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We show that the one-particle density matrix ρ can be used to characterize the interaction-driven
many-body localization transition in closed fermionic systems. The natural orbitals (the eigenstates
of ρ) are localized in the many-body localized phase and spread out when one enters the delocalized
phase, while the occupation spectrum (the set of eigenvalues of ρ) reveals the distinctive Fock-space
structure of the many-body eigenstates, exhibiting a Fermi-liquid-like discontinuity in the localized
phase. The associated one-particle occupation entropy is small in the localized phase and large in the
delocalized phase, with diverging fluctuations at the transition. We analyze the inverse participation
ratio of the natural orbitals and find that it is independent of system size in the localized phase.
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Introduction. While the theory of noninteracting dis-
ordered systems is well developed [1, 2], the possibility of
a localization transition in closed interacting systems has
only recently been firmly established [3–23]. This many-
body localization (MBL) transition occurs at finite en-
ergy densities and is not a conventional thermodynamic
transition [24, 25]. Instead, it can be understood as a
dynamical phase transition, associated with the emer-
gence of a complete set of local conserved quantities in
the localized phase, which thus behaves as an integrable
system [26–30]. This restricts the entanglement entropy
of the eigenstates to an area law [31], in contrast to the
volume law predicted by the eigenstate thermalization
hypothesis for the ergodic delocalized phase [32–34]. At
the localization transition, the fluctuations of the entan-
glement entropy diverge [16, 35]. The effects of MBL
are also observed in the dynamics following, for example,
a global quench from a product state, wherein dephas-
ing between the effective degrees of freedom leads to a
characteristic logarithmic growth of the entanglement en-
tropy [6, 10, 12]. These features comprise a much richer
set of signatures than in the context of noninteracting
systems, for which, in the spirit of one-parameter scaling,
the notion of a localization length based on single-particle
wave functions generally suffices [1, 2].

In view of the rich phenomenology of many-body local-
ization it is natural to ask, both from a fundamental point
of view as well as for the interpretation of experimental
data [36, 37], to which extent (if at all) the MBL tran-
sition can be detected and characterized from a single-
particle perspective. Here we show that a rather com-
plete characterization of many-body localization is in-
deed possible based on the eigenvalues (occupations) and
eigenstates (natural orbitals) of the one-particle density
matrix. The one-particle density matrix was originally
introduced by Onsager and Penrose to extend the notion
of a Bose-Einstein condensate to interacting systems [38].

Importantly, the natural orbitals take a Bloch form in
translationally invariant systems, providing a true many-
body generalization of the Bloch theorem [39]. This nat-
urally suggests studying the effect of disorder, as in recent
studies of localization of thermalized hard-core bosons in
a quasi-periodic potential [40, 41]. However, so far no
connection to many-body localization has been made.

We are further motivated to consider the one-particle
density matrix because it naturally focusses on the dy-
namics of one particle in the presence of all the others,
without the need to resort to a mean-field theory or to
sacrifice particle indistinguishability. As we will see, this
perspective retains sufficient information to capture the
genuine many-body aspects that set many-body local-
ization apart from Anderson localization transitions in
noninteracting systems. In particular, the occupations
sharply reorganize themselves from being close to either
zero or one in the localized phase to being in between
these extremal values in the delocalized phase, thus re-
flecting a delocalization transition in Fock space that cor-
responds to a mixing of product states. It follows that
the occupation spectrum develops a Fermi-liquid-like dis-
continuity in the localized phase. Remarkably, the be-
havior of the associated one-particle occupation entropy
is strikingly similar to the entanglement entropy of the
many-body eigenstates: in the delocalized phase it is pro-
portional to the system size, corresponding to a volume
law, while in the localized phase it is small. The dynam-
ics of one particle in the effective bath of the others thus
provides complementary information to the dynamics of
a spatially confined region in the effective bath of its sur-
rounding. In addition, we show that the transition leaves
direct signatures in the natural orbitals, which are local-
ized in the many-body localized phase and spread out
over the system when one enters the delocalized phase.
We show that the inverse participation ratio (IPR) of the
natural orbitals depends on the system size in the delo-
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calized phase, while it is independent of system size in
the localized phase.

Model and method. We consider spinless fermions in
one dimension with a nearest-neighbor repulsion and di-
agonal disorder, described by the Hamiltonian

H = t

L∑
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Here c†i creates a fermion on site i = 1, 2, . . . , L and

ni = c†i ci is the associated number operator. Energies
are expressed in units of the nearest-neighbor hopping
constant t, so that V is a dimensionless measure of the
strength of the nearest-neighbor repulsive interactions.
The diagonal disorder is introduced via a box distribu-
tion of the onsite potentials εi ∈ [−W,W ]. We study
this system using exact diagonalization at finite sizes
L = 10, 12, 14 (105 disorder realizations), L = 16 (103

realizations) and L = 18 (500 realizations), imposing pe-
riodic boundary conditions and fixing the overall occu-
pation at half filling (number of particles N = L/2). We
mainly focus on the energy region around the band cen-
ter, ε = 1 where ε = 2(E − Emin)/(Emax − Emin) with
Emax and Emin the maximum and minimum energy for
each disorder realization, and take the 6 eigenstates clos-
est to this energy. This energy corresponds to infinite
temperature in the thermodynamic limit. At the fixed
interaction strength V = 1, the critical disorder strength
Wc is found to take values in the range between three
and four [7, 8, 42–44].

Given a many-body eigenstate |ψn〉 of the Hamilto-
nian (1), the one-particle density matrix is defined as

ρij = 〈ψn|c†i cj |ψn〉. (2)

The natural orbitals |φα〉 with α = 1, 2, . . . , L, are ob-
tained by diagonalizing ρ,

ρ|φα〉 = nα|φα〉, (3)

which delivers a basis of single-particle states. The
eigenvalues nα are interpreted as occupations, with∑L
α=1 nα = tr ρ = N equal to the total number of par-

ticles in the system. We order the natural orbitals by
descending occupation, n1 ≥ n2 ≥ . . . ≥ nL.
Occupation spectrum. In a noninteracting fermionic

system, barring degeneracies, each many-body eigenstate
|ψn〉 can be written as a Slater determinant of N single-
particle states. The occupations from the one-particle
density matrix are then fixed to nα = 0 or 1, with the
natural orbitals with nα = 1 spanning the space of the
single-particle states used in the Slater determinant. Oc-
cupations departing from nα = 0 or 1 can therefore be
interpreted as a signature of the true many-body nature

FIG. 1. (Color online) (a) The main panel shows the disorder-
averaged occupation of the natural orbitals with index α for
different values of disorder strength (system size L = 16, in-
teraction strength V = 1). The dotted line shows the oc-
cupation in a noninteracting system, which is independent
of the disorder strength. The vertical line indicates the ex-
pected discontinuous behavior of the occupations in the in-
finite system-size limit of the MBL phase. The emergence
of this discontinuity is further illustrated in the inset, which
shows the average occupations 〈nN 〉 and 〈nN+1〉 as a function
of disorder strength, for L = 16 and three values of the inter-
action (V = 0.5, 1, 1.5). (b) Occupation discontinuity ∆n as
a function of disorder strength and energy density (left panel)
or interaction strength (right panel). (c) Distribution of oc-
cupations nα in the delocalized phase (W = 0.4, 0.8), near
the MBL transition (W = 3.0), and deep in the localized
phase (W = 6.0, 8.0), for system size L = 16 and interaction
strength V = 1.

of the eigenstates in the interacting system and, thus,
as a proxy of the delocalization of such states in Fock
space. We expect this Fock-space delocalization to be
pronounced in the metallic phase, while it should be sup-
pressed in the MBL phase [3, 4].

In Fig. 1(a) we show the disorder-averaged occupations
for different values of disorder for L = 16, with 〈.〉 denot-
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ing the disorder average. The horizontal dashed lines rep-
resent the occupations 〈nα〉 = 1 for α ≤ N , 〈nα〉 = 0 for
α > N in the noninteracting limit V = 0, where the sys-
tem is Anderson localized for any finite disorder strength.
The quasi-discontinuous jump ∆n = nN − nN+1 = 1
between these values is indicated by a vertical line.
In the interacting system, deep in the localized phase
(W = 6, 8), half of the natural orbitals remain almost
fully occupied, 〈nα〉 ≈ 1, with the other half being almost
unoccupied, 〈nα〉 ≈ 0. As one decreases the disorder and
approaches the transition (W = 3), more orbitals ac-
quire a finite occupation, while for even smaller disorder,
in the delocalized phase (W = 0.4, 0.8), the occupation
of all orbitals becomes sizeable. For energies in the mid-
dle of the spectrum the occupations approach the mean
filling fraction, 〈nα〉 ≈ N/L = 1/2.

The redistribution of occupations with decreasing dis-
order goes along with a reduction of the step-like be-
havior quantified by ∆n. A more detailed view of this
aspect is provided by the inset of Fig. 1(a), showing the
disorder dependence of the occupations 〈nN 〉, 〈nN+1〉 for
three values of interaction strength V = 0.5, 1.0, 1.5. In
the delocalized phase, both occupations are close to the
mean filling fraction, 〈nα〉 ≈ N/L = 1/2, while deep in
the localized phase they tend to their asymptotic val-
ues 〈nN 〉 = 1, 〈nN+1〉 = 0 [45]. The dependence of
the discontinuity ∆n on energy density, shown in the
left panel of Fig. 1(b), recovers the many-body mobil-
ity edge [3, 16, 44, 46], while at small and large interac-
tion strengths (right panel) the delocalized phase shrinks,
consistent with observations from dynamics in the same
model [43]. According to these results, the occupation
spectrum serves as a reliable indicator of many-body lo-
calization.

One-particle occupation entropy. A well documented
aspect of MBL is the appearance of strong fluctuations
around the localization-delocalization transition [16, 23,
47–49]. In terms of the occupations, this is addressed in
Fig. 1(c), which shows the probability distribution func-
tions P (nα) for different disorder strengths in a semi-
log plot. In the large disorder limit the distribution
is bimodal with peaks at nα = 0, 1, with very little
weight in the central region between these extremal val-
ues. This bimodal distribution is characteristic of the lo-
calized state, in analogy to the noninteracting scenario.
As expected, close to the transition (W = 3) the distri-
bution is wide, with significant weight across the whole
range of occupations. Finally, in the delocalized phase
with low enough disorder the distribution becomes again
narrower, but now is concentrated around the filling frac-
tion N/L = 1/2.

In order to quantify these fluctuations further, we con-
sider the entropy

S = −trρ ln ρ = −
∑
α

nα ln(nα). (4)
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FIG. 2. (Color online) Dependence of the disorder averaged
one-particle occupation entropy 〈S〉, defined in Eq. (4), on
the disorder strength, for different system sizes at interaction
strength V = 1. The dashed lines indicate the maximal value
L
2

ln(2), corresponding to the volume law for the entropy in
a fully delocalized system. In contrast, in the localized phase
the entropy becomes small. Inset: Variance varS of the en-
tropy due to sample-to-sample fluctuations in the disorder
ensemble as a function of disorder strength, for different sys-
tem sizes at interaction strength V = 1. The peak in the
variance indicates the location of the MBL transition.

As this entropy is determined by the occupations of the
natural orbitals we call this the one-particle occupation
entropy, to distinguish it from the entanglement entropy
of the many-body eigenstates. The disorder-averaged en-
tropy 〈S〉 is shown in the main panel of Fig. 2, as a func-
tion of disorder strength for different system sizes. In
the delocalized phase the entropy approaches the max-
imal value L

2 ln 2, indicated by the dashed lines. This
corresponds to a volume law as displayed, in general,
by extensive thermodynamic properties and many-body
eigenstates in ergodic systems. In the localized phase,
the entropy is small. These characteristics of the one-
particle occupation entropy are strikingly similar to the
established phenomenology of the many-body entangle-
ment entropy in the system [16, 31].

In the inset of Fig. 2 we show the variance varS =
〈S2〉 − 〈S〉2 of the entropy as a function of disorder
strength. For the corresponding case of the entanglement
entropy, it is known [16, 31] that the variance vanishes
in the thermodynamic limit (L → ∞) both in the lo-
calized and in the delocalized phase, where in the latter
phase this is consistent with the eigenstate thermaliza-
tion hypothesis. Furthermore, in finite systems, the vari-
ance of the entanglement entropy is sharply peaked in
the crossover regime, which is associated with the mixing
and coexistence of localized and delocalized regions near
the transition, becoming sharper with increasing system
size [16]. This universal behavior of the entanglement
entropy is again mirrored by the one-particle occupation
entropy. The occupation spectrum therefore recovers an-
other reliable signature of the MBL transition, giving
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FIG. 3. (Color online) Evolution of the probability distribu-
tion of the IPR for increasing system size (a) in the delocalized
phase (W = 0.4), (b) close to the transition (W = 3.0), and
(c) deep in the localized phase (W = 8.0). The insets in
(a) and (c) show examples of the natural orbitals. (d) Av-
erage participation ratio 〈1/IPR〉 = ξ of the natural orbitals
as a function of disorder strength. In the localized phase ξ
is independent of the system size, while for small disorder
it saturates at ξ ≈ L/2. Inset: Average participation ratio
as a function of interaction strength V for several values of
disorder strength (L = 16).

quantitative access to the locus of the transition.
Delocalization of natural orbitals. Because of the

emerging degeneracy of the occupations deep in the local-
ized and delocalized phase, one may wonder whether the
natural orbitals themselves display any signatures of the
MBL transition. As we show in the insets of Figs. 3(a)
and (c), the orbitals indeed turn out to be well localized
in the MBL phase, while they are far more extended in
the delocalized phase. The multiply-peaked structure of
the natural orbitals for weak disorder suggests that the
delocalization transition involves the formation of a chain
throughout the system via which the particle can hop
resonantly. Given the complete set of natural orbitals,
a measure of the localization of the occupied states can
then be derived from the inverse participation ratio

IPR =
1

N

L∑
α=1

nα

L∑
i=1

|φα(i)|4. (5)

The IPR is normalized to take the maximal value 1 for
a system in which all occupied states are fully localized,
while it takes the minimal value 1/L when all occupied
states are fully extended. In between these two extremes,
the resonant-hopping picture for the delocalized phase
suggests that the IPR scales inversely with the system
size, while in the localized phase it should be indepen-
dent of system size. These tendencies are confirmed in
the main panels of Figs. 3(a-c), which show, for three
disorder strengths in the delocalized, transitional, and
localized regime, how the probability distribution of the
IPR depends on the system size. In the delocalized phase
(a), the flow with system size is indicative of a 1/L be-
havior, while in the localized phase (c) the distribution
is almost independent of system size, with a peak close
to the maximal value IPR = 1. Close to the transi-
tion (b), the IPR distribution is wide, with no discernible
trend with system size. It is therefore suggestive to intro-
duce the characteristic length ξ = 〈1/IPR〉. Figure 3(d)
shows the disorder-strength-dependence of ξ for different
system sizes. In the localized regime this characteristic
length is independent of system size. With decreasing
disorder strength ξ increases, whereas at very small dis-
order it approaches the value ξ ≈ L/2. While ξ is still
small at the transition in the accessible system sizes, the
orbitals spread out significantly once one enters into the
delocalized phase. Moreover, as shown in the inset of
Fig. 3(d), ξ depends non-monotonically on V : it first
increases as V increases, then takes a maximum at a W -
dependent value and finally decreases again in the large
V -limit. A similar behavior was observed in spectral fluc-
tuations in this model [43]. Our quantity ξ thus captures
the delocalizing effect of interactions, both in the delo-
calized and in the MBL phase.

Summary and outlook. In conclusion, the one-particle
density matrix uncovers essential many-body aspects of
interacting disordered fermions. Our results suggest that
in the thermodynamic limit the one-particle occupation
spectrum is continuous in the delocalized phase but de-
velops a finite discontinuity in the localized phase. The
corresponding occupation entropy shares features with
the many-body entanglement entropy, one of the prin-
cipal vehicles for the theoretical characterization of the
many-body localization transition. The delocalization is
also observed in the structure of the natural orbitals,
which is reflected in a system-size dependent inverse par-
ticipation ratio. These findings support the conceptual
picture that the many-body localization transition in-
volves delocalization both in Fock space and in real space.
Our approach should therefore apply to a broad range of
systems that follow this scenario, which can be further
enriched when the particle number is not conserved. An
interesting and timely application of our work would con-
sist in analyzing the one-particle density matrix for the
system that was experimentally realized in Ref. 37.
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77, 064426 (2008).

[7] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[8] T. C. Berkelbach and D. R. Reichman, Phys. Rev. B 81,

224429 (2010).
[9] C. Monthus and T. Garel, Phys. Rev. B 81, 134202

(2010).
[10] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys.

Rev. Lett. 109, 017202 (2012).
[11] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and

S. L. Sondhi, Phys. Rev. B 88, 014206 (2013).
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