
March 18, 2015 Optimization 20150317

To appear in Optimization
Vol. 00, No. 00, Month 20XX, 1–17

Primal and dual multi-objective linear programming algorithms

for linear multiplicative programmes

Lizhen Shaoa,b∗ and Matthias Ehrgottb

aSchool of Automation and Electrical Engineering, University of Science and Technology

Beijing, Beijing 100083, China; bDepartment of Management Science, Lancaster

University Management School, Bailrigg, Lancaster LA1 4YX, United Kingdom;

(Received 00 Month 20XX; accepted 00 Month 20XX)

Multiplicative programming problems (MPPs) are global optimisation problems known to
be NP-hard. In this paper, we employ algorithms developed to compute the entire set of
nondominated points of multi-objective linear programming (MOLP) problems to solve linear
MPPs. First, we improve our own objective space cut and bound algorithm for convex MPPs
in the special case of linear MPPs by only solving one linear programme in each iteration
instead of two as the previous version indicates. We call this algorithm, which is based on
Benson’s outer approximation algorithm for MOLP problems, the primal objective space
algorithm. Then, based on the dual variant of Benson’s algorithm, we propose a dual objective
space algorithm for solving linear MPPs. The dual algorithm also requires solving only one
linear programme in each iteration. We prove the correctness of the dual algorithm and
use computational experiments comparing our MOLP based algorithms to a recent global
optimisation algorithm for linear MPPs from the literature as well as two general global
solvers to demonstrate the superiority of the new algorithms in terms of computation time.
Thus we demonstrate that the use of multi-objective optimisation techniques can be beneficial
to solve difficult single objective global optimisation problems.

Keywords: linear multiplicative programming; multi-objective optimisation; approximation
algorithm; nondominated point.

1. Introduction

Consider the linear multiplicative programming problem (MPP),

(PX) min φ(x) =
p
∏

i=1
(cTi x+ di)

s.t. x ∈ X = {x ∈ R
n : Ax ≧ b}.

X is the feasible set in decision (or variable) space R
n. We assume that X is

nonempty, cTi x+di > 0, i = 1, . . . , p for all x ∈ X and the minimal value of cTi x+di
over X exists. Let P (x) = Cx+d = (cT1 x+d1, . . . , c

T
p x+dp)

T . Y = {P (x) : x ∈ X}
is called the feasible set in objective (or outcome) space R

p. Let x̄ be an optimal
solution of (PX) and φ(x̄) the corresponding optimal value. Let ǫ > 0 and let x∗ be
a feasible solution of (PX), x

∗ ∈ X . Then x∗ is called ǫ-optimal solution of (PX) if
φ(x∗) ≦ φ(x̄)(1 + ǫ).
Problem (PX) is a nonconvex global optimisation problem. It is known that

problem (PX) may possess several local minima and is an NP-hard problem, even

∗Corresponding author. Email: l.shao@ustb.edu.cn

1

March 18, 2015 Optimization 20150317

when p = 2 [1]. Problem (PX) has attracted considerable attention in the litera-
ture because of practical applications in various fields of study, including economic
analysis [2], bond portfolio optimisation [3], VLSI chip design [4], multi-objective
optimisation [5] and so on.
A traditional way to solve multiplicative programming problems is to consider

the problem in objective space R
p and most existing algorithms work in objective

space. Benson and Boger [6] use a cutting plane method to solve linear MPP-
s, whereas Kuno [7] and Gao et al. [8] use branch and bound methods. Ryoo and
Sahinidis [9] develop algorithms for linear multiplicative and generalized linear mul-
tiplicative programs based upon a lower bounding procedure and greedy branching
schemes. Kim et al. [10] propose an outcome-space outer approximation algorith-
m for linear multiplicative programming. Depetrini and Locatelli [11] propose an
algorithm for minimizing the product of two affine functions over a polyhedral
set. Correspondences between multi-objective programming (MOP) problems and
multiplicative programming problems were first pointed out by Benson and Boger
[12]. They have shown that an optimal solution of an MPP problem is an efficient
solution of a corresponding multi-objective optimisation problem. Thus algorithms
for solving MOP problems can be adapted to solve MPP problems.
In earlier work, we have modified the approximation algorithm of [13] for solving

convex MOP problems into an objective space cut and bound algorithm to solve
convex MPPs. In this paper we pursue this relationship further for the special case
of linear MPPs of the form (PX) and multi-objective linear programmes (MOLPs)
(P),

(P) minP (x) = (cT1 x+ d1, . . . , c
T
p x+ dp)

T

s.t. x ∈ X = {x ∈ R
n : Ax ≧ b},

where X ⊆ R
n and Y = {P (x) : x ∈ X} ⊆ R

p are, as before, the feasible set in
variable space and objective space, respectively. We understand the minimisation
here as finding the weakly nondominated points of P (X). The relationship between
linear MPPs and MOLPs imply that the nonconvex global optimisation problem
(PX) can be solved by solving multi-objective linear programme (P) in objective
space (see Section 2). Hence, the question arises whether a multi-objective linear
programming approach to solve (PX) can be competitive with single objective
nonconvex global optimisation approaches. We show that this is the case.
The main contributions of the paper are: (1) we exploit the linearity of the

objective functions to improve the objective space cut and bound algorithm of
[14] by only solving one linear programme (LP) in each iteration rather than two
as the previous original version requires; (2) we turn the dual variant of Benson’s
multi-objective linear programming algorithm [15] into a (new) sandwich algorithm
for MOLP problems; and (3) based on the sandwich version of the dual Benson
MOLP algorithm, we propose a dual objective space algorithm to solve linear MPP
problems.
The paper is organised as follows. In Section 2 we first introduce some notation,

then we review the relationships between linear MPPs and multi-objective linear
programming problems. The proposed primal and dual algorithms for MPPs as
well as an illustrative example are presented in Section 3. Numerical results are
presented in Section 4. Here, we compare the performance of the primal and dual
MOLP based algorithms proposed in Section 3 with a recent global optimisation
algorithm for linear MPPs from the literature as well as two global solvers. These
numerical results demonstrate the superiority of the new MOLP based algorithms

2

March 18, 2015 Optimization 20150317

over general global optimisation approaches for linear MPPs. Finally, we draw some
conclusions in Section 5.

2. Multiplicative programming problems and multi-objective
optimisation

In this paper we use the notation y1 ≤ y2 to indicate y1 ≦ y2 but y1 6= y2 for
y1, y2 ∈ R

p whereas y1 < y2 means y1k < y2k for all k = 1, . . . , p. The k-th unit
vector in R

p is denoted by ek and a vector of all ones is denoted by e. Given a
mapping P : Rn → R

p and a subset X ⊆ R
n we write P (X) := {P (x) : x ∈ X}.

Let A ⊆ R
p. We denote the interior and the boundary of A by intA and bdA.

Furthermore, suppose A is a polyhedral convex set, then a convex subset F ⊆ A is
called a face of A if for all y1, y2 ∈ A and α ∈ (0, 1) such that αy1 + (1−α)y2 ∈ F
it holds that y1, y2 ∈ F . A face F of A is called proper if ∅ 6= F 6= A. A point
y ∈ A is called an extreme point of A if {y} is a face of A. Extreme points are also
called vertices. The set of all vertices of a polyhedral convex set A is denoted by
vertA.
We consider two ordering cones, namely

K := R≧e
p = {y ∈ R

p : y1 = · · · = yp−1 = 0, yp ≧ 0}

and

R
p

≧
= {x ∈ R

p : xk ≧ 0, k = 1, . . . , p}.

The set of K-maximal elements of A is given by

maxKA := {y ∈ A : ({y} +K \ {0}) ∩ A = ∅} .

The set of (weakly) R
p

≧
-minimal elements of A (also called the set of (weakly)

nondominated points of A) is given by

wminRp

≧
A :=

{

y ∈ A : ({y} − intRp

≧
) ∩ A = ∅

}

,

minRp

≧
A :=

{

y ∈ A : ({y} − R
p

≧
) \ {0} ∩ A = ∅

}

.

We also use the notation AWN = wminRp

≧
A and AN = minRp

≧
A to denote the set

of (weakly) Rp

≧
-minimal or (weakly) nondominated points of A.

For MOLP (P), i.e., wminRp

≧
P (X), feasible solutions x ∈ X such that P (x) is

a (weakly) nondominated element of P (X) are frequently called (weakly) efficien-
t solutions in the literature. It is well known that the image Y of a nonempty
polyhedron X under a linear map P is also a nonempty polyhedron of dimension
dimY ≦ p.
Most methods to solve multiplicative programming problem (PX) consider a

formulation of the problem in objective space R
p and solve it in objective space.

For a point y ∈ R
p, let T (y) =

p
∏

i=1
yi. A direct objective space formulation of (PX)

3

March 18, 2015 Optimization 20150317

is

(PY) minT (y) subject to y ∈ Y.

It has been proved that any global optimal solution to problem (PY) must
belong to the nondominated set YN (see, e.g., Proposition 2.1 of [14]). There-
fore, an optimal solution of (PY) is the same for any objective space formulation
min{T (y) : y ∈ Ȳ} as long as YN = ȲN is guaranteed.
We introduce the following polyhedral convex set P. Let

P = {y ∈ R
p : P (x) ≦ y for some x ∈ X},

i.e., P = Y + R
p

≧
which we call the extended feasible set in objective space.

Theorem 2.1 ([13]) The following statements hold.

(1) P ⊆ R
p is a nonempty set of dimension p and P is R

p

≧
-bounded from below.

(2) YN = PN .
(3) vertP ⊆ PN .
(4) PWN = bdP.

According to Theorem 2.1, P and Y have the same nondominated set. Therefore
as in [14] we use the following equivalent objective space formulation

(PP) minT (y) =

p
∏

i=1

yi subject to y ∈ P,

and we also have the following result according to [14].

Theorem 2.2 Problem (PP) has a global optimal solution in vertP.

Because of the properties in Theorem 2.1, e.g., P always contains an interior
point and all the boundary points of P are weakly nondominated, it is easier
to work with P instead of Y. Thus Benson’s outer approximation algorithm [16]
and the dual variant of Benson’s outer approximation algorithm [15] for solving
MOLP (P) try to work with P to find YN . Since our proposed primal and dual
algorithms for linear MPPs (PX) are based on Benson’s algorithm and its dual
variant, respectively, we work with P as well.
According to Theorem 2.3 we can easily obtain the optimal solution of (PX) once

we have the optimal solution of (PP).

Theorem 2.3 ([14]) If x∗ ∈ X is an efficient solution of problem MOLP (P),
y∗ = P (x∗) ∈ Y is its corresponding nondominated point, and y∗ is also a global
optimal solution of problem (PP), then x∗ is a global optimal solution of problem
(PX). Conversely, if x

∗ is a global optimal solution of problem (PX), then x∗ is
also an efficient solution of problem MOLP (P), and y∗ = P (x∗) is a global optimal
solution of problem (PP).

As can be seen from Theorems 2.1 and 2.2, (PP) always has a global optimal
solution at a vertex of P and any global optimal solution must belong to YN .
Therefore, multi-objective optimisation algorithms for finding YN can be used to
solve multiplicative programming problems.

4

March 18, 2015 Optimization 20150317

We use the trivial observation of Proposition 2.4 for determining lower bounds
and upper bounds of (PP) in our proposed primal and dual algorithms.

Proposition 2.4 If O ⊇ P ⊇ I, then the minimum value of T (y) over O is a lower
bound and the minimum value of T (y) over I is an upper bound for T over P.

The algorithms for MPPs developed in Section 3 explicitly or implicitly construct
polyhedra O and I with O ⊇ P ⊇ I. Thus the minimum values of T (y) over O
and I are always achieved at one of the vertices of O and I and are upper and
lower bounds, respectively, for (PP).

3. Primal and dual objective space algorithms for linear MPPs

Geometric duality [17] defines a dual MOLP (D) for (P).

(D) maxKD(u, λ) = (λ1, ..., λp−1, b
Tu+ dTλ)T

s.t. (u, λ) ∈ U =
{

(u, λ) ∈ R
m × R

p : (u, λ) ≧ 0, ATu = CTλ, eTλ = 1
}

.

The primal problem (P) consists in finding the weakly nondominated points of
P (X), the dual problem consists in finding the K-maximal elements of D(U). Let
D := D(U)−K be the extended polyhedral objective set of problem (D). Geometric
duality provides a relationship between the facial structure of the extended primal
and dual feasible sets, i.e., P and D. Benson [16] proposed an outer approximation
algorithm to solve MOLP (P) in objective space. Extensions of Benson’s algorithm
can be found in [15] and [18]. Based on geometric duality theory, Ehrgott et al.
[15] developed a dual variant of Benson’s outer approximation algorithm to solve
the dual problem (D) in objective space.
In fact, both the primal and dual variant Benson algorithms obtains all the facets

and extreme points of P. Thus they can be directly used to solve linear MPPs
by evaluating the minimum value of T (y) over vertP when the algorithms stop.
However, to speed up the calculation and avoid the computation of all vertices
of P, we use Proposition 2.4 to compute upper and lower bounds for T (y) and
propose the following primal and dual objective space algorithms for linear MPPs.
We show the advantages of our proposed algorithms in Section 4.

3.1. Primal algorithm for solving linear MPPs

In our previous work, we have extended Benson’s outer approximation algorithm
for MOLPs to solve convex multi-objective programming problems [13] and further
the algorithm has been adapted to be an objective space cut and bound algorithm
to solve convex multiplicative programmes [14].
We call the cut and bound algorithm “the primal algorithm”. The algorithm

constructs a sequence of polyhedra S0 ⊇ S1 ⊇ . . . ⊇ Sk ⊇ P approximating P from
the outside. In iteration k we will evaluate T (y) at all vertices of Sk. The smallest
of these values is a lower bound on the optimal value of T (y) over P. Moreover, at
each iteration a boundary point P (xk) ∈ P is computed which provides an upper
bound T (P (xk)) on the optimal value of (PP). Combining the lower bound and
the upper bound information, the idea of our primal algorithm for MPPs can be
described as follows.
Assume that individual minima of the functions Pi(x) = cTi x + di over X are

attained at x0i for i = 1, 2, . . . , p. Let y0i = P (x0i) and let yI = (P1(x
01), P2(x

02),

5

March 18, 2015 Optimization 20150317

. . ., Pp(x
0p))T be the ideal point. Our primal algorithm starts with a polyhedron

S0 := yI + R
p

≧
⊇ P. The lower bound is initialised with LB := T (yI). Further-

more the upper bound UB is set to be the minimum of
∏p

i=1 y
0i, i = 1, . . . , p.

An approximation error ǫ ≧ 0 needs to be specified. In each iteration, we choose
a vertex s ∈ vertSk with the minimal value T (s) as sk, compute (P̄1(s

k)) (see
below) and get the optimal solution (xk, zk), with the boundary point P (xk) of P.
If T (P (xk)) < UB, then we update UB with T (P (xk)). If the relative difference
between the upper bound and the lower bound is less than or equal to the ap-
proximation error ǫ, then the algorithm terminates. Otherwise, a hyperplane (cut)
separating the vertex sk from P is added to the description of Sk. We update
the vertex set vertSk and calculate T (s) for each vertex s ∈ vertS and find the
minimal value of T (s) among all the vertices of Sk. If this is greater than the
current lower bound, then we update the lower bound with T (s). If the relative
difference between the upper bound and the lower bound is less than or equal to
the approximation error ǫ, then the algorithm terminates. Otherwise the procedure
is repeated.
According to [18] and [19], the primal algorithm can be improved when solving

linear MPP problems (PX). Actually only one linear programme (LP) needs to
be solved for finding the cut at each iteration step instead of two as the previous
cut and bound algorithm indicates. The cut is based on the consideration of the
following pair of dual linear programming problems and Theorem 3.1.

(P̄1(y)) min
(x,z)∈S(y)

z, S(y) := {(x, z) ∈ R
n × R : Ax ≧ b, Cx+ d− ez ≦ y} ,

(D̄1(y)) max
(u,λ)∈U

(bTu−(y−d)Tλ), U =
{

(u, λ) ∈ R
m × R

p : (u, λ) ≧ 0, ATu = CTλ, eTλ = 1
}

.

Theorem 3.1 ([13]) Let yk /∈ P. Let (xk, zk) be an optimal solution of linear
programme (P̄1(y

k)), and (u∗, λ∗) be the corresponding dual optimal solution of
(D̄1(y)). Let H = {y ∈ R

p : yTλ∗ = P (xk)Tλ∗}. Then H is a supporting hyperplane
of P at P (xk).

Algorithm 3.2 summarises the steps of the algorithm.

6

March 18, 2015 Optimization 20150317

Algorithm 3.2 (Primal algorithm for linear MPPs)
Initialisation.
(i1) Compute an optimal solution x0i of min{Pi(x) : x ∈ X} for i =

1, . . . , p. Let yI = (P1(x
01), . . . , Pp(x

0p))T . Set S0 := yI + R
p

≧
,

vertS0 = {yI}.
(i2) Set UB0 = min{T (P (x0i)), i = 1, . . . , p} and LB0 := T (yI).
(i3) Choose ǫ ≧ 0 and set k := 0.
Iteration steps.
(k1) Choose s ∈ vertSk with the minimal value T (s) as sk. Solve

LP (P̄1(s
k)), let (xk, zk) be its optimal solution and (uk, λk) be

the corresponding dual optimal solution.
(k2) If T (P (xk)) < UBk, set UBk := T (P (xk)), yu := P (xk), xu :=

xk.
(k3) If UBk ≦ LBk(1 + ǫ), STOP. Otherwise, go to (k4).
(k4) Set Sk+1 := Sk ∩ {y ∈ R

p : yTλk ≧ P (xk)Tλk}.
(k5) Determine vertSk+1 and set LBk := min{T (s) : s ∈

vertSk+1}.
If UBk ≦ LBk(1+ǫ), STOP. Otherwise, set k := k+1, UBk :=
UBk−1, LBk := LBk−1 and go to (k1).

Result.
(r1) If ǫ = 0 (ǫ > 0), then xu is a global optimal (ǫ-optimal) solution

of problem (PX), and yu is a global optimal (ǫ-optimal) solution
of problem (PP).

Theorem 3.3 Algorithm 3.2 terminates after a finite number of iterations. If
ǫ = 0 (ǫ > 0), then we have an optimal (ǫ-optimal) solution of problem (PX) at
termination.

Proof. The finiteness of Algorithm 3.2 is obvious because Benson’s algorithm is
finite (see, e.g., [15], [16]). When the algorithm terminates, we have xu = xk,
where (xk, zk) is an optimal solution of the linear programme (P̄1(s

k)). Then xk

is a weakly efficient solution of MOLP (P) and the corresponding weakly nondom-
inated point is P (xk). Since T (P (xk)) is an upper bound value and the relative
difference between the upper bound and the lower bound is less than or equal to the
approximation error ǫ, if ǫ = 0 (ǫ > 0), then P (xk) is also an optimal (ǫ-optimal)
solution of (PP). Thus, x

u is an optimal (ǫ-optimal) solution of (PX).

Remark 3.4 Algorithm 3.2 explicitly constructs a sequence of polyhedra Sk with
S1 ⊇ . . . ⊇ Sk ⊇ P approximating P from the outside. Therefore according to
Proposition 2.4, LBk = min{T (s) : s ∈ vertSk} is a sequence of increasing lower
bounds on (PP). Since we know vertSk, LBk is easy to compute.

Remark 3.5 Let conv(P (xk)) be the convex hull of vertices P (xi), i =
01, . . . , 0p, 1, . . . , k. Let Ik = conv(P (xk))+R

p

≧
. Algorithm 3.2 implicitly constructs

a sequence of polyhedra Ik with I1 ⊆ . . . ⊆ Ik ⊆ P approximating P from the
inside. Therefore according to Proposition 2.4, UBk = min{T (s) : s ∈ vert Ik} is a
sequence of decreasing upper bounds on (PP). Since we know vert Ik, UBk is easy
to compute.

Remark 3.6 In Algorithm 3.2, the vertices of Sk are saved in vertex set array
vertSk and they are updated at Step (k5) after the cut at each iteration. At
Step (k1), actually any vertex s of Sk with T (s) < UBk can be picked as sk.

7

March 18, 2015 Optimization 20150317

For example, one can pick the first vertex s with T (s) < UBk in the vertex set
array vertSk as sk. However, in our algorithm we always use s ∈ vertSk with the
minimal value T (s) as sk. Thus, the vertex s with the smallest T (s) among all the
vertices of S is always being cut off.

Example 3.7 Consider the linear MPP min

{

p
∏

i=1
cTi x : Ax ≧ b

}

, where

C =

(

1 0
0 1

)

, A =













2 1
1 1
1 2
1 0
0 1













, b =













8
6
8
1
1













.

We solve it with the primal objective space algorithm. Figure 1 shows P and the
changing of the outer approximation S. In the figure, we use empty triangles to
represent upper bound points and filled squares to represent lower bound points
at each iteration. As can be seen from the figure, after three cuts, we have S3 = P
and the two upper bound points (1,4) and (4,1)coincide with the two lower bound
points. The total number of LPs solved is 5 (3 for the cuts and 2 for the ideal
point).

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

r

ut

ut

P

y2

S0

y1
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

r

rbc

b

ut

ut

P

y2

S1

y1
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

r

b
bc

ut

ut

P

y2

S2

y1
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

b
bc

ut

ut

r

r

S3 = P

y2

y1

Figure 1. P and the shrinking of Sk with iteration k.

3.2. Dual algorithm for solving linear MPPs

The idea for solving linear MPPs is to use lower bounds and upper bounds to
limit the optimal objective value of (PP). For that purpose outer and inner ap-
proximations of P need to be constructed. In the original dual Benson algorithm,
a sequence of outer approximations of the extended feasible set in dual objective
space is constructed. These outer approximations can be used to construct a se-
quence of inner approximations of P according to duality theory [20]. However,
no outer approximations of P can be constructed from the original dual Benson
algorithm. Therefore, we develop a sandwich version of the dual Benson algorithm,
and then further adapt it to solve linear MPPs.

3.2.1. Sandwich version of the dual Benson’s algorithm

Geometric duality theory [17] states that there is an inclusion reversing one-to-one
map Ψ between the set of all proper K-maximal faces of D and the set of all proper

8

March 18, 2015 Optimization 20150317

R
p

≧
-minimal faces of P. The map Ψ is based on the two set-valued maps,

H : Rp ⇉ R
p, H(v) := {y ∈ R

p : ϕ(y, v) = 0} ,

H∗ : Rp ⇉ R
p, H∗(y) := {v ∈ R

p : ϕ(y, v) = 0} .

where

ϕ(y, v) =

p−1
∑

i=1

yivi + yp

(

1−

p−1
∑

i=1

vi

)

− vp.

Based on geometric duality theory, Ehrgott et al. proposed a dual variant of
Benson’s outer approximation algorithm to solve MOLP (D) and obtain all the
facets and extreme points of P and D, respectively. For details of geometric duality
theory and the original dual variant of Benson’s algorithm, the reader is referred to
[17] and [15], respectively. Here we propose a sandwich version of the dual variant
of Benson’s algorithm. Our algorithm not only gives a convex polyhedral outer
approximation but also a convex polyhedral inner approximation of D during the
iteration steps. By using the function ϕ(y, v), a polyhedral outer approximation
and a polyhedral inner approximation of P can then be easily obtained.
In the course of the algorithm, supporting hyperplanes of D are constructed. The

following linear programming problem plays a key role in constructing hyperplanes.

(P̄2(v)) min
x∈X

λ(v)TP (x), X := {x ∈ R
n : Ax ≧ b} ,

where λ(v) :=
(

v1, . . . , vp−1, 1−
∑p−1

i=1 vi

)T

.

Proposition 3.8 is critical for finding supporting hyperplanes and it is also the
basis for improving the original dual variant of Benson’s algorithm with only one
LP to be solved at each iteration step.

Proposition 3.8 Let v̄ ∈ R
p satisfy λ(v̄) ≧ 0. There exists a solution to (P̄2(v̄))

and for every solution x̄ to (P̄2(v̄)), H
∗(P (x̄)) is a supporting hyperplane of D

containing vb =

(

v̄T
[

Ip−1

0

]

, λ(v̄)TP (x̄)

)

of D.

Proof. If v̄ ∈ maxKD, then the proof can be found in [19] and [15]. Since
(P̄2(v̄)) and (P̄2(v

b)) have the same optimal solutions, we just need to show
vb ∈ maxKD. Suppose (P̄2(v̄)) has an optimal solution denoted by x̄, and let ū
be the corresponding dual optimal solution. Strong duality implies λ(v̄)TCx̄ =

bT ū. Thus, vb =

(

v̄T
[

Ip−1

0

]

, λ(v̄)TP (x̄)) = (v̄T
[

Ip−1

0

]

, λ(v̄)T (Cx̄+ d)

)

=
(

v̄T
[

Ip−1

0

]

, λ(v̄)T d+ bT ū

)

∈ maxKD holds.

Our sandwich version of the dual variant of Benson’s algorithm is shown in
Algorithm 3.9.

9

March 18, 2015 Optimization 20150317

Algorithm 3.9 (Sandwich version of the dual variant of Benson’s algorithm for
MOLPs)
Initialisation. Compute an optimal solution x0i of min{Pi(x) : x ∈ X}

for i = 1, . . . , p.
Let yI = (P1(x

01), . . . , Pp(x
0p))T .

Set O0 = {v ∈ R
p : λ(v) ≧ 0, ϕ(P (x0i), v) ≧ 0} and

compute vertO0.
Set I0 = {v ∈ R

p : λ(v) ≧ 0, ϕ(yI , v) ≧ 0} and compute
vert I0.
Set k = 0.

Iteration steps.
(k1) If, for each v ∈ vertOk, v ∈ Ik is satisfied, then stop.

Otherwise choose a vertex vk ∈ Ok\Ik.
(k2) Compute an optimal solution xk of (P̄2(v

k)) and let vkb =
(

vk
T

[

Ip−1

0

]

, λ(vk)TP (xk)

)

.

(k3) Set vert Ik+1 = vert Ik
⋃

{vkb}, update the inequality
representation of Ik+1. If λ(vk)TP (xk) < vkp , set O

k+1 :=

Ok ∩ {v ∈ R
p : ϕ(P (xk), v) ≧ 0} else set Ok+1 := Ok.

Update vertOk+1.
(k4) Set k := k + 1 and go to (k1).

At each iteration k, the hyperplane given by H∗(P (xk)) = {v ∈ R
p :

ϕ(P (xk), v) = 0} is constructed so that it cuts off a portion of Ok containing
vk and at the same time, point vkb is added to vert Ik, thus O0 ⊇ O1 ⊇ O2 ⊇ . . . ⊇
Ok−2 ⊇ Ok−1 = D and I0 ⊆ I1 ⊆ I2 ⊆ . . . ⊆ Ik−2 ⊆ Ik−1 = D.
When the algorithm terminates, we have the following results.

Proposition 3.10 ([15]) (1) The set of K-maximal vertices of D is vertOk−1.
(2) The set

{

y ∈ R
p : ϕ(y, v) ≧ 0 for all v ∈ vertOk−1

}

is a nondegenerate in-
equality representation of P.

(3) All Rp

≧
-minimal (nondominated) vertices of P are contained in the set W :=

{P (x01), . . ., P (x0p), P (x1), . . . , P (xk−1)}.
(4) The set {v ∈ R

p : λ(v) ≧ 0, ϕ(y, v) ≧ 0 for all y ∈ W} is a (possibly degener-
ate) inequality representation of D.

Proposition 3.10 suggests that we obtain both P and D when the algorithm
terminates. Moreover, at each iteration using the function ϕ, vertO and vert I, an
inner approximation and an outer approximation of P can be obtained. For that
purpose, Property 3.11, Definition 3.12, Propositions 3.13 and 3.14 are needed.

Property 3.11 ([20]) Let us consider special convex polyhedral sets S ⊆ R
p with

the property that S = S −K and the projection to its first p− 1 components is the
polytope {t ∈ R

p−1, t ≧ 0,
∑p−1

i=1 ti ≦ 1}.

Definition 3.12 ([20]) For a polyhedral convex set S ⊆ R
p with Property 3.11,

we define D(S) = {y ∈ R
p : ϕ(y, v) ≧ 0, for all v ∈ vertS}, where ϕ(y, v) =

∑p−1
i=1 yivi + yp

(

1−
∑p−1

i=1 vi

)

− vp.

Proposition 3.13 ([20]) Let S ⊆ R
p with Property 3.11. Then D(S) = D(S)+R

p

≧
.

10

March 18, 2015 Optimization 20150317

Proposition 3.14 ([20]) Let S1 and S0 be polyhedral convex sets with Property
3.11 and S1 ⊆ S0, then D(S1) ⊇ D(S0).

For the dual variant of Benson’s algorithm, Proposition 3.14 indicates that D(Ok)
enlarges and D(Ik) shrinks with the iteration count. When the algorithm termi-
nates at iteration k, D(Ok−1) = D(Ik−1) = D(D) = P.
We give an example to illustrate the sandwich version of the dual variant of Ben-

son’s algorithm and we show how Ok, Ik, D(Ok) and D(Ik) change with iteration
k.

Example 3.15 Consider the MOLP min{Cx : Ax ≧ b}, where C,A, b are the same
as in Example 3.7. P and D are shown in Figure 2. The 5 vertices of D are (0, 1),
(13 ,

8
3), (

1
2 , 3), (

2
3 ,

8
3), (1, 1). Their corresponding facets (supporting hyperplanes) of

P are y2 = 1, y1 + 2y2 = 8, y1 + y2 = 6, 2y1 + y2 = 8, y1 = 1. The four vertices of
P, (1, 6), (2, 4), (4, 2) and (6, 1) correspond to the facets (supporting hyperplanes)
of D, 5v1 + v2 = 6,2v1 + v2 = 4, −2v1 + v2 = 1 and −5v1 + v2 = 1, respectively.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

b

b

b

b

P

y2

y1 0 1
0

1

2

3

b

b

b

b

b

D
v2

v1
Figure 2. P and D for Example 3.15.

Figure 3 shows the change of Ok and Ik with each iteration k. As can be seen,
with iteration k, Ok becomes smaller and smaller, Ik becomes bigger and bigger,
until at termination both of them are the same as D. The vertices of O0 are (0, 1),
(32 ,

7
2) and (1, 1). The first hyperplane cuts off vertex (32 ,

7
2), the vertices of O1 are

(1, 1), (0, 1), (25 , 3), and (35 , 3). The second hyperplane cuts off vertex (35 , 3), thus

the vertices of O2 are (0, 1), (25 , 3),(
1
2 , 3), (

2
3 ,

8
3) and (1, 1). The third hyperplane

cuts off vertex (25 , 3), thus the vertices of O3 are (0, 1), (13 ,
8
3), (

1
2 , 3), (

2
3 ,

8
3) and

(1, 1). After the third cut, we have O3 = D and the vertices of I3 are (0, 1),
(25 ,

14
5),(

1
2 , 3),(

3
5 ,

14
5) and (1, 1). At the fourth iteration, vertex (23 ,

8
3) is added to

vert I4 and at the fifth iteration vertex (13 ,
8
3) is added to vert I5. Therefore, after

five iterations, we have O5 = I5 = D.
The change of D(Ok) and D(Ik) after each iteration k can be seen in Figure 4.

The calculation of D(Sk) (Sk = Ok or Ik) is according to the definition D(Sk) =
{y ∈ R

p : ϕ(y, v) ≧ 0 for all v ∈ vertSk}. For example, D(O0) = {y ∈ R
p :

ϕ(y, v) ≧ 0 for v = (0, 1), (1, 1)}, i.e., D(O0) = {y1 ≧ 1}
⋂

{y2 ≧ 1}. In contrast
to the shrinking of Ok and the enlargement of Ik, D(Ok) enlarges and D(Ik)
shrinks with iteration k. When the sandwich version of the dual Benson algorithm
terminates, O5 = I5 = D and D(O5) = D(I5) = D(D) = P.

11

March 18, 2015 Optimization 20150317

0 1
0

1

2

3

b

b bbc bc

O0

v2

I0

v1 0 1
0

1

2

3 b b

b bbc

bc

bc

O1

v2

I1

v1 0 1
0

1

2

3 b b

b

b bbc

bc

bc

bc

O2

v2

I2

v1 0 1
0

1

2

3

b

b

b

b bbc

bc

bc

bc

bc

O3

v2

I3

v1 0 1
0

1

2

3

b

b

b

b bbc

bc

bc

bc

bc

bc

O4

v2

I4

v1 0 1
0

1

2

3

b

b

b

b bbc

bc

bc

bc

bc

bc

bc

O5

v2

I5

v1
Figure 3. The shrinking of Ok and the enlargement of Ik with iteration k.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

b

b

D(O0)

y2

D(I0)

y1
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

b

b

b
D(O1)

y2

D(I1)

y1
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

b

b

b

b D(O2)

y2

D(I2)

y1

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

b

b

b

b

b

D(O3)

y2

D(I3)

y1
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

b

b

b

b

b

D(O4)

y2

D(I4)

y1

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

b

b

b

b

b

D(O5)

y2

D(I5)

y1

Figure 4. The enlargement of D(Ok) and the shrinking of D(Ik) with iteration k.

Theorem 3.16 The sandwich version of the dual variant of Benson’s algorithm
is finite.

Proof. The point vkb ∈ D computed in iteration k belongs to Ok. If vkb ∈ intOk,
then we have Ok+1 := Ok ∩ {v ∈ R

p : ϕ(P (xk), v) ≧ 0} and, by Proposition 3.8,
we know that F := {v ∈ D : ϕ(P (xk), v) = 0} is a face of D with vkb ∈ F , where
F ⊆ bdOk. If vkb ∈ bdOk, then vkb ∈ bdD. Since D is polyhedral, it has a finite
number of faces, hence the algorithm is finite.

3.2.2. Dual algorithm for linear MPPs

Now we explain how to adapt the sandwich version of the dual Benson algorithm
to solve linear multiplicative programmes (PX). The idea of the dual algorithm
for MPPs can be described as follows. The algorithm constructs a sequence of
polyhedra Ok and Ik sandwiching D. Therefore, D(Ok) and D(Ik) are the inner
approximation and outer approximation of P, respectively. In iteration k we eval-
uate T (y) at all vertices of D(Ok) and D(Ik). The smallest of D(Ok) is the upper
bound, and the smallest of D(Ik) is the lower bound. The algorithm improves the
lower bound and upper bound by iteratively constructing a cutting plane that cuts
off some vertex of Ok not in D.

12

March 18, 2015 Optimization 20150317

Algorithm 3.17 (Dual algorithm for linear MPPs)
Initialisation.
(i1) Compute an optimal solution x0i of min{Pi(x) : x ∈ X} for

i = 1, . . . , p. Let yI = (P1(x
01), . . . , Pp(x

0p))T .
Set O0 = {v ∈ R

p : λ(v) ≧ 0, ϕ(P (x0i), v) ≧ 0} and compute
vertO0.
Set I0 = {v ∈ R

p : λ(v) ≧ 0, ϕ(yI , v) ≧ 0} and compute
vert I0.

(i2) Let xu = argmin{T (P (x0i)), i = 1, . . . , p}. Set UB0 =
T (P (xu)), yu = P (xu). Set LB0 := T (yI), yl = yI .

(i3) Choose ǫ ≧ 0 and set k := 0.
Iteration steps.
(k1) Choose a vertex vk of Ok with vk /∈ {v ∈ R

p : ϕ(yl, v) ≧ 0}.
Solve (P̄2(v

k)), let xk be the optimal solution. Set vert Ik+1 =

vert Ik
⋃

{(vTk

[

Ip−1

0

]

, λ(vk)TP (xk))}, update the inequality

representation of Ik+1.
(k2) If T (P (xk)) < UBk, set UBk := T (P (xk)), yu := P (xk), xu :=

xk.
(k3) If UBk ≦ (1 + ǫ)LBk, STOP. Otherwise, go to (k4).
(k4) Set Ok+1 := Ok ∩ {v ∈ R

p : ϕ(P (xk), v) ≧ 0}, update
vertOk+1.

(k5) Compute vertD(Ik+1). Let sk be the optimal solution of
min{T (s) : s ∈ vertD(Ik+1)}. Set LBk := T (sk), yl = sk.
If UBk ≦ (1+ ǫ)LBk, STOP. Otherwise, set k := k+1, UBk =
UBk−1, LBk = LBk−1 and go to (k1).

Result.
(r1) If ǫ = 0 (ǫ > 0), then xu is a global optimal (ǫ-optimal) solution

of problem (PX), and yu is a global optimal (ǫ-optimal) solution
of problem (PP).

Theorem 3.18 Algorithm 3.17 terminates after a finite number of iterations.
When ǫ = 0 (ǫ > 0), we have an optimal (ǫ-optimal) solution to problem (PX) at
termination.

Proof. The algorithm is finite due to the finiteness of the sandwich version of
the dual variant of Benson’s algorithm. When the algorithm terminates, we have
xu = xk, where xk is an optimal solution of the linear programme (P̄2(v

k)). xk

is a weakly efficient point of P and the corresponding point P (xk) ∈ PWN . Since
T (P (xk)) is an upper bound value and the relative difference between the upper
bound and the lower bound is less than or equal to the approximation error ǫ, if
ǫ = 0 (ǫ > 0), then T (P (xk)) is an optimal (ǫ-optimal) solution of (PP). Thus, x

u

is an optimal (ǫ-optimal) solution of (PX).

Remark 3.19 Algorithm 3.17 constructs a sequence of polyhedra Ik with I0 ⊇
. . . Ik ⊇ D approximating D from the inside. Furthermore it explicitly constructs
D(Ik) with D(I0) ⊇ . . . ⊇ D(Ik) ⊇ P approximating P from the outside. There-
fore according to Proposition 2.4, LBk = min{T (s) : s ∈ vertD(Ik)} is a sequence
of increasing lower bounds on (PP). Since the vertices of I

k are known, it is easy to
obtain the facets of D(Ik) using the function ϕ. However to calculate LBk, extra
vertex enumeration is needed to find vertD(Ik).

13

March 18, 2015 Optimization 20150317

Table 1. vertOk, vertIk, vertD(Ok), vertD(Ik), LBk, UBk.

k Set Vertices Set Vertices LBk UBk

0 vertOk (0,1),(1,1),(1
2
, 7
2
) vertIk (0,1),(1,1) 1 6

vertD(Ok) (1, 6), (6, 1) vertD(Ik) (1, 1)

1 vertOk (0,1),(1,1),(2
5
,3),(3

5
,3) vertIk (0,1),(1,1),(1

2
,3) 5 6

vertD(Ok) (1, 6), (3, 3), (6, 1) vertD(Ik) (1, 5), (5, 1)

2 vertOk (0,1),(1,1)(2
5
,3)(1

2
,3),(2

3
, 8
3
) vertIk (0,1),(1

2
,3),(3

5
, 14
5
),(1,1) 5 6

vertD(Ok) (1,6),(2,4),(3,3),(6,1) vertD(Ik) (1, 11
2
),(2,4),(5,1)

3 vertOk (0,1)(1
3
, 8
3
),(1

2
,3),(2

3
, 8
3
),(1,1) vertIk (0,1),(2

5
, 14
5
),(1

2
,3),(3

5
, 14
5
),(1,1) 11

2
6

vertD(Ok) (1,6),(2,4),(4,2),(6,1) vertD(Ik) (1, 11
2
),(2,4),(4,2),(11

2
,1)

4 vertOk (0,1)(1
3
, 8
3
),(1

2
,3),(2

3
, 8
3
),(1,1) vertIk (0,1),(2

5
, 14
5
),(1

2
,3),(2

3
, 8
3
),(1,1) 11

2
6

vertD(Ok) (1,6),(2,4),,(4,2),(6,1) vertD(Ik) (1,6),(2,4),(4,2),(11
2
,1)

5 vertOk (0,1)(1
3
, 8
3
),(1

2
,3),(2

3
, 8
3
),(1,1) vertIk (0,1),(1

3
, 8
3
),(1

2
,3),(2

3
, 8
3
),(1,1) 6 6

vertD(Ok) (1,6),(2,4),(4,2),(6,1) vertD(Ik) (1,6),(2,4),(4,2),(6,1)

Remark 3.20 Let conv(P (xk)) be the convex hull of vertices P (xi), i =
01, . . . , 0p, 1, . . . , k. Let D(Ok) = conv(P (xk)) + R

p

≧
. Algorithm 3.17 construct-

s a sequence of polyhedra Ok with O0 ⊇ . . .Ok ⊇ D approximating D from
the outside. It also implicitly constructs a sequence of polyhedra D(Ok) with
D(O0) ⊆ . . . ⊆ D(Ok) ⊆ P approximating P from the inside. Therefore according
to Proposition 2.4, UBk = min{T (s) : s ∈ vertD(Ok)} is a sequence of decreasing
upper bounds on (PP). Since we know vertD(Ok), UBk is easy to compute.

Remark 3.21 In Algorithm 3.17, the vertices of Ok are saved in vertex set array
vertOk and they are updated at Step (k4) after the cut at each iteration. At Step
(k1), actually any vertex v of Ok with v /∈ Ik can be picked as vk. For example, one
can pick the first vertex v in the vertex set array vertOk with v /∈ Ik. However, in
our algorithm, we always pick a vertex vk of Ok with vk /∈ {v ∈ R

p : ϕ(yl, v) ≧ 0}.
Since yl is one of the vertices of D(Ik) with the smallest T (y), we actually try to
improve the lower bound at every iteration.

Next, we use Example 3.7 to illustrate Algorithm 3.17. The initialisation and the
iteration steps are the same as in Example 3.15. We list the vertex set of Ok, Ik,
D(Ok), D(Ik) and the lower bound and upper bound at each iteration in Table 1.
The total number of LPs solved is 7.

4. Numerical results

In Section 1 we have briefly outlined the literature on algorithms to solve multi-
plicative programming problems. In this section we compare our primal and dual
algorithms presented in Section 3 with our original primal algorithm [14], a re-
cent algorithm for linear MPP, i.e., Gao et al. [8], and two general purpose global
optimisation solvers SCIP [21] and BARON [22, 23]. Of course, as we explained
on page 5 both the primal and dual variant Benson algorithms for MOLPs can
be used to solve linear MPPs directly. We carried out preliminary tests compar-
ing Algorithms 3.2 and 3.17 to the application of the primal and dual variants of
Benson’s algorithms to solve linear MPPs. Since in all but the smallest instances,
Algorithms 3.2 and 3.17 were much faster, we do not report results on the primal
and dual variants of Benson’s algorithm.
We have implemented the first four algorithms in Matlab 7.3 using MOSEK

(http://www.mosek.com) as linear programming and nonlinear programming
solver. Tests are run on a PC with 2.5GHz and 4.0 GB RAM and the codes in-
cluding Matlab and MOSEK are run in a single thread mode. At Step (k5) of

14

March 18, 2015 Optimization 20150317

Table 2. Results for (T), “-” means the problems cannot be solved within 20 minutes.

p (m,n) Primal Dual Original Primal Gao et al. SCIP BARON

2 (20,30) 0.10 0.11 0.15 0.13 0.18 0.07
2 (50,30) 0.14 0.11 0.19 0.15 0.26 0.07
2 (100,60) 0.20 0.15 0.34 0.20 0.49 0.16
3 (50,30) 0.34 0.29 0.52 0.42 0.54 0.63
3 (60,40) 0.35 0.32 0.58 0.53 0.57 4.89
3 (100,60) 0.68 0.58 0.96 1.25 1.10 17.69
4 (60,40) 2.09 2.26 3.54 5.37 34.00 -
4 (100,60) 7.98 7.94 13.06 14.45 - -
5 (100,60) 24.17 29.38 49.65 67.98 - -
6 (100,60) 243.34 259.46 391.31 595.45 - -

the primal algorithm and Step (k4) of the dual algorithm, the method of [24]
for on-line vertex enumeration by adjacency lists was used to calculate a vertex
representation from the inequality representation of Sk+1 or Ok+1. For all four
algorithms, we use the same approximation error to make the results comparable.
Moreover, we solve the test instances with SCIP and BARON. For SCIP, we have
downloaded the binaries of SCIP-3.1.0 from http://scip.zib.de/, and run the tests
on the same PC as the first four algorithms while for BARON the tests are run on
NEOS Server (http://www.neos-server.org/neos).
We apply the four algorithms and SCIP and BARON solvers to randomly gen-

erated examples of multiplicative programming problems. The following subclass
of (PX) is considered.

min
p
∏

i=1
ci

T
x

s.t. Ax ≧ b, u ≧ x ≧ l,

where A ∈ R
m×n, b ∈ R

m and ci ∈ R
n are constant matrices with entries pseudo-

randomly generated in the interval [0,10]. Moreover, we set 0 = l ∈ R
n and

(100, . . . , 100) = u ∈ R
n to make the instances bounded.

Ten examples for selected combinations of m (number of constraints), n (number
of variables) and p (number of objectives) were solved. For the first four algorithms,
the approximation error was fixed at ǫ = 0.01. Average values of the CPU time in
seconds are listed in Table 2.
It can be seen from Table 2, that our primal and dual algorithms behave similarly.

Our primal algorithm is always superior to the original primal algorithm because it
solves only one LP at each iteration instead of two using the idea of [18]. When p is
equal to two, the difference between our proposed primal and dual algorithms and
Gao et al.’s algorithm is quite small and all three algorithms behave well. Because
Gao et al.’s algorithm [8] needs to solve a nonlinear programming problem instead
of a linear programming problem at each iteration, it requires more computation
time compared to our algorithms. Therefore, if p is greater than or equal to three,
our algorithms clearly outperform Gao et al.’s algorithm [8].
Compared to SCIP and BARON, when p is equal to two, BARON is faster

than our algorithms. However as p increases, the computational performance of
both SCIP and BARON becomes worse. Especially when p is equal to 4, BARON
cannot solve any of the problems within 20 minutes. For m = 60 and n = 40 SCIP
needs 34 seconds while our algorithms only use less than 3 seconds; for m = 100
and n = 60 SCIP cannot solve any of the problems within 20 minutes while our
algorithms only use less than 8 seconds. For p equal to 5 and 6, both SCIP and
BARON cannot solve any of the problems within 20 minutes, while our proposed

15

March 18, 2015 Optimization 20150317

primal and dual algorithms can solve each of the problems within 5 minutes.
Table 2 suggests that the most critical factor influencing computation time is

the number p of functions that make up the product φ(x). As p increases the
computation time increases and more dramatically so for higher values of p than
smaller ones. For example, for the problems with (m,n) = (100, 60) shown in
Table 2, as p increases from 5 to 6, the computation times for our primal and dual
algorithms increase tenfold.

5. Conclusion

In this paper, we have proposed primal and dual objective space algorithms de-
rived from objective space algorithms for multi-objective linear programming to
solve linear multiplicative programming problems. The numerical results suggest
that our algorithms are superior to recent global optimisation algorithms for linear
MPPs as well as general global optimisation solvers. Therefore we have demon-
strated the viability of a multi-objective linear programming approach to linear
MPPs compared to single objective nonconvex global optimisation approaches.
This may inspire researchers to investigate the use of multi-objective methods for
other hard single objective optimisation methods. Moreover, our algorithms are
easy to implement. Further research is needed to investigate the trade-off between
solution quality and computational effort, in particular concerning the growth of
computation time as p increases.

References

[1] Matsui T. NP-hardness of linear multiplicative programming and related problems.
Journal of Global Optimization. 1996;9:113–119.

[2] Henderson JM, Quandt RE. Microeconomic Theory. McGraw-Hill, New York; 1971.
[3] Konno H, Kuno T. Generalized linear multiplicative and fractional programming.

Annals of Operations Research. 1990;25:147–162.
[4] Maling K, Mueller SH, Heller WR. On finding most optimal optional rectangular

package plans. In: Proceedings of the 19th Design Automation Conference; 1982. p.
663–670.

[5] Geoffrion A. Solving bicriterion mathematical programs. Operations Research. 1967;
15:39–54.

[6] Benson H, Boger GM. Outcome-space cutting-plane algorithm for linear multiplicative
programming. Journal of Optimization Theory and Applications. 2000;104:301–322.

[7] Kuno T. A finite branch-and-bound algorithm for linear multiplicative programming.
Computational Optimization and Applications. 2001;20:119–135.

[8] Gao Y, Xu C, Yang Y. An outcome-space finite algorithm for solving linear multi-
plicative programming. Applied Mathematics and Computation. 2006;179:494–505.

[9] Ryoo HS, Sahindis NV. Global optimization of multiplicative programs. Journal of
Global Optimization. 2003;26:387–418.

[10] Kim NTB, Trang NTL, Yen TTH. Outcome-space outer approximation algorithm for
linear multiplicative programming. East West Journal of Mathematics. 2007;9:81–98.

[11] Depetrini D, Locatelli M. A FPTAS for a class of linear multiplicative problems.
Computational Optimization and Applications. 2009;44:275–288.

[12] Benson H, Boger GM. Multiplicative programming problems: analysis and efficient
point search heuristic. Journal of Optimization Theory and Applications. 1997;94:487–
510.

[13] Ehrgott M, Shao L, Schöbel A. An approximation algorithm for convex multi-objective
programming problems. Journal of Global Optimization. 2011;50:397–416.

16

March 18, 2015 Optimization 20150317

[14] Shao L, Ehrgott M. An objective space cut and bound algorithm for con-
vex multiplicative programmes. Journal of Global Optimization. 2014;58:711–728;
dOI:10.1007/s10898-013-0102-x.

[15] Ehrgott M, Löhne A, Shao L. A dual variant of Benson’s “outer approximation al-
gorithm” for multiple objective linear programming. Journal of Global Optimization.
2012;52:757–778.

[16] Benson H. An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. Journal
of Global Optimization. 1998;13:1–24.

[17] Heyde F, Löhne A. Geometric duality in multi-objective linear programming. SIAM
J Optim. 2008;19(2):836–845.

[18] Hamel AH, Löhne A, Rudloff B. Benson type algorithms for linear vector optimization
and applications. Journal of Global Optimization. 2014;59:811–836.

[19] Löhne A. Vector optimization with infimum and supremum. Springer; 2011.
[20] Shao L, Ehrgott M. Approximating the nondominated set of an MOLP by approxi-

mately solving its dual problem. Mathematical Methods of Operations Research. 2008;
68:469–492.

[21] Achterberg T. SCIP: Solving constraint integer program-
s. Mathematical Programming Computation. 2009;1(1):1–41;
http://mpc.zib.de/index.php/MPC/article/view/4.

[22] Sahinidis NV. BARON 12.1.0: Global Optimization of Mixed-Integer Nonlinear Pro-
grams, User’s Manual. 2013.

[23] Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global op-
timization. Mathematical Programming. 2005;103:225–249.

[24] Chen PC, Hansen P, Jaumard B. On-line and off-line vertex enumeration by adjacency
lists. Operations Research Letters. 1991;10:403–409.

17

