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Abstract

Traffic congestion is an issue in most cities worldwide. Transportation engineers and urban

planners develop various traffic management projects in order to solve this issue. One way to

evaluate such projects is traffic assignment (TA). The goal of TA is to predict the behaviour

of road users for a given period of time (morning and evening peaks, for example). Once such

a model is created, it can be used to analyse the usage of a road network and to predict the

impact of implementing a potential project. The most commonly used TA model is known

as user equilibrium, which is based on the assumption that all drivers minimise their travel

time or generalised cost. In this study, we consider the static deterministic user equilibrium

TA model.

The constant growth of road networks and the need of highly precise solutions (required

for select link analysis, network design, etc) motivate researchers to propose numerous meth-

ods to solve this problem. Our study aims to provide a recommendation on what methods

are more suitable depending on available computational resources, time and requirements on

the solution. In order to achieve this goal, we implement a flexible software framework that

maximises usage of common code and, hence, ensures comparison of algorithms on common

ground. In order to identify similarities and differences of the methods, we analyse groups

of algorithms that are based on common principles. In addition, we implement and compare

several different methods for solving sub-problems and discuss issues related to accumulated

numerical errors that might occur when highly accurate solutions are required.
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1. Introduction and Motivation

Because of the fast development of cities and road networks, transportation engineers

face various difficulties of maintaining current roads and planning improvements and changes

of the infrastructure in order to satisfy the existing and future travel demand. Since any

changes to the urban infrastructure require large investments of time and money, making

wise strategic decisions is very important [1]. One way to evaluate potential projects and

analyse the usage of existing road networks is to apply mathematical modelling. As pre-

sented in Ortúzar and Willumsen [1], transportation planning tools include many different

mathematical models designed to solve various tasks. In our study, we concentrate on the

traffic assignment (TA) problem that is part of transportation planning.

The TA model describes travel behaviour of road users. In particular, this model is

designed to predict what route choice every individual will make during a given period of

time. The conventional approach to model the behaviour of travellers is to make some

assumptions on how people choose routes and to find a traffic flow pattern satisfying these

assumptions. The most well-known assumptions are the ones following Wardrop’s first

principle (also called user equilibrium condition): “The journey times on all the routes

actually used are equal, and less than those which would be experienced by a single vehicle

on any unused route” [2].

This principle models the behaviour of travellers by assuming that all drivers are selfish

and that they choose the fastest routes going from their origin to their destination. As a

result, an equilibrium state is achieved, when no one has an incentive to switch to another

route. This principle allows different mathematical formulations of the problem based on

different additional assumptions. The classical model that is commonly used in practice is

a static deterministic traffic assignment (TA) that is the subject of this paper. Other traffic

assignment problems such as the TA problem with elastic demand (see Ryu et al. [3]) or

dynamic TA (see Carey and McCartney [4]) are not considered in this paper.

This classical model was developed in the 1950s and since then various algorithms have

been proposed to solve it. The wide research interest in this problem has several reasons.
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First, TA is a challenging problem that arises in different practical applications. Second, the

existing transportation models continue to grow and become more detailed. For example,

in 2006 the ART model (Auckland Regional Transport Model) included 202 zones, whereas

in 2008 it contained 512 zones [5]. A zone refers to an area of a transportation network

that can vary from a city block to a neighbourhood [6]. Third, high accuracy of the solution

is required for select link analysis1 and for consistent comparison between design scenarios,

as presented in Slavin et al. [7] and Gentile [8]. Therefore, we can conclude that there is a

growing need for efficient algorithms able to solve TA problems of realistic size with high

accuracy.

Regardless the number of proposed algorithms in the literature, there is no comprehensive

survey study comparing them. To the best of our knowledge, only the paper of Inoue and

Maruyama [9] analyses many different methods under the same computational environment.

The authors implemented 11 algorithms for traffic assignment. However, all implementation

details are omitted in the paper. It is not clear if the authors used the same framework for

all algorithms and how carefully they followed the descriptions of the algorithms available

in the literature.

The aim of our research is to analyse and compare the most promising approaches for

solving TA in the context of a framework that can be shared by different algorithms. We

compare methods without considering any special implementation details that may have

been used in commercial or research software. Instead, we focus on the use of common code

wherever possible. This will allow testing general ideas of the methods without giving an

advantage to any of them.

Another motivation of this study is to identify the advantages and disadvantages of

different groups of algorithms (the classification is presented in Section 3). Early on only link-

based approaches were available because of memory limitations. In recent years, however,

other types of algorithms have been implemented in many commercial software packages

used by practitioners. One of the main advantages of new algorithms is that they can

1Select link analysis provides information of where traffic is coming from and going to for vehicles at

selected links (and combination of links) throughout the modelled network [1].
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provide the path choice information which is necessary to evaluate effects of schemes such as

congestion pricing without re-running the algorithm [10]. Therefore, it becomes important

to analyse them and to compare them with classical link-based approaches. Other factors

that motivate our research are highlighted in Section 3 along with a literature overview.

Preliminary results of our study can be found in Perederieieva et al. [11].

The rest of the paper is organised as follows. Section 2 states the deterministic static

traffic assignment problem. Section 3 is devoted to a literature review and our choice of

algorithms for comparison. In Section 4, various implemented methods for solving traffic

assignment are described. Section 5 discusses the computational study and comparison of

algorithms. Finally, Section 6 presents conclusions and future work.

2. Problem Formulation

This section introduces a mathematical formulation of the TA problem and notation that

is used throughout the paper.

A transportation network is defined as a directed graph G(N,A) where N is a set of

nodes and A is a set of links. The users of the transportation network travel from their

origins to their destinations. Let Dp denote travel demand between origin-destination (O-

D) pair p ∈ Z, where Z is the set of all O-D pairs. A demand represents how many vehicles

are travelling from an origin to a destination

The key feature of TA models consists in taking into account congestion effects that

occur in road networks. In order to consider congestion, link cost functions are introduced

into the model. They represent travel times through links of a network depending on the

traffic flow on those links. Let ca(f) denote a link cost function of link a that depends on

link flows f = (f1, f2, ..., f|A|). Link flow is the number of vehicles per time unit on each link.

Let F = (F1, ..., F|K|) denote a vector of path flows, where K is the set of all simple paths

of graph G(N,A). Path flows are related to link flows by the expression

fa =
∑
p∈Z

∑
k∈Kp

δkaFk, (1)
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where δka equals one if link a belongs to path k, and zero otherwise; Kp ⊆ K is the set of

paths between O-D pair p. Let path cost function Ck(F) denote the travel time on path k.

The conventional model of the traffic assignment problem is based on two assumptions

that allow to formulate and solve it as a mathematical programme.

1. Additivity of path cost functions: travel time on each path is the sum of travel times

of links belonging to this path, i.e. Ck(F) =
∑

a∈A δ
k
aca(f);

2. Separability of link cost functions: travel time on each link depends only on flow on

this link, i.e. ca(f) = ca(fa).

If these assumptions are satisfied, solving the following optimisation problem (2) results in

the link flows satisfying the user equilibrium condition [6].

min
∑
a∈A

fa∫
0

ca(x)dx

∑
k∈Kp

Fk = Dp, ∀p ∈ Z,

Fk ≥ 0, ∀k ∈ Kp,∀p ∈ Z,
fa =

∑
p∈Z

∑
k∈Kp

δkaFk, ∀a ∈ A.

(2)

If all path cost functions Ck(F) are positive and continuous then existence of a solution

of TA is ensured. If, furthermore, the path cost functions are strictly monotone, the solution

is guaranteed to be unique [12]. In the following, it is assumed that these requirements are

satisfied.

The formulation (2) is sometimes referred to as link-route or path flow formulation [13,

14]. We will use the latter term. The path-based algorithms that are discussed in Section 4.2

use this mathematical programme. Other optimisation formulations of the TA problem

based on a different set of decision variables can be found in Patriksson [13] and Bertsekas

[14].
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3. Literature Overview

One of the possible ways to classify traffic assignment algorithms is according to how the

solution is represented: link-based (solution variables are link flows), path-based (solution

variables are path flows) and bush-based (solution variables are link flows coming from a

particular origin), see [15].

Historically, the first algorithms developed for solving the traffic assignment problem were

link-based. The most well-known such algorithm is Frank-Wolfe (FW), a general algorithm

for convex optimisation problems [16]. Due to its simplicity and low memory requirements,

it is used even now and is implemented in different commercial software packages. However,

this algorithm is known to tail badly in the vicinity of the optimum and usually cannot be

used to achieve highly precise solutions as demonstrated by numerous numerical studies [9,

10, 17].

Many improvements of FW were proposed in the literature. As explained in Zhou and

Martimo [15], some of them try to improve the FW search direction (for example, see [18,

19, 20]) or step size (see [21, 22]). Among these variations of FW, we are interested in

conjugate (CFW) and bi-conjugate Frank-Wolfe (BFW) methods [20] as explained later in

this section. In Zhou and Martimo [15], the authors also categorise restricted simplicial

decomposition (RSD) [23] and non-linear simplicial decomposition (NSD) [24] as link-based

methods. These algorithms apply a more complicated structure than FW, however, they

use FW as a special case. In RSD and NSD the link flow solution is represented by a convex

combination of extreme points. Algorithms of this type usually have two main routines:

generating new extreme points and optimising the restricted master problem with respect

to previously generated extreme points.

Path-based methods decompose the TA problem into sub-problems corresponding to O-D

pairs. They bring the current solution to the equilibrium by sequentially shifting path flows.

The first path-based algorithm called path equilibration (PE) was proposed in Dafermos

and Sparrow [25]. Its main idea is to shift flow from the longest path (path with maximum

cost) to the shortest path (path with minimum cost). However, in the years after the PE
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algorithm was published, path-based methods were considered impractical because they

required to store all paths. When column generation approaches for the TA problem were

proposed by Gibert [26] and Leventhal et al. [27], the development of path-based methods

started again since it allowed to generate paths when needed instead storing all of them.

Larsson and Patriksson [28] proposed disaggregated simplicial decomposition (DSD) which

is similar to RSD in the way that it also uses a convex combination of extreme points to

represent the solution. However, the extreme points are in the space of path flows instead of

link flows. In Jayakrishnan et al. [29], the gradient projection (GP) method was proposed

and further studied in Chen and Jayakrishnan [30]. It is similar to PE, but O-D flow is

moved from several non-shortest paths to the shortest path. Another path-based algorithm

was proposed in Florian et al. [10]. It is called projected gradient (PG) and is based on

the idea of moving flow from the set of paths with cost greater than the average path cost

to the set of paths with cost less than the average path cost. Another similar approach

called improved social pressure (ISP) algorithm was developed in Kumar and Peeta [31] and

compared to its previous version called social pressure algorithm (SP). This method also

shifts flow from the set of costlier paths to the set of cheaper paths, but a more complicated

strategy of flow distribution than in GP and PG is applied.

Bush-based algorithms (sometimes called origin-based) represent a more recent develop-

ment. Their main idea is to decompose the problem into a sequence of sub-problems that

operate on acyclic sub-networks of the original transportation network [32]. In general, for

this group of algorithms, the flow shifts are restricted to sub-problems and are usually sim-

ilar to the ideas presented earlier for path- and link-based approaches. The first algorithm

of this type applied to the traffic assignment problem was proposed by Bar-Gera [33]. It is

called origin-based algorithm (OBA). Nie [34] presented some corrections to OBA, and Nie

[32] compared different bush-based algorithms (corrected OBA (COBA) and modified OBA

(MOBA)) based on OBA. Other recently developed bush-based methods include: algorithm

B (B) proposed by Dial [35], some modifications of it (iB), see Inoue and Maruyama [9] and

Zhang et al. [36], linear user cost equilibrium (LUCE) developed by Gentile [8] and traffic

assignment by paired alternative segments (TAPAS) introduced by Bar-Gera [37]. It must
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be noted that TAPAS cannot be strictly classified as a bush-based algorithm: it uses origin

flows in order to represent the solution, however the general structure of the algorithm is

different from other bush-based approaches.

In order to select algorithms for implementation, we analyse different empirical stud-

ies from the literature. During such analysis it is important to pay attention to how the

algorithms were compared (re-implemented by the authors of the study or using existing

software), what instances were used and how precise the obtained solutions were.

In the majority of the studies, relative gap is used as a convergence measure. It is

calculated as follows:

RGAP = 1−
∑

p∈Z Dp · Cp
min∑

a∈A fa · ca
, (3)

where Cp
min = mink∈Kp Ck is the shortest path of O-D pair p. We divide the existing numeri-

cal studies into two groups of low and high precision, that correspond to the accuracy of the

solution. The algorithms from the low precision group are stopped when the relative gap

is in the interval [10−7, 10−4], and for the high precision group the interval is [10−14, 10−10].

Table 1 presents the first group and Table 2 the second one. In each table, one algorithm

from each study is highlighted in bold, which means that it showed the best performance

on the majority of the tested instances. All other algorithms in the same study are listed in

the order of decreasing performance. If in a particular study the existing executable of the

algorithm or commercial software was used, it is highlighted in dark grey. If comparison of

the algorithms was made indirectly, i.e. based on the running times reported in other papers,

it is highlighted in light grey. We also try to align the algorithms that were compared in

different studies. However, since sometimes contradictory conclusions are drawn in different

papers, this alignment is approximate. The last line of each table summarises the algorithms

that seem to be the most promising. The article of Chen et al. [38] is not included in Tables 1

and 2 because they study convergence of algorithms GP and DSD with respect to relative

error based on objective function values. This makes it difficult to categorise this study with

respect to relative gap. GP is reported to have a better performance. As discussed later,

we also implement GP in our study.
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Table 1: Summary of existing empirical studies. Low precision: RGAP ∈ [10−7, 10−4]
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LUCE ISP

PG PG SP

B B B iB, B

OBA OBA OBA OBA

FW FW FW FW FW

GP GP OBA

BFW BFW

CFW CFW

FW FW

OBA OBA

DSD

Most promising: BFW, GP, PG, ISP, B, LUCE

As presented in Tables 1 and 2, in many studies only a few algorithms are compared.

Often existing executables of algorithms and low precision are used. None of these studies

analysed how different methods for solving sub-problems influence the performance of TA

algorithms. These facts motivate us to study the TA methods in more detail and to analyse

their advantages and disadvantages.

Following the above analysis of Tables 1 and 2, we choose to implement the following

algorithms:

1. Link-based: FW (FW is consistently reported to have the worst performance. However,

it is the basis for CFW and BFW, which is why it is also considered in our study),

CFW, BFW;
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Table 2: Summary of existing empirical studies. High precision: RGAP ∈ [10−14, 10−10]

Bar-Gera [33] Nie [32] Bar-Gera [37] Inoue and

Maruyama [9]

TAPAS TAPAS

B B, iB

MOBA

COBA

OBA OBA OBA OBA, DSD,

MOBA, LUCE,

ASD

FW FW FW

Most promising: B, TAPAS

2. Path-based: PE (this algorithm was not compared in the studies presented above. We

choose to implement it due to its simplicity and ideas similar to other path-based

approaches), GP, PG and ISP;

3. Bush-based: B, LUCE, TAPAS.

4. Algorithms

One of the reasons for the development of various traffic assignment algorithms is a

specific problem structure that can be exploited by solution methods in many different

ways [13].

The constraints of the TA problem represent a polyhedral set and the objective function

is convex. As a result, feasible direction methods can be applied as a solution technique [40].

The algorithms described later in this section belong to this type of non-linear optimisation

methods. The main idea behind this type of methods is: starting from a feasible solution, a

feasible direction of descent is calculated and the solution is moved along this direction [41].

Usually a new solution, obtained in such a way, has a decreased value of the objective
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Initialise: Generate feasible link flow solution f0;

Set iteration counter i = 1;

While (convergence criterion is not met)

Update link costs ca(f
i
a), ∀a ∈ A;

Find direction of descent di;

Find step size λ;

Update solution: f i+1
a → f i

a + λ · dia;
Increment iteration counter i→ i+ 1;

FW: dia = yAON,i
a − f i

a

CFW: dia = α · si−1
a + (1− α) · yAON,i

a − f i
a

BFW: dia = α1 · si−2
a + α2 · si−1

a + α3 · yAON,i
a − f i

a

Figure 1: Framework for link-based algorithms

function.

Another property of traffic assignment that can be exploited is the O-D pair separability:

the flow conservation constraints of one O-D pair do not affect those of any other pair. This

fact gives raise to various algorithms based on the idea of decomposing the problem into

smaller sub-problems that can be solved one after another or in parallel [13].

The TA problem allows various formulations based on different solution variables [13].

As a result, different solution spaces are used by the methods such as link, path, origin flows,

etc.

This section discusses several decomposition approaches and algorithms. In particular,

we focus on the algorithms that were chosen for our numerical study, see Section 3.

4.1. Link-based Algorithms

This section presents Frank-Wolfe and two of its modifications: conjugate and bi-conjugate

Frank-Wolfe methods. These algorithms can be described by the framework presented in

Figure 1. The methods differ only in the way the direction of descent is defined.

Each algorithm starts with an initial feasible link flow pattern. It is usually generated by

all-or-nothing (AON) assignment. Each link flow is initialised with zero and corresponding

link travel times are calculated. Then shortest paths for each O-D pair are found and all

corresponding demand is assigned to each shortest path. All these path flows are then

projected on all links using equation (1) which gives the initial feasible link flows.

FW further exploits the AON procedure. In order to generate a feasible direction of

descent, it performs AON assignment at each iteration and obtains corresponding link flows
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yAON,ia ,∀a ∈ A. Since the AON link flow solution is feasible, given a current link flow solution

f ia,∀a ∈ A, vector dia = yAON,ia −f ia,∀a ∈ A is a feasible direction. Moreover, this direction is

also a direction of descent [6]. The FW direction of descent is, in fact, obtained by solving a

linearised problem (the objective function in (2) is linearised based on the first order Taylor

series expansion) [14]. For the TA problem this linearised problem becomes a shortest path

problem and, hence, AON is applied [14].

The CFW and BFW algorithms use information about previously generated directions of

descent in order to find a new one. In particular, the new search direction is constructed via

mutually conjugate directions with respect to the Hessian of the objective. CFW takes into

account the usual FW direction and the direction from the previous iteration, whereas BFW

in addition considers one more direction from iteration i− 2 where i is the current iteration.

Both algorithms operate on auxiliary variables sia,∀a ∈ A called points of sight that store

information about previously generated directions of descent (for details see Mitradjieva and

Lindberg [20]).

After finding a direction of descent, each algorithm proceeds to step size calculation

which determines how far the current solution must be moved along the direction of descent.

Section 4.4.2 discusses how to solve this sub-problem.

4.2. Path-based Algorithms

Path-based methods exploit the O-D pair separability and a path flow formulation (2)

of the TA problem. This group of methods operates in the space of path flows. At each

iteration, the flows are moved only within one O-D pair and path flows of the other O-D

pairs are fixed. Therefore, paths and the corresponding path flows must be stored. Let K+
p

denote the set of paths between O-D pair p that are currently in use, i.e. they carry positive

flow. A general framework of this group of algorithms is presented in Figure 2.

In order to prevent storing all possible paths for each O-D pair, a column generation

approach is usually applied, which is based on the idea of generating new paths when

needed [13]. For a given O-D pair p find the shortest path and add it to K+
p if the found

path is shorter than the current shortest path contained in this set. This step corresponds
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Initialise: Generate feasible path sets K+
p ,∀p ∈ Z;

Set iteration counter i = 1;

While (convergence criterion is not met)

For (each O-D pair p ∈ Z)

Update path costs Ck,∀k ∈ K+
p ;

Improve path set K+
p ;

If (path set K+
p was improved or |K+

p | > 1)

Equilibrate path set K+
p ;

Project path flows on links and

update corresponding link costs;

Remove unused paths from set K+
p ;

Increment iteration counter i → i + 1;

PE: shift flow from longest path to

shortest path

GP: shift flow from costlier paths to

shortest path

PG: shift flow from paths costlier than

average path cost to paths

cheaper than average path cost

ISP: shift flow from costlier paths to

cheaper paths

Figure 2: Framework for path-based algorithms

to “Improve path set K+
p ” of the framework. In order to keep only promising paths in K+

p ,

the paths that do not carry flow are removed from K+
p .

As in the case of link-based methods, initialisation is performed by AON assignment. In

addition to a link flow solution, each set K+
p ,∀p ∈ Z must also be initialised. This can is

done by adding the shortest path corresponding to O-D pair p to K+
p . Every such shortest

path p is initialised with flow equal to demand Dp.

Let a commodity refer to trips between a single O-D pair. Due to the decomposition by O-

D pairs, the solution to the original TA problem is found by solving several single commodity

sub-problems sequentially until the desired precision of the solution is reached. This single

commodity sub-problem is identical to (2), but restricted to O-D pair p and fixed set of

paths K+
p . Path-based algorithms differ in how such a sub-problem is solved. As presented

in Patriksson [13], for the single commodity sub-problem the feasible direction of descent

is defined as the path cost differences between cheaper and costlier paths. Equivalently,

moving the current solution in the feasible descent direction means that path set K+
p is

equilibrated, i.e. some or all of the path costs of set K+
p are equalised.

Many algorithms for convex optimisation problems scale the direction of descent by the

Hessian matrix or its approximation in order to achieve higher convergence rate [41]. In the

case of a single commodity sub-problem the direction of descent can also be scaled before

applying a line search yielding a constrained quasi-Newton or Newton method depending
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on how the direction is scaled. “Newton method” here means that second order derivatives

are used to guide the search direction to solve decomposed sub-problems. However, the

structure of these algorithms is a Gauss-Seidel decomposition2 process, the convergence rate

of which is linear [32].

If the direction of descent is scaled by the Hessian matrix, then the resulting method

corresponds to a constrained version of the Newton method [41]. If an approximation of the

Hessian is used instead, then the method can be viewed as a scaled gradient projection or

constrained quasi-Newton approach [41].

The case when the direction of descent contains only two non-zero elements (it also means

that the flow is moved between only two paths) is of a particular interest. In this case, the

Hessian matrix is a scalar and can be easily calculated. In the following, this situation will

be referred to as Newton step (for details, see Section 4.4.3). When there are more than

two non-zero elements in the direction of descent, i.e. more than two paths are considered

simultaneously, then different approximations of the Hessian matrix can be used.

The following subsections discuss different path-based algorithms and their variations

depending on whether a scaled or non-scaled direction of descent is applied. All algorithmic

steps are described for one O-D pair denoted by p. We also simplify the notation of path

cost functions by using Ck instead of Ck(F).

4.2.1. Path Equilibration

The PE algorithm equalises the costs of the current longest path l ∈ K+
p with positive flow

and the current shortest path s ∈ K+
p . The direction of descent d is defined as follows [12]:

ds = Cl − Cs,
dl = Cs − Cl,
dj = 0, ∀j ∈ K+

p , j 6= s, j 6= l.

(4)

The current path flow solution is moved along this direction using the step size calculated

as presented in Section 4.4.2.

2Gauss-Seidel decomposition refers to the process of solving a problem by decomposing it into several

sub-problem and solving them sequentially several times until a required precision is achieved [13].
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Since only two path costs are equalised, the Newton step can be applied as discussed in

Section 4.4.3.

Originally PE was implemented to solve the traffic assignment problem with quadratic

link cost functions and was applied only to small instances [27]. In Leventhal et al. [27], it

is not specified what method was used to equalise path costs at each iteration. Florian and

Hearn [12] present a feasible direction method with a line search for PE. We implemented

both scaled and non-scaled descent directions for this algorithm.

4.2.2. Gradient Projection

The GP algorithm considers several paths at each iteration. In particular, it moves

flow to the current shortest path s ∈ K+
p from all other paths of set K+

p . As presented

in Jayakrishnan et al. [29], firstly, a flow shift is calculated:

∆Fk =
Ck − Cs∑
a∈As,k

∂ca
∂fa

,∀k ∈ K+
p , k 6= s, (5)

where As,k is the set of links that belong either to path k or to path s but not to both of

them. Secondly, a new solution is projected onto the feasible set:

Fk = Fk −min{α∆Fk, Fk},∀k ∈ K+
p , k 6= s,

Fs = Dp −
∑

k∈K+
p ,k 6=s Fk,

(6)

where α is a predefined constant that must be small enough in order to guarantee convergence

of the algorithm [29]. Jayakrishnan et al. [29] recommend to set it to 1. However, after

several runs of the algorithm we set α to 0.25, because this value allows all tested instances

to converge. The algorithm performance depends a lot on parameter α. In particular, for

some instances when the algorithm converges with α = 1, it achieves the required level of

precision much faster compared to the case when α = 0.25. However, we did not adjust α

specifically for every instance, but rather fixed it to a value that allows all tested instances to

converge. Chen et al. [42] and Chen et al. [43] also suggest a self-adaptive step size strategy

for GP and other algorithms that we did not implement in our study. Another modification

of GP based on conjugate directions is presented in Lee et al. [44].
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This version of GP with projection operator can be classified as a scaled gradient pro-

jection with diagonal approximation of the Hessian [14]. In the following, this method will

be referred to as GP Newton.

Alternatively, instead of projecting the current solution onto the feasible set, a feasible

direction of descent combined with a line search can be used:

dk = Cs−Ck∑
a∈As,k

∂ca
∂fa

,∀k ∈ K+
p , k 6= s,

ds = −∑k∈K+
p ,k 6=s dk.

(7)

Once the direction of descent is calculated the current solution is updated: Fk = Fk + λdk,

where λ is a step size found by applying a line search (see Section 4.4.2). This approach was

presented in Cheng et al. [45]. In the rest of the paper, this method will be called GP2.

Another variation of GP includes a non-scaled feasible direction combined with a line

search. The descent direction is:

dk = Cs − Ck, ∀k ∈ K+
p , k 6= s,

ds = −∑k∈K+
p ,k 6=s dk.

(8)

In the following, this method will be denoted GP1.

4.2.3. Projected Gradient

The main idea of the PG algorithm is to move flow from the paths that have cost greater

than the current average path cost to the paths that have cost less than the average value.

It is equivalent to defining the following direction of descent d:

dk = C̄p − Ck,∀k ∈ K+
p , (9)

where C̄p =

∑
k∈K+

p
Ck

|K+
p |

is the average cost of the paths of O-D pair p [10]. In order to find the

appropriate amount of flow to move, a line search is applied along direction d. As a result,

step size λ is calculated and the path flows are updated accordingly: Fk = Fk+λdk,∀k ∈ K+
p .

For this particular algorithm, it is not obvious how the Hessian matrix can be approx-

imated. A first idea that comes to mind is to apply the same approach as for GP Newton

or GP2, namely by considering only two paths at a time. However, it is not clear how to
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choose these two paths (in GP Newton flow is always shifted from non-shortest paths to the

shortest path). Therefore, scaled direction of descent is not implemented in our study for

PG.

4.2.4. Improved Social Pressure

The ISP algorithm is based on the idea of “social pressure” which is defined as the

difference between the cost of a path and the cost of the shortest path [31]. All the paths

are divided into two groups P p ⊂ K+
p ,∀p ∈ Z (paths with cost less than or equal to some

value π) and Pp ⊂ K+
p ,∀p ∈ Z (paths with cost greater than π) such that P p ∪ Pp = K+

p .

The value of π is determined at each iteration as π = Cs + δ · (Cl−Cs), where Cs and Cl are

the costs of the current shortest and longest paths, δ is a predefined constant that was set

to 0.15 as suggested in Kumar and Peeta [31]. Flow is shifted from the paths belonging to

set Pp to the paths belonging to set P p. This is equivalent to defining a direction of descent

d and moving the solution along this direction. Direction d is:

dk = Cs − Ck,∀k ∈ Pp,
dl =

−∑
k∈Pp

dk

sl(Fl)·
∑

m∈Pp

1
sm(Fm)

,∀l ∈ P p,
(10)

where sm(Fm) is the first derivative of the cost function of path m with respect to path flow,

sm(Fm) =
∑

a∈m
∂ca(fa)
∂fa

. The step size λ is calculated as presented in Section 4.4.2 and path

flows are updated according to Fk = Fk + λdk,∀k ∈ K+
p .

ISP scales some elements of the direction of descent by a scaling factor based on second

derivative information. Such an approach can be viewed as an approximation of the Hessian.

Applying a non-scaled direction of descent to PG makes this algorithm equivalent to

GP1 (the non-scaled part of the direction of descent in equation (10) is the same as in

equation (8) of GP1) and, hence, is not implemented in our study.

4.3. Bush-based Algorithms

Bush-based algorithms exploit the O-D pair separability of the TA problem. But instead

of decomposing the problem into sub-problems corresponding to each O-D pair, algorithms

of this type decompose the problem into sub-problems corresponding to each origin. At each
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iteration, flows are moved within a special data structure called bush. As presented in Nie

[32], a bush is a directed sub-network of the original network G(N,A), rooted at a given

origin o. Every bush is

1. Connected, i.e. using only links in the bush, it is possible to reach every node that is

reachable in the original network;

2. Acyclic, i.e. the bush does not contain directed cycles.

We denote a bush by Bo(Ao, N) ⊂ G(A,N), where Ao ⊂ A. Let O ⊆ N denote the

set of origins. Then, in each iteration, only one bush Bo(Ao, N) is considered. The so-

lution variables are represented by origin flows f oa , which denotes the flow on link a of

the bush Bo(Ao, N) [35]. The current link-based solution f is the sum of |O| link flows of

Bo(Ao, N),∀o ∈ O, i.e. fa =
∑

o∈O f
o
a ,∀a ∈ A.

The decomposition with respect to origins is equivalent to solving the TA problem by

sequentially solving several single commodity problems as in the case of decomposition by

O-D pairs. However, the difference consists in the sub-problem formulation: path-based

approaches use a path flow formulation defined for each O-D pair, bush-based methods use

a link flow formulation defined for each origin. Link flow formulations do not use path

flow variables in the constraint set. Several such formulations based on different decision

variables exist, see [14, 32, 35].

Decomposition of the traffic assignment problem by origin is possible due to the acyclicity

of user equilibrium: for the single origin formulation (when the problem is restricted to flows

coming from a given origin) of the traffic assignment problem, links that have positive flow

at user equilibrium never form a directed cycle [32]. This property gives several advantages

from a practical point of view since different operations such as shortest path calculations

can be performed more efficiently on acyclic structures (such as bushes) than on general

networks [32]. This is possible due to existence of topological orders in directed acyclic

graphs. A topological order is a labelling of each node of an acyclic graph with a number

between 1 and |N | such that every link connects a node of lower topological order to a node

of higher topological order [46].
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Initialise: Generate feasible bushes B0
o ,∀o ∈ O;

Set iteration counter i = 1;

While (convergence criterion is not met)

For (each origin o ∈ O)

If (links were removed from bush Bi−1
o )

Create topological order for bush Bi
o;

Build min- and max-trees for bush Bi
o;

Improve bush Bi
o;

If (bush Bi
o was improved)

Create topological order for bush Bi
o;

Build min- and max-trees for bush Bi
o;

Equilibrate bush Bi
o;

Project origin flows on links and

update corresponding link costs;

Remove unused links from bush Bi
o;

Increment iteration counter i → i + 1;

B: shift flow from longest path to

shortest path within current bush

LUCE: shift flow within current bush

by solving quadratic sub-problem

Figure 3: Framework for bush-based algorithms

All algorithms that decompose the TA problem by origins share a general framework

presented in Figure 3. Each bush Bo(Ao, N) is usually initialised with a shortest path tree

rooted at origin o and the link flows are initialised by AON assignment.

As in the case of path-based methods, bushes are constructed iteratively by adding

promising links and removing unused ones. The links that carry zero flow are dropped if

the connectivity of the bush is retained. The addition of new links must be performed with

care in such a way that directed cycles are not created. The reader is referred to Nie [32]

for a detailed explanation of this algorithmic step.

4.3.1. Algorithm B

Algorithm B was introduced by Dial [35]. Its main idea is similar to PE (see Sec-

tion 4.2.1), i.e. the flow is shifted from the longest used path to the shortest path, but

within a given bush. Instead of considering paths from a given origin explicitly, for every

node j of the current bush (considered in descending topological order) the algorithm builds

two segments of paths: one segment belongs to the shortest path ending at node j and the

other one belongs to the longest path with flow also ending at node j (if such a segment

exists). Both segments do not share links and start at the same node. Once the segments
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are built, flow is moved from the segment with higher cost to the segment with lower cost.

As in the case of PE, in order to find the amount of flow to move several approaches can be

implemented, i.e. feasible direction with a line search and Newton step.

4.3.2. Linear User Cost Equilibrium Algorithm

This algorithm was proposed by Gentile [8]. It decomposes the problem by destinations.

We reformulated it as an origin-based approach in order to use the same framework as for

other bush-based algorithms. The main idea of this method is to seek at every node the

equilibrium flow coming from the same origin among the in-coming links of this node. LUCE

uses flow portions φij,∀(i, j) ∈ Ao as solution variables. Let ηj denote the total amount of

flow coming to node j from a given origin, then φij is a portion of flow on every link coming

into node j.

The descent direction of LUCE is obtained by solving a quadratic programming sub-

problem presented in [8]. Unlike algorithm B, this sub-problem is based on flow portions

φij. This raises certain difficulties related to the fact that the second order derivative of

the objective function with respect to φij is not available in closed form [47]. The practical

implications of this are discussed in Xie et al. [47] and in Section 5.2.3. Once the direction of

descent is calculated, a line search is used in order to determine the appropriate flow shift.

4.3.3. TAPAS

This algorithm was developed by Bar-Gera [37]. As mentioned earlier, this method

cannot be strictly classified as a bush-based approach since its structure is different from

other bush-based techniques. However, we classify it as bush-based because it uses origin

flows as solution variables. The TAPAS framework is presented in Figure 4.

The algorithm uses paired alternative segments (PAS). A paired alternative segment

contains two path segments that do not share links and have the same first and last nodes.

A PAS is not related to any particular O-D pair or origin, but it can be the part of paths

belonging to different O-D pairs. In fact, each PAS has a set of origins associated with it.

TAPAS consists of two routines. First, it loops through all origins (during this stage new

PASs are created and flow shifts are performed). Second, it loops through all PASs (during
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Initialise: Generate feasible bushes B0
o ,∀o ∈ O;

Set iteration counter i = 1;

While (convergence criterion is not met)

For (each origin o ∈ O)

Remove cyclic flows from Bi
o

Find tree of least cost paths

For (every link a used by origin o which is not part of the least cost tree)

Either create a new PAS or add origin o to existing PAS

For (every active PAS)

Shift flow within PAS to equilibrate costs

For (every active PAS)

Check if PAS must be deleted

Perform flow shifts to equilibrate costs
Increment iteration counter i → i + 1;

Figure 4: Framework for TAPAS

this stage flows are shifted within the PASs and inactive PASs are removed).

Flow is shifted within each PAS from the higher cost segment to the lower cost one.

This flow shift is similar to the one in PE and algorithm B and the same approaches can be

applied in order to do this (feasible direction with a line search or Newton step). In addition,

each PAS has a set of relevant origins, which means that when a flow shift within a given

PAS is performed, origin flows of relevant origins must be updated (for details see [37]).

It is not necessary to keep bushes acyclic in the way it is usually done in bush-based

approaches. Cyclic flows are directly removed from each bush if they occur (in case of

algorithm B or LUCE links that can create directed cycles are never added to the bush).

This is done by applying a topological sorting algorithm to links of a given bush that carry

positive flow. Then cyclic flow is removed along each identified cycle.

TAPAS seems to be similar to algorithm B because it also moves flows between path

segments. However, unlike algorithm B, one flow move in TAPAS usually involves changes

of origin flows of several origins.

It must be noted that we didn’t implement the iterations of maintaining the condition

of path flow proportionality because we didn’t need unique path flows which are guaran-

teed to be found if this condition is applied. Our implementation is not randomised as

proposed in the paper of Bar-Gera [37] in order to avoid running TAPAS several times for
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our computational experiments.

4.4. Solving Sub-problems

This section presents different methods that were implemented in our study for solving

sub-problems that arise in the TA algorithms outlined in Sections 4.1-4.3.

4.4.1. Shortest Path

Each TA method requires solving shortest path problems many times. Link-based ap-

proaches need a single-source shortest path algorithm for general graphs. The same type of

shortest path algorithm is also required for the relative gap calculation. For this purpose,

we implemented the label correcting algorithm presented in Sheffi [6].

Path-based approaches, on the other hand, require a point-to-point shortest path method

since at each iteration only one O-D pair is considered. As discussed in Section 4.2, before

shifting flows between paths of a particular O-D pair, we check if the set of active paths

contains a path with smaller cost than the current shortest path. For this, we used the A*

algorithm3, see Goldberg et al. [48].

Alternatively, instead of calculating the shortest path between each O-D pair before

performing a flow move, we can calculate shortest paths from a given origin to all other

nodes and use this shortest path tree in further calculations, as suggested in Chen and

Jayakrishnan [30]. Once all O-D pairs coming from one origin are considered, a new shortest

path tree is calculated for the next origin. Thus, the same shortest path tree is used for

all O-D pairs coming from one origin, but the link travel times are updated after each flow

move. The advantage of this approach is a smaller number of shortest path calculations: |O|
one-source shortest path calculations (where |O| is the total number of origins) compared to

|Z| point-to-point shortest path calculations (where |Z| is the total number of O-D pairs).

However, this approach might lead to an increase of the total number of iterations required

by a path-based algorithm since the information about new shortest paths is available only

3An implementation of the A* algorithm was kindly provided by Boshen Chen.
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when the algorithm proceeds to the next origin. We did not implement this particular

shortest path strategy in our study. It is subject of our future research.

For bush-based methods we implemented the shortest path algorithm for directed acyclic

graphs that uses topological order, see Dasgupta et al. [46].

4.4.2. Line Search

This section discusses how to find a step size that can be used to move a current solution

along a given direction of descent. We denote by y = (y1, ..., y|A|) the direction of descent

defined in terms of link flows. Determining step size λ is equivalent to solving the following

optimisation problem [10]:

V (λ) = min
∑

a∈A

fa+λya∫
0

ca(x)dx

s.t. 0 ≤ λ ≤ λub,

(11)

where fa is the current flow of link a and λub is an upper bound on the step size that ensures

that the new solution will remain feasible.

For link-based approaches and LUCE, the direction of descent is already defined in terms

of link flows and can be directly used as y. For path- and other bush-based methods, the

direction of descent must be projected onto links: y = ∆d where ∆ is a matrix with elements

δka such that δka is equal to one if link a belongs to path k and zero otherwise.

The value of λub depends on the direction of descent. It is equal to one if the direction of

descent cannot cause the solution to become infeasible (link-based methods and LUCE). If

the solution can become infeasible, the upper bound is derived from feasibility constraints:

λub = mink

{
−Fmax

k

dk
|dk < 0

}
where Fmax

k is a maximum feasible flow shift (it might be path

or origin flow depending on the algorithm) [12, 45].

Problem (11) is a one-dimensional optimisation problem. It can be solved in one of the

following ways:

1. Exactly: find a value of λ that minimises the objective function in (11), for example,

by using bisection, see [6];
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2. Approximately: find the value of λ that does not necessarily minimise the objective

function in (11), but guarantees the decrease of the objective function value after

applying this step size. For example, one of the following approaches can be applied:

(a) Armijo-like rule: determine the largest step λ = βk for any non-negative inte-

ger k, such that the directional derivative of the objective function V (λ) (see

mathematical programme (11))

∂V (λ)

∂λ
= c (f + λy)T · y, (12)

is negative [8]. The decrement β in our study was set to 2 as proposed in [8].

(b) Quadratic approximation: the objective function along the direction of descent is

approximated by a quadratic function and minimised using the analytic solution,

i.e. λ = min
{
λub, 1/

(
1− ∂V (λub)/∂λ

∂V (0)/∂λ

)}
, see [8, 45].

In our study, we implement bisection, the Armijo-like rule and quadratic approxima-

tion. The impact of different line search strategies on the performance of TA algorithms is

discussed in Section 5.2.1.

4.4.3. Newton Step

This section presents how to calculate a flow shift between two paths in order to equalise

their costs using the Newton method.

Let l denote a path from which the amount of flow ∆F will be shifted to a path s. If

Cl(∆F ) and Cs(∆F ) are the costs of path l and s, respectively, after the flow shift, then

one has to solve the non-linear equation

Cl(∆F )− Cs(∆F ) = 0, (13)

with respect to flow shift ∆F . After applying the Newton method to equation (13), the

appropriate flow shift is

∆F =
Cl − Cs∑
a∈A′

∂ca
∂fa

, (14)
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where A′ is the set of links that belong to path l and path s without links common to both

these paths. It must be noted that flow shift ∆F might be infeasible causing Fl to become

negative. That is why projection onto the feasible set is required:

Fl = Fl −min{Fl,∆F},
Fs = Fs + min{Fl,∆F}.

(15)

A Newton step can be applied iteratively to the two paths under consideration until the

desired precision is reached. However, it is usually applied only once [47] and we follow this

convention.

4.4.4. Equilibration Strategies

Path- and bush-based algorithms iterate between improving an element of decomposition

(add better paths to a set of active paths, add better links to a bush, create new PASs)

and equilibrating it. This set of steps can be performed once for each of the decomposition

elements or several times before proceeding to the next one. In the following, the strategy

of improving and equilibrating each element only once will be called Equilibration I and

the strategy of improving and equilibrating a current element several times will be called

Equilibration II. These approaches are also presented in the literature [32, 49].

In order to implement Equilibration II we must decide how many iterations of improving

and equilibrating should be applied to a given decomposition element before proceeding to

the next one. We propose to switch to a new element if the current decomposition element

is equilibrated to some desired precision. We also limit the maximum number of these

iterations to ten in order to have more control over the total running time of the algorithms.

Equilibration I and II are studied in Section 5.2.2.

4.5. Difficulties of Comparison of Groups of Algorithms

As can be seen from Sections 4.1-4.3, the algorithms that belong to the same group of

methods (link-, path- and bush-based) share the same framework and differ only slightly.

This allows fair comparison between the algorithms from the same group. However, the
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methods belonging to different groups require special algorithms specific only to that par-

ticular group. This might lead to difficulties when comparing groups of algorithms even

though they use the same code as much as possible. For example, all path-based methods

implement A* to solve point-to-point shortest path problems. However, there might exist

more efficient algorithms for this purpose that might lead to a better performance of the

entire group of path-based methods. Moreover, special implementation techniques might

further improve the performance of some groups of algorithms or particular algorithms (for

example, “thread following” used to update shortest paths [50], flow update schemes for

FW [51], multi-threaded implementations [39], etc). Therefore, the comparison of groups of

algorithms should be considered with care as it possibly depends on particular implementa-

tions.

5. Computational Study

5.1. Problem Instances and Computational Environment

We performed computational tests on the instances available at the web-site http://

www.bgu.ac.il/~bargera/tntp/. The main characteristics of these instances are presented

in Table 3. The first five instances are of small to medium size, whereas the last three

instances are large and are used in a separate numerical test (see Section 5.2.4).

All instances use BPR link cost functions of the form

ca(fa) = freeF low ·
(

1 +B ·
(

fa
capacity

)power)
,

where freeF low,B, capacity and power are function parameters.

All algorithms were implemented in the C++ programming language in terms of the

framework presented in Section 4 that ensures the usage of common code wherever possible.

We used the compiler g++ 4.7.3 (Ubuntu/Linaro 4.7.3-1ubuntu1) with optimisation option

-O3.

All algorithms were implemented with different options. For line search we implemented

bisection, Armijo-rule and quadratic approximation; for the different algorithms we consid-

ered scaled and non-scaled directions of descent whenever possible (see Section 4). For all
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Table 3: Problem instances

Instance name # of nodes # of links # of zones # of O-D pairs Class

Sioux Falls 24 76 24 528 small

Anaheim 416 914 38 1406 small

Barcelona 930 2522 110 7922 medium

Winnipeg 1040 2836 147 4344 medium

Chicago Sketch 933 2950 387 93135 medium

PRISM 14639 33937 898 470805 large

Philadelphia 13389 40003 1525 1149795 large

Chicago Regional 12982 39018 1790 2296227 large

algorithms we used extended floating point precision (C++ long double type). All tests on

small and medium instances were performed under the environment OS – Ubuntu Release

13.10 64-bit; CPU – Intel Core i5-2500 CPU, 4 Core, 3.30GHz; RAM – 7.7 GB. All tests on

large instances were performed under the environment OS – Ubuntu Release 12.10 64-bit;

CPU – Intel Core i5-3570 CPU, 4 Core, 3.40GHz; RAM – 15.6 GB.

5.2. Results

We use the relative gap RGAP (see equation (3)) as a convergence criterion because it

is a common measure of convergence (see [10, 32, 35, 39]), and it can be calculated for all

tested algorithms.

We decided to perform several numerical tests. Since tests on large instances might

require long computational time, we first performed tests on small and medium instances

with different configuration options for all algorithms. Based on the results of these tests,

we chose the best configuration options for each algorithm and eliminated methods that do

not seem promising and performed numerical tests on large instances with the remaining

algorithms.
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It must be noted that not all algorithms can find highly accurate solutions in a reasonable

amount of time. Because of this we developed several tests in order to choose the best options

for every algorithm.

1. Test 1: For this test, we chose the algorithms that can achieve high precision (PE,

GP, ISP, B, TAPAS) and examined Equilibration I strategy. The required accuracy

of the solution was set to ε = 10−14, i.e. the algorithms were stopped after the relative

gap was less than ε.

2. Test 2: In this test, we investigated the impact of Equilibration II on the algorithms

from Test 1. Again, high precision of ε = 10−14 was used.

3. Test 3: This test is devoted to all remaining algorithms that cannot achieve high

precision (FW, CFW, BFW, PG, LUCE) in a reasonable amount of time. A time

limit was used in addition to the stopping condition based on the relative gap.

Finally, Test 4 is devoted to large instances. Only the best algorithms with the best options

were considered and a time limit was used as an additional stopping criterion.

5.2.1. Test 1: High Precision

Test 1 was performed on the five small and medium instances listed in Table 3. We tested

the following algorithms with Equilibration I and high precision of 10−14 of relative gap: PE,

GP, ISP, B and TAPAS with various options for line search and direction of descent.

Figures 5 and 6 show CPU time in seconds for different instances where algorithms are

grouped in different ways. In Figure 5 all algorithms are grouped according to the way the

step size is calculated: Armijo rule, bisection, quadratic approximation and other methods

that do not use a line search (this category includes all methods that implement Newton

step and GP Newton). In Figure 6, all configurations are grouped according to a particular

algorithm. However, GP Newton is not considered because it shows the worst performance

compared to the other approaches. The time reported in Figures 5 and 6 is pure iteration

time – the time needed to perform the iterations of an algorithm, but it does not include

any output operations or convergence check. For all the algorithms the time needed for
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object creation, output operations and convergence check is negligible compared to the pure

iteration time. Because of this all conclusions are derived based only on pure iteration time.

After analysing different configurations of the algorithms we can conclude that for PE

the best option is Newton step, for GP1 and GP2 it is quadratic approximation, for ISP

– quadratic approximation, for algorithm B – Newton step, for TAPAS – Newton step.

This observation regarding different configurations of the algorithms shows that if a line

search is applied, it is better to approximate the step size using quadratic approximation.

However, applying a Newton step is preferable to a line search, if it is possible. All path-

based algorithms except GP Newton show similar performance with the exception of the

Barcelona instance, where PE is a better choice. GP Newton depends on an algorithm-

specific constant that influences its performance and convergence [30]. In our study, this

constant was set to a small enough value in order to achieve convergence for all instances.

As a result of this choice, this particular configuration does not always perform well, but

converges for all instances. A different choice of this constant for different instances can lead

to better performance of GP Newton for those instances. In general, path-based algorithms

are outperformed by bush-based algorithms represented by algorithm B and TAPAS. Overall,

TAPAS with Newton step shows the best performance.

Considering only total running times needed for the algorithms to reach the required

precision is not sufficient for the algorithm comparison since the convergence behaviour

cannot be seen. Figures 7-10 show the convergence of the algorithms on three selected

instances with the best options identified in Figures 5 and 6 (other figures of convergence

behaviour can be obtained by request). CPU times reported on theses figures consider only

pure iteration time.

Let us analyse convergence patterns. On all instances, the algorithms converge fast to

the level of relative gap around 10−6 and slow down after this point. TAPAS is an exception

to this observation. Usually TAPAS requires more time during the first iterations compared

to other algorithms and then converges faster. Initial iterations of TAPAS take more time

because many PASs are created at this stage. For example, consider the Winnipeg instance.

After the first iteration of TAPAS with Newton step 1288 new PASs were created, but after
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the 4th only 183 new PASs were created.

Several instances show specific convergence patterns. For example, on the Anaheim

instance (Figure 7), the majority of algorithms “stall” with the value of relative gap around

10−7 and after some time they suddenly improve performance significantly. Plateaus like

this can be seen on other instances. However, they usually do not last for as long as for

the Anaheim instance. After analysing in more detail what happens, we conclude that the

situation is similar to “extreme coupling” discussed in Bar-Gera [37]. In this case, only small

amounts of flow are moved between several paths and the algorithm does not significantly

improve the current solution until a sufficient amount of flow has been shifted. An example

can be found in Bar-Gera [37].

On the Winnipeg and Barcelona instances (Figure 8) many algorithms show zigzag pat-

terns when the value of relative gap is lower than 10−6. These two instances use high powers

in the BPR functions (for Barcelona power ∈ [0, 16.83], for Winnipeg power ∈ [0, 6.8677])

compared to the other instances where power is bounded by 4. As pointed out in Spiess

[52], the use of high powers in BPR functions is not recommended for two reasons.

1. During initial iterations of traffic assignment algorithms, many links can have high

values of the ratio fa
capacity

. If the parameter power is also high, this might lead to

numerical problems like overflow and loss of precision;

2. In the situation when the ratio fa
capacity

is small, high values of power might cause the

BPR function to become numerically not strictly increasing, i.e. it will return the same

value for different link flows.

We investigated in detail algorithm GP1 with quadratic approximation on the Barcelona

instance. In fact, if we change the tolerance of the direction of descent from 10−15 to 10−14

(it means that only 14 digits of the direction of descent are considered significant), the al-

gorithm converges within 16 seconds compared to 48 seconds as demonstrated in Figure 9.

This fact means that the magnitude of error accumulated in the calculation of the direction

of descent is more than 10−15. This leads to an interesting conclusion that when high accu-

racy is required, the algorithms must be used with caution. In general, it is impossible to
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know the magnitude of error beforehand and adjust the algorithm accordingly. Long times

of reaching a highly precise solution might be related to rounding errors and not to the per-

formance of algorithms. However, some algorithms are more stable in terms of accumulated

numerical errors than the others. This issue is discussed in Section 5.2.3.

Bottom line:

1. All path-based algorithms show similar performance;

2. Algorithm B and TAPAS outperform path-based methods;

3. Overall TAPAS shows better performance than other approaches;

4. In the case of a line search, it is preferable to apply quadratic approximation, however,

if Newton step is applicable it is preferable;

5. When a highly precise solution is required, the algorithms might experience instability

because of the errors accumulated during computation.
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Figure 5: Test 1. CPU time, s.
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Figure 7: Test 1. Convergence on the Anaheim instance.
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Figure 8: Test 1. Convergence on the Barcelona instance.
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Figure 10: Test 1. Convergence on the Chicago Sketch instance.
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Figure 11: Test 2. % of increase of CPU time compared to Equilibration I.

5.2.2. Test 2: Equilibration II

This numerical test investigates the impact of Equilibration II (several steps of improving

and equilibrating are applied to the element of decomposition under consideration before

proceeding to the next one). This strategy was applied to the same algorithms as in Test 1.

Figure 11 shows the percentage increase of CPU time when applying Equilibration II

compared to Equilibration I:

TimeIncEqII =
TimeEqII · 100%

TimeEqI
, (16)

where TimeEqI and TimeEqII represent CPU time (s) when Equilibration I and II are ap-

plied, respectively, on the Barcelona and ChicagoSketch instances (other figures can be

provided on request). In general, Equilibration II leads to a significant increase of compu-

tational time with only a few exceptions: GP Newton performs better on all instances and

the majority of algorithms perform better on the Barcelona instance with Equilibration II.

Figure 12 presents convergence of the algorithms on the Barcelona instances. We observe

that convergence patterns are much “smoother” compared to Equilibration I (Figure 8). This

is due to the fact that each element of decomposition is closer to an equilibrium since instead
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of just one equilibration step several steps are applied to a given element of decomposition

before proceeding to the next one. This has a positive impact on relative gap since one

iteration involves more flow shifts compared to Equilibration I. However, all other results of

testing Equilibration II (Figure 11) show that this strategy requires more time in order to

reach the required precision.

It seems that Equilibration II is more stable to numerical errors. It can be seen from the

Barcelona instance (Figure 12) that algorithm GP1 with quadratic approximation performs

much better than with Equilibration I (Figure 8). This might be due to the fact that when

one element of decomposition is first equilibrated to a given precision before proceeding

to the next one, there is less chance that accumulated error will be put on this particular

element from another one.

Bottom line:

1. Equilibration II takes more time in order to solve the problem to high precision, but

it shows a smoother convergence pattern and is less prone to numerical errors.
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Figure 12: Test 2. Convergence on the Barcelona instance.
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5.2.3. Test 3: Time Limit

This numerical test considers the algorithms FW, CFW, BFW, PG and LUCE. These

methods were not able to achieve the required high precision of relative gap of 10−14 in

a reasonable amount of time. Therefore, a time limit was used as an additional stopping

criterion. For each instance, the time limit was fixed as follows: we chose the longest time

needed for the algorithms from Test 1 and 2 to converge on a given instance and multiplied

it by three.
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Figure 13: Test 3. Convergence on the Winnipeg instance.

Figure 13 shows the convergence patterns of the algorithms on the Winnipeg instance

(similar convergence patterns occur on other instances). Among all link-based approaches,

BFW always demonstrates the best performance. Quadratic approximation seems to be the

best line search strategy. However, when the algorithm starts tailing, it is difficult to say

which line search performs better.

FW shows a zigzag pattern when the level of relative gap reaches 10−5. This happens

because the search direction is perpendicular to the gradient of the objective function when

38



the algorithm approaches the equilibrium solution [13, 20, 29]. As mentioned in Bertsekas

[41], when the constraint set is polyhedral, as is the case with TA, FW might converge

sub-linearly. It seems that the conjugate versions of FW suffer from the same problems

even though in general they are able to achieve a higher level of precision. This might be

partially explained by the effect of loss of conjugacy when the method “jams” after several

iterations [41].

LUCE converges fast in the beginning. However, it does not improve the solution when

the value of relative gap approaches 10−10 to 10−12 (the value is instance-dependant). Similar

behaviour of this algorithm is discussed in Inoue and Maruyama [9] and in more detail in Xie

et al. [47].

As explained in Xie et al. [47], the convergence issues of LUCE are related to the calcula-

tion of the direction of descent. Xie et al. [47] compared LUCE and OBA which are similar

bush-based methods. The only difference consists in the way a quadratic sub-problem is

solved and how line search is applied. Xie et al. [47] report that OBA is able to reach high

precision whereas LUCE does not improve the solution after a certain level of relative gap

is reached. OBA applies an approach similar to GP (however, it is applied to a link-based

formulation, not to a path-based one as is the case for GP), whereas LUCE applies a greedy

algorithm that uses average costs. Xie et al. [47] explain that the quadratic sub-problem

itself is just an approximation (the closed form second order derivatives are unknown for

the formulation of TA used in OBA and LUCE). As a result, the second order derivatives

contain errors. OBA manages to “correct” its direction of descent by directly embedding a

line search into the calculation of the direction of descent. LUCE, however, does not correct

its direction of descent which causes the issues with convergence. Xie et al. [47] do not find

a way to address this particular problem for LUCE.

As can be seen from Figure 13, the line of convergence of PG stops before reaching the

time limit. This happens because this algorithm demonstrates unstable behaviour when the

required precision is high. In particular, the problem becomes infeasible (flow conservation

constraints are not satisfied) when the relative gap approaches 10−7. We examined in more

detail what causes such behaviour.

39



13 24

21

23

22 15

Figure 14: Example network.

Let us consider a small example presented in Figure 14 that is part of the Sioux Falls

instance. We consider O-D pair 13-15. After several iterations two paths were identified and

equilibrated to a certain precision: path l contains links a[13,24], a[24,21], a[21,22] and a[22,15] and

path s contains links a[13,24], a[24,23], a[23,22] and a[22,15]. The cost difference of these paths is

Cl − Cs = 43.708039514 · 10−15. This cost difference seems to be insignificant. However, in

order to achieve precision of 10−14 we must take small path cost differences into account. If

we now calculate the average path cost of these two paths and calculate the corresponding

direction of descent, we will get: dl = −2.35575448 · 10−15, ds = 2.352285033 · 10−15. In

the case of two paths, the following must hold dl + ds = 0. However, because of rounding

errors we have that dl + ds = −3.469446952 · 10−18 6= 0. It seems that the error is too

small and cannot impact the computation. However, the next step of the algorithm is to

multiply the direction of descent by a step size that might be a large number. For this

example the step size is λ = 3.065555135 ·1015. As a result, the error is multiplied by a large

step size and some amount of flow is lost. In our example the flow conservation constraint

is Fl + λ · Fl + Fs + λ · Fs = 699.9893642 6= 700 where 700 is the demand of O-D pair

13-15. Hence, the amount of flow lost is 0.010635. This loss is actually significant and it is

accumulated more during subsequent iterations.

Such a situation is more likely to occur when a high level of accuracy is required. When

the algorithm is close to the equilibrium solution, the difference between path costs is very

small. Thus, when the two similar numbers are subtracted in order to find a direction of

descent, the precision is lost. This effect is called cancellation [53]. It seems that small path

cost differences must be simply avoided. However, as mentioned earlier, small path cost

differences must be taken into account in order to achieve a highly precise solution. For
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example, for the Sioux Falls instance, if we consider only the differences of order larger than

10−13, infeasibility still occurs. However, if we increase this value to 10−12, the algorithm is

not able to reach a relative gap lower than 10−11. This means that other techniques must

be applied in order to solve this issue.

The natural question is why this situation does not occur for other path-based algorithms

that we tested. In fact, they all “correct” their directions of descent which are constructed

in such a way that the sum over all elements of the direction of descent is equal to zero or

is a subnormal number4. In particular, we have that

1. PE: dl = Cl − Cs and ds = −dl, hence dl + ds = 0;

2. GP: all elements of the direction of descent are calculated in a certain way (see Sec-

tion 4.2.2), but then the element corresponding to the current shortest path is corrected

as follows ds = −∑k∈K+
p ,k 6=s dk. Therefore, the sum over all elements of the direction

of descent is zero;

3. ISP: the elements of the direction of descent with cheaper costs are corrected as pre-

sented in equation (10). The sum over all elements of the direction of descent is a

subnormal number less than 10−30 which is sufficient to eliminate the error when it is

multiplied by a large step size.

It might seem that the convergence issues of LUCE are similar to those of PG. However,

this is not the case. LUCE does not have a mechanism to correct its direction of descent

in a similar way as PE, GP or ISP do. But for LUCE the step size is bounded by one. As

a result, insignificant error that occurs during the calculation of the direction of descent is

not multiplied by a large number and propagated further. However, the straight-forward

implementation of LUCE that does not take into account accumulation of the error might

also face the same problem that happens in PG when flow conservation constraints are not

satisfied. Since the step size is bounded by one, this situation might occur during later

stages compared to PG. In particular, for PG the solution becomes infeasible when relative

4Subnormal numbers fill the underflow gap around zero in floating-point arithmetic. Any non-zero

number with magnitude smaller than the smallest normal number is subnormal [53].
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gap is around 10−7, for LUCE a quite significant amount of flow of order 10−9 is lost when

relative gap approaches 10−11.

These issues raise a question of numerical stability of the TA algorithms and their ability

to find highly precise solutions. It is important to take into account the situation when the

step size might be a large number causing the increase of rounding errors. The algorithms

that correct their direction of descent are less prone to numerical errors even when the re-

quired precision is high. If the algorithm does not incorporate techniques for maintaining

the number of significant digits of the direction of descent to be high enough, the solution

might become infeasible. The incorporation of such techniques into the PG algorithm is the

subject of our future research.

Bottom line:

1. Link-based algorithms represented by FW, CFW and BFW converge fast during the

initial iterations, but start tailing in the vicinity of the equilibrium and cannot achieve

highly precise solutions in a reasonable amount of time;

2. LUCE can achieve relatively high precision of around 10−12. However, after a certain

level it does not further improve the solution;

3. PG suffers from numerical errors and is not able to achieve highly precise solutions.

5.2.4. Test 4: Large Instances

Test 4 aims to compare the best algorithms on large instances (the three last instances

in Table 3). For this test, we chose the algorithms BFW, GP2, PG, ISP and LUCE with

quadratic approximation, PE, B and TAPAS with Newton step. CFW and FW are not

present in this test since they always perform worse compared to BFW. In addition to

relative gap, a time limit of 24 hours was imposed as a stopping criterion.

Figures 15-17 show convergence patterns of the algorithms on different instances. Let

us examine them in more detail. The PG algorithm stops due to accumulated numerical

error before reaching the time limit as in the case of small and medium instances for the

same reasons discussed in Section 5.2.3. On the PRISM instance, all algorithms except
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BFW and LUCE reach the required level of precision in less than 24 hours. TAPAS followed

by algorithm B demonstrates the best performance as in the case of Test 1 and 2. The

Philadelphia instance, however, shows a different pattern. Only TAPAS and B reach the

required precision. Moreover, B demonstrates the best performance among the algorithms.

LUCE is able to achieve higher precision than any of the path-based approaches. A similar

situation occurs on the Chicago Regional instance with the only exception regarding path-

based algorithms which show worse performance compared to BFW. Results obtained for

the Philadelphia and Chicago Regional instances contradict the results regarding TAPAS

presented in Inoue and Maruyama [9]. The reason of worse performance of TAPAS in our

implementation might be related to the fact that we did not randomise TAPAS and did not

implement the path proportionality condition. As mentioned in Xie et al. [47], management

of PASs complicates design and implementation of TAPAS and might be crucial to its per-

formance. Improvement of this algorithmic step is subject of our future research.

Bottom line:

1. For large instances, TAPAS and algorithm B are usually the best choice if a highly

accurate solution is required;

2. A careful implementation of TAPAS is necessary in order to achieve the best results.

5.3. Summary

This section summarises the main findings from the performed numerical tests. We

conclude that different line search strategies have a significant impact on the performance

of the algorithms. Methods like Newton step and quadratic approximation exploit the

information about link cost function derivatives which enables them to achieve the same

results as bisection or the Armijo-rule can produce, but in less time.

Other key factors that impact the performance of the algorithms are related to numerical

precision issues that play an important role when the required precision is high. In order to

prevent the solution from becoming infeasible, the direction of descent must be corrected in

such a way that a sufficient number of significant digits is maintained.
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Figure 15: Test 4. Convergence on the PRISM instance.
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Figure 16: Test 4. Convergence on the Philadelphia instance.
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Figure 17: Test 4. Convergence on the Chicago Regional instance.

Algorithms similar to LUCE, whose sub-problems are based on a single origin TA formu-

lation with flow portion variables, might not be able to reach high accuracy due to the errors

in second order derivatives. This issue underlines the fact that it is better to apply methods

that are based on exact second derivative information which is the case for all path-based

methods and bush-based methods that shift flows between segments (B and TAPAS).

Bush-based methods usually outperform path- and link-based approaches. LUCE is an

exception to this: sometimes LUCE demonstrates slower convergence compared to path-

based algorithms. One of the main advantages of bush-based approaches is the fact that

all bushes represent directed acyclic graphs. As a result, shortest path calculations can

be performed much faster compared to other methods. An interesting exception to this

fact is TAPAS which does not maintain bushes and requires single-source shortest path

calculations on general directed graphs. In our opinion, the following feature of TAPAS

enables its outstanding performance. For TAPAS, segment costs are directly equalised (not

path cost or segment costs related to a particular bush). First, this enables the algorithm
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to achieve high accuracy. For example, if one considers the segment costs achieved after

applying path-based algorithms, they are not as precisely equalised as in the case of TAPAS

even though they correspond to paths of equal costs. It is a good example of when too much

decomposition is not a good approach because equal path costs do not imply the same level

of precision for path segments that aggregate these paths. Second, one flow move within

a given PAS usually affects several origins. It is definitely a better strategy than making

several separate flow moves for different origins or O-D pairs.

Algorithms also differ in the amount of information generated along with link flows.

Path-based algorithms can provide path flows. However, since they are not unique, such

information might be misleading. TAPAS aims at addressing this difficulty by providing

consistent path flows that satisfy the condition of proportionality. Bush-based methods

can also provide path flow information. However, as in the case of path-based approaches,

additional methods must be applied in order to guarantee the uniqueness of such flows.

Another important feature of the algorithms is the amount of memory required that

varies from low for link-based approaches to medium (bush-based methods) to high (path-

based approaches). Regarding the difficulty of implementation, bush-based methods and

TAPAS in particular require much more time and effort.

6. Conclusion and Future Work

This work starts with a literature overview of existing traffic assignment algorithms,

based on which we selected and implemented the most promising ones. The main aim of our

numerical study is to compare the algorithms under the same computational environment

and in terms of a framework that ensures that common code is used wherever possible.

We implemented and analysed several algorithms belonging to link-, path- and bush-based

methods, namely, FW, CFW, BFW, PE, GP, PG, ISP, B, LUCE and TAPAS.

Based on the performed computational study we can conclude the following. When

choosing what algorithm to implement for solving the TA problem, the level of solution

accuracy must be one of the most important factors to take into account. If the required
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precision is low or medium, simple algorithms represent a better choice. Path-based meth-

ods as well as BFW fall into this category and can achieve medium precision levels in a

reasonable amount of time. For large instances, BFW represents a good trade-off between

memory consumption and solution accuracy. For achieving highly precise solutions, ad-

vanced approaches like algorithm B and TAPAS should be implemented. Both algorithms

show the ability to achieve high accuracy in a reasonable amount of time for instances of

different sizes varying from small to large.

The future development of this research consists in further study of numerical issues

when high accuracy is required. In particular, we want to investigate how the direction of

descent of the PG algorithm can be corrected. It will also be interesting to investigate the

impact of randomization and PAS management strategies on the performance of TAPAS.
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