
Privacy Policy Negotiation in Social Media

JOSE M. SUCH, Lancaster University

MICHAEL ROVATSOS, University of Edinburgh

Social Media involve many shared items, such as photos, which may concern more than one user. The

challenge is that users’ individual privacy preferences for the same item may conflict, so an approach that

just merges in some way the users’ privacy preferences may provide unsatisfactory results. Previous proposals
to deal with the problem were either time-consuming or did not consider compromises to solve these conflicts

(e.g., by considering unilaterally-imposed approaches only). We propose a negotiation mechanism for users
to agree on a compromise for the conflicts found. The second challenge we address in this paper relates to

the exponential complexity of such a negotiation mechanism. To address this, we propose heuristics that

reduce the complexity of the negotiation mechanism and show how substantial benefits can be derived from
the use of these heuristics through extensive experimental evaluation that compares the performance of the

negotiation mechanism with and without these heuristics. Moreover, we show that one such heuristic makes

the negotiation mechanism produce results fast enough to be used in actual Social Media infrastructures
with near-optimal results.

Categories and Subject Descriptors: K.4.1 [Computers and Society]: Privacy

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Social Media, Privacy, Conflicts, Intimacy, Social Networking Services,

Online Social Networks

1. INTRODUCTION

Despite the unquestionable success of social media (Facebook recently achieved 1 billion
users), privacy is still one of the major concerns with regards to these technologies [Gross
and Acquisti 2005]. Moreover, this concern has even been increasing over the last few years
because users are more aware of the privacy threats that social media entail [Stutzman et al.
2013]. Most social media users consistently criticise mainstream social media for providing
very complex privacy controls. These are often too difficult to understand, require time-
consuming manual configuration, and do not allow for appropriate privacy management.
Users are required to set many privacy controls (Facebook has 61 privacy controls [Bonneau
and Preibusch 2010]), they need to consider a huge space of possible accessors (the average
Facebook user has more than 200 friends1), and they may have to perform fine-grained
modifications for many items (the average Facebook user uploads 217 photos2). This makes
most users unable to cope with the complexity of privacy management in social media, which
has led to numerous incidents in which people have lost their jobs, have been cyberbullied,
or have lost court cases due to the inappropriate communication of personal information
through social media. Empirical evidence shows that this significantly discourages users to
either join social media or to show high engagement when they join [Staddon et al. 2012],
in terms of how much they participate in social media sites, e.g., the amount of photos they
upload, the number of comments they post, etc. Indeed, the most common case is the latter:
people usually join social media because they do not want to be left apart, but after they
join they do not participate much because they are not able to manage their privacy in a
satisfactory way.

To address this problem, new access control paradigms for social media have been recently
proposed, such as relationship-based access control [Carminati et al. 2009; Fong 2011; Wang
et al. 2012; Such et al. 2012]. These new access control paradigms are aimed at better captur-
ing the nature of information sharing in social media by considering users’ relationships as a

1http://www.theguardian.com/news/datablog/2014/feb/04/facebook-in-numbers-statistics
2http://internet.org/efficiencypaper

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:2

central concept. This is supported by many studies that provide evidence that user relation-
ships are the main factor that drives human disclosure of personal information [Houghton
and Joinson 2010; Wiese et al. 2011; Duck 2007; Strahilevitz 2005], and that they should
play a crucial role when defining access control mechanisms for social media [Gates 2007].
In particular, privacy policies in relationship-based access control are neither defined based
on individual persons nor on their roles, but on the relationships — and specifically the
strength of the relationships or intimacy — that a user has to other users.

The main limitation of state-of-the-art relationship-based access control models is that
they only support single user decisions [Such et al. 2014]. That is, these proposals assume
that only one user takes the decision of whether or not to grant access to an item. This
user is usually the one who uploads the item or shares it in some other way. However, what
should we do when the definition of a privacy policy involves more than one user? This
is an issue that arises frequently — e.g., when photos depict different people, so that the
individual privacy preferences of all of them should be respected when deciding who should
be able to view them. The problem is that individual privacy preferences may conflict, as
the people in the photo may want to share it with different audiences.

Empirical evidence [Wisniewski et al. 2012] shows that users do actually negotiate among
themselves to achieve a compromise to solve these conflicts. However, they are forced to do
that manually (e.g., phone calls, SMS, etc.) for each and every item and for each and every
conflict, which becomes an unmanageable burden on them because of the large number of
possible shared items [Thomas et al. 2010] and the large number of possible accessors to be
considered by users [Quercia et al. 2012]. Few previous works have proposed mechanisms
to deal with this problem such as [Wishart et al. 2010; Squicciarini et al. 2009; Carminati
and Ferrari 2011; Hu et al. 2012], but these are either time-consuming or do not allow
compromises to solve these conflicts — e.g., the one that uploads the item unilaterally
imposes a privacy policy or a way to achieve a solution to the conflicts, which leads to
unsatisfactory or unacceptable solutions for the other users involved.

Automated negotiation has been satisfactorily used in many other domains to help users
reach compromises to resolve conflicts [Lopes et al. 2008]. In this paper, we propose the
first automated method to detect conflicts in relationship-based privacy policies and re-
solve them using a negotiation mechanism to find adequate compromises. The preferences
that determine negotiation behaviour are based on the strength of the relationships among
users. As proven by recent experiments [Wiese et al. 2011], and in line with state-of-the-
art relationship-based access control mechanisms [Carminati et al. 2009; Fong 2011; Wang
et al. 2012], this is the most important factor that users consider when deciding what in-
formation to disclose. Moreover, our mechanism uses the well-studied one-step negotiation
protocol [Rosenschein and Zlotkin 1994] and strategies which are known to be complete,
efficient and stable.

The second main challenge we address in this paper relates to the inherent complexity of
considering the space of all possible deals users may achieve to solve the conflicts so that the
results are optimal. In particular, we show in this paper that this space grows exponentially
in the number of conflicts that need to be negotiated for. This is very important because
this could prevent the mechanism from being used in actual Social Media infrastructures,
as it would be too slow for users to be able to run the mechanism in real-time when they
are posting items in the particular Social Media infrastructure.

We overcome the complexity problem by developing a number of suitable heuristics.
The aim is to reduce the space of all possible deals users may achieve to only those most
promising, so that the complexity is reduced while the outputs of the negotiation mechanism
remain near-optimal. Through an extensive experimental comparison of the performance
of the negotiation mechanism with and without heuristics, we show that they provide a
significant search space reduction while remaining near-optimal. One particular heuristic is

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:3

able to produce results very close to the optimal fast enough to be used in real-world social
media.

The remainder of the paper is structured as follows. Section 2 introduces the concept
of intimacy and policies for relationship-based access control. Section 3 provides a brief
overview of the mechanism. Section 4 describes the method used to detect conflicts. Section
5 proposes the model for ranking possible negotiation outcomes based on existing empir-
ical evidence. Section 6 describes the negotiation mechanism and its complexity. Section
7 introduces the heuristics we propose to reduce the complexity of the problem. Section 8
presents the experiments we conducted and discusses the results obtained. Section 9 reviews
the related literature. Finally, Section 10 presents some concluding remarks and describes
possible avenues for future work.

2. BACKGROUND

We consider a set of agents Ag = N ∪ T , where a pair of negotiating agents N = {a, b}
negotiate whether they should grant a set of target agents T = {i1, . . . , in} access to a
particular item it. For simplicity and without loss of generality, we will consider only a
negotiation for one item throughout this paper – for example, a photo that depicts the two
users which agents a and b are representing – and hence, we do not include any additional
notation for the item in question. The problem we are considering is how a and b can detect
whether their individual privacy preferences for the item are conflicting3, and if they are
conflicting, how a and b can achieve an agreement on which agents in T should be granted
access to this item.

Negotiating agents have the individual privacy preferences of their users about the item
— i.e., to whom of their online friends users would like to share the item if they were to
decide it unilaterally. In this paper, we use relationship-based access control [Carminati
et al. 2009; Fong 2011; Wang et al. 2012] because this type of access control has emerged as
an appropriate way to capture the nature of individual sharing preferences in Social Media,
and because it makes the link between individual preferences and our proposed mechanism
more intuitive. However, other existing approaches to access control in Social Media — such
as the group-based access control models of mainstream Social Media infrastructures (like
Facebook lists or Google+ circles), or (semi-)automated approaches like [Fang and LeFevre
2010; Squicciarini et al. 2011; Danezis 2009] — can also be used in conjunction with our
proposed mechanism, as we will be pointing out at different points in this paper4.

2.1. Intimacy

Relationship-based access control models how agents’ preferences about disclosure are
formed based on the concept of relationship strength (or intimacy5) between two persons
[Granovetter 1973]. This is because in the domain of social networks, there is strong evidence
that individuals’ willingness to share a particular item with another individual is related to
how close/intimate their relationship is [Green et al. 2006; Strahilevitz 2005; Houghton and

3Note that we focus on detecting conflicts once we know the parties that co-own an item and have their
individual privacy preferences for the item. We are, however, not proposing a method to automatically
detect which items are co-owned and by whom they are co-owned. This is a different problem that is out of
the scope of this paper.
4Note that privacy policies defined using any such approach specify the actions that are permitted for
particular users and a privacy policy can be reconstructed from the actions permitted for particular users,
which is needed to reconstruct privacy policies once an agreement on the actions allowed for particular
users is achieved, as we detail later on when the negotiation mechanism is presented. Note also that our
mechanism does not even need users to specify their individual privacy preferences for each and every item,
users could specify their preferences for groups or categories of items, e.g., users could specify the same
preferences for all the photos in a photo album.
5Over the course of this article, we shall use relationship strength, tie strength, and intimacy as equivalents.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:4

Joinson 2010; Wiese et al. 2011]. It is important to note that intimacy does not equal social
distance, which is usually measured as the number of hops (friends) between two users that
are not necessarily directly connected with each other. Instead, intimacy is the measure of
the relationship strength between two directly connected friends. Intimacy can also be tran-
sitive under certain conditions [White and Houseman 2002], so some particular non-directly
connected friends may have non-zero intimacy. The rest of non-directly connected friends
who do not meet the conditions to have a transitive intimacy would have no intimacy at all
— e.g., they would have an intimacy value of 0.

Intimacies in Social Media can be accurately estimated from content users have previ-
ously published, using tools that obtain intimacies automatically for Facebook [Gilbert and
Karahalios 2009; Fogués et al. 2014]; Twitter [Gilbert 2012]; and the like. These tools con-
sider variables like the time elapsed since the last communication between two users, links
shared, number of private messages exchanges, photos together, and many others — please
refer to any of these tools to know more about how they work. Even if these tools are not
used, users can be asked to self-report their intimacies to their friends, but this would ob-
viously mean more burden on the users. We formally represent the intimacy of two agents
as follows:

Definition 2.1. Given two agents a, b ∈ Ag, and a maximum integer intimacy value Y,
the intimacy between a and b is given as int(a, b), where int : Ag ×Ag → [0,Y].

The maximum possible intimacy Y depends on the scale used by the particular meth-
ods/tools used to obtain intimacy. For example, in Fogués et al. [Fogués et al. 2014] Y = 5
(that is, six levels of intimacy, which would map to, for instance, the friend relationship as:
0-no relationship, 1-acquaintance, 2-distant friend, 3-friend, 4-close friend, 5-best friend).

2.2. Relationship-based Privacy Policies

Privacy policies in relationship-based access control [Carminati et al. 2009; Fong 2011; Wang
et al. 2012; Such et al. 2012] consider different relationship types R = {r1, . . . , rl} — e.g.,
family, friends, colleagues, etc. — as well as a mapping r : U × U → R so that r(a, b) is
the relationship type between users a and b. Privacy policies in relationship-based access
control also consider the intimacy (or strength of the relationships) that a user has to other
social media users but contextualised within each relationship type. In particular, privacy
policies define a different intimacy threshold that users of each relationship type must have
with the user that defines the privacy policy to access the specific item6.

Definition 2.2. A privacy policy is a tuple P = 〈θ1, . . . , θ|R|, E〉, where θj ∈ [0,Y] is the
intimacy threshold for the relationship type rj ∈ R, and E ⊆ T is the set of exceptions to
the policy.

We denote Pa as the preferred privacy policy of the user which agent a ∈ Ag is represent-
ing. For instance, given the set of relationship types R = {friends, colleagues, family},
negotiating user a could have the privacy policy Pa = 〈0, 4, 0, ∅〉, so that all friends, close
colleagues, and all family members can access the item (assuming Y = 5 as stated above).
Another example would be that negotiating user a only wants to share with close friends,
but not with colleagues or family. This would be represented with the following privacy pol-
icy Pa = 〈4, 6, 6, ∅〉, so that only close friends can access the item (no one from family and

6Note that even if we represent relationship-based policies in its formal and mathematical form in this
paper, with a explicit intimacy threshold, that does not mean that users need to set numerical intimacy
threshold values. Indeed, graphical user interfaces for relationship-based access control should be usable
[Fogues et al. 2015]. For instance, assuming Y = 5 and the six levels of intimacy stated above, users could
just define using a graphical tool they only want to share with close friends, so that the tools translates
this decision into an intimacy threshold of 4 for the relationship type friends under the hood.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:5

colleagues would have enough intimacy with a as Y = 5 is the maximum possible intimacy
in this example). Finally, to showcase the need for exceptions, negotiating user a may have
the privacy policy that only close friends can access the item except b, who is also a close
friend — e.g., a may be organising a surprise birthday party for b, so that she invites all
their close friends to the event but b, as doing otherwise would mean ruining the surprise.
This will be mapped to the privacy policy Pa = 〈4, 6, 6, {b}〉, so that only close friends can
access the item (no one from family and colleagues would have intimacy enough) except b,
who is also close friend (i.e., assume int(a, b) ≥ 4) but who is put as an exception to the
policy — Pa.E = {b}.

3. MECHANISM OVERVIEW

The mechanism proposed in this paper takes as inputs the individual privacy policy of each
negotiating agent — Pa for all a ∈ N — and the intimacies among agents — int(a, b) for all
a, b ∈ Ag —, elicited as described in the previous section. The mechanism has two stages,
as shown in Figure 1:

(1) The individual privacy policies of the negotiating agents are inspected to identify any
conflict, as described in Section 4.

(2) If conflicts are found, then agents run the negotiation mechanism described in sections
5 and 6 to resolve every conflict found.

Fig. 1. Mechanism Overview.

The output ~o (as described later on) includes all the target agents that are finally granted
access to the item after solving all the conflicts found. Note that the output will not be
applied straightforwardly. That is, the mechanism is intended to alleviate user burden to
conduct a complex negotiation for each and every possible conflict but not to substitute
users decisions and remove control from them. Indeed, it has been widely studied and proved
that a fully automated approach to handle users privacy in social media is not desirable in
general [Vihavainen et al. 2014], so we also followed the same principle for the particular
case of multi-party privacy management. Instead of a fully automated approach, the aim
of our proposed mechanism is to automatically find conflicts and suggest a solution. This
solution is presented7 back to the users involved to confirm whether they are happy with it

7A detailed study on how to best present the information to foster trust in the system is out of the scope
of this paper and a very interesting line for future research.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:6

or not. If they are happy with it, then it will be applied. Otherwise, users are free to then
enter into a manual negotiation to try to solve the conflict8.

4. PRIVACY CONFLICT DETECTION

In this section, we describe how conflicts between the preferred privacy policies defined by
agents a and b on the item under consideration can be detected. Each agent usually has
different intimacies to other agents, so that two privacy policies from two different agents
can only be compared in terms of their effects. For instance, suppose that agents a and
b have the same preferred privacy policies for a particular item (i.e., these policies have
the same intimacy thresholds for the same relationship types). Suppose also that agents a
and b have different intimacies to agent i1 in T . If agent a has an intimacy with i1 below
the corresponding threshold but agent b has an intimacy with i1 above the threshold, their
individual decisions on whether to grant access to i1 would be different. A similar example
can be constructed for the case where the two policies are different but, because of the
individual intimacies of agents a and b to other agents in T , they suggest the same decision.
Thus, we need to consider the effects that each particular policy has on the set of target
agents T to determine whether or not the policies of two negotiating agents are in conflict.
That is, we need to know which agents are granted/denied access by a given policy.

Privacy policies dictate a particular action to be performed when an agent in T tries to
access the item. Assuming a set of available9 actions Π = {0, 1}, so that 0 means denying
access to the item and 1 means granting access to the item, the action to perform according
to a given privacy policy is determined as follows:

Definition 4.1. Given an agent a ∈ Ag, its privacy policy Pa = 〈θ1, . . . , θ|R|, E〉, an agent

i ∈ T , and a set of actions Π, we define the function acta : T → Π, so that10:

acta(i) =

{
1 iff int(a, i) ≥ Pa.θr(a,i) ∧ i /∈ Pa.E
0 otherwise

We also consider so-called action vectors ~v ∈ Πn, i.e. complete assignments of actions to
all agents in T , so that v[i] denotes the action for i ∈ T . When a privacy policy is applied
to T , it produces such an action vector:

Definition 4.2. The action vector induced by privacy policy Pa of negotiating agent a in
T is ~va, where va[i] = acta(i).

We now consider the following problem: agents a and b have their own privacy policies
for the same item, and the effect of these policies leads to different action vectors, e.g.,

8Note also that if the inputs of the mechanism might change some time after a solution has been agreed —
e.g., a negotiating agent befriends another or a negotiating agent changes its individual privacy policy, the
mechanism could run again and another negotiation could take place if new conflicts are created because of
the changes.
9Mainstream social media (Facebook, Google+, etc.) and relationship-based access control models (like the
ones cited above) focus on modelling decisions only about granting/denying access to an item. An interesting
path for future research would be to consider other types of access privileges like “read but not re-share”,
etc.
10This function will be different depending on the access control model used. For instance, in group-based
access control (like Facebook lists) this function could be specified as:

acta(i) =

1 if i is in a group that is granted access and

i is not blocked individually

1 if i is granted access individually

0 otherwise

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:7

there are target agents who are granted access according to one policy but denied access
according to the other. In this case, we say that these two privacy policies are in conflict:

Definition 4.3. Given agents a and b, their preferred privacy policies for the item under
negotiation Pa and Pb, and the action vectors induced by Pa and Pb, which are ~va and ~vb
respectively, we say that Pa and Pb are in conflict with respect to the item under negotiation
iff ~va 6= ~vb.

Further, we say that the agents in conflict is the set C = {i ∈ T | va[i] 6= vb[i]}. The
complexity of the conflict detection mechanism is O(T ·N), where T is the number of target
agents, and N is the number of negotiating agents both as defined above.

Table I. Intimacies for Example 4.4.

i1 i2 i3 i4
a 10 6 4 1
b 8 6 7 4

Example 4.4. Suppose a set of agents Ag = {a, b, i1, i2, i3, i4}, a unique relationship
type among them R = {r1}, and a set of possible actions Π = {0, 1}, with 0/1 meaning
denying/granting access to the item. Agents a and b are to decide which agents to grant
access to a photo in which both of them are depicted, and the intimacy values of agents
a and b toward others are as shown in Table I, with Y = 10. Suppose that agent a would
prefer the policy Pa = 〈5, ∅〉, so that ~va = (1, 1, 0, 0) — i.e., agent a wants to grant access to
agents i1 and i2, toward whom she has an intimacy greater or equal to 5, but not to agents
i3 and i4 who are less intimate to her. However, agent b would prefer the policy Pb = 〈4, ∅〉,
so that ~vb = (1, 1, 1, 1) — i.e., agent b wants to grant access to agents i1, i2, i3, and i4. As
~va 6= ~vb, Pa and Pb are in conflict and the set of agents in conflict is C = {i3, i4}.

5. DEALS AND THEIR UTILITY

When agents run into a conflict, they can still negotiate a common action vector for the
item in question to achieve a compromise, even if this will not result in an optimal policy
for either of them. Such an outcome (or deal) is simply an action vector ~o ∈ Πn such that
n =| T |, and the negotiation space is the space of all such vectors, which agents can rank
according to utility functions that compactly reflect agents’ preferences as will be defined in
this section. Based on these utility functions, agents will agree on a particular action vector
following the negotiation mechanism that we present in Section 6.

5.1. From Deals to Local Privacy Policies

After agents agree on a particular action vector, they must represent it in the form of a
local privacy policy, so that users could consult it without having to check who is granted
access or not individually. A particular action vector is likely to be represented with different
privacy policies for each agent because each of them has different intimacies toward agents
in T . Also, it is crucial that the resulting privacy policies are as simple (in terms of the
number of exceptions they include) as possible to ensure that users can understand them,
which is crucial for an appropriate privacy management [Cranor and Garfinkel 2005]. For
instance, a privacy policy that includes 100 exceptions will be far more difficult to read and
understand by the user than a privacy policy that only includes one exception. Thus, we
are interested in a privacy policy that minimises the number of exceptions among all the
privacy policies that can induce the same action vector.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:8

Definition 5.1. Given an action vector ~o, the privacy policy that induces ~o in T and
minimises the number of exceptions is defined as:

P~o = arg min
P=〈θ1,...,θ|R|,E〉, ~v=~o

| E |

Example 5.2. Suppose Example 4.4 and that we would like to obtain the privacy policy
for negotiating agent a that induces the action vector b would prefer — i.e.,
veco = vecvb = (1, 1, 1, 1) — with the least number of exceptions. The first thing would be
to enumerate all privacy policies for negotiating agent a that represent ~o = (1, 1, 1, 1). These
would be the following (recall that we are only considering in Example 4.4 one relationship
type, hence only one intimacy threshold is required):

— P1 = 〈11, {i1, i2, i3, i4}〉, which means that none of the agents are given access (the
maximum intimacy is 10, so adding one means no agent will have enough intimacy with
a — this would be equivalent with any number greater than 10), but then i1 to i4 are
added as exceptions, i.e., they do not have intimacy 11 with a but they will be granted
access anyway.

— P2 = 〈10, {i2, i3, i4}〉, which means that only agents with at least intimacy 10 are given
access, but then i2 to i4 are added as exceptions, i.e., they do not have intimacy 10 with
a but they will be granted access anyway.

— P3 = 〈6, {i3, i4}〉, which means that only agents with at least intimacy 6 are given access
— i.e., i1 and i2, but that i3 and i4 are exceptions to this, so they are granted access as
well.

— P4 = 〈4, {i4}〉, which means that only agents with at least intimacy 4 are given access
— i.e., i1, i2, and i3; but that i4 is an exception to this.

— P5 = 〈1, ∅〉, which means that only agents with at least intimacy 1 are given access —
i.e., i1, i2, i3, and i4; with no exceptions.

All of the above individual privacy policies for negotiating agent a would be equivalent,
as all of them would induce exactly the same action vector (1, 1, 1, 1). However, P5 has no
exceptions, so it is the one that would be chosen as P~oa — i.e., the individual privacy policy
of a that induces ~o with the least number of exceptions, to facilitate a’s comprehension and
understandability of resulting privacy policies [Cranor and Garfinkel 2005].

5.2. Utility Function

Intuitively, the rationale of the utility function agents will use to rank possible negotiation
outcomes is:

(1) An outcome will be ranked based on the distance (in terms of intimacy) between the
agent’s preferred privacy policy and the privacy policy that induces the outcome, estab-
lishing an intimacy-based ordering of the outcomes as suggested by [Wiese et al. 2011].
That is, the farther the privacy policy that induces the outcome is from the agent’s
preferred privacy policy, the less valued the outcome will be.

(2) An outcome will be ranked according to the number of exceptions of the privacy policy
that induces the outcome, so that privacy policies should include as few exceptions as
possible to ensure readability and understandability [Cranor and Garfinkel 2005]. That
is, the more exceptions the privacy policy that induces the outcome entails, the less
valued the outcome will be.

We start defining the intimacy distance between two policies. Privacy policies may have
different intimacy dimensions (i.e., one per each relationship type considered), so that a
metric in the R|R| space is needed to compare them. We use the Euclidean distance to
measure the distance between two policies as follows:

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:9

Definition 5.3. Given two policies P and Q the distance between them is11:

d(P,Q) =

√∑
r∈R

(P.θr −Q.θr)2

The advantage of using Euclidean distance is that it is sensitive to large variations in one
dimension (relationship type). For instance, for two policies with a large difference in the
“friends” relationship type (e.g., one of them grants any acquaintances access and the other
only grants access to close friends) the distance would be large as well. This aligns with
empirical evidence that suggests that intimacy distance plays a significant role on deciding
to disclose or not [Green et al. 2006; Strahilevitz 2005; Houghton and Joinson 2010; Wiese
et al. 2011], so the higher the intimacy distance between what the user would like for a
particular relationship type and the intimacy between that user and a target user, the less
the user would like to share with the target use12.

Example 5.4. Suppose Example 4.4 again and that, as stated for from Example 5.2
above, for negotiating agent a, the privacy policy that induces ~o = {1, 1, 1, 1} with the least
number of exceptions is P~oa = 〈1, ∅〉. Therefore, the distance between negotiating agent a’s
preferred privacy policy Pa and P~oa is the following — recall we were only considering in
Example 4.4 one relationship type (r1):

d(Pa, P
~o
a) =

√ ∑
r∈R={r1}

(Pa.θr − P~oa .θr)2 =
√

(Pa.θr1 − P~oa .θr1)2 =
√

(6− 1)2 = 5

We now define the utility function based on (i) the privacy policy that minimises the
number of exceptions among all the privacy policies that induce the same action vector
(Def. 5.1) according to [Cranor and Garfinkel 2005] and (ii) the intimacy distance (Def. 5.3)
according to [Green et al. 2006; Strahilevitz 2005; Houghton and Joinson 2010; Wiese et al.
2011]; so that the higher the number of exceptions/the intimacy distance, the less utility.

Definition 5.5. Given agent a and its preferred privacy policy Pa, the utility of an action
vector ~o for agent a is:

ua(~o) = λa(P~o) · (D − d(Pa, P
~o))

11An example of this function for group-based access control models could be the euclidean distance but
considering, for each possible group (instead of for each possible relationship type), the distance between the
minimum intimacy of the users in this group that are granted access in the two policies compared (instead
of the difference between intimacy thresholds).
12Other metrics that can be used to compare vectors in the same space, such as the average of differences
for each relationship type, the Chebyshev distance or the Manhattan distance do not always align with
[Green et al. 2006; Strahilevitz 2005; Houghton and Joinson 2010; Wiese et al. 2011]. A simple average of
the differences of intimacy in each relationship type, would lead to the final distance value being signifi-
cantly attenuated if the differences in other relationship types (e.g., “family”,“colleagues”, etc) are low. The
Chebyshev distance is the maximum of all distances in each dimension. This would work well for the case
in which there is a large variation on only one dimension (which would be the maximum), but if there are
large variations in more than one dimension, this would not be accounted as only the maximum would be
considered. In contrast, the Euclidean distance would clearly signal this difference, so that the final distance
would be higher for the case in which there are large variations in more than one dimension. Finally, the
Manhattan distance is the sum of the differences for all dimensions. Clearly, we could have small to medium
variations in some dimensions that would add up to the same value as if only one dimension had a large
variation. For instance, small variations in relationship types friends, family, colleagues, etc, could give the
same result that a large variation in only one dimension (grant access to all your work colleagues instead
of only to those you are closer to you), which would be clearly worse in terms of privacy implications.
Therefore, the intimacy distance would be unable to catch these nuances, which might impact on how the
utility function is able to model user preferences in this domain.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:10

In this equation, D accounts for the maximum possible distance between two privacy
policies, which would be obtained if the difference was Y for all the relationship types, and

λa(P~o) = 1− | P
~o.E |
| T |

accounts for the number of exceptions that P~o — the privacy policy that induces ~o in T with
the minimum possible exceptions, as defined above — would entail (denoted as | P~o.E |)
with respect to the maximum number of exceptions possible, i.e., the number of target
agents | T |.

The main factor of the utility function is the distance between the policies, which tells us
how happy the user will be with the final result. If a potential solution is very far from what
the user would prefer, it does not matter whether the solution has more or less exceptions,
the solution will not be acceptable as it will be too far from the user individual privacy pref-
erences (expressed as her individual privacy policy) according to existing evidence [Wiese
et al. 2011]. Although not the main factor, there is also another minor factor to be consid-
ered, which is related to how easy would be for users to understand the proposed solution as
a privacy policy, so users can actually take the decision of whether they are happy with the
solution, minimising potential errors and misunderstandings [Cranor and Garfinkel 2005].
This is why the main distance factor is corrected with another factor λa with values within
the [0,1] interval according to the ratio of exceptions. Note, however, that this correction
will be negligible most of the time, because: i) from all the equivalent privacy policies that
induce exactly the same action vector ~o — i.e., they all induce the same negotiation out-
come, we are only considering the one that minimises the number of exceptions according
to Definition 5.2; and ii) the average user has around 130 friends [Quercia et al. 2012], so
the number of target users can be quite big, but only when the number of exceptions is also
very high, then the ratio may have an impact on the distance.

Example 5.6. Suppose again Example 4.4, and that we would like to know the utility
for negotiating agent a for action vector ~o = {1, 1, 1, 1}. From Example 5.2, we know that
P~oa = 〈1, ∅〉 and from Example 5.4, we know that d(Pa, P

~o
a) = 5. As P~oa does not have any

exception, then λa(P~oa) = 1− |P~o
a .E|
|T | = 1− 0

4 = 1. Moreover, from Example 4.4, Y = 10 and

there is only one relationship type R = {r1}, so the maximum possible intimacy distance is
D = 10. Therefore, the utility for negotiating agent a for action vector ~o = {1, 1, 1, 1} is:

ua(~o) = λa(P~oa) · (D − d(Pa, P
~o
a)) = 1 · (10− 5) = 5

6. NEGOTIATION PROTOCOL

Next, we consider how a mutually acceptable action vector ~o can be agreed upon by two
negotiating agents a, b ∈ N for the particular item under negotiation. In order for a and b to
be able to negotiate a common action vector for a given item, we need to define a negotiation
mechanism. A negotiation mechanism is composed of: (i) a negotiation protocol, which is a
means of standardising the communication between participants in the negotiation process
by defining how the actors can interact with each other; and (ii) strategies that agents can
play over the course of a negotiation protocol [Rosenschein and Zlotkin 1994]. Negotiation
protocols determine the strategies agents can play during the execution of the negotiation
protocol. Although there are some negotiation protocols proposed in the related literature
[Lopes et al. 2008], not all of them comply with the requirements for the domain we are
tackling in terms of the strategies they permit. In particular, the requirements are:

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:11

— The protocol must permit negotiation strategies that are stable. A stable strategy is
one whereby if one agent is playing it the others’ best strategy is to also play the same
strategy. This is very important, as it is expected that each agent usually cares only
about her user’s own utility and will always try to play the strategy that can get the
highest utility, even if it means everyone else is much worse [Vidal 2010]. This could
clearly lead to outcomes in which one agent gets an extremely high utility and everyone
else gets almost nothing, which would be unfair. Therefore, stability is a very desirable
property for our domain, as the negotiation mechanism should be fair, so that one user
cannot just impose her preferences on the others.

— The protocol must permit negotiation strategies that converge to the optimal solution
(what is know in the negotiation literature as efficiency). This is of crucial importance
because of two main reasons: (i) if the negotiation protocol does not allow negotiation
strategies that make the negotiation converge, agents could keep negotiating forever;
(ii) the preferences of all the negotiating agents’ users should be respected as much as
possible.

The simplest negotiation protocol that has these properties is the one-step protocol
[Rosenschein and Zlotkin 1994]. This protocol has only one round, where the two agents
propose a deal, and they must accept the deal that maximises the product of both agents’
utilities. In case deals have the same product, one of them is chosen randomly (e.g. by
flipping a coin). In our case, a deal is an action vector. Thus, each agent will propose an
action vector and they will accept the one that maximises the product of their utilities. To
calculate individual utilities, agents use the utility function presented in Section 4, which, in
turn, uses the agents’ preferred privacy policies elicited to detect conflicts (as explained in
Section 3), and agents’ intimacies, which can be accurately estimated from content already
published (as explained in Section 2).

It was formally proven that the best strategy that agents can follow in this protocol is
to propose the deal (action vector) that is best for themselves amongst those with maximal
product of utilities. This strategy is both stable and efficient [Rosenschein and Zlotkin
1994]. Its stability derives from being a Nash equilibrium (if one of the two agents follows
this strategy the other agent’s best strategy is to also follow this strategy), no agent has
anything to gain by changing only her own strategy unilaterally. It is efficient in the sense
that if there exists a solution the agents will find it using this strategy. Other negotiation
protocols such as the well-known monotonic concession protocol [Rosenschein and Zlotkin
1994] or the alternating offers protocol [Osborne and Rubinstein 1990] do not allow strategies
for this domain that would be both stable and efficient. The monotonic concession protocol
is known to only allow strategies that can be either stable or efficient but not both [Endriss
2006]. The alternating offers protocol has no convergence guarantees in its basic form, and
for the time-dependent form utilities must be time-dependent [Vidal 2010], which is not the
case in this domain.

Table II. Action vector utilities for Example 6.1. Note the preferred individual privacy policy of each negotiating
agent is always the same and as described in Example 4.4, i.e., Pa = 〈6, ∅〉 and Pb = 〈4, ∅〉.

~o P~o
a P~o

b λa λb d(Pa, P~o
a) d(Pb, P

~o
b) ua(~o) ub(~o) ua(~o)× ub(~o)

(1,1,0,0) 〈6, ∅〉 〈6, {i3}〉 1 0.75 0 2 10 6 60
(1,1,0,1) 〈1, {i3}〉 〈4, {i3}〉 0.75 0.75 5 0 3.75 7.5 28.125
(1,1,1,0) 〈4, ∅〉 〈6, ∅〉 1 1 2 2 8 8 64
(1,1,1,1) 〈1, ∅〉 〈4, ∅〉 1 1 5 0 5 10 50

Example 6.1. Consider the application of our negotiation mechanism to resolve the
conflicts detected in Example 4.4. As the set of agents in conflict was C = {i3, i4}, the
possible action vectors that could be selected as a compromise are the ones in Table II

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:12

under the ~o column. Agents a and b will be able to rank each of the possible action vectors
according to their preferences by measuring the utility of the action vectors, using the utility
function from Definition 5.5, which is calculated based on the preferred privacy policies of
each agent and the intimacies between the negotiating agents and other target agents (shown
in Table I). Table II shows, for each action vector, the privacy policy with the least number of
exceptions that induces this action vector for each negotiating agent, the ratio of exceptions
for each negotiating agent, the distance between the preferred individual privacy policy of
each negotiating agent to the privacy policy that induces the action vector, the utilities
for each individual agent as well as the product of both agents’ utilities. For instance, the
utility of ~o = (1, 1, 1, 0) for a is ua(~o) = λa(P~oa) · (D − d(Pa, P

~o
a)), where:

—D = 10 because we only have one relationship type in this example, so the maximum
distance possible will be the maximum possible intimacy value Y = 10 in our example.

— P~oa = 〈4, ∅〉 because this is the privacy policy that represents the action vector ~o =
(1, 1, 1, 0) for agent a with the minimum number of exceptions. That is, all target agents
with an intimacy higher or equal than 4 are granted access to the item under considera-
tion.

— λa(P~oa) = 1, because P~oa does not entail any exception.

— d(Pa, P
~o
a) =

√
(Pa.θ − P~oa .θ)2 =

√
(6− 4)2 = 2.

Thus, ua(~o = (1, 1, 1, 0)) = 1 × (10 − 2) = 8. Finally, agents will propose the action vector
that is most favourable to them in terms of maximising the utility product. In our example,
both will propose ~o = (1, 1, 1, 0), which will be the outcome of the negotiation. This is
because the best deal in this case is the one that makes both negotiating agents lose the
same utility to achieve a compromise, i.e., negotiating agent a makes its individual privacy
policy a bit more open and negotiating user b makes its individual privacy policy a bit
more closed. The benefits are that negotiating user b is still able to share the item with i3
(which seems to be a very good friend of b — i.e., int(b, i3) = 7), while she accepts not to
share with i4 (which seems to be just a regular friend of b — i.e., int(b, i4) = 4); and the
benefits for negotiating agent a is that she avoids sharing with i3 (who is clearly a distant
acquaintance — i.e., int(a, i4) = 1 — and way too far from what a would like as P~oa .θ = 6),
and only shares with i3 (who is very close to the intimacy threshold a has in its individual
privacy policy — i.e., int(b, i3) = 4).

6.1. Complexity

The number of possible deals in this setting is exponential in the number of agents in C, the
set of agents in conflict. This is because the negotiation mechanism will have to consider a
number of actions vectors equal to kl permutations in order to find the one that maximises
the product of utilities, where k is the number of possible actions in Π and l is the number of
the number of agents in conflict C. The number of agents in C will change from negotiation
to negotiation — it completely depends on the preferred policies of the negotiating agents
a and b, so that we cannot predict the number of action vectors to be considered for each
particular case a priori, even though it seems clear that the more target agents in T the
more possibilities for the number of agents in C to be higher. In the worst case, all of
the target agents T will be in C, i.e. the problem complexity grows exponentially in the
number of target agents. Moreover, each possible outcome needs to be evaluated from the
point of view of the other negotiating agents. Therefore, the complexity of the negotiation
mechanism would be O(kl · n), where k =| Π | is the number of possible actions, l =| C | is
the number of conflicts, and n =| N | is the number of negotiating agents. Finally, the worst
case would be an upper bound for the complexity, so that in the worst case the complexity
would be O(km · n), where m =| T | is the number of target agents.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:13

7. HEURISTICS

To tackle the exponential blowup in the number of possible deals, we firstly considered
complete approaches that would decrease the complexity while always finding the optimal
solution. In particular, we considered approaches such as dynamic programming (and other
divide and conquer algorithms) or branch and bound algorithms. However, none of these
approaches was suitable for this domain. This is because the problem we are tackling does
not exhibit the overlapping subproblems and optimal substructure properties required for a
dynamic programming approach, and we were not able to develop a complete BnB algorithm
because we were unable to find good-enough upper bounds in this domain for the utility
of partial action vectors. For instance, using the utility function defined in Section 5 while
ignoring target agents for whom no decision has been made (the one used for the Greedy
heuristic) turned out to be too optimistic to prune enough nodes from the search space, so
that the resulting BnB algorithm was not efficient enough to be used in practice.

As complete approaches were not possible, we decided to develop heuristics — i.e., in-
complete approaches — that could reduce the number of action vectors considered when
maximising the utility product to only those that appear most promising. This obviously
involves a risk of losing optimality — we empirically prove later on in Section 8 that these
optimality losses remain within acceptable levels in practice.

7.1. Distance-based Heuristic

Our first heuristic fixes the action to be taken for some conflicting target agents without
trying both possible actions (granting or denying access) when generating the possible action
vectors.

Informally speaking, the heuristic calculates how important assigning a particular action
to a particular target agent is for one of the negotiating agents. This importance is cal-
culated by measuring the intimacy distance between a target agent and the threshold for
the relationship type of this agent in the preferred privacy policies of both agents a and
b. If the difference between these two distances is higher than a threshold value ϕ — the
so-called importance threshold — we consider that the action for that target agent is more
important to the negotiating agent with higher distance than to the negotiating agent with
the lower distance. Thus, we only consider action vectors in which the particular target
agent is assigned the action suggested by the negotiating agent with the highest distance.
Both negotiating agents are using the same ϕ value.

Algorithm 1 illustrates the proposal generation process with the heuristic for agent a (the
pseudocode for agent b would be the same except for lines 27-30 as explained below). In this
algorithm, we use a so-called partial action vector ~t with ti ∈ {0, 1, ∗}, where 0/1 means
that action vectors generated from that partial action vector will deny/grant target agent i
access and ∗ means that both actions will be considered when generating action vectors. For
each target agent i, if both action vectors ~v and ~w assign the same action — i.e. there is no
conflict in the action to be taken for this particular agent, then this action is chosen for the
partial action vector. If the action vectors do not assign the same action, we have a conflict.
In case of conflict, we first measure the distances in intimacy of agent i to both agents a and
b (Lines 11 and 12). If the difference between these two distances is greater than or equal
to the importance threshold ϕ, we apply the action corresponding to the greater distance.
If not, we assign a ∗ value to consider both alternatives. In section 8, we discuss the effect
of different importance thresholds ϕ on the performance of the negotiation mechanism.

After the creation of the partial action vector, we only consider action vectors that comply
with the partial action vector in the utility product maximisation step (from Line 21). This

set is defined as X~t = {~x | ∀i ∈ T, xi = ti ∨ ti = ∗}. That is, we are constraining the set of
action vectors considered when maximising the product of utilities for both agents. In Lines
22-26, if the product of utilities for the current action vector is higher than for the best

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:14

Algorithm 1 Distance-based Heuristic - Agent a
Input: T , ~v, ~w, Pa, Pb, ϕ
Output: ~o
1: maxval← 0
2: initialize to zeros(~o)

3: initialize to zeros(~t)
4: for all i ∈ T do . Generating a partial action vector
5: if va[i] = vb[i] then
6: t[i]← v[i]
7: else . Conflict - applying heuristic
8: da ←| Pa.θr(a,i) − int(a, i) |
9: db ←| Pb.θr(b,i) − int(b, i) |
10: if | da − db |≥ ϕ then
11: if da > db then
12: t[i]← va[i]
13: else
14: t[i]← vb[i]
15: end if
16: else
17: t[i]← ∗ . Both will be considered
18: end if
19: end if
20: end for
21: for all ~x ∈ X~t do . Utility product maximisation
22: prod← ua(~x)× ub(~x)
23: if prod > max then
24: ~o← ~x
25: max← prod
26: maxUT ← ua(~x)
27: end if
28: if prod = max and ua(~x) > maxUT then
29: ~o← ~x
30: maxUT ← ua(~x)
31: end if
32: end for

action vector seen so far, agent a updates the latter with the current one. In Lines 27-30, if
the product of utilities for the current action vector is equal to the product of utilities of the
best action vector seen so far and the individual utility for agent a is higher for the current
action vector than for the best action vector seen so far, agent a updates the best action
action vector with the current one. This is because, as explained in the previous section, the
best strategy that agents can follow in this protocol is to propose the deal (action vector)
that is best for themselves among those with a maximal product of utilities. Lines 26, 28,
and 30 will change for agent b to consider its individual utility instead of the individual
utility of agent a.

Example 7.1. Suppose Example 4.4 and assume an importance threshold of ϕ = 2.
We start constructing the partial action ~t with the target agents that were not in conflict,
i.e., t[i1] = 1 and t[i2] = 1. After this, we consider i3. This is a conflict, so we calculate
da = 6 − 4 = 2 and db = 7 − 4 = 3. Then, | da − db |= 1, but the importance threshold
is greater than this (ϕ = 2). Therefore, we do not take any solution at this point and set
t[i3] = ∗. For the other conflicting target agent i4, we have that da = 6−1 = 5, db = 4−4 = 0,
and | da − db |= 5, which in this case is more than the importance threshold (ϕ = 2), so we
solve the conflict by setting t[i4] = 0 (which is the action suggested by a, as da ≥ db). The

resulting partial action vector is ~t = (1, 1, ∗, 0), so X~t = {(1, 1, 0, 0), (1, 1, 1, 0)} — i.e., we
now perform a complete enumeration of the possible action vectors resulting from the partial
action vector. According to Table II, we know that ua(1, 1, 1, 0)×ub(1, 1, 1, 0) is greater than

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:15

ua(1, 1, 0, 0)× ub(1, 1, 0, 0), therefore we will get into the same optimal solution as with the
mechanism without heuristic ~o = (1, 1, 1, 0). Note that for this example, the distance-based
heuristic will always produce the optimal solution, regardless of the importance threshold ϕ
used, because when setting t[i3], | da − db |= 1. We have already seen the case when ϕ > 1,
and for when ϕ ≤ 1, then t[i3] = 1 because then db > da, so the action suggested by b would
be taken, so the resulting action vector will always be ~o = (1, 1, 1, 0), which is the optimal
solution.

7.2. Greedy Heuristic

Our second heuristic follows a greedy approach to propose an action (granting/denying
access) for each conflict separately. The informal idea is to make the locally optimal choice
at each stage with the hope of finding a global optimum.

Like the previous heuristic, this one also considers partial action vectors. Here, however,
agents also calculate the utility of partial action vectors, because the greedy heuristic needs
an estimation of how good the partial action vectors generated in each step of the heuristic
are. To this aim, the utility function defined in Section 5 is used while ignoring target agents
for whom no decision has been made so far, i.e. where the partial action vector contains ∗
at the entry corresponding to the respective target agent. This is done by considering that
the action assigned to them is the most desired by each negotiating agent. In this way, the
utility of a partial action vector acts as an upper bound of the utility that will be achieved
when having a complete action vector.

The heuristic starts by considering the action vector in which all agents not in conflict are
assigned the corresponding (commonly agreeable) action, and all other agents are assigned
a ∗ value. Thus, this first partial action vector always has the maximum product of utilities
possible with respect to the other possible partial action vectors and complete action vectors.
This is because if we ignore all conflicts, the actions assigned to the target agents will
completely comply with the preferred privacy policies of the negotiating agents.

After this, the heuristic incrementally assigns an action to one conflict at a time. The
choice of the conflict and the action taken to resolve it is made as follows: the heuristic
compares all possible grant/deny configurations over all conflicts and greedily chooses the
most promising option, i.e. the one that decreases the total product of utilities by the
smallest amount. This process is repeated until all conflicts are resolved and a complete
action vector has been produced.

Algorithm 2 shows the pseudocode for the greedy heuristic for agent a (the pseudocode
for agent b would be the same except lines 19, 23, and 24 would change for agent b to
consider its individual utility instead of the individual utility of agent a). We first detect
conflicts and create a partial action vector by assigning either the corresponding action to
the agents not in conflict or ∗ to the agents that are in conflict (lines 1-8). Then, while there
are conflicts that have not been dealt with (line 10), we assign an action to a conflict, one
conflict at a time. To achieve this, we try all possible partial action vectors by exploring 0
and 1 values for each of the conflicts (lines 13-24). Then, we select the conflict and action
that maximise the product of utilities. Finally, we update the partial action vector with the
selected action for the conflict in question and mark that conflict as resolved (lines 31-32).

Example 7.2. Suppose Example 4.4. After initialisation, we have that ~o = (1, 1, ∗, ∗), as
i3 and i4 are in conflict. Then, for each conflict, two partial action vectors are constructed
with the two possible actions (Π = {0, 1}) obviating any other conflict. That is, for i3 partial
action vectors (1, 1, 0, ∗) and (1, 1, 1, ∗) are generated, and for i4 partial action vectors
(1, 1, ∗, 0) and (1, 1, ∗, 1) are generated. Then, we pick the most promising partial action
vector (the one with the highest product of utilities) (1, 1, 1, ∗). To calculate the product of
utilities of a partial action vector such as (1, 1, 1, ∗), we remove all the target agents with
∗ —in this case we remove i4 — and calculate the product of utilities for the resulting full

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:16

Algorithm 2 Greedy Heuristic - Agent a
Input: T , ~v, ~w, Pa, Pb

Output: ~o
1: for all i ∈ T do . Detecting Conflicts
2: if v[i] = w[i] then
3: o[i]← v[i]
4: else
5: o[i]← ∗
6: C ← C ∪ {i}
7: end if
8: end for
9:
10: while C 6= ∅ do
11: maxV al← 0
12: ~x← ~o
13: for all i ∈ C do . For all the remaining conflicts
14: for action ∈ Π do
15: x[i]← action
16: prod = ua(~x)× ub(~x)
17: if prod > max then
18: max← prod
19: maxUT ← ua(~x)
20: maxTarget← i
21: maxAction← x[i]
22: end if
23: if prod = max and ua(~x) > maxUT then
24: maxUT ← ua(~x)
25: maxTarget← i
26: maxAction← x[i]
27: end if
28: end for
29: x[i]← ∗
30: end for
31: o[maxTarget] = maxAction
32: C ← C \ {maxTarget}
33: end while

action vector as stated above — in this case ua(1, 1, 1) × ub(1, 1, 1). Then, the process is
repeated and action vectors (1, 1, 1, 0) and (1, 1, 1, 1) are generated from the most promising
partial action vector in the previous round (1, 1, 1, ∗). As the product of utilities is higher
for (1, 1, 1, 0) than for (1, 1, 1, 1), then ~o = (1, 1, 1, 0) is chosen with product of utilities 64
shown Table II, which is the optimal solution that would be obtained without applying the
heuristic as well.

7.3. GreedyBnB Heuristic

Our third heuristic is GreedyBnB and it is loosely based on Branch and Bound (BnB)
algorithms. These algorithms systematically discard large subsets of fruitless candidates
from the search space by means of upper and lower estimated bounds of the quantity
being optimised. Our GreedyBnB heuristic operates in a similar way to a BnB algorithm13.
Informally speaking, the GreedyBnB heuristic explores other branches of the search space
different from the one followed by the greedy heuristic. The aim is to explore branches of
the search space that were discarded by the greedy heuristic at early stages and that could
lead to better outcomes. The GreedyBnB heuristic uses the greedy heuristic as a selection

13As explained above, a complete BnB algorithm was not implemented because we were unable to find
good-enough upper bounds in this domain for the utility of partial action vectors. Nonetheless, we followed
some of the BnB principles to develop the GreedyBnB heuristic, but of course, as a heuristic this approach
is incomplete — there are no guarantees that the optimal solution will always be found.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:17

algorithm to prioritise options. In particular, our GreedyBnB uses the Greedy heuristic to
estimate a lower bound for the utility of partial action vectors. That is, given a partial
action vector, we estimate its utility to be, at least, the utility of the solution obtained
when the greedy heuristic is applied to that partial action vector.

Algorithm 3 GreedyBnB Heuristic - Agent a
Input: T , ~v, ~w, Pa, Pb

Output: ~o
1: for all i ∈ T do . Detecting Conflicts
2: if v[i] = w[i] then
3: t[i]← v[i]
4: else
5: t[i]← ∗
6: end if
7: end for
8:
9: {~o,maxV al} = greedySolution(~t) . Obtain a solution with greedy heuristic

10: L.add({~t, ~o,maxV al})
11:
12: while L is not empty do . Explore other possible solutions
13: {~x, ~y, ut} ← L.removeF irst()
14: if ut > maxV al or (ut = maxV al and ua(~y) > ua(~o)) then
15: maxV al← ut
16: ~o← ~y
17: L.prune(maxV al)
18: end if
19: for all i ∈ conflicts(~x) do
20: for action ∈ Π do
21: x[i]← action
22: {ut, ~y} = greedySolution(~x)
23: if ut > maxV al or (ut = maxV al and ua(~y) > ua(~o)) then
24: L.add({~x, ~y, ut})
25: end if
26: end for
27: x[i]← ∗
28: end for
29: end while

Algorithm 3 lists our GreedyBnB heuristic. Firstly, it constructs a partial action vector ~t
with all the conflicts detected (Lines 1-7). Secondly, it uses the greedy heuristic to obtain a
solution to the partial action vector created (Line 9). Then, it adds the partial action vector,
the greedy solution and its utility to the list L (Line 10), which is ordered by decreasing
values of utility of the greedy solution obtained. While L is not empty, we retrieve the first
element of the ordered list. If this has higher utility than the best solution seen so far,
the solution is recorded as the best one seen so far and all the nodes in the list that have
less utility are pruned (Lines 14-18). After this, we generate all the possible partial action
vectors that arise from considering the possible actions (granting/1 or denying/0) for all
the remaining conflicts in the partial action vector retrieved from the list (Lines 19-28). If
the greedy solution for any of these partial action vectors produces a higher utility than the
best solution seen so far, we add this partial action vector (which will have one conflict less
than the partial action vector retrieved from the list), its greedy solution and the utility of
the solution to the ordered list (Lines 22-25).

Example 7.3. Suppose Example 4.4. The first step is to create partial action vector
~t = (1, 1, ∗, ∗), resulting from i3 and i4 being conflicts. After this, we get a solution using
the Greedy heuristic, which would be ~o = (1, 1, 1, 0) with 64 as the product of utilities as
discussed in Example 7.2. Then, we add {(1, 1, ∗, ∗), (1, 1, 1, 0), 64} to the list L. While L is

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:18

not empty, we extract its first element and update the best solution seen so far if need be.
In this case, the first element will be the one we just added so it is also the best solution
seen so far. Then, for each of the conflicts not solved yet (i3 and i4), all possible partial
action vectors are generated — i.e., (1, 1, 0, ∗), (1, 1, 1, ∗), (1, 1, ∗, 0), (1, 1, ∗, 1) — and a
greedy solution is obtained for each partial action vector. If the greedy solution of any of
these partial action vectors is better than the best solution seen so far, then we add them
to the list L. In this example, none of the partial action vectors is better than the greedy
solution, which we already know is the optimal, so no new elements are added into the list
L, and the algorithm will return ~o = (1, 1, 1, 0), which is the same (optimal) solution that
would have been obtained had the mechanism without heuristics been applied.

Finally, it is worth noting that the GreedyBnB heuristic can also be implemented in a
similar way to anytime algorithms. These algorithms can be interrupted before they end but
will still provide a valid solution if interrupted, and are expected to produce increasingly
good solutions the more time they are given to run. In particular, we could implement the
heuristic so that it stops after a given amount of time, and this is explored further below
in Section 8. When the heuristic stops, it will return the best solution seen so far. In the
experiments section we describe the performance achieved with the heuristic at various
cutoff points.

8. EXPERIMENTAL RESULTS

We conducted a series of experiments to compare the performance of our proposed nego-
tiation mechanism with and without heuristics empirically by measuring the number of
action vectors considered and the execution time required to find a solution, as well as the
maximum product of utilities obtained.

8.1. Experimental Setting

We implemented our mechanism and heuristics in Java and report experiments conducted on
a 3.1 GHz Intel Core i5 iMac with 8 GB RAM. The rationale for the parameters explained
below was the following: wherever there was a real value or distribution of one of the
parameters in real Social Media, we used that to inform the values considered; and if there
was no information about the real value of distribution of the parameters considered, then
we used a different random value for each experiment conducted. In all the experiments,
we performed 1000 different simulations in order to support the findings with statistically
significant evidence.

We considered 3 relationship types, which is in line with related literature on online
communities and social networks [Raad et al. 2013; Hogg et al. 2008]. Besides, we considered
different numbers of target agents — 10 to 200 in increments of 10 — based on typical real-
world values, given that the average user on Facebook has 130 friends [Quercia et al. 2012].
We also considered a maximum intimacy value Y of 10, i.e. an intimacy range of [0,10].
Note that the maximum intimacy value does not have any effect on the performance of
the mechanism, as it just defines a range of real values for the possible intimacy values. If
another range of real values is used, the intimacy values would be scaled but the results
would be the same in terms of the solution agreed.

For the parameters for which there is no real data or information about their distribution,
we chose to randomise them to minimise the introduction of any bias and to allow us to
repeat the experiments multiple times to understand the behaviour of the mechanism under
different conditions. That is, we generated a random matrix of intimacies among agents,
random assignment of agents to the 3 relationship types considered, and random privacy
policies for both negotiating agents. Moreover, we ensured that for each situation, there was
at least one conflict — if not, we reinitialised the matrix and privacy policies until at least
one conflict occurred.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:19

After this, we ran the negotiation mechanism with and without heuristics to obtain the
solution to this situation and accounted for the number of action vectors each approach
needed to explore and, where available, the utility of the solution achieved and the execution
time needed to achieve the solution. As explained below, there were situations in which not
all the approaches were able to produce an actual solution in reasonable time.

Finally, when using the mechanism with heuristics, we varied the parameters of the par-
ticular heuristic should they have one. The heuristics that can be parametrised are the
distance-based heuristic and the GreedyBnB heuristic. For the distance-based heuristic one
can use a different importance threshold ϕ as described in Section 7.1. In particular, we
show the performance of different values for this parameter in Sections 8.2, 8.3, and 8.4.
These values were ϕ = {0.5, 1, 2, 3, 4}. Higher values for the importance threshold did not
remove enough action vectors and took approximately the same time as the mechanism
without heuristics, while lower values for the importance threshold had too much utility
loss. Regarding the GreedyBnB heuristic, it can be interrupted before it ends but will still
provide a valid solution if interrupted as described in Section 7.3 — though it is expected
to produce increasingly good solutions the more time they are given to run. In section 8.5,
we illustrate the performance achieved with the heuristic at various cutoff points (after 30,
50, 100, 200, and 500 ms). More cutoff points were considered, but these were the most
representative ones to be shown in the figures.

8.2. Number of Action Vectors

 1

 1x1010

 1x1020

 1x1030

 1x1040

 1x1050

 1x1060

 20 40 60 80 100 120 140 160 180 200

Ac

tio
n

Ve
ct

or
s

C
on

si
de

re
d

Agents

noHeuristics
Distance-based ϕ=4.0
Distance-based ϕ=3.0
Distance-based ϕ=2.0
Distance-based ϕ=1.0
Distance-based ϕ=0.5

GreedyBnB
Greedy

Fig. 2. Average number of action vectors considered per number of agents. Note that Y-axis uses a loga-
rithmic scale.

We measured the number of action vectors to come up with a reasonable estimate of
expected execution time, because for more than 40 target agents the experiments where
heuristics were not used would not finish after 7 days running. This indicated that without
heuristic pruning the negotiation mechanism is not usable in practice. Figure 2 shows the
average number of action vectors (including partial action vectors when using the heuristics)
that each approach would need to consider to solve the problem given a number of agents.
The plot also shows that the lower ϕ for the distance-based heuristic, the lower the number
of action vectors considered. This is because for low ϕ values more actions are detected as

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:20

being more important for one negotiating agent than for the other, so fewer action vectors
are generated. We can also observe that both Greedy and GreedyBnB perform similarly,
though Greedy considers fewer action vectors. Obviously, GreedyBnB requires more action
vectors because it needs to invoke the Greedy heuristics several times to compute a solution.

8.3. Quality of Solutions

 0

 10

 20

 30

 40

 50

 10 15 20 25 30 35 40

U
til

ity
 L

os
s

%

Agents

Greedy
GreedyBnB

Distance-based ϕ=4.0
Distance-based ϕ=3.0
Distance-based ϕ=2.0
Distance-based ϕ=1.0
Distance-based ϕ=0.5

Fig. 3. Average % of utility (product) loss for different numbers of target agents. As before, we were only
able to obtain results for up to 40 target agents without heuristics.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 40 60 80 100 120 140 160 180 200

Pr
od

uc
t o

f U
til

iti
es

Agents

noHeuristic
Distance-based ϕ=4.0
Distance-based ϕ=3.0
Distance-based ϕ=2.0
Distance-based ϕ=1.0
Distance-based ϕ=0.5

GreedyBnB
Greedy

Fig. 4. Raw utility product for different numbers of target agents, heuristic and non-heuristic approaches.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:21

In this section, we analyse the differences between the mechanism with and without
heuristics in terms of the quality of the deals achieved. Note that the quality of the solutions
achieved also tells us the quality of the action vectors that were discarded by the mechanism
with the heuristics recall solutions are just action vectors, so if the solutions achieved
are of less quality than the ones without heuristics, then this means that the heuristics
mistakenly discarded action vectors that were of high quality. In particular, we analysed
the quality of the solution achieved considering 3 main metrics: i) the percentage loss in the
product of utilities when using the mechanism with heuristics with respect to the mechanism
without heuristics; ii) the raw product of utilities for all approaches (mechanism with and
without heuristics); and iii) the minimum utility all users get when a solution is found for
all approaches (mechanism with and without heuristics).

Figure 3 shows the percentage of utility lost when using heuristics compared to the optimal
solution. All heuristics have an impact on optimality, but the best results are obtained with
the GreedyBnB heuristic and the distance-based heuristic with ϕ = 4. However, if we
consider the number of action vectors considered before returning a solution (as shown
in Figure 2), the GreedyBnB heuristic is the one that generally offers the best tradeoff
between number of action vectors and utility loss. Moreover, in order to determine how
well the heuristics scale when increasing the number of target agents, Figure 4 shows the
total product of utilities achieved by each approach. For ϕ ∈ {1, 2, 3, 4} we had the same
problem as without use of any heuristic, i.e., we could not obtain results in reasonable
time for more than a small number of target agents. In contrast to this, the Greedy and
GreedyBnB heuristics scale by far better and clearly outperform the distance-based heuristic
with ϕ = 0.5, which prunes enough action vectors to produce results in reasonable time for
all numbers of target agents considered. We can also observe that when the number of
targets increases, GreedyBnB loses less percent of utility with respect to the optimal one.
Finally, we can also observe that GreedyBnB clearly outperforms Greedy in terms of utility.
Greedy algorithms mostly (but not always) fail to find the globally optimal solution, because
they usually do not exhaustively consider the whole space, and may make commitments to
certain choices too early, which prevent them from finding the best overall solution later.
Using GreedyBnB, we consider branches of the search space that were initially discarded by
Greedy which usually leads to finding a better solution. However, exploring more branches
of the search space also comes at a cost — as we have seen previously, GreedyBnB obviously
needs to consider many more action vectors than Greedy. In the following section, we assess
the difference between these two in terms of actual execution time.

Finally, we sought to assess the quality of the results obtained in terms of the extent
individual privacy preferences were being covered. To this aim, we also considered what
is the minimum utility achieved among negotiating agents for each deal, i.e., which is the
utility for the negotiating agent that is least favoured in the negotiation. Figure 5 shows
the minimum utility achieved among negotiating agents for each deal considering different
numbers of target agents, and heuristic and non-heuristic approaches. We can see that,
without heuristics, the negotiating agent that ends up with the lowest utility will always
have a utility of at least 7.5. Considering the utility function (Definition 8) and the maximum
intimacy value Y of 10, the maximum utility that negotiating agents can achieve is 10,
though this would only be for the case that the deal chosen is the one that favours them
the most, which is not possible as compromises are usually done to achieve an agreement.
Therefore, without heuristics the least favoured negotiating agent has always at least 75%
of their preferences covered — in other words, it will only lose at most 25% in utility.
Moreover, this increases to ≈ 78% as the number of target agents increases, because there
are more opportunities to find better compromises. Regarding the use of the mechanism
with heuristics, the GreedyBnB is again the best heuristic, so that the mechanism with that
heuristic provides roughly the same values as the mechanism without heuristics.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:22

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20 40 60 80 100 120 140 160 180 200

M
in

 U
til

ity

Agents

noHeuristic
Distance-based ϕ=4.0
Distance-based ϕ=3.0
Distance-based ϕ=2.0
Distance-based ϕ=1.0
Distance-based ϕ=0.5

GreedyBnB
Greedy

Fig. 5. Minimum utility for different numbers of target agents, heuristic and non-heuristic approaches.

8.4. Execution Time

As we were able to obtain results in reasonable time for all the possible configurations when
Greedy and GreedyBnB heuristics were used, we were able to compare them in terms of
execution time to complement the results obtained in terms of number of action vectors
needed to compute a solution. We obviated the distance-based heuristic here because we
were only able to obtain results in reasonable time with ϕ = 0.5, but with this ϕ value, the
heuristic produced results that are very far from the optimal (up to more than 30%).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 20 40 60 80 100 120 140 160 180 200

T
im

e
(m

s)

Agents

GreedyBnB
Greedy

Fig. 6. Execution time for Greedy and GreedyBnB heuristics.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:23

Figure 4 shows execution times for the Greedy and GreedyBnB heuristics. We can observe
that, from 120 target agents upwards, the GreedyBnB heuristic takes more than ≈ 100
seconds to compute a solution while the Greedy heuristic needs less than 30ms. Clearly,
adding 100 seconds to the process of posting an item could be considers too much for users
of social media. However, the Greedy heuristic, which would be fast enough, usually implies
a loss of utility of around 10%. Thus, use of any of these two heuristics might be ultimately
unsuitable for implementation in a practical tool to resolve actual privacy policy conflicts
in social media. Can we find a method that lies somewhere “between” these two that better
balances the tradeoff between execution time and optimality?

8.5. Exploiting GreedyBnB anytime capabilities

To come up with such a method, we repeated the experiments, this time exploiting the
anytime capabilities of GreedyBnB. In particular, we limited the available computation
time to a specific bound as suggested in section 7, i.e., we stopped looking for further
possible solutions after a given amount of time elapsed.

 55

 60

 65

 70

 75

 80

 20 40 60 80 100 120 140 160 180 200

U
til

ity

Agents

GreedyBnB-30ms
GreedyBnB-50ms

GreedyBnB-100ms
GreedyBnB-500ms

GreedyBnB
Greedy

Fig. 7. Utility considering different time bounds for GreedyBnB heuristic.

Figure 5 shows the utility achieved for some temporal bounds compared to that obtained
using the unbounded version of GreedyBnB. It also shows the results for the Greedy heuristic
as a lower bound for the utility achieved. As expected, the more time GreedyBnB is given,
the better the results obtained. Importantly, we can see that with 500ms the results obtained
would be very similar to unbounded GreedyBnB, and much better than those achieved using
the Greedy heuristic. For instance, for 200 agents the difference between running unbounded
GreedyBnB (with a runtime of 100 seconds) and its bounded version limited to 500ms is
less than 3%.

8.6. Discussion

The main conclusion from our experiments is that the negotiation mechanism cannot be used
in practice for realistic numbers of target agents without the complexity reduction provided
by our heuristics. For 200 target agents, for example, we would need to consider ≈ 1050

action vectors. Moreover, although for a limited number of target agents the distance-based
heuristic performs well for some parameter choices, the greedy-based heuristics generally

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:24

outperforms it both in terms of complexity reduction and in terms of loss of utility, at least
for larger numbers of agents. In particular, using the greedy heuristic seems to achieve very
good results regarding the number of action vectors considered and execution time — for
200 agents it would consider only ≈ 103 action vectors and would take 30ms, for example
— while incurring a loss of optimality that could be acceptable: the heuristics would allow
us to reach agreement with 200 target agents while sacrificing only around 10% of utility
compared to the non-heuristic version of the algorithm. Using the GreedyBnB heuristic
achieves outstanding results in terms of loss of optimality but is worse than Greedy in
terms of the number of action vectors considered and execution time required. However,
choosing the appropriate parameters to bound the execution time of GreedyBnB seems
to achieve the best tradeoff between optimality and execution time. For instance, for 200
agents the bounded version of GreedyBnB would sacrifice only around 3% of the utility
obtained while taking only 500ms, which seems to be fast enough for actual use in common
social media applications.

9. RELATED WORK

Over the last few years, many studies have been devoted to improving user privacy in social
media. Until now, these mechanisms have often been shown not to effectively protect privacy
and sensitive information [Zheleva and Getoor 2009; Madejski et al. 2011]. To address this
problem, many approaches have recently emerged, e.g. [Carminati et al. 2009; Fong 2011;
Fang and LeFevre 2010; Ali-Eldin and van den Berg 2014]. In particular, AI and Multi-agent
Systems approaches have been suggested as appropriate to control socio-technical systems
like social media [Singh 2013] and as a foundation for social computing[Rovatsos 2014].
Such et al. [Such et al. 2014] present an extensive review of agent and Multi-agent Systems
approaches that deal with preserving privacy. An example of these kind of approaches to
manage privacy in Social Media is the work of Krupa and Vercouter [Krupa and Vercouter
2012; Ciortea et al. 2012], which proposes an agent-based framework to control information
flows in Social Networks. Another example is the work of Kökciyan and Yolum [Kökciyan
and Yolum 2014], which proposed an agent-based framework for privacy management and
detection of violations based on commitments. Finally, Such et al. [Such et al. 2012] proposed
the first agent-based mechanism to decide whether personal information is shared and with
whom based on information-theoretic measures of intimacy and privacy . However, all of
these approaches do not consider the problem of items that may affect more than one user,
and do not support multiple users agreeing on to whom these items are shared. Therefore,
these approaches do not consider the privacy preferences of all of the users affected by an
item when deciding to whom and whether or not information is shared.

Few works have actually been proposed to deal with the problem of collaboratively defin-
ing privacy policies for shared items between two or more users of a social media site. We
shall discuss them and how they relate to our work in the following paragraphs.

Wishart et al. [Wishart et al. 2010] propose a method to define privacy policies collabo-
ratively. Their approach is based on a collaborative definition of privacy policies in which
all of the parties involved can define strong and weak preferences. They define a privacy
language to specify users’ preferences in the form of strong and weak conditions, and they
detect privacy conflicts based on them. However, this approach does not involve any auto-
mated method to resolve conflicts, only some suggestions that users may want to consider
when they try to resolve such conflicts manually.

The work described in [Squicciarini et al. 2009] is based on an incentive mechanism
where users are rewarded with a quantity of numeraire each time they share information or
acknowledge other users (called co-owners) who are affected by the same item. When there
are conflicts among co-owners’ policies, the use of the Clark Tax mechanism is suggested,
where users can spend their numeraire bidding for the policy that is best for them. As stated
in [Hu et al. 2011], the usability of this approach may be limited, because users could have

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:25

difficulties in comprehending the mechanism and specify appropriate bid values in auctions.
Moreover, the auction process adopted in their approach implies that only the winning bid
determines who will be able to access the data, instead of accommodating all stakeholders’
privacy preferences.

In [Hu et al. 2011], users must manually define their trust to other users, the sensitivity
that each of the items has for them, and their general privacy concern. Then, the authors
use these parameters to calculate two main measures, privacy risk and sharing loss. In
particular, they calculate the privacy risk and the sharing loss on what they call segments
— in our terminology, a segment equals the set of agents in conflict — as a whole, i.e. all
of the agents in these segments are assigned the action preferred by either one party or the
other in the negotiation. That is, in our terminology only two action vectors — ~v and ~w
induced by the privacy policies Pa and Pb respectively — are considered, and the action
vector chosen is the one that maximises the tradeoff between privacy risk and sharing loss.
Clearly, not considering other possible action vectors could lead to outcomes that are far
from optimal.

Finally, there are also related approaches based on voting in the literature [Carminati
and Ferrari 2011; Thomas et al. 2010; Hu et al. 2012]. In these cases, a third party collects
the decision to be taken (granting/denying) for a particular friend from each party. Then,
the authors propose to aggregate a final decision based on one voting rule (majority, veto,
etc.). However, the rule to be applied is either fixed [Carminati and Ferrari 2011; Thomas
et al. 2010] or is chosen by the user that uploads the item [Hu et al. 2012]. The problem
with this is that the solution to the conflicts then becomes a unilateral decision (being
taken by a third-party or by the user that uploads the item) and, thus, there is no room
for users to actually negotiate and achieve compromise themselves. Moreover, in the latter
case, it might actually be quite difficult for the user that uploads the item to anticipate
which voting rule would produce the best result without knowing the preferences of the
other users. The work presented in [Such and Criado 2014] provides an improvement over
these fixed ways of aggregating privacy preferences from users by suggesting 3 different
methods that would be selected depending on the particular situation, but again, only a
limited number of aggregation methods is considered.

10. CONCLUSIONS

We presented an automated method for detecting and resolving privacy policy conflicts
in social media applications. To resolve conflicts, we proposed the use of an automated
negotiation mechanism. This mechanism is based on the intimacy among agents, which
determines the utility of other agents’ proposals. In using intimacy as the determining
factor for utility, we followed the findings of most empirical studies with real users, which
confirm that it is the main factor that influences their behaviour with regard to setting
privacy policies. This suggests that our approach is sound in terms of modelling real users’
preferences.

Moreover, in order to reduce the complexity of the negotiation mechanism proposed, we
proposed three heuristics and showed through an experimental evaluation comparing the
performance of the negotiation mechanism proposed with and without heuristics that: (i) use
of the negotiation mechanism is not practicable without heuristics; (ii) the distance-based
heuristic only performs well for a limited number of target agents; (iii) the greedy heuristic
offers good tradeoffs between complexity and optimality when scaling up the number of
target agents; and (iv) the best heuristic overall is GreedyBnB with a time bound. In
particular, GreedyBnB bounded to 500ms would sacrifice only 3% in optimality in our
experiments.

The research presented in this article is a stepping stone towards automated privacy policy
negotiation. We plan to design and implement a social media app with our proposed conflict
detection and resolution method, combining it with other existing tools to elicit intimacy and

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:26

relationship types such as [Fogués et al. 2014]. An interesting future line of research would
be to consider the fact that disclosing items can also make relationships evolve [Such et al.
2012], which could play a role in shaping users’ preferences about disclosure and negotiation
outcomes. Finally, we would also like to extend our mechanism in order to consider the
intimacy between the negotiating parties, which is known to influence negotiation strategies
and, in particular, may determine to what extent negotiating parties are willing to concede
during a negotiation [Sierra and Debenham 2007].

REFERENCES

Amr Ali-Eldin and Jan van den Berg. 2014. A Self-disclosure Framework for Social Mobile Applications.
In Proceedings of the 2014 6th International Conference on New Technologies, Mobility and Security
(NTMS). IEEE, 1–5.

Joseph Bonneau and Sören Preibusch. 2010. The privacy jungle: On the market for data protection in social
networks. In Economics of information security and privacy. Springer, 121–167.

Barbara Carminati and Elena Ferrari. 2011. Collaborative access control in on-line social networks. In
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 2011 7th In-
ternational Conference on. IEEE, 231–240.

Barbara Carminati, Elena Ferrari, and Andrea Perego. 2009. Enforcing access control in web-based social
networks. ACM Transactions on Information and System Security (TISSEC) 13, 1 (2009), 6.

Andrei Ciortea, Yann Krupa, and Laurent Vercouter. 2012. Designing privacy-aware social networks: a
multi-agent approach. In Proceedings of the 2nd International Conference on Web Intelligence, Mining
and Semantics. ACM, 1–8.

Lorrie Cranor and Simson Garfinkel. 2005. Security and usability: designing secure systems that people can
use. O’Reilly Media, Incorporated.

George Danezis. 2009. Inferring privacy policies for social networking services. In Proceedings of the 2nd
ACM workshop on Security and artificial intelligence. ACM, 5–10.

Steve Duck. 2007. Human relationships. SAGE Publications Limited.

Ulle Endriss. 2006. Monotonic concession protocols for multilateral negotiation. In AAMAS. ACM, 392–399.

Lujun Fang and Kristen LeFevre. 2010. Privacy wizards for social networking sites. In Proceedings of the
19th international conference on World Wide Web (WWW). ACM, 351–360.

Ricard Fogues, Jose M Such, Agustin Espinosa, and Ana Garcia-Fornes. 2015. Open Challenges in
Relationship-Based Privacy Mechanisms for Social Network Services. International Journal of Human-
Computer Interaction 31, 5 (2015), 350–370.

Ricard L. Fogués, Jose M. Such, Agustin Espinosa, and Ana Garcia-Fornes. 2014. BFF: A tool for eliciting
tie strength and user communities in social networking services. Information Systems Frontiers 16, 2
(2014), 225–237. DOI:http://dx.doi.org/10.1007/s10796-013-9453-6

Philip W.L. Fong. 2011. Relationship-based access control: protection model and policy language. In Pro-
ceedings of the first ACM conference on Data and application security and privacy (CODASPY). ACM,
191–202.

Carrie Gates. 2007. Access control requirements for web 2.0 security and privacy. IEEE Web 2, 0 (2007).

Eric Gilbert. 2012. Predicting tie strength in a new medium. In Proceedings of the ACM 2012 confer-
ence on Computer Supported Cooperative Work (CSCW ’12). ACM, New York, NY, USA, 1047–1056.
DOI:http://dx.doi.org/10.1145/2145204.2145360

Eric Gilbert and Karrie Karahalios. 2009. Predicting tie strength with social media. In Proceedings of the
27th international conference on Human factors in computing systems (CHI). ACM, 211–220.

Mark Granovetter. 1973. The strength of weak ties. American journal of sociology 78, 6 (1973), 1360–1380.

Kathryn Green, Valerian J. Derlega, and Alicia Mathews. 2006. Self-Disclosure in Personal Relationships.
In The Cambridge Handbook of Personal Relationships. Cambridge University Press, 409–427.

Ralph Gross and Alessandro Acquisti. 2005. Information revelation and privacy in online social networks.
In Proceedings of the 2005 ACM workshop on Privacy in the electronic society (WPES). ACM, 71–80.

Tad Hogg, Dennis M Wilkinson, Gabor Szabo, and Michael J Brzozowski. 2008. Multiple Relationship
Types in Online Communities and Social Networks.. In AAAI Spring Symposium: Social Information
Processing. 30–35.

David J Houghton and Adam N Joinson. 2010. Privacy, social network sites, and social relations. Journal
of Technology in Human Services 28, 1-2 (2010), 74–94.

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:27

Hongxin Hu, G Ahn, and Jan Jorgensen. 2012. Multiparty access control for online social networks: model
and mechanisms. IEEE Transactions on Knowledge and Data Engineering (2012).

Hongxin Hu, Gail-Joon Ahn, and Jan Jorgensen. 2011. Detecting and resolving privacy conflicts
for collaborative data sharing in online social networks. In Proceedings of the 27th Annual
Computer Security Applications Conference (ACSAC). ACM, New York, NY, USA, 103–112.
DOI:http://dx.doi.org/10.1145/2076732.2076747

Nadin Kökciyan and Pınar Yolum. 2014. Commitment-Based Privacy Management in Online Social
Networks. In First International Workshop on the Multiagent Foundations of Social Computing
(MFSC@AAMAS-2014). 1–12.

Yann Krupa and Laurent Vercouter. 2012. Handling privacy as contextual integrity in decentralized virtual
communities: The PrivaCIAS framework. Web Intelligence and Agent Systems 10, 1 (2012), 105–116.

Fernando Lopes, Michael Wooldridge, and Augusto Q. Novais. 2008. Negotiation among autonomous com-
putational agents: principles, analysis and challenges. Artificial Intelligence Review 29, 1 (2008), 1–44.

Michelle Madejski, Maritza Johnson, and Steven Bellovin. 2011. The Failure of Online Social Network
Privacy Settings. Technical Report CUCS-010-11. Columbia University. 1–20 pages.

Martin J Osborne and Ariel Rubinstein. 1990. Bargaining and markets. Vol. 34. Academic press San Diego.

Daniele Quercia, Renaud Lambiotte, Michal Kosinski, David Stillwell, and Jon Crowcroft. 2012. The per-
sonality of popular facebook users. In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work (CSCW’12). 955–964.

Elie Raad, Richard Chbeir, and Albert Dipanda. 2013. Discovering relationship types between users using
profiles and shared photos in a social network. Multimedia Tools and Applications 64, 1 (2013), 141–170.
DOI:http://dx.doi.org/10.1007/s11042-011-0853-7

Jeffrey S. Rosenschein and Gilad Zlotkin. 1994. Rules of encounter: designing conventions for automated
negotiation among computers. MIT Press. http://books.google.com/books?id=4ZhPMk3ftpoC

Michael Rovatsos. 2014. Multiagent systems for social computation. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems (AAMAS). IFAAMAS, 1165–1168.

Carles Sierra and John Debenham. 2007. The LOGIC negotiation model. In AAMAS ’07: Proceedings of
the 6th international joint conference on Autonomous agents and multiagent systems. ACM, 1–8.

Munindar P Singh. 2013. Norms as a basis for governing sociotechnical systems. ACM Transactions on
Intelligent Systems and Technology (TIST) 5, 1 (2013), 21.

Anna Cinzia Squicciarini, Mohamed Shehab, and Federica Paci. 2009. Collective privacy management in
social networks. In Proceedings of the 18th international conference on World wide web (WWW). ACM,
521–530.

Anna Cinzia Squicciarini, Smitha Sundareswaran, Dan Lin, and Josh Wede. 2011. A3P: adaptive policy
prediction for shared images over popular content sharing sites. In Proceedings of the 22nd ACM
conference on Hypertext and hypermedia (Hypertext). 261–270.

Jessica Staddon, David Huffaker, Larkin Brown, and Aaron Sedley. 2012. Are privacy concerns a turn-off?:
engagement and privacy in social networks. In Proceedings of the Eighth Symposium on Usable Privacy
and Security (SOUPS). ACM, 1–13.

Lior J Strahilevitz. 2005. A social networks theory of privacy. In American Law & Economics Association
Annual Meetings. bepress, 42.

Fred Stutzman, Ralph Gross, and Alessandro Acquisti. 2013. Silent Listeners: The Evolution of Privacy and
Disclosure on Facebook. Journal of Privacy and Confidentiality 4, 2 (2013), 2.

Jose M Such and Natalia Criado. 2014. Adaptive Conflict Resolution Mechanism for Multi-party Privacy
Management in Social Media. In Proceedings of the 13th Workshop on Privacy in the Electronic Society.
ACM, 69–72.

Jose M. Such, Agust́ın Espinosa, and Ana Garćıa-Fornes. 2014. A Survey of Privacy in Multi-agent Systems.
Knowledge Engineering Review 29 (2014), 313–344. Issue 03.

Jose M. Such, Agustin Espinosa, Ana Garćıa-Fornes, and C. Sierra. 2012. Self-disclosure Decision Making
based on Intimacy and Privacy. Information Sciences 211 (2012), 93–111.

Kurt Thomas, Chris Grier, and David M Nicol. 2010. unfriendly: Multi-party privacy risks in social networks.
In Privacy Enhancing Technologies. Springer, 236–252.

Jose M. Vidal. 2010. Fundamentals of multiagent systems with NetLogo examples.

Sami Vihavainen, Airi Lampinen, Antti Oulasvirta, Suvi Silfverberg, and Asko Lehmuskallio. 2014. the clash
between Privacy and automation in Social Media. Pervasive Computing, IEEE 13, 1 (2014), 56–63.

Yonggang Wang, Ennan Zhai, Eng Keong Lua, Jianbin Hu, and Zhong Chen. 2012. iSac: Intimacy Based
Access Control for Social Network Sites. In Proceedings of the 2012 9th International Conference

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

:28

on Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & Trusted
Computing (UIC/ATC). IEEE, 517–524.

Douglas R. White and Michael Houseman. 2002. The navigability of strong ties: Small worlds, tie strength,
and network topology. Complexity 8, 1 (2002), 72–81.

Jason Wiese, Patrick Gage Kelley, Lorrie Faith Cranor, Laura Dabbish, Jason I. Hong, and John Zimmer-
man. 2011. Are you close with me? Are you nearby? Investigating social groups, closeness, and willing-
ness to share. In Proceedings of the 13th international conference on Ubiquitous computing (UbiComp).
ACM, 197–206.

Ryan Wishart, Domenico Corapi, Srdjan Marinovic, and Morris Sloman. 2010. Collaborative privacy policy
authoring in a social networking context. In Proceedings of the 2010 IEEE International Symposium
on Policies for Distributed Systems and Networks (POLICY). IEEE, 1–8.

Pamela Wisniewski, Heather Lipford, and David Wilson. 2012. Fighting for my space: Coping mechanisms for
SNS boundary regulation. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 609–618.

Elena Zheleva and Lise Getoor. 2009. To join or not to join: the illusion of privacy in so-
cial networks with mixed public and private user profiles. In Proceedings of the 18th in-
ternational conference on World wide web (WWW). ACM, New York, NY, USA, 531–540.
DOI:http://dx.doi.org/10.1145/1526709.1526781

ACM Journal Name, Vol. V, No. N, Article , Publication date: January YYYY.

