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Abstract

A new exact approach to the stable set problem is presented, which
attempts to avoid the pitfalls of existing approaches based on linear
and semidefinite programming. The method begins by constructing
an ellipsoid that contains the stable set polytope and has the prop-
erty that the upper bound obtained by optimising over it is equal
to the Lovász theta number. This ellipsoid can then be used to con-
struct useful convex relaxations of the stable set problem, which can be
embedded within a branch-and-bound framework. Extensive compu-
tational results are given, which indicate the potential of the approach.

Keywords: combinatorial optimisation, stable set problem, semidefi-
nite programming.

1 Introduction

Given an undirected graph G = (V,E), a stable set is a set of pairwise
non-adjacent vertices. The stable set problem (SSP) calls for a stable set of
maximum cardinality. The cardinality of this stable set is called the stability
number of G and is denoted by α(G).

The SSP is NP-hard [22], hard to approximate [21], and hard to solve
in practice (e.g., [10, 14, 29, 33, 34, 35]). Moreover, it is a remarkable fact
that sophisticated mathematical programming algorithms for the SSP, such
as those in [14, 29, 33, 35], have not performed significantly better than
relatively simple algorithms based on implicit enumeration, such as those in
[10, 34].
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A possible explanation for the failure of mathematical programming ap-
proaches is the following. Linear Programming (LP) relaxations can be
solved reasonably quickly, but tend to yield weak upper bounds. Semidef-
inite Programming (SDP) relaxations, on the other hand, typically yield
much stronger bounds, but take longer to solve. Therefore, branch-and-
bound algorithms based on either LP or SDP relaxations are slow, due to
the large number of nodes in the search tree, or the long time taken to
process each node, respectively.

In this paper we present a potential way out of this impasse. The key
concept is that one can efficiently construct an ellipsoid that contains the
stable set polytope, in such a way that the upper bound obtained by opti-
mising over the ellipsoid is equal to the standard SDP bound, the so-called
Lovász theta number. This ellipsoid can then be used to construct useful
convex programming relaxations of the stable set problem or, perhaps more
interestingly, to derive cutting planes. These cutting planes turn out to be
strong and easy to generate.

We remark that our approach can be applied to the variant of the SSP in
which vertices are weighted, and one seeks a stable set of maximum weight.

The paper is structured as follows. Some relevant literature is reviewed
in Section 2. The ellipsoids are analysed theoretically in Section 3. Section
4 discusses how to use the ellipsoids within exact algorithms for the SSP.
Some computational results are presented in Section 5, and concluding re-
marks are made in Section 6.

Remark: An extended abstract of this paper appeared in the 2011 IPCO
proceedings [16]. In this full version, we explore three different algorithmic
schemes (see Section 4), rather than only one as in [16].

2 Literature Review

We now review the relevant literature. From this point on, n = |V | and
m = |E|.

2.1 Linear programming relaxations

The SSP has the following natural formulation as a 0-1 LP:

max
∑

i∈V xi

s.t. xi + xj ≤ 1 ({i, j} ∈ E) (1)

x ∈ {0, 1}n, (2)

where the variable xi takes the value 1 if and only if vertex i is in the stable
set.
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The convex hull in Rn of feasible solutions to (1)–(2) is called the stable
set polytope and denoted by STAB(G). This polytope has been studied
in great depth (see, e.g., [3, 18, 31]). The most well-known facet-defining
inequalities for STAB(G) are the clique inequalities of Padberg [31]. A clique
in G is a set of pairwise adjacent vertices, and the associated inequalities
take the form: ∑

i∈C
xi ≤ 1 (∀C ∈ C), (3)

where C denotes the set of maximal cliques in G. Note that the clique
inequalities dominate the edge inequalities (1).

The polytope: {
x ∈ Rn+ : (3) hold

}
is denoted by QSTAB(G). The upper bound on α(G) obtained by optimising
over QSTAB(G) is called the fractional clique covering number and denoted
by χ̄f (G). By definition, we have STAB(G) ⊆ QSTAB(G) and α(G) ≤
χ̄f (G). Unfortunately, computing χ̄f (G) is NP-hard, since the separation
problem for clique inequalities is NP-hard [30]. On the other hand, some
fast and effective separation heuristics exist, not only for clique inequalities,
but also for various other inequalities (e.g., [3, 14, 29, 33, 35]). Nevertheless,
LP-based cutting-plane approaches can run into difficulties when n exceeds
250 or so, mainly due to the weakness of the upper bounds.

2.2 Semidefinite programming relaxations

Lovász [25] introduced another upper bound on α(G), called the theta num-
ber and denoted by θ(G), which is based on an SDP relaxation. The bound
can be derived in several different ways, and we follow the derivation pre-
sented in [18]. We start by formulating the SSP as the following non-convex
quadratically-constrained program:

max
∑

i∈V xi (4)

s.t. x2i − xi = 0 (i ∈ V ) (5)

xixj = 0 ({i, j} ∈ E). (6)

In order to linearise the constraints, we introduce an auxiliary matrix vari-
able X = xxT , along with the augmented matrix

Y =

(
1

x

)(
1

x

)T
=

(
1 xT

x X

)
.
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We then note that Y is real, symmetric and positive semidefinite (psd),
which we write as Y � 0. This leads to the following SDP relaxation:

max
∑

i∈V xi (7)

s.t. x = diag(X) (8)

Xij = 0 ({i, j} ∈ E) (9)

Y � 0. (10)

The corresponding upper bound is θ(G). One can compute θ(G) to arbitrary
fixed precision in polynomial time [18].

Lovász [25] proved that α(G) ≤ θ(G) ≤ χ̄f (G). (This is a remarkable
result, given that it is NP-hard to compute χ̄f (G).) In practice, θ(G) is
often a reasonably strong upper bound on α(G) (e.g., [4, 9, 19, 33]). Unfortu-
nately, solving large-scale SDPs can be rather time-consuming, which makes
SDP relaxations somewhat unattractive for use within a branch-and-bound
framework.

The above SDP can be strengthened by adding various valid inequalities
(e.g., [3, 9, 13, 19, 26, 36]). We omit details, for the sake of brevity.

2.3 The Lovász theta body and ellipsoids

The following beautiful result can be found in Grötschel, Lovász & Schrijver
[18]. Let us define the following convex set:

TH(G) =
{
x ∈ Rn : ∃X ∈ Rn×n : (8)− (10) hold

}
.

Then we have:
STAB(G) ⊆ TH(G) ⊆ QSTAB(G).

This provides an alternative proof that α(G) ≤ θ(G) ≤ χ̄f (G).
The set TH(G) is called the theta body. A characterisation of TH(G) in

terms of convex quadratic inequalities was given by Fujie & Tamura [12]. For
a given vector µ ∈ Rm, let M(µ) denote the symmetric matrix with µij/2
in the ith row and jth column whenever {i, j} ∈ E, and zeroes elsewhere.
Then, given vectors λ ∈ Rn and µ ∈ Rm such that Diag(λ) + M(µ) is psd,
the set

E(λ, µ) =
{
x ∈ Rn : xT (Diag(λ) +M(µ))x ≤ λ · x

}
(11)

is an ellipsoid that contains STAB(G). The result we need is the following:

Theorem 1 (Fujie & Tamura, 2002) For any graph G, we have:

TH(G) =
⋂

λ,µ:Diag(λ)+M(µ)�0

E(λ, µ).
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2.4 Relaxations of non-convex quadratic problems

For what follows, we will also need to briefly review Lagrangian and SDP
relaxations of general non-convex quadratic problems. Given a problem of
the form:

inf xTQ0x+ c0 · x
s.t. xTQjx+ cj · x = bj (j = 1, . . . , r) (12)

x ∈ Rn,

Shor [37] proposed to relax the constraints (12) in Lagrangian fashion, us-
ing a vector φ ∈ Rr of Lagrangian multipliers. The Lagrangian objective
function is then:

f(x, φ) = xT

Q0 +
r∑
j=1

φjQ
j

x+

c0 +
r∑
j=1

φjc
j

 · x− r∑
j=1

φjbj ,

and the Lagrangian dual is:

sup
φ

inf
x
f(x, φ).

Shor also introduced the following SDP, which we call the dual SDP:

sup t

s.t.

(
−t− φ · b

(
c0 +

∑r
j=1 φjc

j
)T
/ 2(

c0 +
∑r

j=1 φjc
j
)
/ 2 Q0 +

∑r
j=1 φjQ

j

)
� 0

φ ∈ Rr, t ∈ R.

He showed:

Theorem 2 (Shor [37]) The dual SDP yields the same lower bound as
the Lagrangian dual. Moreover, a vector φ∗ is an optimal solution to the
Lagrangian dual if and only if there exists an optimal solution (φ∗, t∗) to the
dual SDP.

Note that, if such a vector φ∗ exists, then the function f(x, φ∗) is convex,
since the matrix Q0 +

∑r
j=1 φ

∗
jQ

j is psd.
As noted in [11, 32], Shor’s SDP is the dual of the following more natural

SDP relaxation of the original problem, which we call the primal SDP:

inf Q0 •X + c0 · x
s.t. Qj •X + cj · x = bj (j = 1, . . . , r)

Y � 0,
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where Qj • X denotes
∑n

i=1

∑n
k=1Q

j
ikXik. Thus, if either or both of the

primal and dual SDP satisfy Slater’s condition, then the primal SDP yields
the same lower bound as the Lagrangian dual.

In our recent paper [17], these results are applied to the SSP, yielding a
subgradient algorithm that approximates θ(G) from above. Luz & Schrijver
[27] showed that the optimal value of the Lagrangian dual remains equal to
θ(G) even if one forces all of the Lagrangian multipliers for the constraints
(5) to equal 1.

3 On Ellipsoids

From now on, when we say “ellipsoid”, we mean one of the ellipsoids in
the family defined by Fujie & Tamura [12] (see Subsection 2.3). In this
section, we investigate the ellipsoids in more detail. In Subsection 3.1, we
show how to construct ellipsoids that yield strong upper bounds on α(G).
In Subsection 3.2, we consider two other desirable properties for ellipsoids
to have. In Subsection 3.3, we show that, perhaps surprisingly, the best
ellipsoid according to the first criterion can be bad according to the other
two criteria. This analysis is based on a special class of graphs, including
the perfect graphs.

We note in passing that every point x ∈ Rn satisfying (5), (6) also
satisfies at equality the constraint in (11). This implies that every extreme
point of STAB(G) lies on the boundary of every ellipsoid.

3.1 Optimal ellipsoids

Recall that Theorem 1 expresses TH(G) as the intersection of the entire
infinite family of ellipsoids. We will show that there exists at least one
ellipsoid with a very desirable property. First, however, we need the dual of
the SDP (7)–(10), which can be written in the form:

min t (13)

s.t.

(
t −(e+ λ)T /2

−(e+ λ)/2 Diag(λ) +M(µ)

)
� 0 (14)

λ ∈ Rn, µ ∈ Rm, t ∈ R, (15)

where e is the vector of all ones. Here, λ and µ are the vectors of dual
variables for the constraints (8) and (9), respectively. (As before, t is the
dual variable for the constraint Y00 = 1.)

We are now ready to present our main result:
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Theorem 3 There exists at least one optimal solution to the dual SDP
(13)-(15). Moreover, for any such solution (λ∗, µ∗, t∗), we have:

θ(G) = t∗ = max

{∑
i∈V

xi : x ∈ E(λ∗, µ∗)

}
. (16)

Proof. The SDP (7)–(10) has the form specified in Theorem 3.1 of Tunçel
[38], and therefore satisfies the Slater condition. As a result, an optimal
dual solution (λ∗, µ∗, t∗) exists, strong duality holds, and t∗ = θ(G).

Now consider a Lagrangian relaxation of the non-convex quadratic prob-
lem (4)–(6), in which all constraints are relaxed. This relaxation can be
written as:

max

{∑
i∈V

xi − xT (Diag(λ̃) +M(µ̃))x+ λ̃ · x : x ∈ Rn
}
,

where λ̃ ∈ Rn and µ̃ ∈ Rm are the vectors of Lagrangian multipliers for the
constraints (5) and (6), respectively. Applying Theorem 2 in Subsection 2.4,
but switching signs to take into account the fact that the objective (7) is of
maximisation type, an optimal solution to the Lagrangian dual is obtained
by setting λ̃ to λ∗ and µ̃ to µ∗, and the optimal value of the Lagrangian
dual is equal to θ(G). In other words, θ(G) is equal to:

max

{∑
i∈V

xi − xT (Diag(λ∗) +M(µ∗))x+ λ∗ · x : x ∈ Rn
}
. (17)

Moreover, the matrix Diag(λ∗) +M(µ∗) is psd from (14), and therefore the
objective function in (17) is concave.

Now, let us write the relaxation on the right-hand side of (16) as:

max

{∑
i∈V

xi : xT (Diag(λ∗) +M(µ∗))x ≤ λ∗ · x, x ∈ Rn
}
. (18)

We relax this further by moving the (one and only) constraint to the objec-
tive function, with non-negative Lagrangian multiplier φ. The result is:

max

{∑
i∈V

xi + φ
(
−xT (Diag(λ∗) +M(µ∗))x+ λ∗ · x

)
: x ∈ Rn

}
.

Note that this reduces to (17) when φ is 1. Therefore, the upper bound
from (18) must be at least as strong as the one from (17), which as we saw
is equal to θ(G).

To complete the proof, it suffices to show that the optimal value of φ,
which we denote by φ∗, is 1. Suppose that it was not equal to 1. Then we
could obtain an upper bound that is better than θ(G) by taking (17) and
multiplying λ∗ and µ∗ by φ∗. But this contradicts the fact that (λ∗, µ∗) is
an optimal solution to the Lagrangian dual for (4)–(6). �
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In other words, an optimal dual solution to the SDP can be used to
construct a relaxation of the SSP that has a linear objective function and
a single convex quadratic constraint, whose corresponding upper bound is
equal to θ(G). (We remark that a similar proof technique was used in [2]
to reformulate 0-1 quadratic programs. The main difference between their
method and ours, apart from the fact that they apply to different problems,
is that they perturb the objective function, whereas we generate a valid
convex quadratic constraint.)

We say that an ellipsoid E(λ∗, µ∗) is optimal if there exists a t∗ such that
(λ∗, µ∗, t∗) is an optimal solution to the dual of the SDP (or, equivalently,
if (λ∗, µ∗) is an optimal solution to the Lagrangian dual). We illustrate this
concept on three simple examples:

Example 1: Let G be a stable set on n nodes, for which α(G) = θ(G) = n.
The unique optimal dual solution has λ∗i = 1 for all i ∈ V . The correspond-
ing convex quadratic constraint is:∑

i∈V
x2i ≤

∑
i∈V

xi.

This can be written in the alternative form∑
i∈V

(xi − 1/2)2 ≤ n/4.

One then sees that it defines a sphere of radius
√
n/2 centred at (1/2, . . . , 1/2)T .

The maximum value that
∑

i∈V xi can take over this sphere is n, attained
when xi = 1 for all i ∈ V . �

Example 2: Let G be a clique on n nodes, for which α(G) = θ(G) = 1.
The unique optimal dual solution has λ∗i = 1 for all i ∈ V and µ∗e = 2 for
all e ∈ E. The corresponding convex quadratic constraint is:(∑

i∈V
xi

)2

≤
∑
i∈V

xi.

This is equivalent to the linear inequalities 0 ≤
∑

i∈V xi ≤ 1. �

Note that the “ellipsoid” in Example 2 is unbounded. We say more about
this in the next subsection. We close this subsection with a less trivial
example:

Example 3: Let G be the 5-hole, i.e., let V = {1, 2, 3, 4, 5} and E =
{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}. In this case, α(G) = 2 [31] and θ(G) =√

5 [18]. The unique optimal dual solution has λ∗i = 1 for all i ∈ V and
µ∗e =

√
5 − 1 for all e ∈ E. The corresponding convex quadratic constraint
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is: ∑
i∈V

x2i + (
√

5− 1)
∑
{i,j}∈E

xixj ≤
∑
i∈V

xi.

The maximum value that
∑

i∈V xi can take over the corresponding ellipsoid

is
√

5, attained when xi = 1/
√

5 for all i ∈ V . �

3.2 Degenerate and weak ellipsoids

At this point, it is helpful to define two special kinds of ellipsoids, as follows:

Definition 1 An ellipsoid E(λ, µ) will be called “weak” if there exists an
integer k > 1 and distinct vector pairs (λ1, µ1), . . . , (λk, µk) such that

∩ki=1E(λi, µi) ⊆ E(λ, µ).

Otherwise, it will be called “strong”.

Definition 2 An ellipsoid E(λ, µ) will be called “degenerate” if it has infi-
nite volume, or, equivalently, if the matrix Diag(λ) + M(µ) is psd but not
positive definite (pd).

In principle, instead of using a weak ellipsoid to construct a relaxation
of STAB(G), we could take the intersection of two or more strong ellip-
soids to obtain a tighter relaxation. Unfortunately, we are not aware of any
polynomial-time algorithm to test if a given ellipsoid E(λ, µ) is strong.

As for degenerate ellipsoids, we will see in Section 4 that they could
cause numerical problems for our algorithms. Fortunately, we found that,
for graphs of practical interest, optimal ellipsoids are very rarely degenerate.
(One can easily check if E(λ, µ) is degenerate, since one can easily check
whether a rational matrix is psd or pd [18].)

To make these concepts more concrete, we apply them to the same three
examples as in the previous subsection:

Example 1 (cont.): We saw that, when G is a stable set on n nodes, the
unique optimal ellipsoid is a sphere of radius

√
n/2 centered at (1/2, . . . , 1/2)T .

This sphere is a non-degenerate ellipsoid. On the other hand, observe that,
for i = 1, . . . , n, the following convex set is an ellipsoid that is both degen-
erate and strong:{

x ∈ Rn : x2i ≤ xi
}

= {x ∈ Rn : xi ∈ [0, 1]} .

The intersection of these n degenerate and strong ellipsoids is the unit hy-
percube, which is strictly contained in the sphere mentioned. (In fact it is
equal to STAB(G).) Therefore the optimal ellipsoid is weak in this case. �

Example 2 (cont.): We saw that, whenG is a clique on n nodes, the unique
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optimal ellipsoid is defined by the two linear inequalities 0 ≤
∑

i∈V xi ≤ 1.
So, the ellipsoid is degenerate. On the other hand, the inequality

∑
i∈V xi ≤

1 is a clique inequality, which defines a facet of STAB(G). Since no other
ellipsoid has this facet on its boundary, the optimal ellipsoid is strong. �

Example 3 (cont.): We saw that, when G is the 5-hole, the unique optimal
dual solution has λ∗i = 1 for all i ∈ V and µ∗e =

√
5 − 1 for all e ∈ E. The

minimum eigenvalue of the associated matrix Diag(λ)+M(µ) is zero, which
means that the optimal ellipsoid is degenerate. We do not know whether it
is strong or weak, but conjecture that it is strong. �

The following additional example shows that the unique optimal ellipsoid
can be both degenerate and weak.

Example 4: Let G be the union of an isolated node and an edge. That is,
let n = 3 and let E contain the edge {2, 3}. For this graph, α(G) = θ(G) = 2.
The unique optimal dual solution has λ∗i = 1 for all i ∈ V and µ∗23 = 2. The
corresponding convex quadratic constraint is:

x21 + (x2 + x3)
2 ≤ x1 + x2 + x3.

Now observe that any point x∗ ∈ R3 with x∗1 ∈ {0, 1} and x∗3 = −x∗2 lies on
the boundary of this ellipsoid. Therefore the ellipsoid is degenerate. On the
other hand, using the same arguments as in Example 1 and Example 2, the
following four ellipsoids are both degenerate and strong:{

x ∈ R3 : xi ∈ [0, 1]
}

(i = 1, 2, 3){
x ∈ R3 : 0 ≤ x2 + x3 ≤ 1

}
.

The intersection of these four ellipsoids is equal to STAB(G) in this case.
Therefore the optimal ellipsoid is weak. �

3.3 Ellipsoids, clique covers and perfect graphs

Given a graph G, the minimum number of cliques needed to cover the
nodes of G is called the clique covering number and denoted by χ̄(G).
By definition, χ̄f (G) ≤ χ̄(G), and we already saw in Subsection 2.2 that
α(G) ≤ θ(G) ≤ χ̄f (G). A graph G is called perfect if α(G′) = χ̄(G′) holds
for every node-induced subgraph G′ ⊆ G. The following proposition states
that only degenerate ellipsoids are needed to describe the stable set polytope
in the perfect graph case:

Proposition 1 If G = (V,E) is a perfect graph, then STAB(G) is the in-
tersection of a finite number of ellipsoids that are strong, but degenerate.
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Proof. Using the same argument as in Example 2 in the previous subsec-
tions, given any clique C, the convex quadratic inequality(∑

i∈C
xi

)2

≤
∑
i∈C

xi

defines the following strong and degenerate ellipsoid:{
x ∈ Rn : 0 ≤

∑
i∈C

xi ≤ 1

}
.

Similarly, using the same argument as in Example 1 in the last subsection,
for each i ∈ V , the convex quadratic inequality x2i ≤ xi defines the following
strong and degenerate ellipsoid:

{x ∈ Rn : xi ∈ [0, 1]} .

The intersection of these ellipsoids satisfies all clique and non-negativity
inequalities. When G is perfect, STAB(G) = QSTAB(G), and is therefore
completely defined by clique and non-negativity inequalities. �

Next, consider the class of graphs for which α(G) = χ̄(G). This includes
all perfect graphs of course, but it includes many other graphs besides. (For
example, let G be the graph obtained from the 5-hole by adding a new node
6 and a new edge {1, 6}. Then α(G) = χ̄(G) = 3, yet G is not perfect.)
The following proposition shows that, for the graphs in this class, there exist
optimal ellipsoids of a particularly simple form.

Proposition 2 Suppose that α(G) = χ̄(G). Let C1, . . . , Cα(G) ⊂ V be any
family of cliques in G that form a clique cover. If necessary, delete vertices
from the cliques in the family until each vertex is included in exactly one
clique in the family. Let C ′1, . . . , C

′
α(G) be the resulting cliques. Then the

convex quadratic inequality

α(G)∑
k=1

∑
i∈C′k

xi

2

≤
α(G)∑
k=1

∑
i∈C′k

xi (19)

defines an optimal ellipsoid.

Proof. First, observe that the inequality (19) can be obtained from (11)
by setting λi to 1 for all i ∈ V and setting µij to 2 if {i, j} ⊆ C ′k for some k,
and to 0 otherwise. Moreover, the left-hand side of (19) is a sum of squares,
and therefore the inequality is convex, as stated.

Now, let f(x) denote the left-hand side of (19) minus the right-hand side,
so that the specified ellipsoid is defined by the constraint f(x) ≤ 0. Also let
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x∗ ∈ Rn be an arbitrary point such that
∑

i∈C′k
x∗i = 1 for k = 1, . . . , α(G).

Note that f(x∗) = 0, and therefore x∗ is on the boundary of the ellipsoid.
A first-order Taylor series expansion of f(x) at x∗ shows that the tangent
hyperplane to the ellipsoid at x∗ is given by the equation∇f(x∗)·(x−x∗) = 0.
Now, for k = 1, . . . , α(G) and any i ∈ C ′k, we have ∂f/∂xi = 2

∑
j∈C′k

xj−1,

which takes the value 1 at x∗. So, the tangent hyperplane is defined by the
equation

∑
i∈V xi −

∑
i∈V x

∗
i = 0. But

∑
i∈V x

∗
i = α(G), and therefore the

equation reduces to
∑

i∈V xi = α(G). So, all points in the ellipsoid satisfy∑
i∈V xi ≤ α(G). This implies that the given pair (λ, µ) is an optimal

solution to the Lagrangian dual, and therefore that the ellipsoid is optimal.
�

Counter-intuitively, the ellipsoids described in Proposition 2 are almost
always both degenerate and weak:

Proposition 3 The optimal ellipsoids obtained via Proposition 2 are:

• degenerate unless G is a stable set;

• weak unless G is a clique.

Proof. Note that the matrix of quadratic terms on the left-hand side of
(19) is block-diagonal, with α(G) blocks. This implies that its rank is α(G).
Now, if G is a stable set, the matrix is of full rank (in fact, it is the identity
matrix). It is therefore pd, and the ellipsoid is non-degenerate. If, on the
other hand, G is not a stable set, then α(G) < n, and the matrix is singular.
It therefore cannot be pd, and the ellipsoid is degenerate.

For the second point, recall that Proposition 1 gave a complete char-
acterisation of the convex quadratic inequalities needed to define strong
ellipsoids for perfect graphs. The inequality (19) is one of them if and only
if α(G) = 1, i.e., if G is a clique. �

4 Using Ellipsoids Computationally

Our goal is to design branch-and-cut algorithms that exploit the existence
of (near) optimal ellipsoids. In this section, we discuss ways in which this
can be done.

4.1 Computation of a near-optimal ellipsoid

In practice, the dual SDP can be solved only to limited precision. Therefore,
we must be content with a “near-optimal” dual solution. It is however crucial
for the dual solution to be feasible, i.e., for the matrix Diag(λ) + M(µ) to
be psd, since otherwise the resulting set E(λ, µ) would not be an ellipsoid.
In the conference version of this paper [16], the dual solution was obtained
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using the SDP solver described in [28]. Afterwards, however, we showed
that a tailored implementation of the subgradient method may be much
faster, if a slight impairment of the upper bound is accepted [17]. This is
indeed crucial to the application of the ellipsoidal method to large graphs.
Therefore, for this paper we used our subgradient approach to compute the
dual solution, which we denote by (λ̄, µ̄).

4.2 An initial convex relaxation of the SSP

We start by constructing a collection C of cliques covering all the edges of G,
using a standard greedy algorithm (see, e.g., [14]). Now, let xTAx ≤ b ·x be
the convex quadratic constraint associated with the ellipsoid E(λ̄, µ̄). Our
initial convex relaxation of the SSP is:

max
∑

i∈V xi

s.t. xTAx ≤ b · x (20)∑
i∈C xi ≤ 1 (C ∈ C)

x ∈ [0, 1]n.

Note that this is a (convex) quadratically constrained program (QCP). In
principle, this relaxation could be used directly within a plain branch-and-
bound algorithm. We however use a more sophisticated approach, as we
explain in the following subsections.

4.3 Alternative representations of the quadratic constraint

In practice, it is helpful to reformulate the quadratic constraint in (20). We
found that three options worked well.

The first option is to convert the quadratic constraint into a second-order
conic (SOC) constraint. This can be profitable since such constraints can be
handled quite efficiently via interior-point algorithms (see, e.g., [1, 24]). If
we let A be factorised as BTB, this representation amounts to adding a new
vector of variables y ∈ Rn and two more variables z1 and z2, and replacing
the original constraint with:

Bx = y

z1 = 1− b · x
z2 = 1 + b · x
z2 ≥

∥∥∥(z1y )∥∥∥ .
Notice that all these new constraints are linear, apart from the last, which
is a SOC constraint.

The second option is to approximate the SOC constraint in Rn by the
well-known linear description of Ben-Tal and Nemirovski [5]. They define
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an extended formulation in the space Rn+d with d+ 1 inequalities, where d
is a parameter. Reformulation accuracy is proportional to 2d+1 (see [5] for
details). Our motivation for doing this is that one then needs to solve only
LP relaxations within a branch-and-bound algorithm.

The third option is to work in the space of the original x variables,
and approximate the original quadratic inequality directly by means of lin-
ear inequalities. We use the cutting-plane method of Kelley [23]. Given a
convex constraint of the form f(x) ≤ 0, it constructs a polyhedral outer-
approximation via a set of linear constraints of the form ∇f(x̄i)·(x−x̄i) ≤ 0,
for a collection of suitably chosen points x̄i. In our implementation, these
points are chosen to lie on the boundary of the ellipsoid, so that the linear
constraints define tangent hyperplanes on the boundary of the ellipsoid.

Here are the details. Since the ellipsoid is invariably non-degenerate in
practice, it has a centre, which we denote by x̂. One can easily show that
x̂ = 1

2A
−1b. Then, to generate a collection of Kelley inequalities, one simply

runs Kelley’s cutting-plane algorithm, using the following separation routine
to generate cuts in each iteration:

1. Let x∗ ∈ [0, 1]n be a point lying outside the ellipsoid.

2. Find the value 0 < ε < 1 such that the point

x̃ = εx∗ + (1− ε)x̂

lies on the boundary of the ellipsoid. (This can be done by solving a
quadratic equation in the single real variable ε.)

3. Generate the Kelley cutting plane corresponding to x̃, which takes the
form (2Ax̃− b) · x ≤ (2Ax̃− b) · x̃.

We will call the resulting cutting-plane algorithm “Algorithm 0”. This ap-
proach has the advantage that the branch-and-cut algorithm needs to solve
only LPs that involve the original x variables.

The outer approximation can be further strengthened by adding well-
known valid inequalities for STAB(G). In particular, one can imagine im-
proving the outer approximation by adding violated clique inequalities of
the form

∑
i∈C xi ≤ 1 (for some maximal clique C in G) along with each

Kelley cut generated. Note that by adding clique inequalities alone, one can-
not expect a bound improvement, since TH(G) already satisfies all clique
inequalities. Nevertheless, we have found that the addition of clique inequal-
ities can improve the convergence of the cutting-plane algorithm, probably
because they can be generated more quickly than Kelley cuts and are more
well-behaved numerically. Algorithm 1 describes the Kelley cutting-plane
algorithm with additional generation of clique inequalities.
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Algorithm 1 Kelley cutting plane algorithm with clique inequalities

Input: A linear formulation P, an ellipsoid E(λ̄, µ̄)
Output: An updated formulation P̄

P̄ ← P
for i := 1 to maxiter do

optimize over P̄, get x∗

evaluate x̃, ∇f(x̃)
if ∇f(x̃) · (x∗ − x̃) > 0 then

scale ∇f(x̃) · (x− x̃) ≤ 0 by a constant factor Γ→ a · x ≤ b
round down bac · x ≤ bbc
P̄ ← P̄ ∪ {bac · x ≤ bbc}
optimize over P̄, get x∗

execute clique cutting plane routine that
returns a collection of clique inequalities C;
P̄ ← P̄ ∪ C

else
STOP

end if
end for
return P̄

Remark: In the extended abstract of this paper [16], we pointed out that
the Kelley cuts can be strengthened using a simple “sequential lifting” pro-
cedure. In our experiments, however, we found this to be of little benefit.
For this reason, and also for the sake of brevity, we do not consider this
option further in this paper.

4.4 Branch-and-cut

Finally, we discuss branch-and-cut algorithms. In principle, one can embed
the relaxation (20) directly within a branch-and-bound algorithm, and then
add known valid inequalities for the SSP (such as clique inequalities) at each
node of the enumeration tree. Unfortunately, reoptimising after branching
is slow when using interior-point methods. For the same reason, a branch-
and-cut algorithm based on SOCP relaxations is not viable either. Not only
that, but we have found that the Ben-Tal and Nemirovski [5] relaxation does
not work well in a branch-and-cut context either, due partly to the presence
of additional variables and constraints, and partly to numerical difficulties.

Our preferred choice, therefore, is to use a branch-and-cut algorithm
with LP relaxations in the space of the original x variables, in which Kelley
cuts and/or clique inequalities can be generated at each node.
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5 Computational Results

We now perform an experimental comparison of the different algorithmic
options. Two major issues are addressed: (i) showing that the θ-bound is
computationally accessible by linear descriptions and (ii) checking whether
such descriptions can be of use within a branch-and-cut framework.

5.1 Test bed and implementation details

The test bed consists of the graphs from the DIMACS Second Challenge
[20] with up to 700 vertices, available at the web site [7]. Among them, we
do not consider the “easy” ones, that is, those for which the initial set of
clique inequalities included in the relaxation (20) provides an LP relaxation
yielding the integer optimum, or showing a negligible integrality gap. The
instance features are reported in Table 1.

The cutting plane/branch-and-cut algorithms are implemented by the
Gurobi Optimizer 5.6.2 framework in a linux x86 64 architecture (Ubuntu
12.04), compiler g++ 4.8. Gurobi is also used as QCP solver. The com-
putations are run on a machine with two Intel Xeon 5150 processors (for a
total of 4 cores) clocked at 2.6 GHz and 8GB RAM.

5.2 Strength of the linear descriptions

Table 2 compares θ(G) with four upper bounds:

1. UBE achieved by the first formulation mentioned in Subsection 4.3, in
which the quadratic constraint is converted into a SOC constraint and
the relaxation is solved by the Gurobi barrier algorithm;

2. UBBTN corresponding to the optimal value of the Ben-Tal and Ne-
mirovski reformulation; the parameter d has been fixed to d = 8 for
all graphs, as a result of a preliminary investigation.

3. UBK returned by Algorithm 0 with iteration limit set to 300 (the
algorithm terminates early if the target ellipsoid bound is achieved);

4. UBC returned by Algorithm 1 with iteration limit set to 50 (the algo-
rithm terminates early if the target ellipsoid bound is achieved). The
separation heuristic for clique inequalities is executed “aggressively”
(i.e., repeatedly invoked until no further clique violations are found)
if the graph density ≤ 25%, but “moderately” (i.e., just one call for
each Kelley cut) if the graph density is > 25%.

The chosen iteration limits avoid a significant tailing-off effect for all in-
stances and yield, on average, a profitable trade-off between quality of the
upper bound and efficiency. The columns headed “%gap(θ(G))” report the
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Name |V | Density α(G) θ(G)

brock200 1 200 0.25 21 27.46
brock200 2 200 0.5 12 14.23
brock200 3 200 0.39 15 18.82
brock200 4 200 0.34 17 21.29
brock400 1 400 0.25 27 39.7
brock400 2 400 0.25 29 39.56
brock400 3 400 0.25 31 39.48
brock400 4 400 0.25 33 39.7
C.125.9 125 0.1 34 37.81
C.250.9 250 0.1 44 56.24
DSJC125.1 125 0.09 34 38.4
DSJC125.5 125 0.5 10 11.47
DSJC125.9 125 0.9 4 4
gen200 p0.9 44 200 0.1 44 44
keller4 171 0.35 11 14.01
p hat300-1 300 0.76 8 10.07
p hat300-2 300 0.51 25 26.96
p hat300-3 300 0.26 36 41.17
p hat500-1 500 0.75 9 13.07
p hat500-2 500 0.5 36 38.98
p hat500-3 500 0.25 50 58.57
p hat700-1 700 0.75 11 15.12
p hat700-2 700 0.5 44 49.02
p hat700-3 700 0.25 62 72.74
san400 0.5-1 400 0.5 13 13
san400 0.7-1 400 0.3 40 40
san400 0.7-2 400 0.3 30 30
san400 0.7-3 400 0.3 22 22
san400 0.9-1 400 0.1 100 100
sanr200 0.7 200 0.3 18 23.84
sanr200 0.9 200 0.1 42 49.27

Table 1: Graph characteristics

percentage gap UB−θ(G)
θ(G) % w.r.t. the Lovász θ bound. Notice that the ap-

proximation error is small for most of the instances. Notable exceptions are
the graphs p hat300-1, p hat500-1 and p hat700-1, representing the dens-
est members of the p hat class. To explain this fact, recall that the initial
ellipsoid E(λ̄, µ̄) is computed by the subgradient algorithm presented in [17].

17



When the graph is dense, the subgradient algorithm has to handle a large
number of Lagrangian multipliers, which leads to very slow convergence. So,
for those instances, the ellipsoid generated is quite far from being optimal.
Happily, we will show in Section 4 that our branch-and-cut algorithm is
effective on those very instances, even if the ellipsoids are sub-optimal.

Table 2 also shows that the quality of the upper bound UBE is preserved
by all the linearization techniques. Indeed, the approximations achieved by
UBBTN and even by UBK, UBC are satisfactory. This was somehow ex-
pected from the BTN reformulation as it provides a guaranteed approxima-
tion. Interestingly, also Algorithm 0 achieves a strong bound, but Algorithm
1 exhibits significantly better performance with respect to CPU time. This
is clear from the details reported in Table 3, in which tK and tC denotes
the total CPU time (sum of separation and LP reoptimization times) of
Algorithm 0 and Algorithm 1 respectively. Table 3 contains also the fol-
lowing data for each graph: time required by the subgradient algorithm to
compute the initial ellipsoid; time required by the barrier algorithm to solve
the SOCP reformulation; number of variables and constraints of the BTN
reformulation and time elapsed by the Gurobi LP solver to solve it; number
of Kelley cuts generated by Algorithm 0, upper bound and number of Kelley
cuts by Algorithm 0 at tC; number of Kelley cuts and clique cuts generated
by Algorithm 1. All times are expressed in seconds.

Looking at the bounds computed by Algorithm 0 at tC, one can observe
that Algorithm 1 shows a faster convergence. Indeed it computes better
bounds in 21 out of 31 cases, typically corresponding to hard instances.
In the remaining 10 cases, even if the bound from Algorithm 0 is slightly
stronger, it is achieved by a much larger number of Kelley cuts.

The Kelley cuts provide two additional benefits. The first benefit con-
cerns dense graphs, in which the standard formulation size may become
intractable. In fact, as the density goes over 40− 50%, the number of clique
inequalities grows rapidly and overloads the simplex reoptimization. How-
ever, by applying the Kelley cuts, many of the clique inequalities can be
discarded from the current formulation, while keeping safe the quality of
the upper bound, yielding an important speed-up.

A second benefit is that using a small number of Kelley cuts protects the
method from a potential difficulty caused by the cut density. Kelley cuts are
structurally quite dense, a feature that typically degrades the computational
behaviour of cutting planes (see the CPU times of the pure Kelley cutting-
plane algorithm). On the contrary, a selected bunch of Kelley cuts is cost-
effective even when used in branch-and-cut frameworks, as illustrated in the
next section.

The overall picture drawn by this experiment is that linearizing the ellip-
soidal constraint yields strong and computationally tractable LP relaxations
of stable set problems with size |V | in the range [300, 700].
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We remark that lift-and-project methods have been previously inves-
tigated [15, 14] with the purpose of achieving target bounds comparable
to those from SDP formulations. Compared to those, the method based
on ellipsoids shows a more robust and density-independent behavior. In
fact, dense graphs with remarkably larger size could be tackled than those
which were tractable by lift-and-project (which, up to now, has been suc-
cessfully applied to graphs with more than 300 vertices only if they are quite
sparse). Interestingly, (building and) solving the BTN and Kelley reformu-
lations seems to be faster than solving strong SDP relaxations, such as those
investigated in [6], [9] and [19].

5.3 Branch-and-cut

We then tested a straightforward branch-and-cut implementation. Specifi-
cally, we load into an initial pool all the Kelley cuts along with the clique
inequalities generated by Algorithm 1 and then run the Gurobi branch-and-
cut algorithm with checking for violated cuts in the pool. All other cutting
planes are turned off, as these turn out to be not effective.

Table 4 compares the branch-and-cut algorithm described in the previous
paragraph with two other algorithms. The first consists of solving, by the
Gurobi branch-and-cut routine (default settings), the 0-1 LP formulation
based on the initial collection C of clique inequalities (see Section 4.2). This
is referred to as the clique formulation and reads as:

max
∑

i∈V xi

s.t.
∑

i∈C xi ≤ 1 (C ∈ C) (21)

x ∈ {0, 1}n.

The second competitor is again Gurobi, but using its mixed-integer quadratic
convex programming (MIQCP) solver to solve a formulation obtained from
the relaxation (20) by declaring all variables to be binary.

It is worth mentioning that Gurobi implements sophisticated strategies
to handle convex quadratic inequalities: conversion of quadratic constraints
to SOC constraints, linearization of quadratic terms on binary variables,
and outer-approximation. The Gurobi parameter MIQCPMethod controls the
method used to solve MIQCP models. We set it to 1, which corresponds to
a linearized, outer-approximation approach (instead of solving continuous
QCP relaxations at each node). In our experiments, this value achieved the
best results.

For each algorithm we report the number of evaluated subproblems and
the CPU time (this includes the time to compute the ellipsoid and to gen-
erate the Kelley cuts). The speed-up factor of Kelley based branch-and-cut
w.r.t. the best competitor is also quoted.

We also include Figures 1 and 2, with the performance profiles corre-
sponding to the results of Table 4. The performance profiles, introduced
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by Dolan and Moré [8], provide a succinct view of the relative behaviour of
the different algorithms upon the given test set. Specifically, they plot the
probability that the number of evaluated subproblems or the CPU time for
an algorithm on a given instance is within a factor of β of the best compet-
ing algorithm for that instance. Therefore, methods whose corresponding
profile lines are the highest are the most effective.

Gurobi linear formulation
Branch and cut

Gurobi MIQCP formulation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

Figure 1: Performance profile of number of subproblems

Gurobi linear formulation
Branch and cut

Gurobi MIQCP formulation
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 0.6

 0.8

 1

 1  10  100

Figure 2: Performance profile CPU time
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Figure 1 shows that strengthening the clique formulation, either by the
quadratic constraint or by the Kelley cuts generated with Algorithm 1, con-
sistently reduces the size of the enumeration tree. Figure 2 shows a different
picture when it comes to CPU time, probably due to the fact that formula-
tion strengthening leads to additional effort in evaluating subproblems. It
is still the case that leaving Gurobi to handle internally the“raw” quadratic
constraint is generally not cost-effective. In fact, this method fails to solve
four large instances within the time limit (C.250.9, brock400 and p hat500,
p hat700). On the other hand, branch-and-cut tends to be faster when the
Kelley cuts are not included. A more detailed examination, however, shows
that Kelley cuts lead to a significant speed-up for some specific families of
hard instances, namely, the brock, p hat and sanr instances.

The overall indication of this experiment is that the proposed Kelley cuts
provide a linear reformulation of the quadratic constraint which outperforms
the advanced reformulation technique embedded in Gurobi. Notice that this
happens despite the fact that our implementation is quite basic, as cutting
planes are generated using only the initial ellipsoid (i.e., the one related
to the root relaxation), and leaves the cut management to Gurobi. An
advanced implementation could be devised by generating ellipsoids at each
subproblem and dealing with related cut-selection issues.

6 Concluding Remarks

The key idea in this paper is that one can use an approximate dual solution to
the standard SDP relaxation of the SSP to construct an ellipsoid that wraps
reasonably tightly around the stable set polytope, and that this ellipsoid can
be used to construct quite strong cutting planes in the original (linear) space.
The computational results, though preliminary, indicate that this approach
is promising.

There is, however, room for further improvement. In particular:

• Instead of using the “optimal” ellipsoid to generate cutting planes, one
could use some other ellipsoid, or indeed a whole family of ellipsoids.

• As mentioned in Subsection 2.2, the SDP relaxation (7)-(10) can be
strengthened by adding valid inequalities. (For example, Schrijver
[36] suggested adding the inequalities Xij ≥ 0 for all {i, j} /∈ E.) Let
θ̃(G) < θ(G) be an improved upper bound obtained by solving such a
strengthened SDP. The proof of Theorem 3 can be modified to show
the existence of an ellipsoid, say Ẽ, such that

θ̃(G) = max

{∑
i∈V

xi : x ∈ Ẽ

}
.
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Such an ellipsoid might produce stronger cutting planes. (The ex-
treme points of STAB(G) would no longer be guaranteed to lie on the
boundary of the ellipsoid, but this may not matter.)

• In a branch-and-cut context, one could perhaps re-optimise the dual
SDP solution (and therefore the corresponding ellipsoid) after branch-
ing. This could yield stronger cuts at the non-root nodes of the enu-
meration tree. Of course, one would not wish to solve an SDP to
do this. Instead, one could perhaps perform a few iterations of the
subgradient method that we described in [17].

Finally, one could explore the possibility of adapting the ellipsoidal ap-
proach to other combinatorial optimisation problems. In our view, this is
likely to work well only for problems that have a “natural” formulation
as a continuous optimisation problem with a linear objective function and
non-convex quadratic constraints, like the formulation (4)–(6) of the SSP.
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