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Abstract

Demand forecasting is central to decision making and operations in orga-
nisations. As the volume of forecasts increases, for example due to an in-
creased product customisation that leads to more SKUs being traded, or
a reduction in the length of the forecasting cycle, there is a pressing need
for reliable automated forecasting. Conventionally, companies rely on a sta-
tistical baseline forecast that captures only past demand patterns, which is
subsequently adjusted by human experts to incorporate additional informa-
tion such as promotions. Although there is evidence that such process adds
value to forecasting, it is questionable how much it can scale up, due to the
human element. Instead, in the literature it has been proposed to enhance
the baseline forecasts with external well-structured information, such as the
promotional plan of the company, and let experts focus on the less struc-
tured information, thus reducing their workload and allowing them to focus
where they can add most value. This change in forecasting support systems
requires reliable multivariate forecasting models that can be automated, ac-
curate and robust. This paper proposes an extension of the recently proposed
Muliple Aggregation Prediction Algorithm (MAPA), which uses temporal ag-
gregation to improve upon the established exponential smoothing family of
methods. MAPA is attractive as it has been found to increase both the ac-
curacy and robustness of exponential smoothing. The extended multivariate
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MAPA is evaluated against established benchmarks in modelling a number of
heavily promoted products and is found to perform well in terms of forecast
bias and accuracy. Furthermore, we demonstrate that modelling time series
using multiple temporal aggregation levels makes the final forecast robust to
model misspecification.

Keywords: Forecasting, temporal aggregation, MAPA, exponential
smoothing, promotional modelling

1. Introduction

Demand forecasting is crucial for decision making and operations in or-
ganisations. As demand for large number of forecasts increases, for example
due to the number of products companies trade, the reduced length of the
forecasting cycle, or the increase in the number of item-location combina-
tions as retail /logistic chains become larger and larger there is pressure to
have reliable and accurate automated baseline forecasts. Typically compa-
nies rely on Forecasting Support Systems (FSS), which integrate univariate
statistical baseline forecasts with managerial judgement to introduce addi-
tional external information in the forecasts (Fildes et al., 2006). Although
the statistical element of such FSSs can be automated, the human element is
resource intensive and often due to the increased workload, experts are not
able to collect and account all relevant information into their forecasts. This
is especially relevant for areas where numerous factors affect the demand,
such as promotions and other marketing actions.

Past research has shown that judgmental adjustments indeed add value
to the baseline statistical forecasts, but their performance is inconsistent
(Fildes and Goodwin, 2007). Trapero et al. (2013) demonstrated that in the
context of promotions it is desirable to include this additional information
in statistical models that can be automated, therefore reducing the workload
of human experts and allowing them to focus on incorporating less struc-
tured information in the forecasts. This research echoes a similar need often
expressed by companies and practitioners. Therefore, there is demand to
develop reliable multivariate statistical models that can be automated and
address the requirements of large scale forecasting that organisations face
nowadays.

There is extensive research in univariate forecasting methods, which are
based on modelling the past time series structure and extrapolating it into



the future (Ord and Fildes, 2012). Well known methods include exponential
smoothing and ARIMA, with the former being very widely used in practice,
due to its simplicity, reliability and relatively good accuracy (Makridakis and
Hibon, 2000; Gardner, 2006). The exponential smoothing family of methods
is capable of modelling a wide variety of time series with or without trend
and seasonality. With the incorporation of exponential smoothing in a state-
space framework its statistical underpinnings were researched, resulting in an
elegant and effective automatic model selection procedure (Hyndman et al.,
2002, 2008). The basis of this model selection is to fit the various forms of ex-
ponential smoothing and choose the most appropriate based on a pre-selected
information criteria, typically Akaike’s (Hyndman et al., 2002; Billah et al.,
2006). This approach has been implemented in various statistical software
(Hyndman and Khandakar, 2008) and is widely regarded as a benchmark for
automatic univariate forecasting that is at the core of FSSs.

More recently, further refinements in the automatic specification of expo-
nential smoothing have appeared in the literature. From one hand, Kolassa
(2011) argued that identifying a single model by using information criteria
may not always perform well and investigated the performance of combining
models via Akaike weights, instead of choosing a single one. He found this
approach to be superior, resulting in more reliable and accurate forecasts.
On the other hand, Kourentzes et al. (2014) looked at the combination of
exponential smoothing models that are fitted across multiple temporally ag-
gregated versions of the initial time series. They argued that their approach,
named MAPA (Multiple Aggregation Prediction Algorithm) has advantages
over conventional exponential smoothing modelling because different time
series components are attenuated or strengthened at different temporal ag-
gregation levels, resulting in a more holistic estimation of the time series
structure and more accurate forecasts. Their approach builds on the ex-
tensive literature on the effects of temporal aggregation on forecasting (for
recent examples see: Zotteri et al., 2005; Silvestrini and Veredas, 2008; An-
drawis et al., 2011; Spithourakis et al., 2012; Rostami-Tabar et al., 2013).

However, these approaches are not able to make use of additional infor-
mation such as promotions. Nonetheless, promotional modelling is crucial
for many areas such as manufacturers of fast moving consumer goods and
retailing. As argued above, automatic promotional forecasting is desirable.
Regression type statistical models are often used to build promotional mod-
els (Fildes et al., 2008), which incorporate multiple exogenous marketing
inputs. Such models are hard to automate and require substantial expertise

3



to maintain. Significant advances have taken place in promotional mod-
elling at a brand level, involving sophisticated forms of regression (Cooper
et al., 1999; Leeflang et al., 2002; Divakar et al., 2005). Yet, these models
are not suited for SKU level forecasting that is relevant to the operations of
organisations and alternative models have appeared in the literature making
use of various regression type models and to a lesser extend ARIMA with
external variables (Ozden Giir Ali et al., 2009; Trapero et al., 2013, 2014;
Huang et al., 2014). An apparent further candidate for this type of forecast-
ing problems is exponential smoothing extended to include external variables
(Hyndman et al., 2008; Athanasopoulos and Hyndman, 2008). Under this
approach spate-space exponential smoothing can be enhanced to include ad-
ditive exogenous effects following similar formulations as the aforementioned
promotional models. Such models have not been explored in the literature,
yet they are attractive due to the simplicity and good performance of the
underlying method, as well as our good understanding on how to automate
such models.

This paper investigates the use of multiple temporal aggregation to con-
struct enhanced and automated exponential smoothing based promotional
models. We extend the MAPA approach to include external variables, using
a similar formulation to multivariate exponential smoothing. The motiva-
tion is to combine the simplicity and reliability of exponential smoothing
with the estimation and robustness advantages of MAPA. We investigate
the performance of the proposed method using a real case study of heavily
promoted demand series of cider SKUs (Stock Keeping Units) of a popular
brand in the UK. We use as benchmark the extended exponential smoothing
that includes external promotional information, to demonstrate the advan-
tages of using multiple temporal aggregation levels, and a regression based
promotional model from the literature. We find that multivariate MAPA
outperforms all benchmarks substantially, providing a useful candidate for a
fully automatic promotional model. Furthermore, we find that exponential
smoothing performs very well against regression based promotional models.
We argue that one of the major advantages of the proposed method is its
robustness to model misspecification and therefore its reliability for practical
implementations.

The rest of the paper is organised as follows: section 2 describes MAPA
and introduces our extension to model external variables; section 3 describes
the case study that will be used to empirically evaluate the proposed method,
while section 4 describes the experimental setup and the benchmarks used in

4



this research; section 5 presents the results, followed by a discussion on the
benefits of temporal aggregation for promotional modelling and conclusions.

2. Methods

2.1. Multiple aggregation prediction algorithm

The Multiple Aggregation Prediction Algorithm (MAPA) was proposed
by Kourentzes et al. (2014) to take advantage of the time series transforma-
tions that can be achieved by non-overlapping temporal aggregation. Tempo-
rally aggregating a time series can cause various of its components to become
more or less prominent with direct effects on model identification and esti-
mation. MAPA uses multiple temporal aggregation levels, allowing multiple
views of the data to be considered during model building and subsequently
combined in a final forecast.

MAPA can be seen as a three step procedure, where in the first step the
original time series is aggregated in multiple aggregation levels using non-
overlapping means of length k£. The mean is used instead of the sum, as it
retains the scale of the series across the various aggregation levels. Given a
time series Y, with observations 4, and t = 1,...,n, temporal aggregation
can be performed as:

K _ 1N
i =k Zt:1+(ifl)kyt' (1)

The temporally aggregated time series is noted with a superscript [k] and
has less observations than the original time series. For example for £ = 2
the resulting series Y2 will have half as many observations as the original
time series. Note that the latter can be written under this notation as Y.
Depending on the aggregation level k it may be that the division n/k has a
non-zero remainder, in which case the n—|n/k |k first observations of the time
series are ignored in the construction of the aggregated one. The aggregation
operator in Eq. (1) acts as a moving average and the resulting time series is
smoother than the original one. High frequency components are progressively
filtered as the aggregation level increases, essentially attenuating the seasonal
and random component of time series, while allowing the low frequency trend
and level components to dominate, capturing these better. Petropoulos and
Kourentzes (2014b) suggested that aggregating up to time series of yearly
time buckets it is sufficient, since all high frequency components will be



filtered by then, allowing to clearly see all low and high frequency elements
of the series, although it is possible to consider even higher levels.

Subsequently, in the second step of MAPA a forecasting model is fitted at
each aggregation level. Due to the aggregation operator it is expected that
the original time series components will change. For fast moving consumer
goods this means that seasonality may be present or trend easy to observe
only some levels (Kourentzes et al., 2014), while for slow moving items the in-
termittency characteristics will change across the different aggregation levels,
until the time series becomes non-intermittent (Petropoulos and Kourentzes,
2014a). Obviously, the underlying structure of the time series is constant,
however due to the different sampling frequencies at the various aggregation
levels, different elements of it become easier, more difficult or impossible to
observe and estimate. Kourentzes et al. (2014) argued that this is a strength
of the MAPA | as instead of selecting a single model, which may be wrongly
identified, by repeating the process at each temporal aggregation level and
combining the resulting models, potential problems due to errors in model
selection and parametrisation are mitigated. However a new problem is in-
troduced that results in the dampening of the estimated time series compo-
nents. For example, let us assume that for a time series a seasonal model is
estimated at one level, while a non-seasonal model is estimated at another.
By combining the forecasts of these two levels the seasonal part is halved,
assuming unweighted averaging is used. This is an undesirable property of
forecast combination in the context of temporal aggregation, as it is expected
that the time series components will not be present at all levels. To over-
come this problem MAPA performs combination by time series components.
The reader is referred to the discussion by Kourentzes et al. (2014) for more
details.

Although in theory MAPA could use any forecasting method at each
aggregation level, exponential smoothing is very suitable, as it separates
a time series into level, trend and seasonal components during modelling.
Exponential smoothing (ETS) models the level (1;), trend (b;) and seasonality
(s¢) of a time series explicitly. These components are smoothed, and the level
of smoothing is controlled by the smoothing parameters of ETS: « for the
level, B for the trend and ~ for the seasonal component. The smoothed
components are then combined to give a forecast. Depending on the nature
of the time series under consideration, these may interact in an additive or
multiplicative way. Furthermore, the trend can be linear or damped, which
is controlled by parameter ¢. Table 1 provides the error correction forms of
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Table 1: State space exponential smoothing equations for additive error

Seasonal
Trend N A M
e =li—1 pt =1li—1 + St—m et =1li—18t—m
N lg =11 + et It = l—1 + e It =li—1 + aet/st—m
St = St—m + Y€t St = St—m + Y€t [li—1
Mt =1li—1 +by—1 pt =1li—1 +bt—1 + St—m pt = (le—1 +be—1)8t—m
A It =li—1 +b—1 + et It =li—1 + b1 + et It =l—1 +bi—1 + aer/si—m
bt = bt—1 + Pet by = bg—1 + Pet bt =bi—1 + Bet/St—m
St = St—m + Vet st = st—m +ver/(le—1 +br—1)
e =1lg—1 + pbe—1 e =1li—1 + dbe—1 + St—m  pt = (lt—1 + dbe—1)St—m
A, It =li—1 4+ dpb—1 + aet It =li—1 4+ db—1 + aet It =li—1 4+ Pbe—1 + et /St—m
by = pbi_1 + Bet by = Pbi—1 + Pet bt = pbi—1 + Bet/St—m
St = St—m + V€t st = st—m +vee/(ls—1 + pby_1)
pt = lg—1bt—1 pt =lg—1bt—1 + St—m pt = l—1bt—15t—m
M I =li—1bi—1 + et I =li—1bi—1 + et It =li—1b—1 + a€r/st—m
bt =be—1 + Ber/li—1 bt = be—1 + Ber/li—1 bt = be—1 + Ber/(st—mle—1)
5t = St—m + Vet st = st—m + ver/(le—1bt—1)
we = lt—lbf,l we = lt—lbf,l + St—m Mt = ltflbfflst—m
v, b= le—1b? | + ae I =1 1b_| + ae lp =l 1b)_| + aer/st—m
by = bf,l + Bet/lt—1 by = bf,l + Bet/li—1 by = bﬁl + Ber/(st—mle—1)
St = St—m + Vet 5t = St—m + %t/(ltﬂbf,l)

exponential smoothing with additive errors. The following notation is used:
N for none, A for additive, Ay for additive damped, M for multiplicative
and M, for multiplicative damped. The forecast is denoted by u; and ¢; is
the white noise error. Similar models exist for multiplicative error terms. To
identify the correct form of ETS for each time series and temporal aggregation
level the Akaike Information Criterion (AIC) is used, as it is suggested by
Hyndman et al. (2002) for ETS modelling.

For MAPA we are interested in the last state vector wgk] of ETS, which
contains the updated values of each [;, b; and s;: :I:Ek] = (ll[-k], bgk], sgk],
syc_]l, Ces sgk_]m +1)". Using this information we can produce forecasts for any
desirable horizon. Note that additive and multiplicative components will
have different scale, as the later is expressed as a ratio of the level. This makes
the combination by components difficult. To overcome this Kourentzes et al.
(2014) proposed to first transform multiplicative components into additive
using the formulae in table 2.

The additive translation of the components is only used for constructing



Table 2: Component prediction in the additive formulation

Trend Seasonal
N A M
l; =1 l; =1
N li+h _ li i+h 7 i+h 7
Si—m+h = Si—m+h Si—mth = (Si—min — Dlign
livh =1 livh =1
livh =1
A . bin = hb; bis = hb;
in = hb;
) ' Si—m+h = Si—m+h Si—mih = (Si—mih — D)(ligh +bitn)
livh=1 Liyh =1;
Liyh =1 W o
Ad h ) b; = I b; b; = I b;
bi+h _ 2721 b; it+h Zj:l ¢7b; i+h Zj:l ¢’ b;
' Si—m+h = Si—m+h Si—math = (Si—man — Dlign +bitn)
] ] livh =1 livh =1
ith =l
M h bivh = (b) — Dliyn bivnh = (bf = Dliyn
bivn = (bf — Dlitn
Si—m+h = Si—m+h Si—m—+h = (Sif’m#»h — 1)(li+h + b’H»h)
; ; livh =1 livh =1
ith =L n W
) i1 @ > @’
Md Shor o bipn =077 = Dlign bign = (0,777 = Dliyn
bitn = (b = Dlign
Si—m+h = Si—m+h Si—m—+h = (Si—m-HL — 1)(li+h + bi+h)

the out-of-sample component predictions that will be combined. Note that
as these components are coming from different temporal aggregation levels,
their length will be different. For example predicting at the monthly level a
year ahead will result in twelve values, while in annual level will result in a
single value. The translated component forecasts are returned to the original
time domain using:

k
2 = ijzi[k}’ (2)
j=1

where zZ[k] is the vector to be returned to the original time domain and ¢t =

1,2,...,nand i = [t/k]. Eq. (2) acts as a piecewise constant interpolation.
The weights w; are equal to k™!, resulting in an unweighted disaggregation
scheme, which has been found to perform well (Nikolopoulos et al., 2011).

The last step of MAPA involves the combination of the components es-
timated across the different aggregation levels. Two combination methods
were originally proposed: using unweighted mean and median, which were
found to perform very similarly. In the case of the unweighted mean, each
component is combined using:



_ K
bin = K'Y (3)

besn = K ' Zk:l bz[t—i}-m (4)
K/
Spun = K1 Zk:l sﬁh, if (m/k) € Z and k < m, (5)

where K is the maximum aggregation level considered and K’ is the number
of aggregation levels where seasonality may be identified, i.e., when m/k re-
sults in an integer and k < m, as ETS is not capable of capturing fractional
seasonality. The following example illustrates this: supposing a monthly
sampled time series then K’ = 1,2, 3,4, 6, i.e. seasonality estimated and com-
bined only at monthly, bi-monthly, quarterly, four-month and semi-annual
data. For trend, if at some aggregation level no trend is fitted, then it is
assumed that for that level the value of trend is zero.

To produce the final forecast for h steps ahead, the forecast horizon of
the original time series, the components can be simply added together, as
they have been already translated into additive:

??Eh = lion + besn + Simmh (6)

2.2. MAPA with exogenous variables

Here we will extend MAPA to include exogenous variables. Let X; with
observations z;; be the j" explanatory variable to be included in our model
and j =1,...,J. The formulations in table 1 can be adjusted to include X;
as follows:

. J
He = p + Z]‘:1 djt, (7)

djt = ¢zj,

where d;; contain the effect of each X; variable at time ¢ and c¢; is its co-
efficient. Coefficients ¢; function in the same way as in a regression model,
coding additive effects, while multiplicative effects can be captured through
logarithmic transformation of the data. This formulation is similar to the
standard ETS with regressor variables (Hyndman et al., 2008), with the only
difference being that the effect of each variable is measured separately in d;;



allowing to directly incorporate it in the MAPA framework. Estimation of ¢;
is done simultaneously with the rest of the ETS states, p;. This can be done
either by least squares, maximum likelihood estimation or other desirable
cost functions.

:

At each temporal aggregation level k a separate d: is calculated, based

on the estimated cg»k] and temporally aggregated X ][k]. The resulting vectors
are treated in the same way as the estimated time series components in the
univariate case. First, they are translated into the original time domain using
eq. (2). Then these are combined into a single effect across all aggregation
levels for each variable X;:

- B K &
dj,t+h =K' Zk:l dﬂw <8>

Finally, Eq. (6) that was used for the univariate forecast is adjusted to
include the new multivariate effect estimations:
Qiﬂh =i+ bern + St—mon + ZJ dj th- 9)
=17

The parameters of the multivariate ETS at each temporal aggregation
level will be optimised in the same way as the univariate ETS and the ap-
propriate model form will be selected using AIC, as before. However, the
temporal aggregation introduces one additional complexity for the multi-
variate models. As X are aggregated, they become smoother as implied by
the aggregation Eq. (1). This changes the correlation between explanatory
variables and may introduce multicollinearity at higher aggregation levels, if
more than one variable is included in the model. As an illustrative example
consider the case of two different promotions or special events that occur only
once per month at a different day of the month and are coded using binary
dummies. At a daily level these variables are not collinear, but at a monthly
temporal aggregation level both variables become the same, equal to a vector
of ones. Clearly, if both variables were included in Eq. (7) estimating coeffi-
cients ¢; would not be possible. To avoid this it is desirable to transform the
variables so that they become orthogonal. We can use principal components
analysis to achieve this.

Principal component analysis generates a new set of variables, X ; with
7 =1,...,J, called principal components, which are linear combinations of
the original variables. The weights of the linear combination are such that
the resulting principal components are orthogonal to each other. Therefore,
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the new variables X ; are no longer multicollinear and contain no redundant
information (Jolliffe, 2002). These can now be used as inputs instead of the
original X; variables, overcoming the problems caused by temporally aggre-
gating the explanatory variables. The principal components are constructed
so that they are ordered in terms of variance, with the last components
typically having very small variance. In practice we can omit theses, thus
reducing the number of inputs to less than the original J. There are two com-
monly considered alternatives in choosing which components to retain. One
can retain all components that are over a cut-off level in terms of variance.
Alternatively, one can select to include only components that are significant
in a regression context (Jolliffe, 1982). Here, for simplicity we use the first
option, as conventional ETS parameter estimation does not typically provide
standard errors of the estimated parameters that would allow the calculation
of t-statistics. Note that it is still possible to obtain these by bootstrapping.

Therefore, by using principal components analysis we avoid the problem of
multicollinearity of the inputs as the aggregation level increases and reduce
the dimensionality of multivariate MAPA, making it less cumbersome to
estimate.

Summarising, the extended MAPA works as follows. First the provided
time series and promotions are temporally aggregated. At each aggregation
level the data is processed as illustrated in the flowchart in Fig. 1. The pro-
motional variables are first processed using principal components analysis
and then incorporated in the exponential smoothing described by Eq. (7).
From that the level, trend and seasonal components, as well as the promo-
tional effect are extracted. The components are transformed to additive ones
using the expressions in table 2. Then, together with the promotional part
these are returned to their original frequency using Eq. (2). Estimates from
all temporal aggregation levels are combined using Eqs. (3), (4), (5) and (8)
for each level, trend, season and promotion components respectively. Finally
these are combined in the final forecast using Eq. (9).

3. Case study

We empirically evaluate the performance of the multivariate MAPA by
exploring its performance over benchmarks in predicting the sales of prod-
ucts under multiple promotions. Data from one of the leading cider brands
have been collected from a UK manufacturer. These forecasts are useful for
the manufacturer to support production and inventory planning decisions.
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Figure 1: Flowchart of calculation steps for each temporal aggregation level of MAPA
with exogenous variables.

Demand for 12 variants of the brand, including SKUs with different package
sizes and flavours, has been collected for 104 weeks. The manufacturer sells
the SKUs to multiple retailers who are offered different promotions. The tim-
ing of each promotion has been provided and was coded as binary dummy
variables. Each SKU may be under up to 6 promotions at any time, account-
ing for the different offers to each retailer, with a varying degree of success.
The promotions in this case study are known in advance, as the company
has control of the promotional plan.

Table 3 provides the average descriptive statistics across SKUs. Looking
at the difference between the measures of central tendency and the maximum
we can observe the impact of promotions on sales, which is also reflected in
the skewness of the sales. It can also be seen that these SKUs are heavily
promoted, having on average 3.25 different promotions that are active for
61.78% of the sample. Note that all SKUs in the case study are fast moving.

Table 3: Average descriptive statistics across SKUs

Minimum 33.00
Mean 4038.81
Median 1959.67
Maximum 28151.75
Coefficient of variation 1.27
Skewness 2.56
Number of promotions 3.25

Periods under promotion  61.78%
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As an example Fig. 2 provides the sales and the timing of the promotions
to various retailers for a single SKU of the case study, which is representative
of other SKUs in the dataset. Periods when at least one promotion takes
place are highlighted. As Fig. 2 illustrates the SKU is under some promotion
in almost every period. Note that for modelling the time series each retailer-
level promotion is input separately so as not to assume that all have a similar

effect.

Sales
Promotied period

10000

Sales

5000

0
Retailer 1
promotion

Retailer 2
promotion

Retailer 3
promotion

Retailer 4
promotion

Retailer 5
promotion

Retailer 6
promotion

10 20 30 40 50 60 70 80 90 100
Period

Figure 2: Sales and promotions of one SKU from the case study.

4. Empirical Evaluation

To evaluate the performance of the multivariate MAPA all SKUs avail-
able to us from the cider brand of our case study are used. For each time
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series the last 18 weeks are withheld. This test set will be used to assess
the out-of-sample forecasting performance of the method against established
benchmarks for horizons t+4, t+8 and t+12, which are relevant for decision
making for the manufacturer in our case study. We employ a rolling origin
evaluation scheme to collect as many error measurements as possible for the
three different forecast horizons in the test set. Forecasts are produced from
each origin (week) of the out-of-sample period for the target forecast horizons
and the performance is evaluated for each period (for more details on rolling
origin evaluation see Tashman, 2000). The rest of the data is used for fitting
the models. The methods are parametrised once in the in-sample period and
used to produce all the forecasts in the test set.

We track the forecasting bias and accuracy for the weekly manufacturer
sales of each SKU and horizon using the scaled Error (sE) and the scaled
Absolute Error (sAE), which are defined as:

Y — [t
sk = ——=——, 10
' n-! Zi:1 Yi ( )
‘yt - ft‘
sAFE _— 11
' nty Y (1

where 3, and f; are the actual and forecasted values at period t and the
denominator is the mean of the time series. Both error metrics are scale
independent and allow summarising the forecasting performance across the
different time series. These errors are used instead of more common percent-
age metrics, such as the Mean Absolute Percentage Error, because the time
series used in this study contain several periods of zero sales which makes the
calculation of percentage metrics impossible. Furthermore, with traditional
percentage errors periods with very low demand will have disproportionate
impact. Both scaled metrics used here can be approximately interpreted
as percentage forecast bias and error (Kolassa and Schiitz, 2007). The er-
ror metrics are summarised across origins and time series by calculating the
mean, resulting in the scaled Mean Error (sME) and scaled Mean Absolute
Error (sMAE). For sME positive values imply under-forecasting and negative
values imply over-forecasting.

The performance of multivariate MAPA is assessed using a number of
benchmarks. First, a random walk forecast is used that will be referred to as
Naive. As the random walk is a very simple model that requires no param-
eter estimation, any more complex models should outperform it in order to

14



justify their additional complexity. Next, univariate ETS is used as a bench-
mark. Exponential smoothing is commonly used in business forecasting and
has been found to be relatively accurate and reliable, both in practice and
research (Gardner, 2006). The univariate MAPA introduced by Kourentzes
et al. (2014) is also used as a benchmark, which has been shown to improve
over the performance of ETS. Although both ETS and MAPA are not capable
of modelling the available promotional information, they are useful bench-
marks as they will permit us to evaluate the gains in performance achieved
by their multivariate counterparts, if any. Due to limited estimation sample
we consider temporal aggregation up to approximately the monthly level,
K =4.

Two multivariate benchmarks are used. In the literature there is a lim-
ited number of promotional models at SKU level (for examples see: Trapero
et al., 2014; Huang et al., 2014). These differ from promotional models
at brand level due to the different data structure and limitations: sales at
SKU level are more disaggregate, having different time series components,
increased noise and importantly limited data that prohibits fitting and us-
ing the substantially more complex and bigger in terms of variables brand
level promotional models. Here we implement as a benchmark the model
proposed by Trapero et al. (2014), which will be referred to as Regression,
and was found to perform well. This is a regression based model that in-
corporates the following features: i) principal components analysis to reduce
the dimensionality of model inputs and overcome to the multicollinearity of
promotions that is often observed in practice; ii) modelling the promotion dy-
namics including potential lag effects; and iii) modelling the remaining time
series dynamics that cannot be accounted for by the promotional activity,
using ARMA components. The next multivariate benchmark is ETS with
external regressors (Hyndman et al., 2008), referred to hereafter as ETSxz. If
the raw binary dummies are used as inputs the performance of this model is
poor, due to the multicollinearity observed in the promotions. To overcome
this we use principal components of the promotional dummies, following the
suggestions by Trapero et al. (2014).

Finally, the multivariate MAPA, which will be referred to as MAPAz, is
built as outlined in section 2.2. Similarly to MAPA, the maximum aggrega-
tion level considered for MAPAx is K = 4. Although principal components
of the input variables are used in MAPAz due to the effects of temporal ag-
gregation, at the same time this is beneficial in overcoming issues due to the
multicollinearity of the promotional variables. In our experiments we found
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that retaining only the first principal component at each aggregation level
was adequate, substantially reducing the dimensionality of the model.

5. Results

Table 4 presents the results of the empirical evaluation across all available
SKUs for the cider brand of the case study, in terms of sME and sMAE.
The best performance for each error metric and horizon is highlighted in
boldface. Values in parentheses represent medians across all SKUs, while the
rest represent mean errors across SKUs. The last column in the table provides
the mean rank of each method across SKUs and target forecast horizons for
sME and sMAE. A method with rank of 1 is interpreted as being the best
for every single case, while with rank of 6 it is always the worst.

Table 4: Mean (Median) forecasting bias (sME) and accuracy (sMAE) across SKUs

Method t+4 t+8 t-+12 Rank'
sME
Naive -0.139 (-0.022)  -0.194 (40.021) -0.282 (-0.010)  2.75
ETS -0.249 (-0.204) -0.287 (-0.328) -0.374 (-0.371) 3.67
MAPA -0.229 (-0.168) 10.269 (-0.191)  -0.408 (-0.353)  3.83
Regression -0.305 (-0.310) 0.317 (-0.348)  -0.482 (-0.559)  4.42
ETSx -0.214 (-0.112) 0.171 (-0.147)  -0.250 (-0.220)  3.86
MAPAx -0.071 (-0.021)  -0.048 (-0.029)  -0.165 (-0.194)  2.47
MAPAx improvement +48.9% (+4.5%)  +71.9% (-38.1%)  +34.0% (-94%)
over best benchmark Naive (Naive) ETSx (Naive) ETSx (Naive) )
sMAE
Naive 0.743 (0.771) 0.818 (0.672) 0.704 (0.671)  3.75
ETS 0.704 (0.619) 0.774 (0.741) 0.701 (0.717) 3.86
MAPA 0.679 (0.611) 0.758 (0.679) 0.736 (0.727)  3.86
Regression 0.611 (0.579) 0.659 (0.642) 0.714 (0.682)  3.78
ETSx 0.642 (0.528) 0.627 (0.625) 0.543 (0.541)  3.06
MAPAx 0.525 (0.475) 0.521 (0.447)  0.515 (0.493)  2.69
MAPAx improvement +14.1% (4+10.0%) +16.9% (+28.48%) +5.2% (+8.9%)
over best benchmark ~ Regr. (ETSx) ETSx (ETSx)  ETSx (ETSx) -

fMean rank of method across horizons and SKUs. The method with the lowest reported
rank performs best.

Overall, MAPAz is the best performer both in terms of average bias and
error. It is interesting to evaluate the improvements achieved by extending
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the models to use promotional information. To support the comparisons,
Fig. 3 visualises the mean results presented in table 4. Focusing on the
univariate ETS and MAPA the latter performs better for horizons t+4 and
t+8 and the former for t+12. On average MAPA improves over ETS, in
accordance to the findings by Kourentzes et al. (2014). This holds both
in terms of forecast bias and error. Interestingly for long term forecasts,
t+12, the Naive has similar errors to both ETS and MAPA, attesting to the
difficulty of producing accurate forecasts for the time series of our case study.
When considering median errors the Naive is more accurate for long term
forecasts that both ETS and MAPA. In terms of bias the Naive is always
less biased.

scaled Mean Error scaled Mean Absolute Error
Naive
—— ETS
P —/A— MAPA
% —@— Regression
—w— ETSx
MAPAx
0.4
. 0.3
t+4 t+8 t+12 t+4 t+8 t+12
Horizon Horizon

Figure 3: Mean forecast bias (sSME) and error (sSMAE) results.

When promotional information is included in the models their perfor-
mance increases substantially. Starting from the benchmark Regression the
forecast errors drop over the univariate models for horizons t+4 and t+8.
For horizon t+12 the performance is again relatively poor, being similar to
the Naive. In terms of bias Regression is consistently the most biased. ET'Sx
performs overall better than Regression, with the latter having lower errors
only for the t+4 forecast horizons. In terms of median errors ETSz is al-
ways better than Regression and Naive. It should be noted that in many
ways ETSz incorporates several aspects of Regression, such as using prin-
cipal components for the promotional information and capturing the time
series dynamics. The primary difference between them is the way that the
time series structure is identified and modelled, with ETSz being arguably
simpler. Furthermore ETSz has substantial performance improvements over
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its univariate counterpart, demonstrating the benefits of including the pro-
motional information.

MAPAz exhibits the biggest improvement over its univariate counter-
part. The observed improvements demonstrate again the benefit of includ-
ing promotional information in the models. Considering mean sME across
SKUs MAPAx gives the least biased predictions, with substantial differences
over ETSz for all forecast horizons. However, when medians are consi-
dered MAPAz is second after the Naive for longer horizons (t+8 and t+12).
Nonetheless, it still exhibits substantial improvements over all other methods
and in particular Regression and ETSz that are capturing the promotional
information. In terms of accuracy MAPAz has lower errors than both multi-
variate benchmarks, considering either mean or median errors across SKUs.
Overall, considering the mean errors of the best performing benchmark for
each horizon, MAPAz is about 51.6% less biased and has about 12.0% lower
forecast errors.

Focusing on the mean ranks provided in table 4, MAPAxz achieves the
best ranking for both sME and sMAE, demonstrating its consistent per-
formance. The value of the promotional inputs is highlighted in the mean
ranks of SMAE, where Regression and ET'Sz rank better than the univariate
benchmarks. This demonstrates that the promotional inputs are useful for
improving forecasting accuracy. Note that Naive performs better than the
univariate ET'S and MAPA providing evidence of the difficulty of producing
accurate baseline forecasts for the time series of the case study.

In many ways the relative performance of MAPAz in comparison to ETSz
replicates the pattern between the univariate MAPA and ETS. Using mul-
tiple temporal aggregation consistently results in better performance over
conventionally modelled exponential smoothing.

Therefore the superior performance of MAPAz is a result of the combina-
tion of the quality of the forecasting method and the quality of information
available to it. These results were found to be consistent using other error
metrics, such as scaled Mean Squared Error.

6. Discussion

Considering the conventional ETS if there are strong promotional effects,
as it is true in our case study, the parameter estimates and even the selected
model, as it is conditional on the estimated parameters, may be biased. By
introducing the promotional information in the ETSz model this effect is
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mitigated. However, there is still uncertainty in the parameter identification
and model selection, due to available sample and sampling frequency issues
(Kourentzes et al., 2014) or the inherent limitations of information criteria
for model selection (Kolassa, 2011). The original MAPA was developed with
the motivation of addressing the later issues. The time series is modelled at
multiple temporal aggregation levels, thus at each level filtering the higher
frequency components of the time series, allowing to estimate lower ones ap-
propriately. Combining the estimates across the different aggregation levels
results in robust final forecasts, as there is little reliance on a single model
or a single view —aggregation level— of the time series, gaining the advan-
tages of model combination. Nonetheless, similar to ETS and ETSz, the
various models estimated under MAPA for the different aggregation levels
will be biased if no promotional information is provided under the presence
of strong effects. MAPAz address this by taking advantage of the additional
information.

The effect of including promotional information at low levels of aggrega-
tions is apparent, as at this level their effect will be stronger. However, at
higher aggregation levels the size of the effect of promotions at each period
becomes smaller and one could expect that it is no longer as important. Eq.
(1) shows that aggregation acts as a moving average, therefore although the
effect per period will be smaller, the promotion now is expanded to neigh-
bouring periods. This results again in an important overall effect, which
unless modelled explicitly it is bound to bias parameter estimates and po-
tentially even the selection of the model for each aggregation level.

Let us consider the example of a simulated sales series with promotions.
Fig. 4 plots the sales series at various temporal aggregation levels. The
promoted periods are noted with black bars at the lower part of the plots.
Furthermore, for comparison, the simulated sales as if there were no promo-
tions are plotted with a dotted line. Observe that the sales do not contain
any trend or seasonality and therefore the only non-promotional structure
is the level. Single exponential smoothing would be appropriate to produce
forecasts if there were no promotions, where the single smoothing parameter
a captures the dynamics of the time series levels. To illustrate the effect
of including the promotional information on the parameter estimates table 5
provides the estimated smoothing parameter o at each aggregation level. The
aim of this example is to illustrate the effect that promotional information
has at various aggregation levels on the estimation of the level component.

The first column, ETS - sales without promotions, lists the fitted parame-
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ters for the simulated sales series without promotional effects, corresponding
to the dotted line in Fig. 4. The second column, ETS - sales with promo-
tions, lists the fitted o parameters when the sales series includes the peaks
due to promotions. Note that in all cases the parameters are substantially
different, demonstrating the impact of the promotions not captured on model
fit. Now the level of the time series is modelled wrongly and the accuracy of
the forecasts is expected to be poor. Interestingly this is true even for high
aggregation levels that the promotional uplift is seemingly small.

The last column of table 5, ETSz, lists the o parameters of ETSx fits
that model promotions as an additional input. Although the parameters are
not identical to those of the first column, they are much closer demonstrat-
ing the advantage of including such information when available, even when
its effect is relatively smoothed due to the temporal aggregation. Now the
level dynamics are captured more accurately and the resulting forecasts are
expected to perform better.

It is also interesting to note that there may be cases, as is for aggrega-
tion level 6 in this example, where the smoothing parameter is apparently
misestimated. In these cases the forecasts of ETSz will be of poor quality,
while the ones of MAPAz that combine the estimates from multiple aggre-
gation levels will be better. A similar observation can be made with regards
to the fitted model at each aggregation level as argued by Kourentzes et al.
(2014). Potentially models fitted at some aggregation levels may be misspec-
ified in their form. By using multiple temporal aggregation, as the outputs
of the various models at the different aggregation levels are combined, we
do not rely on a single one, which might have been misspecified. This is
a useful property for practical implementations of MAPAz, as it makes it
robust against misspecification at some aggregation levels and crucially at
the original time series, which is the only view of the data conventional time
series modelling focuses on. Therefore MAPAz provides a reliable automatic
forecasting procedure that includes external variables.

Table 5: Smoothing parameter « for simulated sales example
Aggregation  ETS - sales without ETS - sales with

. . ETSx
Level promotions promotions
1 0.046 0.093 0.054
2 0.137 0.215 0.128
4 0.252 0.146 0.198
6 0.230 1.000 0.000
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Figure 4: Sales with promotions at temporal aggregation levels 1, 2, 4 and 6. Periods
under promotion are noted with black bars at the lower part of the plots.

MAPAz is useful for practice as it incorporates explanatory variables in
an automated way, such as promotions, and provides reliable and accurate
predictions. This makes it useful for supply chain forecasting, where typically
a large number of SKUs need to be forecasted for inventory and planning
purposes. Therefore it is interesting to consider the implications of using
MAPAz for such cases. Stock calculations are typically based on the following
formula: expected demand over lead time plus demand uncertainty over lead
time. The first quantity is essentially the expected value of the forecast,
which ideally should have a forecast bias of zero, otherwise the expected
value of the forecast does not match the expected value of the demand. The
second quantity, which is essentially the safety stock, is a pre-set percentile
of the distribution of forecast error size, which is often approximated as the
mean squared error of the forecast multiplied by some factor to account for
the target service level and the lead time. Therefore, a good forecast for such
purposes should have small bias and magnitude of forecast errors. Table 4
provided evidence of the superior performance of MAPAz in our case study,
both in terms of forecast bias and error, demonstrating that it has desirable
behaviour and outperforms the various benchmarks in both dimensions.
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7. Conclusions

This paper extended the univariate Multiple Aggregation Prediction Al-
gorithm that was recently proposed in the literature, and has been shown to
have good performance both for fast and slow moving items, to the multivari-
ate case. To demonstrate the performance and the efficacy of the proposed
formulation we investigated the usage of the MAPAx to model the demand of
SKUs of a popular cider brand in the UK, including promotional information.

MAPAz was found to outperform all benchmarks, which included a re-
cently proposed in the literature SKU-level promotional model and exponen-
tial smoothing with regressor inputs, appropriately preprocessed. In partic-
ular; the main differences between ETSr and MAPAz is the use of multiple
temporal aggregation levels, which provides the latter approach its supe-
rior performance and also makes it robust against model misspecification.
The overall better performance of MAPAz over its exponential smoothing
counterpart follows similar findings for the univariate case in the literature,
providing evidence of the merits of this alternative approach to forecasting
time series, based on modelling time series at multiple temporal aggregation
levels.

In the discussion we attempted to highlight the implications of using
MAPAz for baseline forecasting in a supply chain context. Future research
should explore in detail the inventory implications of using MAPAz when
external variables are available and important for capturing the demand be-
haviour. Another aspect of using MAPAz in a supply chain context that
warrants further research is the interaction of human experts with the statis-
tical forecast. As forecasting methods become more complex, here to intro-
duce promotional information at SKU level, their transparency to experts is
reduced, complicating the adjustment process.
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