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Abstract
Passive optical hyperspectral remote sensing of plant pigments offers potential for under-

standing plant ecophysiological processes across a range of spatial scales. Following a num-

ber of decades of research in this field, this paper undertakes a systematic meta-analysis of

85 articles to determine whether passive optical hyperspectral remote sensing techniques are

sufficiently well developed to quantify individual plant pigments, which operational solutions

are available for wider plant science and the areas which now require greater focus. The find-

ings indicate that predictive relationships are strong for all pigments at the leaf scale but these

decrease and becomemore variable across pigment types at the canopy and landscape

scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended

for operational methodologies: total chlorophyll and chlorophyll a quantification is based on

reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on

the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); caroten-

oids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge

(700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths

are valid across canopy and landscape scales and there is some evidence that the same

applies for chlorophyll a.

Introduction
A pigment is a material that changes the spectral distribution of reflected or transmitted light
as the result of wavelength-selective absorption which is determined by the physical properties
of the pigment itself. Plant pigments play an important role in light capture, photosystem pro-
tection, and in various growth and development functions. The photosynthetic pigments con-
trol the amount of solar radiation absorbed by a leaf and thus determine photosynthetic
potential and primary production [1,2]. Pigment concentrations are also related to plant stress
(excess direct sunlight, UV–B irradiation, low temperature, water stress, nitrogen deficiencies
and so on) and senescence (e.g., [3–9]). Therefore, accurate measurements of the temporal
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dynamics and spatial variations of pigment concentration using remotely sensed data can pro-
vide a basis for monitoring physiological and ecological processes [10,11].

The spectral absorbance properties of pigments offer the possibility of using measurements
of reflected radiation as a non-destructive method for quantifying pigments. Different
approaches have arisen recently to remotely estimate pigment concentrations from a wide vari-
ety of wavelengths and sensor types. These studies produced variable results, and none have
been demonstrated to have satisfactory performance under all growth and environmental con-
ditions. These inconsistencies may stem from the fact that the experimental results are influ-
enced by a number of factors including different species, experimental conditions and
analytical methods used [11].

Recent review articles have attempted to assimilate knowledge in this field of passive optical
hyperspectral remote sensing with the sun as energy source. Blackburn [10] reviewed the devel-
oping technologies and analytical methods for quantitative estimation of pigment across a
range of spatial scales using passive optical hyperspectral remote sensing. Ustin et al. [11]
appraised the most widely used methodologies for retrieving pigment information with hyper-
spectral data at the leaf scale. However, it has been demonstrated that traditional qualitative
reviewers may subjectively select their preferred studies when faced with conflicting results on
a single question [12]. In contrast, it has been argued that meta-analysis can take the results
from primary research articles and quantitatively analyze and synthesize these data in an
attempt to arrive at more robust conclusions. As such, meta-analysis review papers make the
shift from a narrative-driven to a data-driven approach [13,14].

Glass [15] published the first article to lay out the essential rationale of meta-analysis. As a
fully general set of methods, meta-analysis has been widely applied to the integration of litera-
tures in many areas of empirical science, including ecology [14]. This form of analysis has, for
example, been used to determine the response of biodiversity to intensive biomass production,
the effects of elevated CO2 on plant–arthropod interactions, the influence of plant invasion on
carbon and nitrogen cycles and the causes and consequences of variations in leaf mass per area
[16–19]. Today, many findings and advances are being made not only by those who do primary
research studies, but also by those who use meta-analysis to discover the latent meaning of
existing research literatures [13]. Recently, meta-analysis has been employed in remote sensing
research. Garbulsky et al. [20] performed a meta-analysis to assess the use of the photochemical
reflectance index (PRI) as an indicator of radiation use efficiencies at the leaf, canopy and eco-
system scales for different time scales and vegetation types. Zolkos et al. [21] conducted a
meta-analysis of publications on LiDAR remote sensing estimation of terrestrial aboveground
biomass. These investigations show that meta-analysis can be used to systematically integrate
the results from a collection of studies, and through statistical comparison, assess the relation-
ships between remotely sensed measurements and variables of interest.

Here, a meta-analysis of data from a wide selection of studies reporting the passive optical
hyperspectral remote sensing of pigments was used to quantify the development of this scien-
tific field, identify optimal wavelengths for retrieval of individual pigments and evaluate the
strength of the relationships between pigment concentration and remotely sensed data across
pigment types and scales.

Materials and Methods

2.1 Study selection and data extraction
Databases of Elsevier, Springer andWeb of Science, licensed to Zhejiang University, were used
for source data from inception to August 2014. The following key words were used: pigment,
chlorophyll, carotenoids, carotene, xanthophyll, anthocyanins, anthoxanthin in combination
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with the terms reflectance, estimation, quantification, retrieval, prediction and remote sensing.
More than 4500 citations were collected as a result of this initial search.

Then the abstracts of these articles were reviewed and considered for inclusion in the meta-
analysis. The following criteria were applied to ensure homogeneity in methodology. First, the
studies had to include a chemical measurement of pigment concentration (total chlorophyll,
chlorophyll a, chlorophyll b, carotenoids, xanthophyll, carotene or anthocyanins). Second, the
article had to report the quantification of pigments using remotely sensed data. Third, the
authors must have provided the following statistical information: (1) coefficient of determina-
tion for the relationships between pigment concentration and remotely sensed measurements;
(2) the wavelength(s) used to estimate pigment concentration; and (3) training sample sizes.

2Based on the first two decision rules, 135 articles were selected. According to the final cri-
terion, 50 studies were excluded because of insufficient statistical information. Finally, 85
articles were used in the meta-analysis, which reported results at different spatial and tempo-
ral scales and from a wide range of vegetation types between 1977 and 2014. The number of
studies selected at various stages is shown in the flow diagram in Fig 1. Some studies reported
multiple results for different pigment types or vegetation types. Different types of sensors
were used in these studies, from spectrophotometers and hand-held spectroradiometers to
satellite sensors. All the sensors were working in reflectance mode. Within the selected arti-
cles 44 were working at the leaf scale, 21 at the canopy scale, 15 at the landscape scale, 2 at
the leaf and canopy scales, 1 at the leaf and landscape scales, and 2 covered the leaf, canopy
and landscape scales. The term “canopy” refers to either a single plant or a monospecific
stand where the experimental results are influenced by a number of controlling factors, such
as orientation of leaves (leaf angle distribution; LAD), variations in number of leaf layers
(LAI), presence of non-leaf elements, multiple scattering and areas of shadow [10,22], the
term “landscape” refers to a mixed-species stand where the reflectance spectrum from air-
borne and spaceborne sensors is subject to even more controlling factors, such as atmo-
spheric conditions, instrucment sensitivity (signal-to-noise ratio) and spatial resolution. In

Fig 1. Selection of studies for inclusion in the meta-analysis.

doi:10.1371/journal.pone.0137029.g001
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total, the sample size from all the selected studies is 16100. The Preferred Reporting Items for
Meta-Analyses is shown in S1 PRISMA Checklist.

Relevant information was extracted from each study in the final set:① scales (leaf, canopy,
landscape),② pigment types,③ species,④ wavelengths,⑤ coefficient of determination,⑥
sample sizes,⑦ sensors,⑧ authors and⑨ year of publication. In order to reduce human
error in data extraction and coding, two sets of reviewers independently screened articles in
accordance with those inclusion criteria discussed above, evaluated the quality and extracted
the data from the eligible studies. The results from one group were cross-checked by the other
group. Divergences of opinion about article selection and data extraction were settled by dis-
cussion. Table 1 is a summary of the studies contained in this research. This list is not exhaus-
tive but it does cover most papers published related to quantification of pigments using
remotely sensed data that met the selection criteria. Table 2 provides a statistical summary of
the data extracted from the studies included in the meta-analysis.

2.2 Statistical analysis of effect size
2.2.1 The calculation of effect size for each study. The coefficient of determination (R2)

was used to evaluate the strength of relationships between spectral reflectance and pigment
concentration in each article we selected. The value of R2, however, is affected by the number
of selected wavelengths. The more wavelengths included in the model, be they relevant or not,
the larger would be the R2 [106]. The increase of R2 is not without cost. The increasing number
of selected wavelengths reduces the degrees of freedom, which reduces model robustness. The
adjusted coefficient of determination was applied to correct for the degrees of freedom:

R2
A ¼ 1� ð1� R2Þ n� 1

n� k
ð1Þ

where n is the sample size for each study, k is the number of independent variables in the linear
or nonlinear model. Eq (1) shows that R2

A is always smaller than R2 when k> 1, which means
the growth rate of R2

A is lower than that of R2 as the number of parameters increase. This result
is straightforward and it has been shown that when the added parameter explains a significant
amount of the behavior of the dependent variable, R2

A will increase; otherwise, R
2
A will decrease

[107]. So R2
A was chosen as the effect size statistic, the variance of effect size is calculated as

[108]:

Vi ¼
ð1� R2

AÞ2
n� 1

; ð2Þ
The resulting data set was categorized by pigment type at the scales of leaf, canopy and land-

scape to allow comparison.
2.2.2 Test of heterogeneity for effect sizes. It is important to assess the heterogeneity

among the results from a collection of studies before computing the mean effect size [109].
Basically, there are two possible sources of heterogeneity in meta-analysis: methodological het-
erogeneity and statistical heterogeneity. To ensure homogeneity in methodology, we applied a
series of criteria to identify the studies to be used in the meta-analysis (as described in section
2.1). Here the I2 statistic was used to test for the statistical heterogeneity. The I2 statistic mea-
sures the extent of true heterogeneity dividing the difference between the result of the Q test
and its degrees of freedom by the Q value itself [110]:

I2 ¼ 100%� Qtot � df

Qtot
ð3Þ

where df = Ntot−1, Ntot is the total number of effect sizes from all the selected studies, Qtot is
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Table 1. A summary of the studies contained in this research that linked remotely sensed data with pigment. Specrad = spectroradiometer;
Specpho = spectrophotometer; Chl tot = total chlorophyll; Chl a = chlorophyll a; Chl b = chlorophyll b; Cars = carotenoids; Anths = anthocyanins.

Scale Pigment Type Year Species Sensor Reference

leaves Chl tot 1992 Amaranthus tricolor Specpho [23]

leaves Chl tot 1995 Slash pine Specrad [24]

leaves Chl tot 1995 Bigleaf maple Specrad [25]

leaves Chl tot 1996 Horse Chestnut, Norway maple,Cotoneaster, Tobacco Specpho [26]

leaves Chl tot 1996 Norway Maple, Horse Chestnut Specpho [27]

leaves Chl tot 1997 Norway Maple, Horse Chestnut, Fig, Cotoneaster, Tobacco,Oleander,
Hibiscus, Vine, Rose

Specpho [28]

leaves Chl tot 1998 Tobacco, Horse Chestnut, Cotoneaster Specpho [29]

leaves Chl tot 1999 Beech tree, Elm tree,Wild vine shurb Specpho [30]

leaves Chl tot 1999 Bragg Soybean Specrad [31]

leaves Chl tot 2002 53 species Specrad [32]

leaves Chl tot 2002 Paper birch Specrad [33]

leaves Chl tot 2003 Bigleaf Maple, Horse Chestnut, Wild vine, Beech Specpho [34]

leaves Chl tot 2005 Cotton Specrad [35]

leaves Chl tot 2007 Winter wheat Specpho [36]

leaves Chl tot 2012 15 different species(Beech, Fraxinus lanuginosa, Acer Japonicum,
Magnolia obovata and so on)

Specrad [37]

leaves Chl tot 2014 Douglas fir Specrad [38]

leaves Chl a 1994 Norway Maple, Horse Chestnut Specpho [39]

leaves Chl a 1994 Norway Maple, Horse Chestnut Specpho [40]

leaves Chl a 1996 Norway Maple, Horse Chestnut Specpho [41]

leaves Cars/Chl tot 1977 Cantaloupe, Corn, Spinach Cotton, Cucumber, tobacco, Head lettuce,
Grain sorghum

Specpho [42]

leaves Cars/Chl tot 1992 Sunflower Specrad [43]

leaves Cars/Chl tot 1999 Norway Maple, Potato, Lemon, Apple, Coleus Specpho [7]

leaves Cars/Chl tot 2006 24 species of woody trees and shurbs Specpho [44]

leaves Anths/Cars/Chl
tot

1999 Quercus agrifolia, Pseudotsuga menziesii Specpho [45]

leaves Anths/Cars/Chl
tot

2003 Apple Specpho [46]

leaves Anths/Cars/Chl
tot

2004 Norway maple, Maize, Dogwood,Horse chestnut, Second-flush beech,
Wild vine shrub, Cotoneaster, Pelargonium zonale

Specpho [47]

leaves Chl tot/Anths 2014 Chilean strawberry Specrad [48]

leaves Cars/Chl a/ Chl
b

1992 Soybean Specrad [49]

leaves Cars/Chl a/Chl b 1998 Beech, Oak, Maple, Sweet chestnut Specrad [50]

leaves Cars/Chl a/Chl b 2005 Rice Specrad [51]

leaves Chl tot/Chl a/Chl
b

1999 Norway Maple, Horse Chestnut, Beech, Oak Specrad [52]

leaves Chl tot/Chl a/Chl
b

2001 Croton, Elaeagnus, Japanese pittosporum,Benjamin fig Specrad [53]

leaves Chl tot/Chl a/Chl
b

2010 Flowering cherry Specrad [54]

leaves Chl tot/Chl a 1996 Tobacco Specpho [55]

leaves Chl tot/Chl a 1999 Eucalyptus Specrad [56]

leaves Cars 2002 Norway maple, Horse chestnut,Second-flush beech Specpho [57]

leaves Cars 2009 Scot pine Specpho [58]

leaves Cars 2011 Bur oak, Sugar maple, LOPEX database Specrad [59]

Scale Pigment Type Year Species Sensor Reference

(Continued)
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Table 1. (Continued)

leaves Anths 2001 Norway maple, Cotoneaster, Dogwood Specpho [60]

leaves Anths 2009 Grapevine Specrad [61]

leaves Anths 2009 European hazel, Siberian dogwood, Norway maple, Virginia creeper Specpho [62]

leaves Anths 2011 Grapevine Specrad [63]

leaves Anths 2011 Sweet cherries Specpho [64]

leaves Anths 2011 Norway maple, Horse chestnut, Beech,Virginia creeper, Dogwood Specpho&specrad [65]

Leaves/canopy Chl tot 2009 Maize Specpho [66]

Leaves/canopy Chl tot 2013 Irrigated maize Specrad [67]

Leaves/landscape Chl tot 2014 Black Spruce, Sugar maple Specrad&MERIS [68]

Leaves/canopy/
landscape

Chl tot 2010 Winter Wheat, Winter Rapeseed Specrad [69]

Leaves/canopy/
landscape

Cars/Chl tot 2000 Sugar maple Specrad [70]

canopy Chl tot 1990 Slash pine Airborne spectro [1]

canopy Chl tot 1994 pepper Specrad [71]

canopy Chl tot 2005 Maize, Soybean Specrad [72]

canopy Chl tot 2006 Rice Specrad [73]

canopy Chl tot 2007 Cotton Specrad [74]

canopy Chl tot 2008 Winter wheat, Corns Specrad [75]

canopy Chl tot 2008 Heterogeneous grassland Specrad [76]

canopy Chl tot 2008 Heterogeneous grassland Specrad [77]

canopy Chl tot 2008 Corn, Cotton Specrad [78]

canopy Chl tot 2010 Rice Specrad [79]

canopy Chl tot 2011 Rice Specrad [80]

canopy Chl tot 2012 Potato, Grassland Specrad [81]

canopy Chl tot 2013 Irrigated maize Specrad [82]

canopy Chl tot 2014 Winter wheat Specrad [83]

canopy Chl a 2003 Rice Specrad [84]

canopy Chl a 2007 Winter Wheat Specrad [85]

canopy Chl a/Chl b 2004 Winter wheat Specrad [86]

canopy Chl tot/Chl a 2006 Wheat Specrad [87]

canopy Cars/Chl tot 2010 Tall fescue Specrad [88]

canopy Cars 2008 Kermes oak Specrad [89]

canopy Cars 2008 Douglas fir Specrad [90]

landscape Chl tot 2002 Corn CASI [91]

landscape Chl tot 2003 Eucalypt CASI-2 [92]

landscape Chl tot 2004 Jack pine CASI [93]

landscape Chl tot 2004 Douglas fir MERIS [94]

landscape Chl tot 2007 Corn, Wheat CASI [95]

landscape Chl tot 2008 Rice, Cotton EO-1 [96]

landscape Chl tot 2008 Garlic, Alfalfa, Onion, Sunflower, Corn, Potato, Wheat, Vineyard, Sugar
beet

PROBA/CHRIS [97]

landscape Chl tot 2010 Flax, Tea, Chestnut, Corn, Potato, Pine, Bamboo EO-1 [98]

landscape Chl tot 2010 Garlic, Onion, Corn, Alfalfa, Sugar beet, Sunflower, Potato, Vineyard,
Wheat

PROBA/CHRIS [99]

landscape Chl tot 2014 London plane, Canary Island date palm, European nettle tree, White
mulberry

CASI [100]

landscape Chl a 2004 Winter Wheat AVIS [101]

landscape Cars/Chl tot 2002 Quercus petrea, Pinus sylvestris CASI [102]

(Continued)
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computed as [111]:

Qtot ¼
XNtot

i¼1

WiE
2
i �

XNtot

i¼1

WiEi

0
@

1
A2

XNtot

i¼1

Wi

ð4Þ

whereWi ¼ 1=vi, Ei is adjusted coefficient of determination (R2
A).

The I2 statistic can be interpreted as the percentage of heterogeneous component in the total
variability of effect size (Qtot), so the larger the I

2 statistic is, the stronger the heterogeneity is. If
I2 exceeds 50%, the null hypothesis of homogeneity is rejected. The I2 statistic for different pig-
ments at different scales were calculated, all the results were lower than 50%, the null hypothe-
sis of homogeneity for this study was accepted.

2.2.3 The calculation of mean effect size for different pigments at different scales. In
contrast to studies based on original data, the unit of meta-analysis is the individual research
study. Distinctive aspects of data analysis follow from this difference. The first complication is
that the studies incorporated into the meta-analysis generally use different sample sizes and
this controls the statistical properties of effect sizes [112]. From a statistical perspective, larger
sample studies have less sampling error than smaller sample studies, thus more weight should
be assigned to larger sample studies in the computation of the mean effect size. The other com-
plication is inter-study variability, which is caused by the influence of an indeterminate number
of characteristics that vary among the studies.

Table 1. (Continued)

landscape Chl a/Cars 2005 Rice PHI [103]

landscape Cars/Chl tot/Chl
a/Chl b

2008 Aspen, Birch, Spruce, Balsam fir CASI [104]

landscape Anths 2009 Austrocedrus chilensis forest Hyperion [105]

doi:10.1371/journal.pone.0137029.t001

Table 2. Summary statistics for the selected studies and extracted data for different pigment types at leaf, canopy and landscape scales.

Scale Pigment type Number of studies Number of effect sizes Total sample size Number of wavelengths

leaves Chl tot 34 53 6431 131

Chl a 11 23 1595 53

Chl b 6 10 860 24

Cars 14 15 1381 40

Anths 10 17 1752 43

canopy Chl tot 20 23 1146 55

Chl a 4 4 162 6

Chl b 1 1 35 0

Cars 3 2 45 7

Anths 0 0 0 0

landscape Chl tot 15 17 1883 46

Chl a 3 3 153 6

Chl b 1 1 24 2

Cars 3 3 573 4

Anths 1 1 60 2

doi:10.1371/journal.pone.0137029.t002

Meta-Analysis of Remote Sensing of Plant Pigment Concentrations

PLOS ONE | DOI:10.1371/journal.pone.0137029 September 10, 2015 7 / 26



Considering the two sources of variability discussed above, a random effects model was
used to compute the weighted mean of R2

A for different pigment types. In contrast to a fixed
effects model, the weight applied to each effect size in a random effects model must represent
both subject-level sampling error and the additional random variance component [112]. As
such, the mean effect size becomes a reasonable estimate of the true strength of the effect in the
population. Because of the generality of the random effects model, it is the preferred strategy in
meta-analysis [113]. The mean effect size is computed as:

Mrand ¼

XNp

i¼1

WiðrandÞEi

XNp

i¼1

WiðrandÞ

ð5Þ

The variance is:

Vrand ¼ 1XNp

i¼1

WiðrandÞ

ð6Þ

whereWiðrandÞ ¼ 1
Vi þ s2, s2 ¼

Qp � ðNp � 1Þ

XNp

i¼1

Wi �

XNp

i¼1

W2
i

XNp

i¼1

Wi

,Wi ¼ 1
Vi

�
, Qp ¼

XNp

i¼1

WiE
2
i �

XNp

i¼1

WiEi

 !2

XNp

i¼1

Wi

Ei,

is adjusted coefficient of determination (R2
A) and Np is the total number of effect sizes for a specific

type of pigment at each different scales (Table 2). Using this approach the mean effect size of Chl tot,

Chl a, Chl b, Cars and Anths at the scales of leaf, canopy and landscape were calculated.

A confidence interval gives the range of values within which the mean effect size is likely to
be, it is useful in indicating the degree of precision of the estimate of the mean effect size. A
95% confidence interval is subsequently calculated as follows:

Conf95 ¼ Mrand � 1:96SErand ð7Þ
where SErand ¼

ffiffiffiffiffiffiffiffiffi
Vrand

p
. If the confidence intervals of multiple mean effect sizes donot overlap,

then there are significant differences between these mean effect sizes.

2.3 Optimal wavelengths for pigment quantification
A large number of narrow-band indices were proposed to measure plant pigments in the
selected articles. These narrow band indices include difference vegetation index (NBDVI),
ratio vegetation index (NDRVI), normalized difference vegetation index (NBNDVI), anthocya-
nin reflectance index (ARI), soil-adjusted vegetation index (SAVI), perpendicular vegetation
index (PVI) and so on. The wavelengths used in these studies are different and there is lack of
agreement on optimal wavelengths for pigment quantification.

Histograms and quantile plots were used to identify the optimal wavelengths for individual
pigment quantification at different scales. The histogram partitions the data distribution of
wavelengths into subsets of 10nm width. This enabled us to provide an overview of suitable
wavelengths, which is difficult to achieve if the analysis is performed at higher spectral resolu-
tions. Also this approach avoided inaccuracies of spectral calibration associated with the use of
many different instruments across the studies incorporated into the meta-analysis. In the
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histogram each subset is represented by a rectangle whose height is equal to the count of obser-
vations that fall into the wavelength interval. A quantile plot is a simple and effective way to
compare different wavelength distributions. Let λi (i = 1toG) be the wavelengths sorted in
increasing order so that λ1 is the smallest wavelength and λG is the largest. Each wavelength, λi,
is paired with a percentage, fi, which indicates that approximately 100 fi% of the data are below
or equal to the value, λi.

fi ¼ i� 0:5

G
ði ¼ 1; . . . ;GÞ ð8Þ

In a quantile plot, λi is graphed against fi. This allows us to compare different wavelength
distributions based on their quantiles [114].

Results

3.1 Quantifying the development of remote sensing of plant pigment
concentrations
The number of studies used in the meta-analysis published over the period from 1977 to 2014
are shown in Fig 2, along with the 5-year running mean which summarises the overall trajec-
tory of development in this scientific field. After the first two studies were published in 1977
there were no other publications for 11 years, but then there was fast rate of growth from 1990
to 1999. The number of publications reached top in 1999 after which the publication rate
stopped increasing, indicating that research in passive optical hyperspectral remote sensing of
plant pigment concentrations is within a mature phase. The overall trajectory of publications
shows three periods covering the origins, development and proliferation of research in this
field. This trajectory corresponds to the developmental phases of hyperspectral instruments,
which started with spectrophotometers and hand-held spectroradiometers enabling leaf and
canopy-scale work. With the more recent advent of airborne and spaceborne imaging spec-
trometers, more landscape scale analyses have become possible.

Despite this overall development in the field, there were substantial differences in research
on different pigments. The first studies of total chlorophyll and carotenoids were published in
1977, followed by chlorophyll a and chlorophyll b in 1992 and anthocyanins in 1999. The
growth rate of publications on chlorophyll a, chlorophyll b, carotenoids and anthocyanins has

Fig 2. Histogram of numbers of selected studies published over time, showing the total in each year
and the number focusing on each pigment type. The solid line is a 5-year running mean of the total
number of studies.

doi:10.1371/journal.pone.0137029.g002
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been significantly lower than that for total chlorophyll. These differential rates of growth are
perhaps indicative of the increased difficulty in quantifying the concentrations of individual
photosynthetic and protective pigments remotely.

3.2 The relationships between pigment concentrations and remotely
sensed variables
The mean effect size for different pigments at the scales of leaf, canopy and landscape were cal-
culated (Fig 3). At the leaf scale, the mean effect sizes were fairly consistent between different
pigment types, varying from 0.87 to 0.93, while the difference in mean effect sizes between pig-
ment types was statistically significant at the canopy and landscape scales. The mean effect size
presented the highest value 0.93 (95% confidence interval, 0.92–0.95) for anthocyanins quanti-
fication at the leaf scale, far higher than the result of 0.35 (95% confidence interval, 0.18–0.51)
at the landscape scale. The mean effect size for total chlorophyll quantification was 0.88 (95%
confidence interval, 0.87–0.89) at the leaf scale, 0.73 (95% confidence interval, 0.69–0.77) at the
canopy scale and 0.79 (95% confidence interval, 0.76–0.82) at the landscape scale. The mean
effect size for carotenoids was the lowest of the various pigments at 0.87 (95% confidence inter-
val, 0.84–0.90) at the leaf scale, still higher than the result 0.80 (95% confidence interval, 0.71–
0.90) at the canopy scale and 0.85 (95% confidence interval, 0.76–0.94) at the landscape scale.
The results show that these mean effect sizes varied across pigment types and scales. In general,
the relationships are stronger at the leaf scale than those at the canopy and landscape scales.

Fig 3 shows that the highest number of relationships published was for pigment quantifica-
tions at the leaf scale. Pigment quantification at the canopy scale was less frequently reported
in the literature and only a few studies were conducted at the landscape scale. This can be
attributed to the limited availability and high costs of suitable airborne and spaceborne hyper-
spectral instruments [20]. For each scale, the highest number of relationships published was
for total chlorophyll quantification, followed by chlorophyll a, carotenoids, chlorophyll b and
anthocyanins. These findings are consistent with previous studies [10,11].

3.3 Wavelength selection for pigment quantification using remotely
sensed data

3.3.1 Optimal wavelengths for chlorophyll quantification. There is a large quantity of
studies on the relationships between chlorophyll concentration and remotely sensed data. The
distributions of wavelengths used at the three scales are shown in Fig 4. It should be noted that

Fig 3. Themean effect size for pigment types at the scales of leaf, canopy and landscape. (The
numbers of reported relationships found in the literature are shown in brackets, error bars represent 95%
confidence intervals).

doi:10.1371/journal.pone.0137029.g003
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all of the wavelengths for pigment quantification were concentrated in the 350–950 nm region,
except for total chlorophyll quantification at the canopy scale, which spread over 400–2400 nm.
For comparison, wavelengths in the histograms and quantile plots were limited within the
350–950 nm region.

In general, the distribution of wavelengths displayed a double-peak feature, concentrated in
the green (550–560 nm) and red edge (680–750 nm) regions rather than the main absorption
wavelengths of chlorophyll (blue or red) (Fig 5). At the canopy scale, five wavelengths in the
NIR to SWIR regions (1000–2400 nm) were also used for total chlorophyll quantification (not
shown in Fig 4B). This is due to the major influence of canopy structure in canopy reflectance
and because leaf chlorophyll concentration was relatively stable in the particular studies
[76,77].

The distribution of wavelengths proposed for chlorophyll a quantification at the leaf scale
was similar to that of total chlorophyll, concentrated in the green and red edge ranges (Fig 6A).
At the canopy and landscape scales, the number of wavelengths is limited and is difficult to
identify the central tendency of wavelength distribution (Fig 6B and Fig 6C).

The distribution of wavelengths used for chlorophyll b quantification at the leaf scale were
concentrated in the main absorption wavelength of chlorophyll b (red, 630–660 nm), the red
edge (670–710 nm) and the NIR (800–810 nm) regions (Fig 7A). Only two wavelengths were
selected at the landscape scale and could not be used for statistical inference (Fig 7B). The dis-
tributions of wavelengths used for quantification of different pigments at different scales can
be compared in the quantile plots (Fig 8). There were similar wavelength distributions for total
chlorophyll quantification at the scales of leaf, canopy and landscape (Fig 8A). For chlorophyll
a there were similar wavelength distributions at the leaf and canopy scales, but the landscape
scale differed (Fig 8B), while a comparison across scales for chlorophyll b was difficult due to a
lack of data at scales other than the leaf (Fig 8C).

At the leaf scale, the wavelength distributions for total chlorophyll and chlorophyll a quanti-
fication were relatively similar while there were notable differences for chlorophyll b (Fig 9A).
In the region 425–625 nm, the wavelengths used for chlorophyll a quantification were concen-
trated in the region of the green peak in leaf reflectance (550nm), but the central tendency of
wavelength distribution for chlorophyll b quantification was not obvious. In the red region, the
wavelength distribution for chlorophyll a quantification was shifted to longer wavelengths
than that of chlorophyll b (Fig 9A). The significant overlap in the absorption features of chloro-
phyll a and chlorophyll b (Fig 5) and the low concentrations of chlorophyll b with respect to
chlorophyll a in most leaves can present difficulties in defining optimal wavelengths for chloro-
phyll b quantification. The absorption spectra of chlorophyll a and chlorophyll b both display a
double-peak feature; the absorption maxima of chlorophyll a are at 430 and 662 nm, and chlo-
rophyll b has peaks located at 453 and 642 nm (Fig 5). In the presence of carotenoids, it is diffi-
cult to separately assess chlorophyll a and chlorophyll b from reflectance data in the blue
region. However, in the red region, the wavelength position of maximum absorption by chloro-
phyll a is longer than that of chlorophyll b, which can be exploited for chlorophyll a and chlo-
rophyll b discrimination (as seen in Fig 9A). The capacity to use this approach to discriminate
chlorophyll a and chlorophyll b is difficult to assess at the canopy and landscape scales due to
the small number of studies on chlrophyll b (Fig 9B and 9C).

3.3.2 Optimal wavelengths for carotenoids quantification. At the leaf scale, the central
tendency of wavelength distribution was not obvious but was mainly concentrated in the 500–
580 nm region (Fig 10A). There were similar wavelength distributions for carotenoids quantifi-
cation at the leaf and canopy scales (Fig 11) but at the landscape scale, the number of wave-
lengths was too small for statistical inference (Fig 10C).
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3.3.3 Optimal wavelengths for anthocyanins quantification. Quantification of anthocya-
nins from reflectance data has been given less attention by the passive optical hyperspectral
remote sensing community than chlorophyll and carotenoids. Most studies have concentrated
on the quantification of anthocyanins at the leaf scale, with some work at the landscape scale

Fig 4. Histogram of wavelengths for total chlorophyll quantification using remotely sensed data at
leaf (a), canopy (b) and landscape (c) scales using an interval width of 10 nm.

doi:10.1371/journal.pone.0137029.g004
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but nothing at canopy level. At the leaf scale, the distribution of wavelengths used for quantify-
ing anthocyanins was concentrated in the main absorption wavelength of anthocyanins (green,
550–560 nm), the red edge (700–710 nm) and the NIR (780–790 nm) ranges (Fig 12A). Simi-
larly, the two wavelengths used to estimate anthocyanin concentration at the landscape scale
were distributed in the green and red edge regions, respectively (Fig 12B and Fig 13).

Discussion
This meta-analysis of 85 studies has demonstrated that remotely sensed variables are good esti-
mators of plant pigment concentration. Most of the studies were conducted at the leaf scale,
while pigment quantification at the canopy and landscape scales was less frequently reported.
For each scale, most of the studies were conducted for total chlorophyll quantification, followed
by chlorophyll a, carotenoids, chlorophyll b and anthocyanins. These findings are consistent
with previous studies [10,11].

The strength of these relationships varied across pigments types and scales. In general, the
relationships are stronger at the leaf scale than those at the canopy and landscape scales. At the
leaf scale, the mean effect sizes were fairly consistent across different pigment types and were
all greater than 0.87, while the difference in mean effect sizes between pigment types was statis-
tically significant at the canopy and landscape scales. This result has been widely assumed, yet
a quantitative evaluation has been lacking. At the leaf scale, the methodological basis for pig-
ment quantification has been fully explored, which provides an important basis for developing
estimation models at the canopy and landscape scales. The primary goal of most leaf scale pas-
sive optical hyperspectral remote sensing studies has been to develop analytical approaches for
pigment quantification that can be applied to data from airborne and spaceborne sensors [11].

At the canopy and landscape scales, the experimental results are influenced by a number of
factors, which obscures the relationships between spectral reflectance and concentrations of
individual pigments. The reflectance spectrum of a whole canopy is subject to canopy biophysi-
cal attributes (e.g., orientation of leaves (leaf angle distribution; LAD), variations in number of
leaf layers (LAI) and foliage clumping), presence of non-leaf elements (e.g., soil reflectance and
the proportions of shadowed and sunlit background), anisotropic scattering of photons to
interact with multiple surfaces such as leaves, woody material and soils, viewing geometry (e.g.,
sun and view zenith and azimuth angles) and illumination conditions (e.g., the ratio between
direct and diffuse sunlight and atmospheric condition). It is the interaction of these factors,

Fig 5. Absorption spectra of the major plant pigments (reproduced from Blackburn, 2007).

doi:10.1371/journal.pone.0137029.g005
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including their potential covariance or unique behavior that drive variation in canopy and
landscape reflectance characteristics in three-dimensional space [10,22].

It should be noted that part of the variability in effect sizes at the canopy scale may be
entirely artifactual. These artifacts are common in experimental studies: studies vary in terms

Fig 6. Histogram of wavelengths for chlorophyll a quantification using remotely sensed data at leaf
(a), canopy (b) and landscape (c) scales by an interval width of 10 nm.

doi:10.1371/journal.pone.0137029.g006
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of the quality of measurement; researchers make computational errors; people make typo-
graphical errors in copying numbers from handwritten tables to computer; and sampling
errors. With the advent of airborne and spaceborne imaging spectrometers, there have been
opportunities to measure plant pigment concentrations at the landscape scale. The reflectance
spectrum from airborne and spaceborne sensors is subject to even more controlling factors,
notably, soil/litter surface reflectance, and vegetation structure. The range of controlling factors
should be taken into account in subsequent analyses.

Table 2 shows that the total sample size at the leaf scale is much more than that of canopy
and landscape scales. The law of large numbers correctly states that large samples are reason-
able representations of the population and parameter estimation is close to the real values
when the sample size is large enough. Many researchers seem to believe that the same law
applies to small samples and severely underestimate the amount of variability in findings that
is caused by sampling errors. As a result, they erroneously expect statistics based on small sam-
ples to be close to the real values [13]. At the canopy and landscape scales, the number of stud-
ies and total sample size is limited, which influences the robustness and accuracy of effect sizes.

Despite the significant difference in effect sizes between different scales, it was found that
the wavelength distribution for total chlorophyll quantification at the scales of leaf, canopy and
landscape was similar, being concentrated in the green (550–560 nm) and red edge (680–750

Fig 7. Histogram of wavelengths for chlorophyll b quantification using remotely sensed data at leaf
(a) and landscape (b) scales using an interval width of 10 nm.

doi:10.1371/journal.pone.0137029.g007
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nm) regions rather than the main absorption wavelength of chlorophyll (blue or red). The con-
sistency in optimal wavelengths across scales can be attributed to several factors: (1) despite the
many factors influencing reflectance at the canopy and landscape scales, it is the selective
absorbance properties of pigments that determines the selection of wavelengths for pigment
quantification, and (2) several estimation models derived at the leaf scale were directly applied

Fig 8. Quantile plots of the wavelengths used for the quantification of Chl tot (a), Chl a (b), and Chl b
(c) at different scales.

doi:10.1371/journal.pone.0137029.g008
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to canopy and landscape scales. This suggests that the leaf-level study has provided an impor-
tant basis for developing estimation models at the canopy and landscape scales.

At the leaf scale, the distribution of wavelengths used for chlorophyll a quantification was
similar to that of total chlorophyll; the distribution of wavelengths for chlorophyll b

Fig 9. Quantile plot of the wavelengths used at leaf (a), canopy (b) and landscape (c) scales for the
quantification of Chl tot, Chl a, and Chl b.

doi:10.1371/journal.pone.0137029.g009
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quantification was concentrated in the main absorption wavelength of chlorophyll b (red, 630–
660 nm), the red edge (670–710 nm) and the NIR (800–810 nm) regions; the central tendency
of wavelength distribution for carotenoids quantification was not obvious, but was mainly con-
centrated in the 500–580 nm region; for the estimation of anthocyanins, the distribution of

Fig 10. Histogram of wavelengths for carotenoids quantification using remotely sensed data at leaf
(a), canopy (b) and landscape (c) scales using an interval width to 10 nm.

doi:10.1371/journal.pone.0137029.g010
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Fig 11. Quantile plot of the optimal wavelength for the quantification of Cars at different scales.

doi:10.1371/journal.pone.0137029.g011

Fig 12. Histogram of wavelengths for anthocyanins quantification using remotely sensed data at leaf
(a) and landscape (b) scales using an interval width to 10 nm.

doi:10.1371/journal.pone.0137029.g012
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wavelengths was concentrated in the main absorption wavelength of anthocyanins (green,
550–560 nm), the red edge (700–710 nm) and the NIR (780–790 nm) ranges. In the present
meta-analysis, the lack of studies reporting the quantification of carotenoids and anthocyanins
at the canopy and landscape scales has hindered cross-scale comparisons (Fig 10; Fig 12). Con-
sequently, it is not entirely clear if the optimal wavelengths for carotenoids and anthocyanins
quantification at the leaf scale are necessarily the optimal wavelengths at the canopy and land-
scape scales, where multiple scattering and other confounding effects may alter the spectral
response of individual pigments, much in the way that pigment absorption peaks can vary
depending upon their chemical and scattering medium. Therefore, more work may be needed
to determine the optimal algorithms for airborne or spaceborne platforms.

It should be noted that the lack of statistical information in the studies (e.g., sample size and
coefficient of determination) has hindered a more comprehensive cross-study comparison in
the present research. When selecting the final set of studies, 50 studies were excluded due to
the lack of statistical information. Insufficient statistical information can not only limit the
research population covered by meta-analysis but also render the findings of the original study
somewhat suspect. Thus, it is suggested that when conducting primary research, such informa-
tion should include, but not be limited to, the sample size, the pertinent test statistic (e.g., r, t,
or F), the unit of pigment concentration/content, the range of pigment concentrations/content,
and estimation precision for pigment quantification (e.g. root mean squared error, RMSE).

This study has established the possibility of integrating the results of studies on the passive
optical hyperspectral remote sensing of plant pigment concentrations across a range of vegeta-
tion types and scales using a meta-analysis approach. Despite the robust models for pigment
prediction at the leaf scale, the continuing challenge is to properly account for the multiple fac-
tors introduced by scene components such as sunlit and shaded parts of tree crowns and gaps
influencing the retrieved signal at the canopy and landscape scales. Recent work have illus-
trated that, in addition to other influencing factors such as illumination geometry and atmo-
spheric conditions, canopy architecture had an important control on the applicability of
models for pigment prediction. Scanning LIDAR systems have only recently become widely
available which enable the estimation of the range between the sensor and a target by recording
the time during which the emitted laser pulse is reflected off an object and returns to the sensor

Fig 13. Quantile plot of the optimal wavelengths for the quantification of Anths at different scales.

doi:10.1371/journal.pone.0137029.g013
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[21]. LIDAR systems have the ability to directly measure spatial variations in canopy height
and other aspects of the vertical structure of canopies. Given the high degree of structural com-
plexity at the canopy and landscape scales, it would appear that the integration of vertical can-
opy structural information provided by active LIDAR remote sensing with hyperspectral
reflectance may has both a structural and physiological interpretation and improve the estima-
tion of pigment concentrations over passive optical hyperspectral imagery alone [102].
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