in ?1. This results

in a double Hodge map, which for a 4-form on a 4 dimensional manifold is just

given by the expression

? ? α = −α, (B.129)

hence

δene ? 1 = δe
√
je·je ? 1 = − 1

2ne

(je)abcδe
a ∧ ebc ∧ ?je. (B.130)
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B.4.4 Finding the Stress Tensor

Returning to (B.86) and inserting (B.109), (B.119) and (B.130),

δeS =

∫
M

[
− ∂L
∂X

2Fabδe
a ∧ eb ∧ ?F − ∂L

∂Y
2Fabδe

a ∧ eb ∧ F − Lδe(?1)

−me

2ne

(je)abcδe
a ∧ ebc ∧ ?je +meneδe(?1)

]
. (B.131)

The terms involving the variation of ?1 are substituted via

δe(?1) = δea ∧ ?ea, (B.132)

so that

δeS =

∫
M

δea ∧
[
− ∂L
∂X

2Fabe
b ∧ ?F − ∂L

∂Y
2Fabe

b ∧ F − L ? ea

−me

2ne

(je)abce
bc ∧ ?je +mene ? ea

]
=

∫
M

δea ∧
[
−2

∂L

∂X
iXaF ∧ ?F − 2

∂L

∂Y
iXaF ∧ F − L ? ea

+me

(
ne ? ea −

1

ne

iXaje ∧ ?je

)]
. (B.133)

Rewriting the matter piece of the action in terms of the vector field Ve using

je = ne ? Ṽe,

me

(
ne ? ea −

1

ne

iXaje ∧ ?je

)
= me

(
neiXa ? 1− neiXa ? Ṽe ∧ ? ? Ṽe

)
= mene

(
iXa ? 1− iXa ? Ṽe ∧ Ṽe

)
. (B.134)

The first term of (B.134) can be rewritten using n2
e = je·je. From this, note

?1 =
1

n2
e

? (je·je) =
1

n2
e

je ∧ ?je

= ?Ṽe ∧ Ṽe, (B.135)

and thus

me

(
ne ? ea −

1

ne

iXaje ∧ ?je
)

= mene

(
iXa

(
?Ṽe ∧ Ṽe

)
− iXa ? Ṽe ∧ Ṽe

)
= mene

(
− ? Ṽe

(
iXaṼe

))
= −meneiXaṼe ∧ ?Ṽe. (B.136)
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Hence (B.133) can be written

δeS =

∫
M

δea ∧
[
−2

∂L

∂X
iXaF ∧ ?F − 2

∂L

∂Y
iXaF ∧ F − L ? ea −meneiXaṼe ? Ṽe

]
=

∫
M

[
2
∂L

∂X
iXaF ∧ ?F + 2

∂L

∂Y
iXaF ∧ F + L ? ea +meneiXaṼe ? Ṽe

]
∧ δea,

(B.137)

and by (B.84), the stress 3-forms Ta can be written in terms of the coframe

variation as

δeS =

∫
M

Ta ∧ δea, (B.138)

and comparing with (B.137), the stress forms are clealry

Ta = 2
∂L

∂X
iXaF ∧ ?F + 2

∂L

∂Y
iXaF ∧ F + L ? ea +meneiXaṼe ? Ṽe. (B.139)

Since the excitation 2-form G is

G = 2
∂L

∂X
F − 2

∂L

∂Y
? F, (B.140)

the stress 3-forms can be written more simply:

Ta = iXaF ∧ ?G+ iXa ? L+meneiXaṼe ? Ṽe, (B.141)

where (B.141) the electromagnetic components and the purely matter contribu-

tion, TMatter
a = meneg(Ve, Xa) ? Ṽe.

B.5 Stress Balance Equation of Chapter 4

This section obtains the stress balance equation used in Chapter 4 satisfied by

the nonlinear stress forms (see Section B.4.4) for a plasma with background ions.

The stress tensor associated with Killing vector K for a nonlinear theory with

Lagrangian of the form L(X, Y ) is given by

TK = iKF ∧ ?G+ iK ? L+meneiKVe ? Ṽe

= iKF ∧ ?G+ iK ? L+
me

qe

(iKVe)je, (B.142)
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where

G = 2

(
∂L

∂X
F − ∂L

∂Y
? F

)
, (B.143)

with the field equations

d ? G = −qeje − qionjion. (B.144)

Taking the exterior derivative of the stress forms (B.142) gives

dTK = d(iKF ) ∧ ?G− iKF ∧ d ? G+ d (iK ? L) + d

(
me

qe

(iKVe)je

)
. (B.145)

Since Cartan’s identity gives diKα = LKα − iKdα and as both dF = 0 and

d ? L = 0, (B.145) can be written

dTK = LKF ∧ ?G− iKF ∧ d ? G+ LK ? L+ d

(
me

qe

(iKVe)je

)
= LKF ∧ ?G− iKF ∧ d ? G+ ?LKL+ d

(
me

qe

(iKVe)je

)
, (B.146)

where the final step uses the fact that for Killing K, LK? = ?LK . The expression

(B.146) is to be analysed term by term. Firstly consider the Lie derivative on the

Lagrangian

?LKL = ? (∂XLLKX + ∂YLLKY ) , (B.147)

which after substituting X and Y in terms of F and recalling that ?LK = LK?

gives

?LKL = ? (∂XLLK ? (F ∧ ?F ) + ∂YLLK ? (F ∧ F ))

= ? (∂XL ? LK(F ∧ ?F ) + ∂YL ? LK(F ∧ F ))

= −∂XLLK(F ∧ ?F )− ∂YLLK(F ∧ F ). (B.148)

Expanding the Lie derivative in the first term in (B.148),

LK(F ∧ ?F ) = (LKF ) ∧ ?F + F ∧ (LK ? F ) = (LKF ) ∧ ?F + F ∧ (?LKF ) ,
(B.149)
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and upon a star-pivot these terms are clearly identical (similarly for the other

term in (B.148)), hence

LK ? L = ?iKdL = −2∂XLLK(F ) ∧ ?F − ∂YLLK(F ) ∧ F

= −LKF ∧ (2∂XL ? F + 2∂YLF )

= −LKF ∧ ?G. (B.150)

This term cancels with the first term in (B.146). Hence

dTK = −iKF ∧ d ? G+ d

(
me

qe

(iK Ṽe)je

)
. (B.151)

Recalling that the electron current is closed (that is dje = 0), the final term of

(B.146) can be written

d

(
me

qe

(iK Ṽe)je

)
=
me

qe

d
(
iK Ṽe

)
∧ je

= mened
(
iK Ṽe

)
∧ iVe ? 1. (B.152)

Now exploiting properties of the interior derivative,

iVe

(
d
(
iK Ṽe

))
∧ ?1− d

(
iK Ṽe

)
∧ iVe ? 1 = iVe

(
mened

(
iK Ṽe

)
∧ ?1

)
= 0,

(B.153)

to rewrite (B.152) further:

d

(
me

qe

(iK Ṽe)je

)
= meneiVe

(
d
(
iK Ṽe

))
∧ ?1

= mene∇Ve

(
iK Ṽe

)
∧ ?1. (B.154)

Since Killing’s equation is

g(X,∇YK) + g(Y,∇XK) = 0, (B.155)

for all vectors X and Y , clearly g(Ve,∇VeK) = 0. Then, by (2.52), ∇VeiK Ṽe =

iK∇̃VeVe for Killing vectors K. Thus (B.154) is

d

(
me

qe

(iK Ṽe)je

)
= meneiK∇̃VeVe ? 1. (B.156)
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Substituting in the covariant Lorentz force equation (B.83) into (B.156) gives

d

(
me

qe

(iK Ṽe)je

)
= meneiK(

qe

me

iVeF ) ? 1 = −qene (iVeiKF ) ? 1, (B.157)

and substituting this back into (B.151) results in

dTK = −iKF ∧ d ? G− qene (iVeiKF ) ? 1. (B.158)

Since d?G = −qene ? Ṽe− qionnion ? Ṽion, the third term of (B.151) can be written;

iKF ∧ d ? G = −iKF ∧
(
qene ? Ṽe + qionnion ? Ṽion

)
= −qeneiKF ∧ ?Ṽe − qionnioniKF ∧ ?̃Vion

= −qene(iVeiKF ) ? 1− qionnion(iVioniKF ) ? 1. (B.159)

The electron piece here cancels with a term from (B.158), leaving

dTK = qionnioniVioniKF ? 1, (B.160)

as required.
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