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Abstract

There is extensive empirical evidence that travellers consider many qualities (travel

time, tolls, reliability, etc.) when choosing between alternative routes. Two main

approaches exist to deal with this in network assignment models: Combine all

qualities into a single (linear) utility function, or solve a multi-objective problem.

The former has the advantages of a unique solution and efficient algorithms; the

latter, however, is more general, but leads to many solutions and is difficult to

implement in larger systems. In the present paper we present three alternative

approaches for combining the principles of multi-objective decision-making with

a stochastic user equilibrium model based on random utility theory. The aim is to

deduce a tractable, analytic method. The three methods are compared both in terms

of their theoretical principles, and in terms of the implied trade-offs, illustrated

through simple numerical examples.
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1. Introduction1

It has long been known that there are many qualities, other than travel time,2

that motivate travellers in their choice of route, such as trip length, tolls and travel3

time reliability. For example, from a route choice survey, Abdel-Aty et al. (1995)4

identified the three most important qualities to be: (1) shorter travel time (ranked5

as the first reason by 40% of respondents); (2) travel time reliability (32%); and6

(3) shorter distance (31%). Note that some people chose to indicate more than one7

quality as most important, which explains the sum being bigger than 100%. In the8

present paper we are interested in ways in which such multiple qualities may be9

accounted for in general in a predictive network model, with a specific focus (given10

its timeliness) on the way in which travellers deal with the potentially competing11

objectives of choosing a route to minimise their mean travel time and choosing one12

to minimise travel time unreliability.13

Presently there exist two main ways of dealing with multiple qualities in a (de-14

terministic) network user equilibrium (UE) context. The first (single objective)15

approach is to combine them into a single measure of generalised cost for each16

route and compute traffic flows that satisfy the Wardrop (1952) user equilibrium17

condition, which is attained if no user can improve their cost by unilaterally chang-18

ing their route. A common approach to incorporate several route choice qualities is19

to consider a generalised cost function, which is the sum of monetary cost (such as20

tolls and vehicle operating costs, which are closely related to distance) and travel21

time multiplied by a value of time, see e.g. Dial (1979); Leurent (1993); Florian22

(2006); Chen et al. (2010). Regarding travel time reliability, Lo et al. (2006) for-23

mulated a multi-class mixed-equilibrium model considering travel time and travel24

time (un)reliability, combined in a single objective as minimising travel time bud-25
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get, which is defined as the expected travel time plus a travel time margin (or buffer26

time), with the travel time margin being dependent on the level of risk aversion of27

each user class. Watling (2006) proposed a late arrival penalised UE (LAPUE)28

which assumes users minimise a composite path disutility, incorporating the gen-29

eralised cost plus a late arrival penalty. A few researchers, such as Larsson et al.30

(2002) have also considered nonlinear generalised cost functions.31

The second approach, which has been the subject of more recent research, is32

to treat the qualities separately and to aim for a multi-objective equilibrium. This33

approach follows the principle of Pareto optimality or non-dominance commonly34

applied in multi-objective optimisation: A multi-objective equilibrium is attained35

if no user can improve any of the route choice qualities without deteriorating at36

least one other. Wang et al. (2010) showed that this approach is more general37

than approaches based on (additive) generalised cost functions, even if the latter38

consider a distribution of the value of time, as proposed by Leurent (1993) or Dial39

(1996). In fact, there are multi-objective equilibrium solutions that are based on ra-40

tional route choices, that generalised cost approaches will miss. Wang and Ehrgott41

(2013) proposed a bi-objective approach considering the qualities travel time and42

toll, whereas Wang et al. (2014) consider travel time and travel time (un)reliability43

(measured as standard deviation of travel time) as route choice criteria, and Wang44

and Ehrgott (2014) propose a multi-objective equilibrium model with travel time,45

travel time (un)reliability and toll as objectives users aim to minimise.46

In Table 1 we summarise other existing approaches from the literature that deal47

with multiple criteria network user equilibrium models. For each reference, we48

distinguish between the route choice criteria that have been considered and the49

path cost objective used in the models. We also state whether the model follows50

the UE or stochastic user equilibrium (SUE) principle (SO means social optimum)51

and what source of heterogeneity is considered.52
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The single-objective approach has the advantage of typically providing a uni-53

que solution, see e.g. Florian and Hearn (1995) and Gabriel and Bernstein (1997),54

for the case of additive and non-additive path costs, respectively. This is extremely55

useful for planners when assessing proposed future policies using the network user56

equilibrium model. Also, efficient computational methods have been proposed57

for implementing it in large-scale systems (Dial, 2006; Florian et al., 2009; Bar-58

Gera, 2010; Gentile, 2014). However, the difficulty in specifying or estimating59

any general form of utility function means that almost always a constant linear60

form must be assumed, whereas it is not clear that travellers really perceive or61

trade off qualities in this way. On the other hand, the multi-objective approach has62

the advantage that it does not need to pre-suppose any relationship between the63

qualities (it is invariant to a monotone transformation of the qualities). However,64

its purpose is to generate a whole set of candidate solutions, which is difficult for65

planners to use in evaluating policy measures, and also gives rise to computational66

difficulties for identifying such solution sets for anything more than small-scale67

systems.68

In the present paper we aim to take the best elements of each of these ap-69

proaches. We adopt the basic philosophy of a multi-objective approach, but then70

aim to derive probability measures which distribute travellers to particular routes,71

thus aiming for a unique solution. The methods we shall propose extend and/or72

generalise the well-known single objective stochastic user equilibrium (SUE) mo-73

del (Daganzo and Sheffi, 1977). In doing so, therefore, they also provide a future74

pathway to extending efficient algorithms developed for SUE to our new formula-75

tions, so that large-scale systems may be solved. The purpose of the present paper76

is to set out several alternative candidate formulations of our multi-objective model.77

Through simple illustrative examples, we demonstrate the features of the new ap-78

proach(es), and compare them with the existing single-objective SUE approach. In79
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particular, since our ultimate desire is to lead the pioneering work on small-scale80

multi-objective network problems towards methods that may be scaleable, we shall81

aim for an efficient analytic formulation of the problem.82

2. Multi-objective Route Choice and Stochastic User Equilibrium83

The main focus of the present section will be to set out several alternative84

behavioural principles that might be adopted for individual decision-making in a85

multi-objective setting under uncertainty, from which new notions of multi-objecti-86

ve SUE are defined. We first set out the well-known principle of random utility87

theory underlying single-objective SUE, in Section 2.1. We then propose a first88

model that extends this principle, of computing the probability that a particular89

route is “best”, to the case when multiple route qualities are considered, i.e., we90

consider the probability of a particular route being the best in one of the qualities91

(Section 2.2). While this model is a natural generalisation of SUE, it retains im-92

portant features of it, in particular the property that it allows a closed form solution93

for the choice probabilities of the alternatives. On the other hand, we demonstrate94

that it does not comply with the principle of Pareto optimality or non-dominance95

implemented in the multi-objective deterministic user equilibrium (DUE) models96

reviewed in Section 1.97

In Section 2.3, we propose an alternative multi-objective generalisation of the98

SUE model. We show that this model complies with the non-dominance principle,99

i.e. the model is based on probabilities that a certain route is dominated by an-100

other route in the sense that there exists an alternative route that is not worse in all101

qualities and strictly better in at least one of them. This model does, however, re-102

quire the computation of conditional probabilities, which makes it computationally103

expensive.104
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Finally, we present a model that is computationally tractable and also imple-105

ments the non-dominance principle, in Section 2.4. This model is based on describ-106

ing the attractiveness of an alternative by means of the differences of the utilities107

of alternatives (routes) in the different qualities, which are modelled as the sum108

of a deterministic term plus a random error. While this model allows closed form109

solutions, it entails the loss of transitivity of the evaluation of quality values for110

alternatives (it is possible that events of the following kind may have positive prob-111

ability of simultaneous occurrence with respect to a given quality: Alternative i is112

more attractive than j, j is more attractive than l, yet l is more attractive than i). We113

note that while this may seem an undesirable property from a theoretical point of114

view, it is nevertheless a phenomenon that is observed in real-life decision-making,115

see e.g. Tversky (1969); Fishburn (1991); Cavagnaro and Davis-Stober (2014) for116

a discussion of non-transitivity of preferences in general decision-making environ-117

ments. In addition there now exists a growing body of empirical, experimental and118

theoretical evidence of non-transitive and/or of non-compensatory behaviour in a119

transport context (Recker and Golob, 1979; Mahmassani and Krzystofowicz, 1983;120

Jeng and Fesenmaier, 2002; Batley and Toner, 2003; Helbing, 2004; Ridwan, 2004;121

Chorus et al., 2008; Avineri, 2012; Maness et al., 2015).122

We will test the models in Section 3. We shall use these tests to see whether123

the proposed models comply with the non-dominance principle of multi-objective124

optimisation. In particular, we expect to find (1) that alternatives which are non-125

dominated (there is no other alternative which is not worse in all qualities, and126

strictly better in at least one) to all have significantly bigger probabilities of being127

chosen than dominated ones; (2) that the relationship between the qualities of al-128

ternatives is not necessarily linear (this is because the multi-objective paradigm of129

non-dominance does not postulate any particular functional form of this relation-130

ship, or trade-off between alternatives). This second property is also in line with131
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the observation from multi-objective user equilibrium models, that generalised cost132

models omit certain rational route choices as mentioned in Section 1.133

Throughout the paper we will restrict attention to the case of a network with134

a single origin-destination movement with fixed demand. The reason is only to135

avoid unwieldy notation; the models presented are readily extended in the obvious136

way to a general network containing many origin-destination movements, with the137

relevant choice models applied to the fixed demands for each such movement.138

2.1. The conventional SUE formulation139

We assume travellers are choosing between n discrete alternatives (routes).140

The utility Ui of alternative i is assumed to have both a deterministic and a random141

component. The deterministic component of alternative i is formed from a linear142

combination of m qualities combined using a linear transformation into a single143

utility measure144

Ui =

m∑
k=1

θkVik + εi (i = 1, 2, . . . , n) , (1)

where θk (k = 1, 2, ...m) are parameters, and {ε1, ε2, . . . , εn} are continuous ran-145

dom components following some given joint probability distribution. The proba-146

bility to choose any alternative i is then given by the probability that it is seen as147

being the best alternative in the sense of having highest utility Ui among all the148

alternatives,149

Pr (Ui ≥ max {Uj : j 6= i, j = 1, 2, . . . , n}) . (2)

In order to incorporate this in a formulation for SUE, we then suppose that the150

qualities (such as mean or standard deviation in travel time) depend on the choices151

made by travellers, through the flows on the routes of the network. Let the n-vector152

f denote the flows on the routes of the network, and let V(f) denote the n × m153

matrix of qualities across all route alternatives as a given function of the flow vector154
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f . Let P(V) denote the choice probability function, mapping from a given matrix155

of qualities V to an n-vector of choice probabilities, through the combination of156

Eqn. (1) and Eqn. (2). If d denotes the demand on the single origin-destination157

movement, then a flow vector f is an SUE if and only if it satisfies the fixed point158

condition159

f = dP(V(f)). (3)

This is the conventional approach for using models such as SUE for addressing160

problems where travellers have multiple qualities that motivate their choice. In161

the special case in which we assume the error terms follow independent Gumbel162

distributions for the n (route) alternatives, it is well-known that we can derive the163

probability of alternative i having the highest utility in closed form, based on a164

multinomial logit model as165

Pr (Ui ≥ max {Uj : j 6= i, j = 1, 2, . . . , n}) =
eβ

∑m
k=1 θkVik∑n

j=1 e
β
∑m

k=1 θkVjk
. (4)

We note that by including the m + 1 parameters β and θk (k = 1, 2, . . . ,m)166

in the expression above, we are effectively over-parameterising the system. In167

model estimation, it would not be possible to independently estimate these m + 1168

parameters, and instead a reduced form would need to be estimated (e.g. by setting169

β = 1 and allowing the scale to be captured in the θk (k = 1, 2, . . . ,m) parameters170

only. However, our present paper is not concerned with model estimation, but171

rather with forecasting and the sensitivity of forecasts to the parameter values. In172

this context, we find β a useful parameter to include as a sensitivity parameter173

for our later numerical experiments, since it allows us to vary the overall ‘scale’174

of the deterministic elements of utility, in terms of the relative influence of the175

deterministic and stochastic components of the random utility model.176
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2.2. A non-compensatory multi-objective SUE model, NCSUE177

The conventional approach to dealing with multiple qualities, as described in178

Section 2.1, is based on the key tenet of compensatory choice, namely that trav-179

ellers will trade off the different qualities through a linear utility function with180

constant weights. However, it loses a central element of multi-objective decision-181

making theory, in which individuals consider the best alternative(s) they can choose182

with respect to each individual quality. In other words, individuals may prefer an183

alternative that they perceive as performing best in one of the m qualities, regard-184

less of its performance in the other qualities. Such an alternative may be assigned a185

low probability by the multinomial logit model of Eqn. (4). In the present section,186

we propose an extension to the SUE decision model which aims to retain the spirit187

of such non-compensatory behaviour, while still providing a tractable formulation.188

Assume that travellers must choose between n discrete alternatives. Now in-189

stead of summing the utilities of an alternative with respect to m qualities as in190

Eqn. (1), the attractiveness of each alternative is measured with respect to the m191

different qualities separately, so that the utility Uik of alternative i with respect to192

quality k has both a deterministic and a random component,193

Uik = θkVik + εik (i = 1, 2, . . . , n; k = 1, 2, . . . ,m) , (5)

where θk (k = 1, 2, . . . ,m) are parameters, Vik is the measured/deterministic ele-194

ment of utility for alternative iwith respect to quality k, and {εik : i = 1, 2, . . . , n;195

k = 1, 2, . . . ,m} are continuous random components following some given joint196

probability distribution.197

For simplicity let us assume that the random components are independent be-198

tween qualities. Then we aim to calculate the probability QNCSUEi that for every199

quality (k = 1, 2, . . . ,m), there will be some alternative other than i that will be200

seen as better than i, in other wordsQi is the probability that alternative i is not the201
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best in any of them qualities. This probability will (by the above-made assumption202

of independence) simply be the product over the qualities that some other alterna-203

tive exists that betters i with respect to that quality, i.e.,204

QNCSUEi =

m∏
k=1

Pr (Uik < max {Ujk : j 6= i, j = 1, 2, . . . , n}) (i = 1, 2, . . . , n) .

(6)

The component probabilities in this product can be calculated according to the205

usual, single objective random utility model as206

Pr (Uik < max {Ujk : j 6= i, j = 1, 2, . . . , n})

= 1− Pr (Uik ≥ max {Ujk : j 6= i, j = 1, 2, . . . , n}) . (7)

Then we can calculate the complement of the probabilities QNCSUEi above,207

namely for each alternative i the probability that it is the best alternative with re-208

spect to at least one quality is209

PNCSUEi = 1−QNCSUEi (i = 1, 2, . . . , n) . (8)

The final element in the choice model is to then propose that travellers choose210

alternatives according to the odds211

ONCSUEi =
PNCSUEi∑n
j=1 P

NCSUE
j

(i = 1, 2, . . . , n) . (9)

We may then integrate such a model of probabilistic choice as a way of choos-212

ing routes within a congested network assignment model. As for SUE, we suppose213

that the qualities V(f) depend on the route flow vector f . Now, however, we let214

O(V) denote the odds function, mapping from a given matrix of qualities V to an215

n-vector of odds, through the combination of Eqns. (5) – (9). With d denoting the216

demand, then we refer to a flow vector f as an NCSUE (Non-Compensatory SUE)217

if and only if it satisfies the fixed point condition218

f = dO(V(f)). (10)
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In the special case ofm = 1 quality, the NCSUE model coincides with the conven-219

tional SUE model. For m > 1 the NCSUE model has an attractive feature that it220

assigns a unique choice probability to each alternative, and that these are express-221

ible in closed form. However, as we explain in the following section, it does so222

by making a compromise in terms of expressing ‘dominance’ in the conventional223

multi-objective sense. That is to say, in Eqn. (6) it compares the performance of224

the given alternative i in each quality k with the performance of all other alterna-225

tives. It does not consider whether or not there is a single alternative that exists226

that betters the current one in all qualities. In the limit, as the θk tend to infinity227

(i.e. as the model approaches deterministic choice) this certainly does not satisfy228

the standard definition of dominance. Effectively, in the limit case, it assumes that229

travellers become ‘extremists’ who do not really trade off. The model is therefore230

not expected to be so useful in such limit cases. However, if the model is calibrated231

away from the limit, then trade-offs will occur due to the random error terms.232

2.3. Multi-objective stochastic decision-making based on dominance, MSUE233

The central element in the model of Section 2.2 is Eqn. (6). Here, due to the234

assumed independence of the random components between qualities, the probabil-235

ities that alternative i is not the best with respect to quality k for k = 1, . . . ,m are236

multiplied, in other words, QNCSUEi is the probability that alternative i is not the237

best in any of the m qualities. Naturally, this is true if, for each quality k, there238

exists an alternative that is better than i. However, this could possibly be a different239

alternative for each quality. In multi-objective optimisation, on the other hand, the240

principle of non-dominance postulates that there be no single alternative that is at241

least as good or better than i for all qualities k. Therefore, the NCSUE model pro-242

posed does not, at least in the limit as deterministic choice is approached, satisfy243

the multi-objective principle of non-dominance. In the present section, as an alter-244
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native, we consider a model formulation that does indeed satisfy such a property in245

the limit.246

In this case, what we require instead of Eqn. (6) is the probability that alterna-247

tive i is dominated, i.e. the probability that there is an alternative j that dominates248

alternative i. This is the the probability of the intersection of the m events that249

alternative i is not the best in quality k, for k = 1, . . . ,m. This can be written as250

the product over all qualities k = 1, . . . ,m that some alternative j is better than i251

in quality k, given that j is already better than i in qualities k′ = 1, . . . , k−1. This252

is the product of conditional probabilities253

QMSUE
i =

m∏
k=1

Pr (Uik < max {Ujk : j 6= i, j = 1, 2, . . . , n} | (11)

Uik′ < max
{
Ujk′ : j 6= i, j = 1, 2, . . . , n

}
for k′ < k

)
.

Thus, from Eqn. (11), and similar to Eqn. (8), the probability that alternative i254

is non-dominated is255

PMSUE
i = 1−QMSUE

i (i = 1, . . . , n) . (12)

The probability of an alternative to be chosen (following Eqn. (9)) is then256

OMSUE
i =

PMSUE
i∑n

j=1 P
MSUE
j

(i = 1, 2, . . . , n) . (13)

In the same way as for the NCSUE model, we now define a flow vector f to be257

an MSUE (Multi-objective SUE) if and only if it satisfies the fixed point condition258

f = dO(V(f)), (14)

with the difference being that now O(V) is defined through the combination of259

Eqns. (11) – (13).260
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Notice that for the case of m = 1, Eqn. (12) gives the same results as Eqn. (2),261

and hence, just like the NCSUE model of Section 2.2, this model is a proper gener-262

alisation of the conventional stochastic user equilibrium model to the multiple ob-263

jective case. However, the need to consider conditional probabilities in Eqn. (11)264

incurs a heavy price for modelling the non-dominance principle: We lose the closed265

form solution available in the single objective case, see Eqn. (4), and in the model266

of Section 2.2. Thus, it seems that the odds of Eqn. (13) need to be computed via267

Monte Carlo simulation methods.268

2.4. A multi-objective non-transitive SUE model, MSUE-NT269

Assume choosing between n discrete alternatives. The relative attractiveness270

of an alternative i compared to another alternative j with respect to m different271

qualities is based on the difference of the utility Uik of an alternative i with respect272

to a quality k and the utility Ujk of alternative j with respect to the same quality k.273

We assume that this difference has both a deterministic and a random component274

Uik − Ujk = θk (Vik − Vjk) + εijk (i = 1, 2, . . . , n; k = 1, 2, . . . ,m) ,(15)

where θk > 0 (k = 1, 2, . . . ,m) are parameters, Vik is the measured/deterministic275

element of utility for alternative i with respect to quality k, Vjk is the measured/de-276

terministic element of utility for alternative j with respect to quality k. Most im-277

portantly we assume that for each quality k and each pairwise comparison of alter-278

natives (i, j), the random terms εijk are independent between pairs. We suppose279

that these random terms follow a distribution that is given by the difference of two280

Gumbel random variables (i.e. a logistic distribution).281

Hence, if we consider just a single pair of alternatives, the probability of an282

alternative j to be better than i in terms of quality k would be the same as in the283

14



case of a binary logit model as shown in Eqn. (16),284

Qkj,i = Pr (Ujk − Uik > 0) (16)

= Pr (Ujk > Uik)

=
eβθkVjk

eβθkVjk + eβθkVik
.

Note that β is introduced here as a sensitivity modelling parameter as in Eqn. (4).285

The key property that we introduce here is that of independence between the286

error terms of pairs of alternatives. This is quite different to what we would have287

obtained from instead making the assumptions of a standard multinomial logit288

model. In order to understand this, imagine there is a single quality and three al-289

ternatives from which to choose. A standard multinomial logit model (as underlies290

SUE) could be effectively implemented by creating random terms (ξ12, ξ13, ξ23) for291

the three pairwise comparisons that are possible, with the key property that these292

terms must be generated by a single set of three independent Gumbel variables293

(ξ1, ξ2, ξ3), such that (ξ12, ξ13, ξ23) = (ξ1 − ξ2, ξ1 − ξ3, ξ2 − ξ3). In this standard294

SUE case, the three created terms (ξ12, ξ13, ξ23) then certainly would not be in-295

dependent (neither would they be Gumbel distributed, incidentally). In the model296

above, however, we do not assume that differences in random terms are formed in297

this way from differences of random variables; on the contrary, we suppose that298

(ε12, ε13, ε23) are directly specified as independent random variables. To be clear,299

we are not proposing a model in which (ε12, ε13, ε23) are independent as an ap-300

proximation in some sense to a model in which they are created in the standard301

SUE way (where clearly any implied error term differences would be dependent).302

Rather, we are proposing an entirely different behavioural paradigm, which it turns303

out breaks transitivity of preferences in a probabilistic sense (as we explain below).304

Now we apply the concept of non-dominance in multi-objective optimisation.305

We assume that an individual will consider an alternative as a plausible alternative306
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as long as it is not dominated by another alternative. So what we are interested in,307

as in Section 2.3, is first to find the probability of an alternative being dominated,308

denoted by Qi. This is the probability of the union of the events that alternative i309

is dominated by d of the n − 1 alternatives j 6= i for 1 ≤ d ≤ n − 1. Using the310

inclusion-exclusion principle we get311

QMSUE−NT
i =

n−1∑
d=1

(−1)d+1
∑

(j1,...,jd)∈{{1,...n}\{i}}d
1≤j1<j2<...<jd≤n

d∏
r=1

Qjr,i, (17)

where Qjr,i =
∏m
k=1Q

k
jr,i

, with Qkjr,i defined in Eqn. (16), is the probability that312

alternative i is dominated by alternative jr as defined in Eqn. (16). Notice that313

due to the independence of the error terms εijk, we can write the probability that314

alternative i is dominated by alternatives j1, . . . , jd as the product
∏d
r=1Qjr,i.315

Then we can calculate the complement of the probabilities above, namely for316

each alternative i, the probability Pi that it is not dominated by any other alternative317

as in Eqn. (12),318

PMSUE−NT
i = 1−QMSUE−NT

i (i = 1, 2, . . . , n) (18)

and we choose alternatives according to the odds319

OMSUE−NT
i =

PMSUE−NT
i∑n

j=1 P
MSUE−NT
j

(i = 1, 2, . . . , n) . (19)

In the same way as for the NCSUE and MSUE models, we define a flow vec-320

tor f to be an MSUE-NT (Multi-objective Non-Transitive SUE) if and only if it321

satisfies the fixed point condition322

f = dO(V(f)) (20)

with O(V) defined through the combination of Eqns. (15) – (19).323
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In the MSUE-NT model, we are thus able to find closed form solutions, by324

making the assumptions that the error terms of the differences between alterna-325

tives are independent, rather than the error terms on the evaluations of alternatives326

according to qualities, as in Eqns. (1) and (5). So what is it, that we lose in compar-327

ison to the conditional probabilities model of Section 2.2? Because of the assump-328

tion of independence of the εijk, it is now possible that Uik > Ujk, Ujk > Ulk, yet329

Ulk > Uik, i.e. we lose transitivity in the comparison of utilities. For example, a330

traveller may perceive the standard deviation of travel time on Route 1 as smaller331

than on Route 2, on Route 2 as smaller than on Route 3, yet on Route 3 smaller332

than on Route 1. We also note, that the combinatorial nature of Eqn. (17) will cause333

computational problems in the presence of a large number of alternative routes.334

3. Illustration of the Route Choice Models335

In this section, we will use a simple illustrative example to compare the con-336

ventional SUE model as described in Section 2.1, the NCSUE model described in337

Section 2.2, and the MSUE-NT model of Section 2.4. Let us assume that we have338

a single O-D pair with three possible routes, such as depicted in Figure 3. The339

qualities we are interested in are expected travel time and standard deviation of340

travel time. Empirical evidence suggests that the standard deviation of travel time341

has at least two roles in influencing behaviour. The first, and most often used, is the342

interpretation that higher standard deviation is likely to be associated with arriving343

late at the destination (see, for example, Watling (2006)). A second alternative is as344

a measure of inconvenience (Noland et al., 1998). That is to say, while individuals345

may have flexibility in re-arranging the arrival and departure times of their trips346

and associated activities, all other things being equal they prefer not to incur the347

inconvenience of such re-scheduling. Therefore, they would tend to avoid the risk348
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of having to do this wherever possible. For example, it may well be possible to349

bring forward or delay a meeting in response to travel conditions on the journey350

to work, but such re-arranging would have a nuisance value that might be avoided.351

Noland et al. (1998) found that this nuisance effect was something that could be352

separately identified to the issue of concerns for late arrival.353

We first consider the hypothetical case of fixed quality values and use fixed354

values of β = 0.5 and θ = [3, 3]. In this case no equilibration is required, and so355

we can just focus on the probabilities/odds of the alternative routes (we consider356

the flow-dependent case later). Notice that probabilities QMSUE−NT
i of Eqn. (17)357

are computed as follows, shown here for i = 1: Q1 = Q21 +Q31 −Q21Q31.358

We consider three cases: In Case 1, all three routes are non-dominated; in Case359

2, two routes are non-dominated and the other is dominated; and in Case 3, one360

route is non-dominated, one is weakly non-dominated (i.e. there is no route that is361

strictly better in all qualities), and the other is dominated. Note that dominance here362

refers to the deterministic component of the qualities. These cases are illustrated in363

Figure 1, which plots the values of standard deviation of travel time SDT against364

expected travel time ET for Route 1 (red circle), Route 2 (green triangle), and365

Route 3 (blue square).366

Test Case 1 Test Case 2 Test Case 3
●● ●● ●●

1

2

3

4

10 15 20 25 10 15 20 25 10 15 20 25
ET

SD
T

Route
●● Route 1

Route 2
Route 3

Figure 1: Expected travel time ET and standard deviation of travel time SDT for three test cases.
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3.1. Case 1 – All routes are non-dominated367

Table 2 shows the values for travel time ET, standard deviation of travel time368

SDT, and the probabilities assigned to the three routes by the three different mod-369

els (SUE, NCSUE, and MSUE-NT, respectively). Notice that, because both the370

expected travel time and standard deviation of travel time are minimised, but all371

SUE based models work with utilities to be maximised, the corresponding utility372

value is −θ1 ET −θ2 SDT. Tables 3 and 4 are analogous for Cases 2 and 3.373

For the chosen parameter values, the standard SUE model clearly puts almost374

all probability on Route 1, which has the highest standard deviation, but the lowest375

expected travel time. Nonetheless its combined utility with the chosen parameter376

values of β and θ is best. Routes 2 and 3 have very small probabilities of being377

chosen, despite being rational choices from a multi-objective point of view. On378

the other hand, the NCSUE model of Section 2.2 distributes probabilities almost379

equally between Routes 1 and 3, i.e. the two routes that are best for either expected380

travel time or standard deviation, but shows a very low probability for route 2,381

which is not the best for any quality, but nevertheless non-dominated. The MSUE-382

NT model is the only one that assigns significant positive probabilities to all three383

non-dominated routes. While the results for the SUE model could be changed by384

changing the parameter values, the point we want to make here, is that for a given385

selection of parameter values, the proposed models compute choice probabilities386

that are more in line with the multi-objective concept of dominance than the stan-387

dard SUE model.388

3.2. Case 2 – One route is dominated, the other two are both non-dominated389

In this case (see Table 3), Route 2 is dominated, while Routes 1 and 3 are non-390

dominated. The result for the conventional SUE model is even more extreme, with391

the probability for choosing Route 1 being 0.99997. The result for the NCSUE392
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Table 2: Case 1 – All routes are non-dominated, β = 0.5, θ = [3, 3].

Probabilities

Route ET SDT SUE NCSUE MSUE-NT

1 10 4 9.9750× 10−1 5.0236× 10−1 3.6230× 10−1

2 15 3 2.4726× 10−3 2.3853× 10−2 2.9622× 10−1

3 20 1 2.7468× 10−5 4.7380× 10−1 3.4149× 10−1

model remains almost the same as in Case 1, allocating considerably higher proba-393

bilities to the two non-dominated routes (which happen to coincide with the routes394

optimising the individual qualities). Since the ET and SDT values of Routes 1 and395

3 are unchanged compared to Case 1, and Route 2 is not the best in any quality in396

both cases, this similarity is to be expected. The MSUE-NT model shows a simi-397

lar solution, with the probabilities for Routes 1 and 3 more equal. Notice that the398

similarity between the NCSUE and MSUE-NT models seen here is due to the fact399

that there are only two non-dominated routes, as Case 2 illustrates.400

Table 3: Case 2 – One route is dominated, the other two are both non-dominated, β = 0.5, θ = [3, 3].

Probabilities

Route ET SDT SUE NCSUE MSUE-NT

1 10 4 9.9997× 10−1 5.0263× 10−1 4.9305× 10−1

2 25 3 7.5824× 10−10 2.3588× 10−2 1.9330× 10−2

3 20 1 2.7536× 10−5 4.7378× 10−1 4.8762× 10−1

3.3. Case 3 - One route is dominated, one route is weakly non-dominated, one401

route is non-dominated402

In the third case, Route 3 is best with respect to both of the qualities, while403

weakly non-dominated Route 1 is best with respect to travel time but does have404
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higher standard deviation than Route 3. As the NCSUE model assigns positive405

probabilities to those routes that are best with respect to at least one quality, we406

expect that Routes 1 and 3 will be assigned positive probabilities, which indeed407

they are. This reflects the non-compensatory nature of the model, i.e. some users408

will choose Route 1, despite Route 3 having lower standard deviation. Notice that409

the results are similar to those of the MSUE-NT model. On the other hand, the410

conventional SUE model still puts a very high probability on one of the routes, but411

now Route 3, which dominates the other two and with the chosen θ = [3, 3] has412

the best combined utility. This shows that the SUE model requires careful choice413

of parameters to avoid such counter-intuitive results. In this case, the MSUE-NT414

model does assign relatively high odds to non-dominated as well as weakly non-415

dominated routes, but to different degrees. Since weakly non-dominated routes416

are best in at least one quality, the NCSUE and MSUE-NT models both compute417

similar odds in this case.418

Table 4: Case 3 – One route is dominated, one route is weakly non-dominated, β = 0.5, θ = [3, 3].

Probabilities

Route ET SDT SUE NCSUE MSUE-NT

1 20 4 1.0987× 10−2 3.3152× 10−1 3.2832× 10−1

2 25 3 2.7233× 10−5 3.0975× 10−2 2.5478× 10−2

3 20 1 9.8899× 10−1 6.3750× 10−1 6.4621× 10−1

In summary, in Cases 2 and 3, where the (weakly) non-dominated routes are419

the ones that are best in at least one of the qualities, the NCSUE model and the420

MSUE-NT model give similar results. The difference between the two is illustrated421

in Case 1, where the NCSUE model is unable to assign a significant probability to422

Route 2 being chosen, despite its position as a rational compromise between the423
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more extreme choices of Routes 1 and 3. The MSUE-NT model on the other hand424

assigns similar odds to all three non-dominated routes. In all three cases, the con-425

ventional logit model highly favours only one of the non-dominated alternatives,426

the one which minimises the weighted sum of utilities as in Eqn. (1).427
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Figure 2: Odds of choosing routes with the SUE, NCSUE and MSUE-NT models for changing β.

In Figure 2, we show how the odds assigned to Routes 1 (O1) and Route 2 (O2)428

change with parameter β, which varies between 0.01 and 0.5. Because the proba-429

bilities sum to 1, the probability of choosing Route 3 is implicit. The parameter θ430

remains fixed at (3,3). In the top row we compare the MSUE-NT model with the431

standard SUE model, while the bottom row does the same for the NCSUE model.432

Notice that for β = 0.01 all models will allocate almost equal probabilities to all433

three routes in all cases. As β increases, the trajectories of the standard SUE model434

and our proposed models develop very differently, though. While the SUE model435

converges towards a solution with probability of almost one on either Route 1 or 3,436

our models always allocate positive odds to at least two routes. The plots also show437
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that the NCSUE model does in all three cases converge to a solution which assigns438

significant odds to the routes with the best values for individual qualities. This is439

not the case for the MSUE-NT model, which assigns close to equal probabilities440

to all three non-dominated routes in Case 1, no matter what the value of β is. A441

more detailed plot of the probabilities for each route against β for all three models442

is presented in the Appendix.443

4. A Three-link Example for the Equilibrium Models444

In this section, we demonstrate and validate our concepts with a simple three-445

link example that considers flows and therefore has expected travel time and stan-446

dard deviation of travel time dependent on link flow. The details for evaluation of447

travel time and network specifications are given in Section 4.1.448

4.1. Network specification449

Our test three-link network is shown in Figure 3, where the link parameters are450

specified in Table 5. The parameters of the travel time function (21) are α = 0.15451

and γ = 4. The total demand is assumed to be fixed at 15,000 vehicles per hour.452

r s

1

2

3

Figure 3: A three-link example network.
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Table 5: Route characteristics of the three-link network.

Route Free flow travel time Capacity Reliability

a (min) (veh/hr) φa

1 12 4,000 0.5

2 30 5,400 0.7

3 40 4,800 0.9

Link travel time Ta depends on link flow xa according to the common BPR453

function (Bureau of Public Roads, 1964),454

Ta (xa, Ca) = t0a

[
1 + α

(
xa
Ca

)γ]
, (21)

where t0a is free flow travel time, Ca is link capacity, and α and γ are parameters455

(we chose α = 0.15 and γ = 4).456

We follow Lo and Tung (2003) and assume that link capacity follows a uniform457

distribution, defined by an upper bound (the design capacity) and a lower bound458

(the worst-degraded capacity), which is a fraction, φa, of the design capacity, c̄a,459

i.e.460

Ca ∼ U (φa · c̄a, c̄a) . (22)

As derived in Lo and Tung (2003), the path travel time Tp is normally distributed,461

Tp ∼ N
(
E (Tp) , σTp

)
with mean and standard deviation that can be written as462

E (Tp) =
∑
a

[δpa · E (Ta)] (23)

σTp =

√∑
a

[δpa · var (Ta)]. (24)

Here δpa is the usual link-path incidence, i.e. δpa = 1 if link a belongs to path p463

and 0 otherwise. By applying the assumption of uniformly distributed arc capacity464
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as expressed in Eqn. (22), Lo and Tung (2003) show that the mean and standard465

deviation of the route travel time distribution are asymptotically466

E (Tp) =
∑
a

{
δpa ·

[
t0a + αt0ax

γ
a

1− φ1−γa

c̄γa (1− φa) (1− γ)

]}
, (25)

467

σTp =

√√√√√∑
a

δpa · α2 (t0a)
2 x2γa

 1− φ1−2γa

c̄2γa (1− φa) (1− 2γ)
−

[
1− φ1−γa

c̄γa (1− φa) (1− γ)

]2
.

(26)

Note that in Table 5, we specify a travel time reliability parameter of φa for468

route a as defined in Eqn. (22). The φ−value for Route 1 is the lowest, meaning469

that it is the route that could be most degradable although it is the shortest, while470

Route 3 is assumed to be the most reliable with the highest φ−value.471

4.2. Results472

The results of the equilibrium models based on the SUE and MSUE-NT formu-473

lations are shown in Figures 4 and 5. Figure 4 shows the standard deviation SDT474

versus the mean travel time ET on the three routes with fixed β = 0.5 and three475

values of θ for both the SUE and MSUE-NT models. Figure 5 shows the flows on476

the three routes both the SUE and MSUE-NT models at equilibrium for three fixed477

values of θ and β ranging from 0.01 to 0.5.478

4.2.1. Standard deviation of route travel time versus expected travel time at equi-479

librium480

Comparing the results of the SUE and MSUE-NT models in Figure 4, the SUE481

solutions seem to line up on a straight line. This is similar to our observation482

in Wang and Ehrgott (2013): User equilibrium based on linear generalised cost483

corresponds to a linear utility function, illustrated by routes with positive flow all484

lying on a straight line when plotting one quality against the other. This behaviour485
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Figure 4: Standard deviation against expected travel time for the three-link network for β = 0.5.

is expected for the SUE model, as the utility of each alternative is derived based on486

a combined utility value, i.e. a linear combination of the systematic components as487

shown in Eqn. (1). This feature is not evident in the MSUE-NT solutions.488

We model the importance of standard deviation versus mean travel time by489

three different combinations of θ values,490

1. E(Tp) and σTp are equally important, θ = [1, 1];491

2. σTp is ten times more important than E(Tp), θ = [1, 10];492

3. E(Tp) is ten times more important than σTp , θ = [10, 1].493

Figure 4 shows that for θ = [1, 1] both the SUE and MSUE-NT model provide494

solutions with similar ranges of expected travel time and standard deviation of495

travel time, which is due to very similar flow values resulting from both models.496

As the equilibrium flows for both models are quite different for the other θ values,497

the ranges of standard deviations and expected travel times are also different. Here,498

both models assign very different flows to the three routes (see Figure 5), which499

explains the ranges of values determined by Eqns. (25) and (26). In particular, for500

the case θ = [10, 1] the SUE model assigns more than 50% of the flow to the least501

reliable but fastest Route 1, and almost 0 flow to the most reliable, but slowest502

Route 3. This explains the large range of standard deviation values for the SUE503
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Figure 5: Equilibrium flows for the three-link network with 0.01 ≤ β ≤ 0.5.

model in this case. Note that the large value of θ1 means that the large standard504

deviation is compensated by the best expected travel time. The MSUE-NT model505

distributes flow more evenly, leading to much less dramatic differences in quality506

values.507

4.2.2. Flows on Routes 1 – 3508

Plotting standard deviation against expected travel time for both models and all509

three values of θ similar to Figure 4 for all values of β will reveal that in all cases510

all three routes are non-dominated. We provide plots of expected travel time and511

standard deviation of travel time in the Appendix. Then looking at Figure 5 we512

see that both models assign positive flows to all routes. We can notice, however,513
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that the flows assigned by the MSUE-NT model are always more equal than those514

allocated by the SUE model. Moreover, for θ = [10, 1] and β = 0.5 the difference515

is most pronounced. These observations are consistent with those made on the516

hypothetical route choice model in Section 3.517

To evaluate the impact of the θ values on route flows, it is important to note518

the characteristics of our three routes. Here Route 1 has the lowest free-flow travel519

time but has the highest probability of significant capacity reduction caused by520

traffic incidents, in other words, it is the least reliable. At the other extreme, Route521

3 has the longest free-flow travel time but the least variability. Since we consider a522

fixed demand, the sum of the flows on the three routes is a constant.523

Due to the choice of θ values, we would expect that if expected travel time is524

more important, more users would choose Route 1 whereas if reliability (standard525

deviation) is more important, more users would choose Route 3. Now if we look526

at Figure 5, the equilibrium flow on Route 1 is indeed higher if θ = [10, 1]. On527

the other hand, if reliability is more important, Routes 1 and 2 have lower flows as528

compared to Route 3.529

Figure 5 lets us comment on the influence of sensitivity parameter β and the530

relative importance θ of the qualities. Interestingly, if θ = [1, 1], i.e. when mean531

travel time and standard deviation of travel time are equally important, both the532

SUE and MSUE-NT solution move towards an approximately equal split between533

the three routes for β = 0.01, i.e. when users are all insensitive to the differences.534

The biggest difference between the SUE and MSUE-NT models arises when mean535

travel time becomes very important, i.e. θ = [10, 1], as shown in Figure 5. In this536

case, the SUE solution will have much higher flow on Route 1 as compared to the537

MSUE-NT solution.538

In summary, applying the SUE and MSUE-NT models to a simple three link539

network with congestion effects highlights the differences between the models,540
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with the MSUE-NT model being in line with the non-dominance principle from541

multi-objective decision making, whereas the conventional SUE model tends to542

produce more extreme answers as the difference between the θ values increases.543

5. Conclusions544

In this paper, we have proposed three model formulations, that extend the con-545

ventional SUE model of route choice to the case that travellers consider several546

qualities for route choice separately. The first, non-compensatory model NCSUE547

in the limit favours routes that are best in some of the qualities, while the MSUE548

model and the MSUE-NT model incorporate the principle of non-dominance from549

multi-objective decision-making. The MSUE model requires the evaluation of con-550

ditional probabilities, which requires further research and may turn out to be possi-551

bly computationally expensive, the MSUE-NT model allows closed form solution552

at the expense of not guaranteeing transitivity of comparisons of utilities. It also553

requires the computation of probabilities according to the inclusion-exclusion prin-554

ciple, which is exponential in the number of alternatives.555

In future research, we will further develop the theoretical basis of multi-objecti-556

ve SUE models, and develop algorithms that allow the application solutions of the557

proposed models for realistic networks systems.558
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Figure 6: Probabilities for Route 1 in the SUE, NCSUE, and MSUE-NT route choice models plotted

against β.
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Figure 7: Probabilities for Route 2 in the SUE, NCSUE, and MSUE-NT route choice models plotted

against β.
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Figure 8: Probabilities for Route 3 in the SUE, NCSUE, and MSUE-NT route choice models plotted

against β.
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Figure 9: Expected travel time on the three routes versus β for the SUE and MSUE-NT equilibrium

models.
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Figure 10: Standard deviation of travel time on three routes versus β for the SUE and MSUE-NT

equilibrium models.
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