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Preface

In this thesis we consider the implications of radiation reaction for the behaviour of electric and

electromagnetic waves propagating through a plasma. A plasma contains a very large number of

particles, and obtaining a description of the dynamical behaviour of each individual particle is

impractical. In Section 2 we detail how one can model such a plasma by treating the plasma as a

fluid, and rather than examining the individual particles we instead look at the bulk properties of

the fluid. Such a model is based upon the equation that describes the motion of a single particle,

hence we introduce this first in Section 1.

As such, Section 1 should be viewed as an introduction to the necessary background one needs

in order to understand the subsequent sections. We begin by reviewing the Lorentz force equation,

from which one can determine the motion of a charged point particle in the absence of radiation

reaction. Finding solutions to this equation, and plotting the particle’s subsequent trajectory not

only allows us to introduce notation that will be used throughout this thesis, but is also a point of

comparison that can be referred back to in the subsequent sections.

The concept of radiation reaction is first introduced in Section 1.1.2, where we learn that the

Lorentz Force Law does not describe the motion of a charged particle completely. It is here that we

describe the origin of radiation reaction, as well as introducing the Abraham-Lorentz-Dirac (ALD)

equation, the first covariant equation derived that determines the motion of a particle when the

effects of radiation reaction are included. Not only is this equation of great historical significance,

but it is used in the derivation of the equations of motion of Section 2.2, and hence is pivotal to

the work carried out within.

It is well known that not all solutions to the ALD equation are physically reasonable. Consid-

ering the importance of the ALD equation in this thesis, it is prudent to review this property, and

we do so in Section 1.1.2.

Many alternative models to the ALD equation have been proposed in an attempt to eliminate

these unwanted solutions. We must also attempt to eliminate such unwanted behaviours from our

solutions, and so Section 1.1.3 reviews the approach used to generate the Landau-Lifshitz (LL)
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equation. We carry out a similar procedure with our equations, and so a review of the LL equation

is called for.

This completes the necessary background in radiation reaction, however we still need to intro-

duce some fundamentals of a plasma. All of the work within this thesis is carried out within the

warm fluid approximation, which we detail in Section 2.2. This allows us to use a perturbative

approach when seeking solutions; we assume that the solution we seek is that of the cold fluid, plus

a small correction term. As such, it is necessary to first review the properties of a cold plasma. We

end the introductory section with an example of where experiments are currently taking place that

involve electromagnetic waves travelling through plasma.

Section 2 reviews the creation of the model we use in our description of a plasma. In Section

2.2 we build upon a recently developed kinetic model of a collection of charged point particles that

incorporates radiation reaction. From this model, we proceed to generate an infinite hierarchy of

moment equations that describes our system. We subsequently introduce a new closure mechanism

to this model, inspired by closure mechanisms associated with the warm fluid approximation, thus

obtaining a finite system of equations. Although this kinetic model has been used previously to

generate a system of moment equations, the method used to close them was ad hoc, and the

solutions predicted by the fluid model did not match up with that predicted by the kinetic model

itself. The closure mechanism we use is a simple extension of that of the warm fluid, and needs no

additional assumptions regarding the nature of the system. Additionally we show that the results

it predicts are identical to those derived directly from the kinetic theory upon which it is based.

Hence, the finite system of moment equations we derive is new work.

The remainder of Section 2 is focussed on using this model to determine the bulk properties of

such a fluid in equilibrium – solutions which we perturb around in subsequent sections – and also

represents entirely new work.

In Sections 3 and 4 we use what we have learned in the previous sections to model small

amplitude electric and electromagnetic waves propagating through the plasma. We examine the

dispersion relations of such waves, as well as – when possible – how such waves modify the bulk

properties of the plasma. Finally, in Section 5, we turn our attention to electric waves of arbitrarily
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strong amplitude. Sections 3 - 5 represent entirely new work.

Aspects of this thesis have been published in reference [1].
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1 Preliminaries

1.1 The Motion of a Charged Particle

1.1.1 The Lorentz Force

In the mid to late nineteenth century, arguably one of the most fundamental laws of electromag-

netism was discovered[2]; how a charged particle moves when subjected to an applied field. There

is some debate as to who first derived the equation, but is has come to be known as the Lorentz

Force Law; for a particle of charge q and mass m it is given by[3]

ẍa = − q

m
F abẋ

b. (1)

In the above, and throughout this thesis, we have used the Einstein summation convention[4];

Latin indices range over 0,1,2,3 and Greek indices range over 1,2,3. Latin indices are raised and

lowered using the metric tensor [ηab] = diag(−1, 1, 1, 1) whilst Greek indices are raised and lowered

using the Kronecker delta. Overdots represent differentiation with respect to proper time λ, and

the particle’s 4-velocity xa obeys the normalisation condition

ẋaẋa = −1. (2)

Additionally, Fab is the component on the ath row and bth column of the matrix representation of

the electromagnetic tensor;

[Fab] =



0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


. (3)
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Using the metric tensor to raise indices, it is simple to show

[F ab ] =



0 −Ex −Ey −Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


, (4)

and

[
F ab
]

=



0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


. (5)

In addition to the matrix representation shown above, the electromagnetic tensor F can be

expressed with use of the wedge product1. This is a product used in exterior algebra; it is associative,

(dx ∧ dy) ∧ dz = dx ∧ (dy ∧ dz) , (6)

distributive

(dx+ dy) ∧ dz = dx ∧ dz + dy ∧ dz, (7)

and anti-commutative

dx ∧ dy = −dy ∧ dx. (8)

The wedge product can be used as an alternative to the matrix representation of the components

1For a more detailed examination of the properties of the wedge product, see reference [7].
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of a rank 2 anti-symmetric tensor as follows;

F =
1

2
Fab dx

a ∧ dxb

= Ex dx
0 ∧ dx1 + Ey dx

0 ∧ dx2 + Ez dx
0 ∧ dx3

−Bz dx1 ∧ dx2 −By dx3 ∧ dx1 −Bx dx2 ∧ dx3, (9)

where x0 = t, x1 = x, x2 = y and x3 = z.

Such notation is used throughout this thesis.

Given a prescribed set of sources, one can determine the behaviour of a charged particle in

any type of electromagnetic field by solving the Lorentz force equation along with Maxwell’s equa-

tions2[6]

∂aF
ab = Jb, (10)

∂a

(
εabcdFcd

)
= 0. (11)

In the above, Ja = (ρ, j) is the 4-current with ρ and j the charge and current densities respec-

tively, and εabcd is the Levi-Civita alternating symbol with ε0123 = +1. Additionally we have used

Heaviside-Lorentz units – and will throughout this thesis – with c = ε0 = µ0 = 1.

A Solution to the Lorentz Force Equation

Consider the effect an electromagnetic plane wave propagating though vacuum has on a sin-

gle electron. If we choose our coordinate system such that the z-axis lies along the direction of

propagation of the wave, we can use (9) to write the electromagnetic tensor as

F = Ex dx
0 ∧ dx1 −Bydx3 ∧ dx1 (12)

= E cos(k z − ω t) dt ∧ dx−B cos(k z − ω t) dz ∧ dx (13)

= [(E dt−B dz) cos(k z − ω t)] ∧ dx, (14)

2For the paper in which Maxwell’s equations were first published, the reader is referred to [5].
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where E and B are the amplitudes of the electric and magnetic fields respectively.

Before attempting to obtain the behaviour of charged particles in such a field, it is useful to

first simplify (14). The frequency ω and wavenumber k of an electromagnetic wave propagating

through vacuum are related by the dispersion relation[3]

ω = k. (15)

Thus, (14) can be rewritten as

F = [(E dt−B dz) cos(k (z − t))] ∧ dx (16)

= [(E dt−B dz) cos(k v)] ∧ dx, (17)

where we have used the substitution v = t − z and the property of the cosine function cos(−a) =

cos(a).

Additionally, we can relate E and B with use of (10). In the absence of any sources J0 = J1 =

J2 = J3 = 0 and thus

∂aF
a1 = −∂tEx − ∂zBy (18)

= −E sin(k v) +B sin(k v) (19)

= 0 (20)

⇒ E = B (21)

Thus, we are able to further simplify (17);

F = [(E (dt− dz)) cos(k v)] ∧ dx (22)

= [(E dv) cos(k v)] ∧ dx (23)

= E cos(k v) dv ∧ dx. (24)

The above motivates us to introduce the coordinates (u, v, x, y), where u and v are related to
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the Cartesian coordinates (t, x, y, z) by u = t+z and v = t−z. Note that in this coordinate system

the line element takes the form

ds2 = −du dv + (dx)2 + (dy)2 . (25)

The electromagnetic tensor is given by

F = E cos(v) dv ∧ dx, (26)

where E is the constant amplitude of the wave, and we have set k = 1 for simplicity.

Substituting (26) into (1) we find

v̈ = 0, (27)

ü = 2
q

m
E ẋ cos v, (28)

ẍ =
q

m
E v̇ cos v, (29)

ÿ = 0, (30)

and the normalisation condition (2) gives

−u̇ v̇ + ẋ2 + ẏ2 = −1, (31)

where (25) has been used.

If we choose a frame in which the electron is at rest at the origin (x = 0, y = 0, z = 0) at t = 0,

we have the initial conditions u = 0, v = 0, ẋ = 0 and ẏ = 0. Choosing the initial values of u̇

and v̇ is less intuitive, requiring use of the normalisation condition. Rearranging (31) for v̇, and

choosing u̇(0) = 1, sets v̇(0) = 1. Then, using the transformation z = u−v
2 , it is simple to show

that a solution to the above system is

x(λ) =
q E

m
(1− cos(λ)) , (32)
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y(λ) =
λ

2
, (33)

z(λ) = −1

4

q2E2

m2
(sin(2λ)− 2λ) . (34)

The linear term in (34) is an example of E×B drift[6]. If we transform to a frame which moves at

the velocity given by the drift term, the electron will undergo figure of eight motion in the ẑ − x̂

plane, as seen in Figure3 1, which was generated using Maplesoft’s Maple4. We will encounter this

drift term again in Section 1.1.3.

Figure 1: The trajectory of an electron in the ẑ− x̂ plane, predicted by the Lorentz force equation,
under the influence of an electromagnetic wave.

3In order to generate the above plot we have set q = E = m = 1.
4Maple has been used extensively throughout this thesis, and has been used to generate all the plots within.
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1.1.2 Introducing Radiation Reaction

Until the early 20th Century it was believed that (1) described the behaviour of a charged particle

completely. However note that when a charged particle is accelerated it emits electromagnetic

radiation[8]; this results in the particle losing some of its kinetic energy according to the Larmor

formula[6]

dE

dt
=

q2

6π
~a · ~a. (35)

Thus a charged particle will accelerate less than one would expect from (1), leading to the conclusion

that there is a recoil force that acts back on the radiating particle. This force has come to be

known as the radiation reaction force. In order to take this recoil into account, the Lorentz force

equation must be modified. Such a modification was first carried out by Max Abraham in the

non-relativistic regime in 1903[9] and was later generalised to the relativistic regime by Paul Dirac

in 1938[10], leading to what is now known as the Abraham-Lorentz-Dirac (ALD) equation.

This phenomenon of radiation reaction is central to the work carried out within, and hence an

examination of it in the context of single particle motion is useful before proceeding further.

Before we introduce the ALD equation however, it is helpful if we first introduce the character-

istic time of the electron.

Consider the expression for the Coulomb field E of a point charge,

E(r) ∝ 1

r2
, (36)

where r is the distance from the charge.

Such an expression becomes infinite at r = 0, which is clearly not a physical result. The reason is

that it is incorrectly describing the origin of the field. In addition to neglecting quantum mechanics,

it assumes that the particle is a classical point charge, when in reality such a particle must have

a finite size. Suppose instead that the particle can be modelled as a spherical region of charge,

with a radius determined by setting the Coulomb field of the particle equal to the rest mass of the

particle, and solving for the radius r.
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Carrying out this procedure for an electron, one obtains the classical radius of the electron; the

time taken for light to cross this radius is known as the characteristic time τ of the electron, where

τ =
q2

6πm
≈ 10−23 s. (37)

We can now introduce the ALD equation, which can be written in covariant form as

ẍa = − q

m
F abẋb + τ∆a

b
...
x b, (38)

where ∆a
b = δab + ẋaẋb. Note that the above contains the term

...
x a, therefore in order to find

solutions we must know not only the position and velocity of the electron at one instant of time,

but also its acceleration. Then the rate of change of acceleration can be found and the motion

determined.

The ALD equation has some peculiar consequences[11][12] and these consequences are the pri-

mary motivation for the approximation procedure we discuss in Section 1.1.3. For this reason we

will now examine these consequences in more detail.

Runaway Solutions

Let us look at the behaviour of the charged particle in the absence of an applied field. Then

(38) becomes

ẍa − τ(
...
x a + ẋaẋb

...
x b) = 0. (39)

Clearly, a possible solution of the above is ẍa = 0. However this is not the only solution.

The normalisation condition demands

ẋaẋa = −1, (40)

which can be differentiated once to give

ẋaẍa = 0, (41)
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and a second time to give

ẋa
...
x a = −ẍaẍa. (42)

Equation (42) allows us to rewrite (39) as

ẍa − τ
(...
x a − ẋaẍbẍb

)
= 0. (43)

If we choose a frame in which the initial velocity ẋa and acceleration ẍa four-vectors lie in the x− t

plane, the subsequent motion must also lie in this plane. Equation (43) can then be written as

...
t −

1

τ
ẗ− ṫ

(
ẍ2 − ẗ2

)
= 0, (44)

...
x − 1

τ
ẍ− ẋ

(
ẍ2 − ẗ2

)
= 0. (45)

We can eliminate ẗ from (45) with use of (40) & (41) to give

...
x − 1

τ
ẍ− ẋ ẍ2

1 + ẋ2
= 0. (46)

Dividing (46) through by ẍ and integrating with respect to proper time results in

log ẍ− 1

τ
λ− 1

2
log(1 + ẋ2) = C, (47)

where C is a constant of integration. If we choose C = log τ , the above simplifies to

ẍ√
1 + ẋ2

=
1

τ
eλ/τ , (48)

which can be integrated again to find the solution

ẋ = sinh
(
eλ/τ + C ′

)
, (49)

where C ′ is another constant of integration.

Note that as λ→ −∞ the velocity tends to a constant value ẋ = sinh(C ′), however as λ increases

9



from −∞ the velocity steadily increases, despite there being no applied force. This phenomenon is

known as a runaway solution.

Acausal Solutions

Methods exist to eliminate runaway solutions, however they are usually replaced by solutions

that exhibit another strange behaviour.

For the sake of simplicity, let us look at the above behaviour of an electron moving slowly

compared to the velocity of light5. The motion of this electron is then governed by the non-

relativistic version[9] of (38);

F (x, t) = m ẍ−mτ
...
x , (50)

where x =
(
x1, x2, x3

)
and ẋ = dx

dt .

Additionally, let us constrain this particle to move in only one dimension, along the x1 = x

axis, and let it be acted upon by a force which is a function only of time t. Equation (50) then

reduces to

F (t) = mẍ−mτ ...
x . (51)

The above is a third order differential equation for x, but is first order for ẍ. Setting ẍ = a and

F(t) = F (t)
m , (51) becomes

a− τ ȧ = F(t), (52)

the general solution to which is

a(t) = ae
t
τ +

1

τ

∞∫
t

e(t−t
′)/τ F(t′) dt′, (53)

where a is a constant. From inspection of (53), we see that the acceleration blows up as t → ∞;

this is a runaway solution as we discussed above. Note however that you can prevent this by setting

a = 0. However, now the acceleration at time t depends on the force at times t′ > t. The future

5The reader is referred to reference [13] for an examination of runaway solutions in the relativistic regime.
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values of the force affect the present behaviour of the electron. This is known as pre-acceleration6.

1.1.3 The Landau-Lifshitz Equation

As we have seen in Section 1.1.2, the ALD equation admits solutions which appear physically unrea-

sonable. This has led to a plethora of models including the Eliezer-Ford-O’Connell[14][15][16][17],

Mo-Papas[18], Bonnor[19] and Sokolov[20] equations7. Here we look at the model proposed by

Landau and Lifshitz[22]; it is used extensively in the literature and we will obtain a generalisation

of this approach in the context of fluid theory in Section 2. Moreover, it has been strongly argued

that the solutions to the Landau-Lifshitz equation are the correct subset of approximate solutions

to the ALD equation, from both physical and mathematical perspectives[23].

We begin with the ALD equation,

ẍa = − q

m
F abẋb + τ∆a

b
...
x b, (54)

and note that
...
x b can be rewritten as dẍb

dλ , with ẍb appearing on the left-hand side of (54). This

allows us to carry out a process of iteration, whereby we can substitute (54) into itself, as follows;

ẍa = − q

m
F abẋb + τ∆a

b

d

dλ

(
− q

m
F bcẋc

)
+O(τ2) (55)

= − q

m
F abẋb −

q

m
τ∆a

b

(
∂F bc

∂xl
ẋcẋ

l + F bcẍc

)
+O(τ2) (56)

= − q

m
F abẋb −

q

m
τ∆a

b

(
∂F bc

∂xl
ẋcẋ

l − q

m
F bcFcdẋ

d

)
+O(τ2), (57)

where (57) is obtained by substituting (54) into (56).

If we next assume that the recoil force is small in comparison to the Lorentz force due to the

applied field, we can discard terms O(τ2) in (57) while still keeping a high level of accuracy, thus

6This effect is sometimes said to be controlled, because the exponential e(t−t
′)/τ rapidly decreases for times greater

than τ into the future.
7An interesting review of these approaches can be found in Reference [21].
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eliminating the
...
x b term from the equation;

ẍa = − q

m
F abẋb −

q

m
τ∆a

b

(
∂F bc

∂xl
ẋcẋ

l − q

m
F bcFcdẋ

d

)
. (58)

The above is known as the Landau-Lifshitz equation and is free of the pathologies8 one finds in

the ALD equation. We will now use this equation to model the behaviour of an electron in a plane

electromagnetic wave.

A Solution to Landau Lifshitz

In order to be able to compare the resulting motion to that calculated in Section 1.1.1, let us

again choose a wave of the form

F = E cos(v) dv ∧ dx. (59)

Substituting (59) into (58) one can obtain the following equations of motion

ü =
q E

m

{
2 ẋ cos(v) + τ

[
q E

m

(
1− ẋ2 − ẏ2

)
v̇ cos(v)2 − 2 ẋ v̇ sin(v)

]}
, (60)

v̈ = −
(
qE

m

)2

τ v̇3 cos(v)2, (61)

ẍ =
q E

m

{
v̇ cos(v)− τ

[
q E

m
v̇2 ẋ cos(v)2 + v̇2 sin(v)2

]}
, (62)

ÿ = −
(
qE

m

)2

τ ẏ v̇2 cos(v)2, (63)

as well as the normalisation condition

−u̇ v̇ + ẋ2 + ẏ2 = −1. (64)

As before, in Section 1.1.1, we choose the electron to be initially at rest at the origin of our

coordinate system, hence our initial conditions are u(0) = v(0) = x(0) = y(0) = ẋ(0) = ẏ(0) = 0.

8Due to the elimination of the
...
x b term.
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Additionally, we once again set u̇(0) = 1, and thus v̇(0) = 1 from (64).

One can obtain analytic solutions to the above system[24][25], however here we will analyse

it numerically, and then plot the resulting solutions using Maple. Note however, that in order to

compare - with use of a plot - the motion of an electron when radiation reaction is neglected, and

when it is taken into account, we must artificially inflate the radiative term9. Thus in Figure 2

below, we have set τ = 0.01 s;10

(a) (b)

Figure 2: The motion of an electron along x̂ in time. Plot 2(b) includes radiation reaction while
plot 2(a) neglects it.

In each case the electron is initially placed at the origin of the coordinate system, which corre-

sponds to the maximum of the wave. Neglecting effects of radiation reaction, placing the electron at

a node of the wave guarantees that there will be no net drift of the electron in the plane perpendic-

ular to the direction of propagation of the wave. We see however that this is not so when radiation

reaction is taken into account. In Figure 2(a) we see that neglecting radiation reaction the electron

simply oscillates along the x-axis. However, in Figure 2(b) – which takes radiation reaction into

account – we see that there is a drift along the x-axis, in addition to amplitude growth. Surprisingly

however it is still possible to eliminate this additional drift by shifting the initial position of the

electron slightly to the left of the node of the wave, though the amplitude growth remains.

Another strange phenomena occurs if we examine the behaviour of the electron along the z

9Recall from Section 1.1.2 that τ = 10−23 s, thus the effect of the radiative correction is too small to be able to
see in a plot

10For simplicity we have set q = m = E = 1
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axis. We saw in Section 1.1.1 that if we neglect radiation reaction the electron will drift along the

z axis. From (34) we see that this drift is comprised of a constant term, plus a sinusoidally varying

oscillation; hence while the particle has a net velocity along ẑ, it has no net acceleration. However

this changes when radiation reaction is taken into account; the electron will now experience a net

acceleration along ẑ. This is shown in Figure11 3.

While the above behaviour is counterintuitive, an inspection of the results in reference [24]

confirms that such behaviour is consistent with analytic solutions to the Landau-Lifshitz equation.

However, the aforementioned paper does not emphasise this behaviour. More recent work[25]

focusses on the Landau-Lifshitz equation only in the specific case of an electromagnetic pulse, and

so – due to the short nature of the pulse – the effect is not seen as clearly as it is here.

(a) (b)

Figure 3: The motion of an electron along ẑ in time. Plot 3(b) includes radiation reaction while
plot 3(a) neglects it.

11Note that we have again amplified the size of the radiative correction in order to better observe its effects
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1.2 Plasmas

In Section 1.1 we discussed the behaviour of a single particle under the influence of an electro-

magnetic wave and saw some interesting results. However, direct comparison of such results with

experiment is not possible, since modern laser facilities accelerate not single electrons but electron

bunches containing ∼ 108 particles[26]. As such, it is unlikely radiation reaction will be detected

for a single particle. A more appropriate focus then, may be on a collection of particles; such a

collection can be found in plasmas. In Section 2 we look at methods of modelling such a collection

of particles, by use of kinetic and fluid theories. Before we do this though, let us briefly review

some properties of plasmas that we will need in order to understand the later sections.

A plasma is a gas in which the atoms have been ionised – resulting in a combination of free

electrons and positive ions moving independently – and whose properties are dominated by electric

and/or magnetic forces. A plasma is said to be quasi-neutral ; overall it appears to be charge

neutral, but at smaller scales one may see charged regions and electric fields. Plasmas are excellent

conductors of electricity owing to the high mobility of their electrons, and hence any regions of

charge that develop are quickly neutralised.

Over 99% of the visible universe is in a plasma state[27][28][29], with relativistic plasmas likely

to exist in the early universe, active galactic nuclei and blackhole magnetospheres[30]. Whilst most

researchers choose to ignore the radiation reaction force when studying relativistic plasmas12, this

assumption may not be valid in all astrophysical phenomena. For example, acceleration of plasma

by radiation pressure is a possible mechanism for the production of relativistic outflows (jets) in

active galactic nuclei and galactic black hole candidates[31], and radiation reaction is expected to

be significant in such extreme circumstances.

1.2.1 Plasma Oscillations

In this thesis, we are concerned primarily with the effect of radiation reaction on electromagnetic

waves propagating through warm plasmas, but let us first review such waves when radiation reaction

12It is assumed small compared to the Lorentz force and so not expected to significantly contribute to the plasma
dynamics.
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is not taken into account.

Consider a singly ionised13, unmagnetised plasma in equilibrium. If an electron within this

plasma is displaced slightly, electric fields will be generated that act in such a direction as to return

the electron to its initial position, thus restoring the neutrality of the plasma. However, due to its

inertia, the electron will overshoot and oscillate around its equilibrium position.

Consider a small amplitude, spatially harmonic perturbation to the equilibrium electron proper

number density ne, directed along the z axis;

n = ne + δn, (65)

with δn ∝ Re
[
n1e

(ik·z−iωt)] and the complex amplitude n1 a small correction term.

If one assumes the electrons of the plasma to be isothermal and that the ions are not affected

by any induced potentials, one can calculate the Bohm-Gross dispersion14 relation[32];

ω2 =
ne q

2
e

me
+

3

2
v2th k

2, (66)

where vth = 2 kB Te
me

is the electron thermal speed15.

We can see that the group velocity vg = ∂ω
∂k is non-zero and hence perturbations of the form

(65) induce waves which propagate through the plasma. Such waves are known as Langmuir Waves,

and we will explore these further in Section 3.

In a cold plasma, defined as one in which the electron’s thermal speed vth = 0, equation (66)

reduces to

ω2 = ω2
p, (67)

where

ω2
p =

neq
2
e

me
, (68)

is known as the plasma frequency.

13A plasma whose atoms are each stripped of only one electron.
14We will recover the Bohm-Gross dispersion relation later in this thesis.
15Note that the derivation of the Bohm-Gross dispersion relation assumes vth to be non-relativistic.
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1.2.2 Electromagnetic Waves

Consider an electromagnetic wave of the form

F = Re [(Ex dt ∧ dx+ Ey dt ∧ dy + Ez dt ∧ dz

−Bz dx ∧ dy −By dz ∧ dx−Bx dy ∧ dz) ei(k z−ω t)
]
, (69)

where E = (Ex, Ey, Ez) and B = (Bx, By, Bz) are the complex amplitudes of the electric and

magnetic fields respectively.

The dispersion relation of such a wave propagating through vacuum takes the form

ω2 = k2. (70)

Clearly waves of any frequency can propagate through vacuum, however this is not the case for waves

travelling through an unmagnetised plasma. Such waves have the modified dispersion relation[32]

ω2 = ω2
p + k2. (71)

Waves which obey dispersion relations of the form (71) exhibit a phenomenon known as cutoff.

Consider a wave with frequency ω, propagating through a plasma whose electron number density

ne gradually increases the farther inside it one travels. From (68) we see that this means that the

plasma frequency ωp also increases. At the outer edges of the plasma ne and ωp will be relatively

small. However as the wave propagates farther into the plasma, ne will increase until such time

that the frequency of the wave matches the plasma frequency; ω = ωp. The value of the density

at this point is called the critical density nc. From (68) and (71) we see that for ne ≥ nc, k
2 ≤ 0

and the corresponding frequencies cannot propagate. The value of the frequency at which ne = nc

is known as the cutoff frequency ωco. Clearly in this case ωco = ωp, however this is not always the

case when considering electromagnetic waves travelling through magnetised plasmas.

When considering a magnetised plasma, an electromagnetic wave of the form (69) has 4 possible

modes, determined by the orientation of the wave relative to the plasma’s magnetic field B0. Two
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of the modes are parallel to the background magnetic field – the R and L modes – and two

perpendicular to this field – the O and X modes. The dispersion relations for these types of waves

travelling through cold plasmas are given[32] in Table 1 below:

Mode Properties Dispersion Relation

R k ‖ B0 (right circ. pol.) k2

ω2 = 1− ω2
p/ω

2

1−ωc/ω

L k ‖ B0 (left circ. pol.) k2

ω2 = 1− ω2
p/ω

2

1+ωc/ω

O k ⊥ B0 , E ‖ B0
k2

ω2 = 1− ω2
p

ω2

X k ⊥ B0 , E ⊥ B0
k2

ω2 = 1− ω2
p

ω2

ω2−ω2
p

ω2−ω2
p−ω2

c

Table 1: Dispersion relations for the four possible modes of an electromagnetic electron wave
travelling through a magnetised plasma.

Note that k = (kx, ky, kz) is the wave vector associated with the wave. Additionally ωc = q |B0|
m

is known as the cyclotron frequency16.

1.2.3 Laser-Wakefield Accelerators

In addition to the astrophysical phenomena we spoke of earlier, there exist a number of laboratory

based relativistic plasmas in which radiation reaction may play a role in the future. One such

example is a laser-wakefield accelerator[33].

At present, many particle accelerators use radio frequency cavities to accelerate charged particles

to relativistic speeds. For example the Large Hadron Collider at CERN can give each proton an

energy of 7 TeV[34]; this corresponds to a speed of merely 3 m/s slower than that of light. However,

RF cavities can only sustain ∼ 100 MeV per meter of beamline[35]; beyond this the electric fields

break down and may generate sufficient heat to melt parts of the accelerator. One solution to

this problem is to simply build larger beamlines, but this incurs extra cost. A more cost effective

16An electron moving at a constant speed in a static, uniform magnetic field will undergo circular motion described
by (1); ωc is the angular frequency of this motion.
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solution can be to utilise laser-wakefield technology.

In a laser-wakefield accelerator[36], a single short (≤ 1ps) ultra-high intensity (≥ 1018 W/cm2)

laser is focussed into a gas, ionising the atoms within and creating a plasma. As the laser propagates

through underdense regions of the plasma, electrons are expelled from the region of the laser

pulse17. This generates a plasma wave18, or wakefield, in the pulse’s wake, that has a phase velocity

approximately equal to the group velocity of the laser pulse. The component of the electric field

parallel to the direction of propagation of such waves can be extremely large, and hence additional

electrons can be injected into the wave, causing them to reach relativistic energies over a much

shorter distance than conventional accelerators would need[37].

17This effect is due to the ponderomotive force associated with the laser pulse envelope[36].
18A plasma wave consists of electrons, which oscillate with frequency ω ≈ ωp while travelling along with the wave.
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2 The Fluid Model

In this section we begin by discussing some of the challenges one encounters when attempting to

model particle motion within plasmas. We will briefly review how one uses a kinetic approach in

such models, thus motivating our need for a fluid description. Finally we will use this new fluid

description to obtain information about a magnetised plasma in equilibrium.

2.1 A Kinetic Approach

In a plasma the electric and magnetic fields are not prescribed, but rather are determined by the

position and motion of the charges themselves. This is known as a self consistent problem – one

must find a set of particle trajectories and field lines such that the fields will be generated as the

particles move along these trajectories and the fields will cause the particles to move along those

exact trajectories. A typical plasma density is ∼ 1012 electron-ion pairs per cm3[32]. If one has

to solve for the motion of each of these particles in the above manner, predicting the behaviour of

all the particles within the plasma would take considerable computational resources. However, the

majority of observed plasma behaviour can be described by a simpler model; one that neglects the

identity of individual particles and takes only their statistical properties into account.

In order to introduce the methodology used in the generation of such a model, let us first review

how such a model can be obtained when the effects of radiation reaction are neglected. We then

move on, in Section 2.1.2, to state the form such a model takes when radiation reaction is included.

2.1.1 Derivation of the Vlasov Equation

To proceed, we follow a procedure outlined in [38] and define a relativistic microscopic distribution

function Fs of the sth plasma species as

Fs (x,v, t) =

N0∑
k=1

δ [x− xk(t)] δ [v − vk(t)] , (72)

where N0 is the number of particles of the sth species with charge qs and mass ms, x =
(
x1, x2, x3

)
and the relativistically covariant 4-velocity va =

(
γ, v1, v2, v3

)
= (γ,v) with vava = −1.
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Phase-space conservation requires that

dFs
dt

= 0, (73)

expansion of which results in the relativistic Klimontovich equation[39],

∂Fs
∂t

+ u · ∇Fs +
qs
ms

(Em + u×Bm) · ∇vFs = 0, (74)

where u = v/γ is the 3-velocity, ∇v is the velocity space gradient operator and Em and Bm are

the electric and magnetic fields on microscopic scales.

Additionally, the charge and current densities ρ and j can be expressed in terms of the micro-

scopic distribution function Fs for each plasma species[40] as

ρ =
∑
s

qs

∫
V

Fs(x,v, t)d3v, (75)

j =
∑
s

qs

∫
V

vFs(x,v, t)
d3v

γ
, (76)

where
∫
V
Fs(x,v, t)d3v is the number density ns(x, t) of plasma species s, at the point x at time t

whose proper velocity v is in the region V in velocity space.

Combined with Maxwell’s equations (10,11) and the definitions of the charge and current den-

sities (75,76), the Klimontovich equation describes the orbits of the particles within the plasma

completely; however practical calculations can be troublesome. The distribution function Fs is a

sum of Dirac delta functions, each following the detailed trajectory of a single particle, and the

electric and magnetic fields are complicated on microscopic scales. A more tractable equation can

be derived from (74) by using ensemble averaging. The ensemble average distribution function

f̂s =< Fs >ensemble (77)

is smooth, as are the ensemble averaged electric and magnetic fields. However, since E and B
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are not statistically independent19 of Fs it can be difficult to extract the ensemble average of the

non-linear acceleration term20 in (74) and severe approximation is often required[41].

It is possible to shift these difficulties into a single operator Cs, known as the collision operator21,

allowing us to write the ensemble average of the non-linear acceleration term as

<
qs
ms

(Em + u×Bm) · ∇vFs >ensemble =
qs
ms

(E + u×B) · ∇vf̂s − Cs
(
f̂s

)
, (78)

where E and B are the ensemble averages of Em and Bm respectively.

Equation (78) allows the ensemble average of the Klimontovich equation to be written in the

form

∂f̂s
∂t

+ u · ∇f̂s +
qs
ms

(E + u×B) · ∇vf̂s = Cs(f̂s). (79)

In general the collision operator is extremely complicated, and is very difficult to obtain and

use. A primary aim of kinetic theory is to express the collision operator in terms of just f̂s and

the average electric and magnetic fields. This can be a considerable undertaking however, and is

outside the scope of this thesis.

However, we can eliminate this difficulty by assuming that the plasma we wish to examine –

to a first approximation – is collisionless, and so we can set Cs = 0. This is not an unreasonable

assertion because many high temperature plasmas are to a first approximation collisionless; for

example in a stars corona the mean free path of the electrons can easily exceed the dimensions of

the plasma[42].

In this approximation, (79) reduces to

∂f̂s
∂t

+ u · ∇f̂s +
qs
ms

(E + u×B) · ∇vf̂s = 0, (80)

19Because they are dependent on the particle trajectories.
20The coefficient of ∇uFs.
21Its name originates from the fact that the most important correlations result from close encounters between

particles.
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which can be written covariantly as

ẋa
∂f̂s
∂xa

+
qs
ms

Fµbẋb
∂f̂s
∂ẋµ

= 0. (81)

The above is known as the Vlasov equation, and while amenable in sufficiently simple geometry

it is still common to approach it from a fluid perspective when the influence of f̂s on E and B is

included. As we shall see, this has the advantage of involving only the 3 spatial degrees of freedom

instead of the 6 independent variables in the above. Additionally, many of the quantities that are

accessible to experiment correspond to several of the fluid variables - it is most difficult to measure

a distribution function accurately. Finally, a kinetic theory will in general contain more information

than we require in order to solve for the bulk motion of the particles.

2.1.2 A Modified Vlasov Equation Including Radiation Reaction

In the preceding derivation we have used a distribution function of the form f̂s = f̂s(x,v, t), which

neglects radiation reaction. In order to take this effect into account we must use a 10 dimensional

distribution function fs = fs(x,v,a, t) where a = dv
dλ . Note that from this point forward we will

represent the ions as a homogeneous background that will be included in the external source 4-

current [Ja] = (ρ, j ). This allows us to model the plasma as a single species (electron) plasma and

so we can now drop the species subscript from our distribution function.

Geometric considerations of the Vlasov equation (81) naturally lead to a Vlasov equation that

incorporates radiation reaction[43]. It can be shown that

Lf +
3

τ
f = 0, (82)

where

L = ẋa
∂

∂xa
+ aµ

∂

∂vµ
+ ȧµ

∂

∂aµ

= ẋa
∂

∂xa
+ aµ

∂

∂vµ
+

[
ẍaẍav

µ +
1

τ

(
aµ +

q

m
Fµa ẋ

a
)] ∂

∂aµ
, (83)
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is the Liouville operator22.

Splitting the 4-current into contributions from the plasma electron fluid Jbpef = qN b and that

from the applied fields Jext, Maxwell’s equations (10) & (11) become

∂aF
ab = qN b + Jbext, (84)

∂aFbc + ∂bFca + ∂cFab = 0, (85)

where ∂a = ∂/∂xa and Na is the number four-current of the plasma-electron fluid;

Na(x) =

∫
ẋaf(x,v,a)

d3vd3a

1 + v2
. (86)

The factor 1/(1+v2) in (86) and the second term in (82) together ensure that the number 4-current

of the plasma-electron fluid is conserved, i.e. ∂aN
a = 0.

2.2 A Fluid Approach

Kinetic theories, such as the one described in Section 2.1.2, are not always the most convenient

tools for an analytical investigation of the collective dynamics of charged matter. Additionally,

obtaining solutions to the integro-differential equations found in such systems usually requires

extensive computational resources. However, macroscopic fluid theories are typically more amenable

to analytical investigation and are less computationally demanding than their kinetic counterparts.

Thus, we will now construct a fluid model from the kinetic description outlined in Section 2.1.2.

Let us define the natural moments of the 1-particle distribution f as

Sa1···al:b1···bn(x) =

∫
ẋa1 · · · ẋal ẍb1 · · · ẍbnf (x, v,a)

d3vd3a

1 + v2
. (87)

Here we have used the notation first introduced in [43], in which the author defines a tensor S such

that indices associated with four-velocity are located to the left of the colon whilst those associated

with four-acceleration are located to the right of the colon – note that the sum l+ n is the rank of

22Note that ȧµ is obtained by rearranging the ALD equation (38) for
...
x a.
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the tensor. The symbol ∅ is used when no index is present, as follows;

S∅ =

∫
f (x, v,a)

d3vd3a

1 + v2
, (88)

Sa1···al:∅(x) =

∫
ẋa1 · · · ẋalf (x, v,a)

d3vd3a

1 + v2
, (89)

S∅:b1···bn(x) =

∫
ẍb1 · · · ẍbnf (x, v,a)

d3vd3a

1 + v2
. (90)

The above construction acts to encode the 1-particle distribution function f using a subset of its

velocity and acceleration moments, and so by construction a fluid theory will have less information

than is contained in the kinetic description upon which it is based. However, in practice f will

usually contain more information than is needed, and as we shall see in the rest of this thesis, we

are still able to obtain a large amount of information about the bulk properties of the plasma, as

well as the behaviour of electromagnetic waves which propagate through it.

Whilst some of the natural moments may be difficult to interpret from a physical standpoint,

a few have an immediate physical interpretation. The number 4-current Na = Sa:∅ and the stress-

energy-momentum tensor of the plasma-electron fluid T ab = mSab:∅. The energy flux density is

Qabc = 1
2mS

abc:∅. Additionally the scalar field S∅ is the relativistic enthalpy.

We may now cast the Vlasov equation as an infinite hierarchy of tensor equations23:

∂aS
a:∅ = 0, (91)

∂aS
ab:∅ − S∅:b = 0, (92)

∂aS
a:b − Sb:cc −

1

τ

(
S∅:b +

q

m
F bc S

c:∅
)

= 0, (93)

∂aS
abc:∅ − Sb:c − Sc:b = 0, (94)

∂aS
ab:c − S∅:bc − Sbc:dd −

1

τ

(
Sb:c +

q

m
F cd S

bd:∅
)

= 0, (95)

23See Appendix A for a complete derivation of these equations.
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∂aS
a:bc − Sb:cdd −

1

τ

(
2S∅:bc +

q

m
F bdS

d:c +
q

m
F cdS

d:b
)

= 0, (96)

. . . . . . . . . (97)

The dots represent those equations whose derivative term ∂a1S
a1...al:b1...bn satisfies l + n > 3. The

identities ẍaẋa = 0 and ẋaẋa = −1 must be satisfied and lead to the following equations, called

constraints;

Sa :∅
a = −S∅, (98)

Sa:a = 0, (99)

Sab :∅
b = −Sa:∅, (100)

Sa :b
a = −S∅:b, (101)

Sab:a = 0, (102)

Sa:ab = 0, (103)

. . . . . . . . . (104)

Again, the dots represent equations containing natural moments with rank greater than 3.

Although exact, an infinite set of equations is impractical for the purposes of extracting solu-

tions, hence a finite set must be chosen from the infinite systems (91)− (97) and (98)− (104). This

can be achieved by introduction of the bulk velocity Ua and bulk acceleration Aa defined as

Ua =
Sa:∅

S∅
, (105)

Aa =
S∅:a

S∅
, (106)
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as well as the centred moments

Ra1...al:b1...bn =

∫
(ẋa1 − Ua1) . . . (ẋal − Ual)

×
(
ẍb1 −Ab1

)
. . .
(
ẍbn −Abn

)
× fΩ, (107)

where Ω = d3v d3a
1+v2

.

We then make the assumption that all centred moments of a particular rank or greater are

negligible. Choosing which rank to assume to be negligible follows from the physical requirements

of the distribution f . However, the first order centred moments automatically vanish. From (105)

- (107) we see that

Ra:∅ =

∫
(ẋa − Ua) fΩ

=

∫
ẋafΩ− Ua

∫
fΩ

= Sa:∅ − UaS∅

= 0, (108)

and similarly

R∅:a =

∫
(ẍa −Aa) fΩ

=

∫
ẍafΩ−Aa

∫
fΩ

= S∅:a −AaS∅

= 0, (109)

by definition24.

24All centred moments can be written in terms of U , A, S∅ and higher rank natural moments. For a complete list
of such expansions see Appendix B.
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2.2.1 Cold Fluid

If we choose to set all centred moments of second rank or greater to zero, the constraints (98) and

(99) reduce to

UaUa = −1, (110)

and

UaAa = 0, (111)

with the rest being identically satisfied. The moment equations (91) - (93) become

∂a

(
UaS∅

)
= 0, (112)

∂a

(
UaU bS∅

)
− S∅Ab = 0, (113)

∂a

(
UaAb S∅

)
− U bAcAc S∅ −

1

τ

(
Ab S∅ +

q

m
F bc U

c S∅
)

= 0, (114)

respectively, and the rest are satisfied identically.

Equation (113) allows us to rewrite the bulk acceleration Aa in terms of the bulk velocity Ua

as follows,

∂a

(
UaU bS∅

)
− S∅Ab = U b ∂a

(
UaS∅

)
︸ ︷︷ ︸
=0 from (112)

+S∅Ua∂aU
b − S∅Ab = 0,

⇒ Ab = −Ua∂aU b. (115)

This allows (114) to be written as

Ua∂aU
b = − q

m
F bcU

c + τ
(
Ua∂a

(
Uf∂fU

b
)
− U bUf∂fU cU e∂eUc

)
. (116)

Now,

U bUf∂fU
cU e∂eUc = U bUa∂a

U cUf∂fUc︸ ︷︷ ︸
=0 from (111)

− U bU cUa∂a (Uf∂fUc) , (117)
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hence (116) can be written

Ua∂aU
b = − q

m
F bcU

c + τ
(
Ua∂a

(
Uf∂fU

b
)

+ U bU cUa∂a

(
Uf∂fUc

))
. (118)

Recalling equations (2) and (38) from Section 1, and comparing with the above, one realises that

equation (118) is simply the ALD equation for U b, and (110) the corresponding normalisation

condition25. This is to be expected, since choosing to set all centred moments to zero imposes the

condition that the electron distribution has zero spread in velocity and acceleration, and hence the

plasma is said to be “cold”.

This is not the type of plasma we wish to examine in this thesis, yet neither do we wish to choose

a closure system that results in a system of moment equations that is too large and impractical to

solve with readily available computer hardware.

2.2.2 Warm Fluid

With this in mind, it can be helpful to follow, and extend, an approach analogous to that introduced

by Amendt[44]. We begin by introducing a scalar field ε =
√

1 + UaUa and hypothesize that

Ra1...al:b1...bn = O
(
εl+n

)
with S∅ = O

(
ε0
)

and Ua = O
(
ε0
)

and Aa = O
(
ε0
)
. We then choose to

set all terms O
(
ε3
)

to zero.

Such an approximation corresponds to a collection of electrons whose distribution has a small

but non-negligible spread about the bulk velocity and bulk acceleration, a situation known as a

warm fluid. The total number of independent components of (91)−(96) and (98)−(103) is equal to

the number of independent components of the variables S∅, Ua, Aa, Rab:∅, Ra:b and R∅:ab, indicating

that the field equations arising from such an approximation could be solvable.

It is important to note however that it is not always possible to find solutions to the resulting

field equations that also satisfy the constraints (98) − (103) with all O(ε3) terms set to zero in

those constraints. Instead we impose only the weaker condition[45] that (98)− (103) need only be

satisfied to O(ε3), which leads to

25The remaining constraint (111) is trivially satisfied, by differentiating (110).
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Ra :∅
a + S∅ (1 + UaUa) = O(ε3), (119)

Ra:a + S∅UaAa = O(ε3), (120)

U bRa :∅
b = O(ε3), (121)

UaR :b
a = O(ε3), (122)

UaRb:a +AaR
ab:∅ = O(ε3), (123)

UaR∅:ab +AaR
a:
b = O(ε3). (124)

A warm fluid model including the radiative self force is then obtained by setting to zero all terms that

are O(ε3) in (91)− (96), and solutions to the resulting PDEs are sought which satisfy (119)− (124).
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2.3 An Examination of a Magnetised Plasma in Equilibrium

In Section 1.2 we discussed some properties of unmagnetised plasmas. A magnetised plasma is one

in which the ambient magnetic field B0 is strong enough to significantly alter particle trajectories.

Unlike unmagnetised plasmas, magnetised plasmas are anisotropic; their properties in the direction

perpendicular to the field are different from those in the direction parallel to it.

In order to obtain analytic solutions to (91 - 96) we use a perturbative approach, whereby we

perturb the system about its equilibrium state. Thus, it is first necessary to solve (91 - 96) for a

magnetised plasma in equilibrium.

If a plasma is in equilibrium we do not expect any of its properties to vary with time, hence to

model a plasma in equilibrium, set all derivatives to zero in (91-96). Then, rewriting the natural

moments in terms of centred moments we find,

AaS∅ = 0, (125)

U bR∅:cc +
1

τ

q

m
F bcU

cS∅ = 0, (126)

Ra:b = −Rb:a, (127)

−R∅:bc − 3U bU cR∅: dd −
1

τ

[
Rb:c +

q

m
F cd

(
Rbd:∅ + U bUdS∅

)]
= 0, (128)

2R∅:bc +
q

m

(
F bdR

d:c + F cdR
d:b
)

= 0. (129)

The relativistic enthalpy S∅ cannot be zero, since f ≥ 0 and f > 0 somewhere26. Hence (125) tells

us that the bulk acceleration vanishes;

Aa = 0, (130)

as expected in an equilibrium state.

Contracting (126) with U b yields

UbU
bR∅:cc +

1

τ

q

m
UbF

b
cU

cS∅ = 0, (131)

26See (88).
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and noting that UbF
b
cU

c = 0 due to symmetry we find

R∅:cc = 0. (132)

Substitution of the above result into (126) yields

F bcU
c = 0. (133)

Equation (133) tells us that in the fluid frame the electric field vanishes, which is certainly expected

for a system in equilibrium since any electric fields would cause the electrons to accelerate27. Making

use of the results (130), (132) and (133), the system of equations (125-129) can be reduced to the

equations

R∅:bc +
1

τ

(
Rb:c +

q

m
F cdR

bd:∅
)

= 0, (134)

Rb:c +
q

2m

(
F cdR

bd:∅ − F bdRcd:∅
)

= 0, (135)

R∅:bc +
q

2m

(
Rd:bF cd +Rd:cF bd

)
= 0. (136)

Rearranging (135) and (136) into an expression for Rb:c and R∅:bc respectively, subsequent

substitution into (134), with appropriate rearrangement of indices, results in

q

2m

(
−F bdRd :∅

e F ec − F bdF deRe :∅
c − F beRe :∅

d F dc −Rb :∅
e F edF

d
c

)
=

1

τ

(
F bdR

d :∅
c −Rb :∅

d F dc

)
.

(137)

Defining the matrices

R =
[
Ra :∅

b

]
, (138)

and

F = [F ab ] , (139)

27Note however that (133) provides no information about the magnetic field
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allows (137) to be written in the simpler form

q

2m
{F , {F ,R}} − 1

τ
[F ,R] = 0, (140)

where {A,B} = AB + BA denotes the anti-commutator and [A,B] = AB − BA denotes the com-

mutator of the matrices A,B. Additionally AB = [Aab]
[
Bb

c

]
is the matrix product.

Obtaining a Solution

We wish to solve (140) to obtain an expression for R in terms of F . Direct rearrangement of

the equation is not possible however, so instead, let us choose a reasonable ansatz for R which

satisfies (140).

From inspection of (140) it would seem clear that R is some function of F , the identity matrix I

and possibly ?F =
[
1
2ε
a
bc
dF cd

]
. Additionally we know that Rab:∅ is symmetric by definition. This

implies that Rab:∅ must be composed only of even powers of the (anti-symmetric) electromagnetic

field tensor F ab. Hence a viable solution to (140) could be an infinite series in F ab, however such a

solution is not ideal. Fortunately, it is possible to truncate such a series with the help of the Cayley-

Hamilton Theorem[46], which implies that every square matrix over the real or complex numbers

satisfies its own characteristic equation. To proceed then, we must determine the characteristic

equation for F , given by

det (F − φI) = 0, (141)

where det is the determinant, I is the identity matrix and φ is an eigenvalue of the matrix F .
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In a Cartesian coordinate system, (141) takes the form

det (F − φI) = det





−φ −Ex −Ey −Ez

−Ex −φ −Bz By

−Ey Bz −φ −Bx

−Ez −By Bx −φ




= φ4 + φ2

(
B2
x +B2

y +B2
z − E2

x − E2
y − E2

z

)
+E2

xB
2
x + E2

yB
2
y + E2

zB
2
z + 2 (ExEzBxBz + ExEyBxBy + EyEzByBz)

= φ4 − φ2 1

2
Tr
(
F2
)
− det (F) = 0. (142)

If we now apply the Cayley-Hamilton theorem to (142), we are able to write any term of an even

power in F and O
(
F4
)

or higher, in terms of F and F2. For example,

F4 =
1

2
Tr(F2)F2 + det(F), (143)

F6 = F4F2

=
1

2
F4 Tr(F2)−F2det(F)

=
1

2

(
1

2
Tr(F2)F2 − det(F)

)
Tr(F2)−F2det(F)

=

(
1

4
Tr
(
F2
)
− det (F)

)
F2 − 1

2
det (F) Tr

(
F2
)
, (144)

and similarly for ?F .

The situation is simplified further by realising that the determinant of F is an electromagnetic

invariant;

det(F) = −1

4

(
?FabF

ab
)2

= (B ·E)2 . (145)

Recall from (133) that the electric field vanishes in the fluid frame and hence from (145) we see

that det (F) = 0 in this frame. Furthermore, since (145) is a Lorentz-invariant quantity, the result
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det(F) = 0 holds in any frame. Generalising (143) to any order in F we find,

Fn =

(
1

2
Tr
(
F2
))n

2
−1
F2, (146)

and

?Fn =

(
−1

2
Tr
(
F2
))n

2
−1
? F2, (147)

where n is any positive, even integer. Note the minus sign in (147) arises due to the identity

Tr
(
F2
)

= −Tr
(
?F2

)
.

Additionally, one can show the following two identities:

F2 + ?F2 =
1

2
Tr
(
F2
)
I, (148)

F ? F = ?FF = 0. (149)

All of the above suggest that we can write R as a linear superposition of the matrices

P =
2F2

Tr (F2)
, (150)

and

P̌ =
2 ?F2

Tr
(
?F2

) . (151)

From (146) - (149) it is clear that P and P̌ are idempotent matrices:

PP = P, (152)

P̌P̌ = P̌, (153)

and that they are orthogonal:

PP̌ = P̌P = 0, (154)

P + P̌ = I. (155)
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Finally we must ensure that any expression for R satisfies the constraints (119 - 124). Equation

(121) tells us that R must be orthogonal to the bulk velocity [Ua] to O
(
ε3
)
. While this is certainly

true of P - due to (133) - the same is not necessarily true of P̌.

This suggests the introduction of the idempotent

Π =

[
δab +

UaUb
|U |2

]
, (156)

where |U | =
√
−UaUa, which acts to project vectors into the space orthogonal to Ua. It can be

seen ΠF = FΠ = F since the electric field vanishes in the fluid frame. Hence natural idempotents

for constructing the solution to (140) are ΠPΠ and ΠP̌Π.

Thus, a suitable ansatz for R is

R =
p⊥
m

ΠPΠ +
p‖

m
ΠP̌Π, (157)

where p⊥ and p‖ are the pressures perpendicular and parallel to the magnetic field respectively.

Substituting this solution into the matrix equation (140) and using the identities (152) - (155),

the commutator term vanishes resulting in

p⊥q

m2
F2 = 0. (158)

Clearly, for the above to be satisfied - and still generate interesting results - we must set the pressure

term perpendicular to the field to zero, or demand that the magnetic field vanishes. Hence, if the

magnetic field is non-zero a suitable form for R isotropic around the magnetic field lines is

R =
p

m
ΠP̌Π, (159)

where p = p‖ is the only component of the pressure.

The above result has a straightforward physical interpretation. In principle, an electron can have

a component of velocity parallel to, and a component perpendicular to, the background magnetic
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field. Motion perpendicular to the field will cause the electron to spiral around the magnetic

field lines and emit cyclotron radiation, whereas there is no such emission from the component of

velocity along the magnetic field lines. Recall that at the beginning of this section, we chose to

perturb around a set of equilibrium solutions; (159) informs us that in this equilibrium state, motion

perpendicular to the field is not permitted and thus the electron’s velocity is directed parallel to

the magnetic field lines.

Armed with (157) we can now obtain an expression for the bulk velocity Ua. Recall from (105)

that

Ua =
Sa:∅

S∅
=
Na

S∅
, (160)

where Na is the number 4-current.

For a plasma in equilibrium the number 4-current is equal to that of the background ion’s

number 4-current; Na = Na
ion = nion δ

a
0 where nion is the proper number density of the ions, hence

Ua =
nion

S∅
δa0 . (161)

S∅ can be found from the constraint (119) yielding

S∅ = − Raa
:∅

1 + U bUb

=
p

m (1 + U bUb)
Πa

cP̌cdΠd
a, (162)

where S∅ = O(ε0), p = O(ε2) and 1 + UaUa = O(ε2).
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3 An Examination of Electric Waves

In this section we will use the fluid model that we built in Section 2 to investigate the properties

of an electric wave as it propagates through a plasma, as well as the effect such a wave has on the

bulk properties of the plasma. We will begin with the simpler case of an unmagnetised plasma,

before moving on to examine what effect an ambient magnetic field has on the system.

3.1 In an Unmagnetised Plasma

In the absence of a background magnetic field R must be isotropic and hence takes the form

R =
p

m
Π

=



0 0 0 0

0 p
m 0 0

0 0 p
m 0

0 0 0 p
m


, (163)

instead of (159).

As we discussed in Section 1.2, a small amplitude, spatially harmonic, perturbation to the

equilibrium proper number density induces an electric wave that will propagate through the plasma.

We choose our coordinate system such that this electric wave propagates along the z = x3 axis in

the rest frame of the ions. We denote t = x0 and write the enthalpy as

S∅ = S∅(0) + Re
[
S∅(1)e

(ikz−iωt)
]
, (164)

where S∅(0) is the enthalpy in equilibrium and S∅(1) is the complex amplitude of a small perturbation

to S∅(0). We introduce similar expressions for the other fields.

As there is no background magnetic field, and the applied field is purely electric, the electro-
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magnetic field tensor takes the form

F = Re
[
Ez(1)e

(ikz−iωt) dt ∧ dz
]
, (165)

where Ez(1) is the complex amplitude of the perturbation. Note that there is no E(0) term since in

the equilibrium state any electric fields - in the rest frame of the plasma - vanish.

A linearisation of (91 - 96), with respect to the perturbation then yields

S∅(1) = − 1

kaUa(0)
S∅(0) kb U

b
(1), (166)

Ab(1) = ika

(
1

S∅(0)
Rab:∅(1) + Ua(0) U

b
(1)

)
, (167)

ika

(
Ra:b(1) + S∅(0) U

a
(0)A

b
(1)

)
− U b(0)R ∅:c

(1) c − 2Ac(1)R
b:

(0) c −
1

τ

[
S∅(0)A

b
(1) +

q

m
F b
{(0) c U

c
(1)}

]
, (168)

Rb:c(1) +Rc:b(1) = ika

(
Rbc:∅{(0) U

a
(1)} +Rac:∅(0) U b(1) +Rab:∅(0) U c(1)

)
, (169)

R∅:bc(1) = ika

(
Rb:c{(0) U

a
(1)} +Ra:c(0) U

b
(1) +Rab:∅(0) Ac(1)

)
− 2U c(0)A

d
(1)R

b:
(0) d (170)

−1

τ

(
Rb:c(1) +

q

m
F c
{(0) d R

bd:∅
(1)}

)
,

0 = ika

(
R∅:bc{(0) U

a
(1)} +Ra:c(0) A

b
(1) +Ra:b(0) A

c
(1)

)
− 2U b(0)A

d
(1)R

∅:c
(0) d

−2U c(0)A
d
(1)R

∅:b
(0) d −

1

τ

[
2R∅:bc(1) +

q

m

(
F b
{(0) d R

d:c
(1)} + F c

{(0) d R
d:b
(1)}

)]
, (171)

where ka = (ω,k) is the wave’s 4-vector.

Terms with a subscript (0) represent solutions to the equilibrium state found in Section 2.3,

while those with a subscript (1) represent the first order corrections resulting from the perturbation.

Additionally, the notation

A{(0)B(1)} = A(0)B(1) +A(1)B(0), (172)
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has been used.

Substitution of our equilibrium solutions from Section 2.3 into (166 - 171), and combined with

Maxwell’s equations28 (85,84), results in a system of 22 equations for 22 unknowns. We can rewrite

this system as a single matrix equation of the form


Matrix

of

Coefficients


 V

 =

 0

 , (173)

where the column vector V contains all of the field variables and the right-hand side is simply the

zero column vector.

Rather than solving directly for the fields, we can instead obtain a relation between the coeffi-

cients of the field variables. We do this by taking the determinant of the matrix on the left-hand

side, and demanding that this be zero. The result is a dispersion relation of the form

0 = 4ω2
(
ω2 − ω2

p

)
+ θ

(
10ω2

p ω
2 + 4ω2

p k
2 − 16ω2 k2

)
+ iτ

(
42ω5 − 38ω3 ω2

p

)
+iτθ

(
38ω3 ω2

p − 168ω3 k2 + 63ω5 + 30ω ω2
p k

2
)

+O(τ2, θ2), (174)

where the normalised equilibrium temperature θ is given by29

θ =
p

nionm
(175)

and ωp is the plasma frequency.

We seek a solution of (174) such that in the limit τ → 0, θ → 0 the solution collapses to that

of the cold non-radiating30 fluid ω = ωp, discussed in Section 1.2.1. Thus we choose the angular

frequency to be of the form

ω(k) = ωp + α(k)θ + iτβ(k) + iτθζ(k) +O
(
τ2, θ2

)
, (176)

28Note these must also be linearised with respect to the perturbation.
29Note that since p is O

(
ε2
)
, θ is O

(
ε2
)

also.
30By a non-radiating fluid we mean a fluid in which the effects of radiation reaction are not considered.
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where α(k), β(k), ζ(k) are as yet undetermined functions.

Substituting (176) into (174) and equating the resulting coefficients of θ, τ and τ θ to zero,

one can solve for the unknown functions α(k), β(k), ζ(k). Substitution of these solutions into the

ansatz (176) then yields

ω = ωp +

(
3

2

k2

ωp
− 5

4
ωp

)
θ − iτ

2

[
ω2
p −

(
2k2 + ω2

p

)
θ
]

+O
(
τ2, θ2

)
. (177)

In the limit τ → 0, (177) reduces to Clemmow and Wilson’s relativistic generalisation of the

Bohm-Gross dispersion relation[47].

Due to the nature of the perturbation ei(kx−ωt), the real part of the perturbation to ωp will act

only to shift the frequency of the wave, whilst the imaginary part of ω will be the cause of the

damping. We can see that for non-radiating plasmas, where τ = 0, the imaginary part vanishes and

ω is real, hence, as expected, damping only occurs when radiation reaction is taken into account.

The first damping term, − i
2 τ ω

2
p, is a long standing result[48] that frequently appears in kinetic

theories that include radiation reaction. The second damping term, i
2 τ θ

(
2 k2 + ω2

p

)
, is dependent

on temperature and can be shown to agree[1] with recent results presented elsewhere[26].

Note that the damping term is larger as k increases, hence the higher frequency modes will

experience a greater amount of damping than the low frequency modes.

Armed with (177) and the equilibrium solutions we can solve (166 - 171) for all of the fields in

terms of the complex amplitude S∅(1) of the perturbation to the enthalpy.

Up to this point, we have not discarded any terms in our equations. However recall from Section

2.2 that in order to generate a finite set of equations, we applied the warm fluid approximation,

discarding terms of O(ε3). Since θ = p
nionm

from (175), and p is O
(
ε2
)

we see that to remain within

this approximation, terms O(θ2) must be discarded. Additionally, we saw in Section 1.1.3 that the

ALD equation – upon which this model is based – contains undesirable solutions, and we went on

to review an approximation scheme derived by Landau and Lifshitz. This approximation scheme

eliminates these unwanted solutions by performing a series expansion in τ , and then truncating the

series by discarding all terms above a certain order in τ . We must also do the same here, and we
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choose to discard terms O
(
τ2
)
, since they will be negligible in comparison to the terms O(θ2).

Discarding any terms of O
(
τ2, θ2

)
in the above solutions, we find

U0
(1) =

q2

mω2
p

S∅(1) θ (1 + i τ ωp) , (178)

U3
(1) =

q2

4mω3
p k

S∅(1)
{

4ω2
p + θ

(
11ω2

p + 6 k2
)
− i τ

[
2ω3

p + θ
(
2ω3

p − 4 k2 ωp
)]}

, (179)

A0
(1) =

q2

m
τ θ S∅(1), (180)

A3
(1) = − q2

4 kmωp
S∅(1)

{
4 i ωp + 16 i ωp θ + τ

[
4ω2

p + θ
(
13ω2

p + 6 k2
)]}

, (181)

R33:∅
(1) = (3 + 2 i τ ωp) θ S

∅
(1), (182)

R30:∅
(1) = −ωp

k
θ S∅(1) (−2 + i τ ωp) , (183)

R11:∅
(1) = θ S∅(1), (184)

R22:∅
(1) = θ S∅(1), (185)

R3:0
(1) = −

ω2
p

k
θ S∅(1) (i+ τ ωp) , (186)

R3:3
(1) = τ θ S∅(1) ω

2
p, (187)

Ez(1) = − q

2 k
S∅(1) (2 i+ 5 i θ − 2 τ θ ωp) . (188)

All other field variables vanish. Additionally, one can show that the set of solutions (178-188)

satisfy the constraints (119-124).

At this point, one might wonder why we chose to take moments of a kinetic theory based upon

the ALD equation, when, in order to obtain solutions, we still need to apply the approximation

procedure used to obtain the Landau-Lifshitz (LL) equation. We could have chosen a kinetic

description based upon the LL equation, and taken moments of this description to derive a set of

fluid equations; thus removing the need to eliminate terms O(τ2) in our resulting expressions.

While in principle such a model would be equivalent, the fluid equations (91 - 96) would not
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take on as compact a form as they do here, and the complexity of the analysis would be greatly

increased from the outset. From this perspective, it is perhaps not surprising that the dispersion

relations obtained later in this thesis are new results.
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3.2 In a Magnetised Plasma

We next consider the case of a plasma with a background magnetic field running through it. If we

choose the z = x3 axis to lie parallel to the magnetic field lines in the rest frame of the ions, and

perturb the equilibrium proper number density as we did in the previous section, we again generate

an electric wave, this time travelling along the magnetic field lines of the plasma. Such a wave is

of the form

F = −B0 dx ∧ dy + Re
[
Ez(1)e

(ikz−iωt)dt ∧ dz
]
, (189)

where B0 is the amplitude of the background magnetic field and Ez(1) is the complex amplitude of

the perturbation.

Due to the addition of a background magnetic field, R is no longer isotropic. In Section 2.3 we

found that in such a field any pressure terms perpendicular to the background field must vanish

and hence R now takes the form

R =
p

m
ΠP̌Π

=



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 p
m


. (190)

The linearised system is once more composed of (166) - (171); if we again substitute the above

and the other equilibrium solutions into our system of equations, and combine with Maxwell’s

equations, we can obtain the dispersion relation

0 = 4ω2
(
ω2 − ω2

p

)
+
(
4ω4 + 4 k2 ω2

p − 16ω2 k2 + 2ω2 ω2
p

)
θ + i

(
30ω5 − 26ω3 ω2

p

)
τ

iτ θ
(
18ω ω2

p k
2 − 120 k2 ω3 + 45ω5

)
+O(τ2, θ2). (191)

Again seeking a solution to the above of the form ω(k) = ωp + α(k)θ + iτβ(k) + iτθζ(k) +
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O
(
τ2, θ2

)
, we find

ω = ωp +

(
3

2

k2

ωp
− 3

4
ωp

)
θ − iτ

2

[
ω2
p −

(
2k2 + ω2

p

)
θ
]

+O
(
τ2, θ2

)
. (192)

Note that in the limit τ → 0, the above does not reduce to (177), the dispersion relation in

the unmagnetised plasma, taken to the same limit. The difference is the numerical factor 3
4 in the

relativistic correction to the frequency shift; this is due to the anisotropy of Rab:∅ in equilibrium.

The coefficient of τ however is the same in both the magnetised and non-magnetised cases. Hence

the presence of a background magnetic field in the plasma simply acts to further shift the frequency

of the electric waves, but has no effect on the radiative damping.

Once again, using (192) and the equilibrium solutions found in Section 2.3, one can calculate

the field variables to be

U3
(1) =

q2S∅(1)
4mω3

p k

{
4ω2

p + θ
(
5ω2

p + 6 k2
)
− i τ

[
2ω3

p – θ
(
ω3
p + 2 k2 ωp

)]}
, (193)

A3
(1) = − q2

4 kmωp
S∅(1)

{
4 i ωp + 8 i ωp θ + τ

[
4ω2

p + θ
(
3ω2

p + 6 k2
)]}

, (194)

Ez(1) = − q

2 k
S∅(1) (2 i+ 3 i θ − 2 τ θ ωp) , (195)

with all other field variables being equal to those found in the previous section. Note that in

the above solutions we have highlighted in red the terms which are changed by the introduction of

a background magnetic field.

Once again, it can be shown that all of the above solutions satisfy the constraints (119-124).
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4 An Examination of Electromagnetic Waves

We now turn our attention to a small amplitude electromagnetic wave propagating along the

magnetic field lines of a plasma. Such a wave can be written as

F = −B0 dx ∧ dy − Re [(Bx dy ∧ dz + Ex dx ∧ dt+By dx ∧ dz

+ Ey dy ∧ dt+Bz dx ∧ dy + Ez dz ∧ dt) ei(k z−ω t)
]
, (196)

where B0 is the strength of the background field of the plasma, directed along ẑ, and E =

(Ex, Ey, Ez) and B = (Bx, By, Bz) are the complex amplitudes of the electric and magnetic fields

of the wave respectively.

Using the method of Section 3.2 we once again rewrite the system as a matrix equation, generate

a matrix of coefficients, and demand that its determinant is zero. However, this expression is much

more complicated than that generated by the electric wave of the previous section; we are now

dealing with a 47th order polynomial in ω and 20th order polynomial31 in k . Solving the equation

directly for ω generates 47 possible roots, but determining which roots represent real waves is

problematic. The unphysical roots do not exist in the limit τ, θ, B0 → 0. Thus, we factor the

determinant into products of terms, examine these terms in the limit τ, θ, B0 → 0 and solve each

of them for k(ω). We then seek out the ones which collapse to (71);

ω2 = ω2
p + k2. (197)

There are two terms that collapse to the above; these correspond to the L and R modes of the

electromagnetic wave32 .

Armed with the knowledge of which terms provide the solutions we are interested in, we now

simply isolate both of these terms in turn and set them to zero. The resulting expressions, which

can be found in Sections 4.1 & 4.2, are used as the starting points in our analysis of the L & R

31Note that (191) was merely 5th order in ω and quadratic in k.
32In order to determine which term corresponds to the R mode, and which to the L mode, it is useful to set

τ = θ = 0, solve for k2 and then compare with Table 1.
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modes of the wave.

An electromagnetic field tensor of the form (196) does not generate O and X modes. As we can

see from Table 1 in Section 1.2, these modes arise only when the wave is propagating along an axis

perpendicular to the direction of the background magnetic field. Hence, to explore the properties

of these modes one must begin with an electromagnetic field of the form

F = B0 dx ∧ dz − Re [(Bx dy ∧ dz + Ex dx ∧ dt+By dx ∧ dz

+ Ey dy ∧ dt+Bz dx ∧ dy + Ez dz ∧ dt) ei(k z−ω t)
]
. (198)

One then follows a procedure identical to that detailed above, but now the two solutions which

collapse to (197) in the limit τ, θ, B0 → 0 correspond to the O and X modes of the wave. These

solutions can be found in Sections 4.3 & 4.4.

Table 1 is referred to often in this section, and hence for the convenience of the reader, we

replicate it below.

Mode Properties Dispersion Relation

R k ‖ B0 (right circ. pol.) k2

ω2 = 1− ω2
p/ω

2

1−ωc/ω

L k ‖ B0 (left circ. pol.) k2

ω2 = 1− ω2
p/ω

2

1+ωc/ω

O k ⊥ B0 , E ‖ B0
k2

ω2 = 1− ω2
p

ω2

X k ⊥ B0 , E ⊥ B0
k2

ω2 = 1− ω2
p

ω2

ω2−ω2
p

ω2−ω2
p−ω2

c

Table 2: Dispersion relations for the four possible modes of an electromagnetic electron wave
travelling through a magnetised plasma.
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4.1 R Mode

The R Mode is right hand circularly polarised, its dispersion relation is of the form

0 = − (ω − ωc)
(
ωc k

2 − ωc ω2 + ω3 − k2 ω − ω2
p ω
)

+ θ

(
ω2 ω2

c −
1

2
ω2
p ω

2 − k2 ω2
c + k2 ω2 + ω ωc k

2 − k4 − ω2
p k

2 + ω ω2
p ωc − ω3 ωc

)
− iτ

[(
2ωc k

2 − 2ωc ω
2 + 2ω3 − 2 k2 ω − ω2

p ω
)
ω2 − θ

(
−2ωc k

2ω2 + ω5 + ω2
p k

2 ω

−3 k2 ω3 + 2 k4ω + 2ωc k
4
)]

+O
(
θ2, τ2

)
. (199)

Note that in order to obtain the above, we have used the substitution B0 = mωc
q where ωc is the

cyclotron frequency, and θ = p
nionm

.

In Section 3 we sought a solution of the form (176);

ω(k) = ωp + α(k) θ + i τ β(k) + i τ θ ζ(k) +O
(
τ2, θ2

)
. (200)

Finding ω(k) is much more difficult when modelling electromagnetic waves; as we can see from

Table 2, the unperturbed dispersion relations (i.e. for τ, θ → 0 ) are considerably less complicated

when written as k(ω) rather than ω(k). The difficulty arises from the fact that the results in Table

2 have more than one root for ω and one must take care to choose the correct root. This becomes

even more difficult when working in the warm plasma approximation and taking radiation reaction

into account33.

Thus, a more successful approach is to seek a solution to (199) of the form

k(ω) = k0(ω) + f(ω) θ + i τ g(ω) + i τ θ h(ω) +O
(
θ2, τ2

)
, (201)

where k0(ω) is the wave number in the limit τ, θ → 0 and f(ω), g(ω) and h(ω) are as yet undetermined

functions. Substituting (201) into (199) and equating coefficients of θ, τ , τ θ etc to zero, one can

33In this case, conventional root finding techniques employed in computer software such as Maple are unable to
generate possible roots, probably a result of the polynomial in ω being of too high an order for such techniques to be
employed.
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solve for f(ω), g(ω), and h(ω). Subsequent substitution of these solutions back into (201) yields the

dispersion relation

k2

ω2
=

ω ωc − ω2 + ω2
p

ω(ωc − ω)
+
θ

2

((
ω3 + 3ω ω2

c − 4ω2 ωc + 2ωc ω
2
p

)
ω2
p

ω(ωc − ω)4

)

+iτ

[
ω ω2

p

ω2 − 2ω ωc + ω2
c

+
ωc ω

2
p θ
(
4ω ω2

c + ω3 + ω ω2
p − 5ω2 ωc + 3ωc ω

2
p

)
(ωc − ω)5

]
+O

(
θ2, τ2

)
. (202)

In order to plot the above dispersion relation we must define some range of ω. Note however that

the right-hand side of the above expression appears complex, yet we know that k must be real,

hence ω must be complex; this makes determining the domain of ω difficult. In order to carry out

such an analysis it is fruitful to rewrite both k and ω parametrically as functions of ω0, the angular

frequency in the case of a magnetised, cold, non-radiating plasma. The advantage of this approach

is that we only consider values of ω0 that are real34.

For the sake of clarity, let us introduce some new notation before proceeding. Let us assume

that both θ and τ are order χ where χ is some small parameter. Thus τ θ, τ2 and θ2 are order χ2.

One can then write k as a power series35 in χ

k2 = f(ω) + h(ω) + g(ω) +O
(
χ3
)
, (203)

with f(ω) = O(χ0), h(ω) = O(χ1), g(ω) = O(χ2) and where

f(ω) =
ω
(
ω ωc − ω2 + ω2

p

)
ωc − ω

, (204)

h(ω) =
θ

2

(
ω3 + 3ω ω2

c − 4ω2 ωc + 2ωc ω
2
p

)
ωω2

p

(ωc − ω)4
+ iτ

ω3 ω2
p

ω2 − 2ω ωc + ω2
c

, (205)

34Note that values of ω0 below the cutoff frequency are imaginary, but since we are only interested in the frequencies
of physical waves, we can neglect these frequencies when choosing which range to take ω0 over.

35Note that f(ω) below has no relation to the 1-particle distribution function f used in previous sections.

49



and

g(ω) =
ω2 ωc ω

2
p θ τ

(
4ω ω2

c + ω3 + ω ω2
p − 5ω2 ωc + 3ωc ω

2
p

)
(ωc − ω)5

, (206)

can be seen from inspection of (202).

With use of Table 2, we can recast k in terms of ω0 to give

k2 =
ω0

(
ω0 ωc − ω2

0 + ω2
p

)
ωc − ω0

. (207)

Combining (207) and (203) we see that

f (ω0) = f(ω) + h (ω) + g (ω) +O
(
χ2
)
. (208)

Next, assume that ω is of the form

ω = ω0 + α(ω0) + β(ω0) +O(χ3), (209)

with α(ω0) = O(χ1) and β(ω0) = O(χ2).

Substituting (209) into (208), expanding the result as a power series in χ, collecting together

coefficients of like orders of χ, and setting each of these terms to zero in turn, leads to equations

for the functions α and β in terms of the functions f , h and g. This allows (209) to be rewritten as

ω(ω0) = ω0 −
h(ω0)

f ′(ω0)
− 1

2

1

f ′(ω0)

(
f ′′(ω0)h(ω0)

2

f ′(ω0)2
+ 2g(ω0)−

2h′(ω0)h(ω0)

f ′(ω0)

)
+O

(
χ3
)
, (210)

where f ′ = df
dω0

.

The dispersion relation can then be obtained by substitution of (204 - 206) into the above. Note

however that in order to remain within the warm fluid approximation, we must discard any terms

of order O
(
θ2
)
. Additionally, terms of O

(
τ2
)

should also be discarded, since in practice they will

be negligible in comparison to the O
(
θ2
)

terms. The dispersion relation for the R mode is long,

hence we do not include it here. In the following section we examine each part of it in turn, but

for reference it can be seen in its complete form in Appendix C, as can the dispersion relations for
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the L, O and X modes.

4.1.1 Analysis of the Dispersion Relation

Frequency Shift

Note that once again due to the nature of the perturbation, ei(kz−ωt), the real part of ω will act only

to shift the frequency of the wave, whilst the imaginary part of ω is expected to cause damping.

We can see from inspection of the expression for ω(ω0) that this shift is composed of two parts; the

shift that would be seen in a cold non-radiating plasma, plus a correction term due to the warm

fluid approximation. The parameter τ is absent from the real part of ω(ω0) and hence inclusion of

radiation reaction has no effect on the frequency shift. This holds true for all modes, as we will see

in the following sections.

The correction to the frequency shift of the R mode predicted by the warm fluid model is

−θ
2

(
3ω2

c ω0 + 2ωc ω
2
p − 4ωc ω

2
0 + ω3

0

)
ω2
p ω0

(ωc − ω0)
2 (2ω2

c ω0 + ωc ω2
p − 4ωc ω2

0 + 2ω3
0

) . (211)

Dominant Damping

Note that the imaginary part of (210) is of the form

Im[ω] = ζrτ + σrτ θ, (212)

to first order in τ and θ. Since this work is valid only in the warm fluid approximation, θ << 1

and the strength of the damping will be primarily due to ζr, hence we refer to ζr as the dominant

term, and to σr as the subdominant term36.

The dominant damping term for the R mode is of the form

ζr = −
ω2
p ω

3
0

2ω0 ω2
c − 4ω2

0 ωc + ωc ω2
p + 2ω3

0

. (213)

36The imaginary part of ω(ω0) is of this form for all modes, hence we will use this form throughout the following
sections with ζl, ζo, ζx and σl, σo, σx representing the dominant and subdominant terms for the L, O and X modes
respectively.
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Insight can be gained from looking at (213) when ω0 is close to, and far from, the cutoff frequency

ωco. Recall from Section 1.2.2 our discussion of the cutoff frequency; for the R mode, ωco ≤ ω0 ≤ ∞

where37

ωco =
1

2

(√
ω2
c + 4ω2

p + ωc

)
. (214)

When ω0 >> ωco, ζr takes the form

ζr ≈ −
ω2
p

2
, (215)

and is independent of ωc. Hence irrespective of the strength of the background field, all frequencies

much larger than the cutoff frequency will experience an equal amount of damping due to this term.

This is not the case for frequencies near the cutoff. In this regime, (213) takes the form

ζr ≈
1

2

(
ωc +

√
ω2
c + 4ω2

p

)2
ω2
p(

ωc −
√
ω2
c + 4ω2

p

) √
ω2
c + 4ω2

p

. (216)

When the background field is sufficiently low, such that ωc << ωp, (216) reduces to (215).

However if the field is sufficiently strong such that ωc >> ωp,

ζr ≈ −ω2
c . (217)

Hence the strength of the magnetic field has a strong influence on those waves whose frequency

is close to cutoff.

This behaviour can be seen more clearly in Figure 4, which parametrically plots k(ω0) vs ζr(ω0)

for varying values of the cyclotron frequency (and hence magnetic field strength). As can be seen, as

the magnitude of the cyclotron frequency becomes large compared to that of the plasma frequency,

ζr takes on a form similar to that of a step function, strongly damping those frequencies that are

close to cutoff, while having relatively little effect on higher frequencies.

37Note that we will suppress the mode label on the cutoff frequency for convenience, though it is important to keep
in mind that each mode has a different cutoff frequency.
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(a) (b)

(c) (d)

Figure 4: Plots of the dominant damping term ζr(ω0) vs k(ω0) for a) ωc
ωp

= 0, b) ωc
ωp

= 1, c) ωc
ωp

= 3

and d) ωc
ωp

= 10.
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Subdominant Damping

The remaining term, σr τ θ, contains a product of τ and θ; thus while having an effect on

the amplitude of the wave it will not be as strong an effect as seen above. In the absence of a

background field the term vanishes, but has an interesting behaviour as ωc approaches and exceeds

ωp. This is shown in Figure 5 below.
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(a) (b)

(c) (d)

Figure 5: Plots of the subdominant damping term σr(ω0) vs k(ω0) for a) ωc
ωp

= 1
2 , b) ωc

ωp
= 1, c)

ωc
ωp

= 1.1 and d) ωc
ωp

=3.

For background magnetic field strengths sufficiently low such that 0 < ωc
ωp

. 1, inspection of

Figures 5(a) and 5(b) reveal the subdominant damping term to be positive for all frequencies, and
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hence σr will act to counter the damping from the dominant term. The greatest effect will be felt

by the lowest frequency waves. Additionally, note that unlike ζr, σr contains a turning point. This

maximum increases as the background field is increased.

Interesting behaviour occurs just after ωc exceeds ωp, as seen in Figure 5(c). Past this point,

σr develops a second turning point, and additionally becomes negative for certain frequencies, en-

hancing the damping due to ζr. We can see from Figure 5(d) that the range of frequencies over

which this enhancement occurs grows larger, the stronger the background field becomes.

Examination of the turning points

While obtaining the exact values of ω0 that correspond to the turning points of σr would be

ideal, dσr
dω0

is a twelfth order polynomial in ω0,

dσr
dω0

= 136ω7
c ω

2
p ω

3
0 − 344ω7

c ω
5
0 + 112ω6

c ω
4
p ω

2
0 − 496ω6

c ω
2
p ω

4
0 + 712ω6

c ω
6
0 + 42ω5

c ω
6
p ω0

−245ω5
c ω

4
p ω

3
0 + 452ω5

c ω
2
p ω

5
0 − 632ω5

c ω
7
0 + 6ω4

c ω
8
p − 40ω4

c ω
6
p ω

2
0 − 45ω4

c ω
4
p ω

4
0

+420ω4
c ω

2
p ω

6
0 + 40ω4

c ω
8
0 − 59ω3

c ω
6
p ω

3
0 + 440ω3

c ω
4
p ω

5
0 − 1040ω3

c ω
2
p ω

7
0 + 376ω3

c ω
9
0

+75ω2
c ω

6
p ω

4
0 − 280ω2

c ω
4
p ω

6
0 + 664ω2

c ω
2
p ω

8
0 − 296ω2

c ω
1
00− 18ωc ω

6
p ω

5
0 − 27ωc ω

4
p ω

7
0

−124ωc ω
2
p ω

9
0 + 88ωc ω

11
0 + 45ω4

p ω
8
0 − 12ω2

p ω
10
0 − 8ω12

0 + 64ω8
c ω

4
0. (218)

Obtaining analytical information about the roots of such a polynomial is difficult. However,

we can still obtain some information by examining σr in the limit ωc << ωp. In Figure 5 we

parametrically plotted σr(ω0) vs k(ω0); however for the purposes of examining the turning point

it is convenient to plot σ(ω0) vs ω0. Figure 6 below, is such a plot, taken over a small range of ω0

about the turning point, for ωc = 0.01 and ωp = 1.
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Figure 6: A closer examination of the first turning point of σr(ω0), with ωc
ωp

= 0.01.

From inspection of this plot, we can see that the turning point occurs close to the point at

which ω0 ≈ ωp. This suggests the introduction of

χr =
ω0

ωp
, (219)

and

ψr =
ωc
ωp
. (220)

Recasting dσr
dω0

in terms of χr and ψr and discarding terms O(ψr) and higher, one obtains the quartic

equation

8χ4
r + 12χ2

r − 45 = 0. (221)

This can then be solved, informing us that the turning point occurs at

ω0 = 1.32ωp. (222)

The second turning point does not exist when ωc << ωp; however from inspection of Figure 5,

one might conclude that the second turning point remains in the limit ωc >> ωp, and hence an

analysis in this limit is called for.
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However, note that σr contains a factor of 1
ωc−ω0

. Hence we encounter a singularity when ω0

is equal to the cyclotron frequency. An inspection of (214) reveals that this can occur in the limit

ωc >> ωp, in fact it occurs precisely at the cutoff frequency. Hence it is inadvisable to work in such

a limit.

Note that this is not an effect of radiation reaction, or a result of working in the warm fluid

model, but rather a known feature of the R mode. This can clearly be seen by inspection of Table

2.
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4.2 L Mode

The L mode is left hand circularly polarised. Using the same method as Section 4.1 one can show

the L mode satisfies a dispersion relation of the form

k2

ω2
=

ω ωc + ω2 − ω2
p

ω(ω + ωc)
+
θ

2

((
ω3 + 3ω ω2

c + 4ω2 ωc − 2ωc ω
2
p

)
ω2
p

ω (ωc + ω)4

)

+iτ

[
ω ω2

p

(ω + ωc)2
+
ωc ω

2
p θ
(
4ω ω2

c + ω3 + ω ω2
p + 5ω2 ωc − 3ωc ω

2
p

)
(ωc + ω)5

]
.

We again express k in terms of ω0, but this time with

k2 =
ω0

(
ω0 ωc + ω2

0 − ω2
p

)
ωc + ω0

. (223)

Continuing the procedure of the previous section, one can obtain an expression for ω, which can

be found in Appendix C, and is examined below.

4.2.1 Analysis of the Dispersion Relation

Frequency Shift

As with the R mode, the real part of ω acts only to shift the frequency of the wave, and once again

this shift has no dependence on τ . The warm fluid correction to the frequency shift of the L mode

is

−θ
2

(
3ω2

c ω0 − 2ωc ω
2
p + 4ωc ω

2
0 + ω3

0

)
ω2
p ω0

(ωc + ω0)
2 (2ω2

c ω0 − ωc ω2
p + 4ωc ω2

0 + 2ω3
0

) . (224)

Dominant Damping

The imaginary part of ω is again of the form ζl τ + σl τ θ, and so again the damping effect will be

dominated by the ζl term. In the case of the L mode,

ζl = −
ω2
p ω

3
0

2ω0 ω2
c + 4ω2

0 ωc − ωc ω2
p + 2ω3

0

. (225)
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The L mode has a cutoff frequency

ωco =
1

2

(√
ω2
c + 4ω2

p − ωc
)
. (226)

As was the case with the R mode, for ω0 much larger than the cutoff frequency

ζl ≈ −
1

2
ω2
p, (227)

and so all frequencies in this region will experience the same amount of damping. Additionally the

strength of this damping will have no dependence on the strength of the background field.

However, for frequencies close to ωco, ζl takes the form

ζl ≈ −
1

2

(
ωc −

√
ω2
c + 4ω2

p

)2
ω2
p(

ωc +
√
ω2
c + 4ω2

p

) √
ω2
c + 4ω2

p

. (228)

If the background field is sufficiently strong such that ωc >> ωp, then

ζl ≈ 0. (229)

Hence, in a strongly magnetised plasma, frequencies close to ωco will experience negligible damping.

If, on the other hand, ωc << ωp,

ζl ≈ −
1

2
ω2
p. (230)

Thus, just as was the case with the R mode, the strength of the background field will affect those

waves with frequency close to cutoff.

This can be seen more clearly from an examination of Figure 7 below.
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(a) (b)

(c)

Figure 7: Plots of the dominant damping term ζl(ω0) vs k(ω0) for a) ωc
ωp

= 0, b) ωc
ωp

= 1 and c)
ωc
ωp

= 10. Note that the horizontal scale differs from that of Figure 4.
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Subdominant Damping

The subdominant damping term close to, and far from, cutoff has a simple behaviour. Repeating

the procedure we performed when studying σr reveals that σl vanishes for frequencies close to, and

far from, cutoff, irrespective of the strength of the background field.

However, we once again see interesting behaviour between these limits, as shown in Figure 8:
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(a) (b)

(c) (d)

Figure 8: Plots of the subdominant damping term σl(ω0) vs k(ω0) for a) ωc
ωp

= 0, b) ωc
ωp

= 3 and c)
ωc
ωp

= 10. Plot d) shows the behaviour far from cutoff. Note that the horizontal scale differs from
that of Figure 5.

As can be seen, σl is negative for all frequencies, irrespective of the strength of a background
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field38. Thus this term acts to enhance the damping caused by the radiation reaction term ζl. Note

also that unless there is no background magnetic field, this term contains a turning point which

corresponds to maximal damping. We examine this turning point in more detail below.

Examination of the turning point

Repeating the procedure we used to examine the turning points of σr in the previous section,

we once again obtain a twelfth order polynomial in ω0;

dσr
dω0

= −136ω7
c ω

2
p ω

3
0 + 344ω7

c ω
5
0 + 112ω6

c ω
4
p ω

2
0 − 496ω6

c ω
2
p ω

4
0 + 712ω6

c ω
6
0 − 42ω5

c ω
6
p ω0

+245ω5
c ω

4
p ω

3
0 − 452ω5

c ω
2
p ω

5
0 + 632ω5

c ω
7
0 + 6ω4

c ω
8
p − 40ω4

c ω
6
p ω

2
0 − 45ω4

c ω
4
p ω

4
0

+420ω4
c ω

2
p ω

6
0 + 40ω4

c ω
8
0 + 59ω3

c ω
6
p ω

3
0 − 440ω3

c ω
4
p ω

5
0 + 1040ω3

c ω
2
p ω

7
0 − 376ω3

c ω
9
0

+75ω2
c ω

6
p ω

4
0 − 280ω2

c ω
4
p ω

6
0 + 664ω2

c ω
2
p ω

8
0 − 296ω2

c ω
10
0 + 18ωc ω

6
p ω

5
0 + 27ωc ω

4
p ω

7
0

+124ωc ω
2
p ω

9
0 − 88ωc ω

11
0 + 45ω4

p ω
8 − 12ω2

p ω
10
0 − 8ω12

0 + 64ω8
c ω

4
0. (231)

While not able to solve this expression analytically, we are once again able to study the turning

point in the limits ωc
ωp
<< 1 and ωc

ωp
>> 1. Figure 9 examines the turning point in more detail.

38Unless the field is zero, in which case this term vanishes.
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(a) (b)

Figure 9: A closer examination of the turning point of σl(ω0). In plot a) ωc = 0.01 and ωp = 1,
while in plot b) ωc = 100 and ωp = 1.

From inspection of Figure 9(a), we see that when ωc
ωp
<< 1, the turning point occurs somewhere

close to the point ω0 = ωp. Introducing χl = ω0
ωp

and ψl = ωc
ωp

, we again recast dσl
dω0

in terms of χl

and ψl. Then, expanding as a series in ψl and discarding terms of O(ψ) and higher we find

ω0 = 1.32ωp. (232)

Interestingly, the above result is identical to (222), the location of the turning point in the case of

the R mode, though we must keep in mind that the above is simply an approximation.

Similarly, from inspection of Figure 9(b), we see that when ωc
ωp
>> 1, the turning point occurs

somewhere close to the point ω0 = ωc. Introducing χ̂l = ω0
ωc

and ψ̂l =
ωp
ωc

, we again recast dσl
dω0

in

terms of χ̂l and ψ̂l. Then, expanding as a series in ψ̂l and discarding terms of O(ψ̂) and higher we

find

ω0 = 1.27ωc. (233)

Recall from the previous section that the turning point for σr occurred at ω0 = 1.32ωc.
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4.3 O Mode

The O mode is plane polarised, with the electric field parallel to the background magnetic field. In

the cold, non-radiating plasma its dispersion relation is that of an electromagnetic wave in vacuum.

In a warm, radiating plasma it takes the form

k2

ω2
=

ω2 − ω2
p

ω2
+
θ

2

ω2
p

(
3ω2

c − ω2 − 2ω2
p

)
(ωc − ω) (ωc + ω) ω2

+ i
ω2
p

ω
τ

−
iω2
p

(
ω4
c − 3ω2

c ω
2 + 2ω2

p ω
2
)

(ωc − ω)2 (ωc + ω)2 ω
τθ. (234)

Following the same procedure of the previous sections, we once again express k in terms of ω0,

but this time with

k2 = ω2
0 − ω2

p. (235)

Once again, the full expression for ω(ω0) can be obtained, and is included in Appendix C.

4.3.1 Analysis of the Dispersion Relation

Frequency Shift

The warm fluid correction to the frequency shift of the O mode is

−θ
4

(
3ω2

c − 2ω2
p − ω2

0

)
ω2
p

ω0 (ωc − ω0) (ωc + ω0)
. (236)

Note the presence of (ωc−ω0) in the denominator; we once again find singularities should ω0 = ωc,

just as we did when examining the R mode in Section 4.1. To see if the singularity will occur for

physical waves, we must again look to the cutoff frequency. For the O mode

ωco = ωp, (237)

hence provided ωp > ωc the singularity will not occur for any physical wave.

Note that once again this limitation is not related to the warm fluid correction, or to radiation

reaction, but to the cold, non-radiating dispersion relation the O mode obeys, as can be seen from
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Table 2.

Dominant Damping

In contrast to the modes that we have studied so far, the dominant damping term ζo for the O

mode takes the very simple form

ζo = −1

2
ω2
p. (238)

Unlike in the cases of the L & R modes, this damping has no dependence on either the frequency

of the wave or on the magnitude of the background magnetic field.

Subdominant Damping

The subdominant damping term σo is given by

σo =
1

2
ω2
p

ω2
c ω

2
p − 3ω2

c ω
2
0 + ω4

c − ω4
p + 2ω2

p ω
2
0

(ωc + ω0)2 (ωc − ω0)2
. (239)

Note that once again we encounter a singularity when ω0 = ωc, and hence must ensure that at no

point does ωc exceed ωp. This term is plotted in Figure 10, and exhibits some familiar behaviour.

As we increase the strength of the magnetic field, σo develops a turning point. We saw this same

behaviour occur in Figure 5 in Section 4.1, when studying the R mode. Due to the complicated

nature of σr, we were unable to obtain an analytic expression for the location of this turning point.

However, σ0 is significantly simpler, and hence a study of it may prove insightful.

Differentiating (239) with respect to ω0 we find

dσo
dω0

= −
ω2
p ω0

(
ω4
c − 4ω2

c ω
2
p + 3ω2

c ω
2
0 + 2ω4

p − 2ω2
p ω

2
0

)
(ωc − ω0)

3 (ωc + ω0)2
. (240)

Setting the above to zero, and solving for ω0 allows us to obtain an expression for the location of

the turning point,

ω0 =

√(
4ω2

cω
2
p − ω4

c − 2ω4
p

)√
3ω2

c − 2ω2
p

. (241)
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(a) (b)

(c)

Figure 10: Plots of the subdominant damping term σo(ω0) vs k (ω0) for a) ωc
ωp

= 0, b) ωc
ωp

=0.7 and

c) ωc
ωp

=0.85.
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By definition, ω0 is real and positive, hence the turning point will only exist when the right-hand

side of (241) is real and positive. This can be shown to hold true when

(2 +
√

2)ω2
p ≥ ω2

c ≥
2

3
ω2
p. (242)

Thus, for magnetic fields such that ωc lies outside of this range, σo will always be positive and

will act to counter the effect of ζo. However, for ωc within this range, σo will act to enhance the

damping of ζo for some frequencies.
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4.4 X Mode

The X mode is partly transverse, and partly parallel to the background magnetic field. It can be

shown to satisfy a dispersion relation of the form

k2

ω2
=

ω2
c ω

2 − ω4
p + 2ω2

p ω
2 − ω4

ω2
(
ω2
c + ω2

p − ω2
) +

θ

2

ω2
p

(
ω2
c ω

2 + ω4
p − 2ω2

p ω
2 + ω4

)(
ω2
p − ω2 + ω2

c

)2
ω2

+iτ

[
(ω2
c ω

2 + ω4
p − 2ω2

p ω
2 + ω4)ω2

p(
ω2
p − ω2 + ω2

c

)2
ω

+ θ
ω2
p ω

2
c

(
3ω4 − 3ω2

p ω
2 + ω4

p + ω2
c ω

2
p

)(
ω2
p − ω2 + ω2

c

)3
ω

]
.(243)

To proceed, we once again carry out the procedure outlined in Section 4.1, but this time with

k2 =
ω2
c ω

2
0 − ω4

p + 2ω2
p ω

2
0 − ω4

0(
ω2
c + ω2

p − ω2
0

) . (244)

The full expression for ω(ω0) can be found in Appendix C. We will examine its individual terms

in detail below, but before we do so, we must introduce the concept of resonance.

Recall from Section 1.2.2, our discussion of the cutoff frequency ωco. A cutoff occurs at any

point in a plasma where the index of refraction goes to zero; and hence where the wavelength of a

wave becomes infinite. This is all that we have needed in our discussions so far, however to examine

the dispersion relation of the X mode we must also discuss the resonant frequency.

A resonance occurs at any point in the plasma where the index of refraction becomes infinite,

and hence the wavelength of a wave goes to zero. In general, waves are reflected at cutoffs and

absorbed at resonances[32].

The R, L and O modes all have a cutoff frequency below which waves cannot propagate. The

situation is slightly different for the X mode, which has two regions in which waves can propagate.

In a cold, non radiating plasma it can be shown that a X mode with frequency ω such that

ωcor < ω <∞ can propagate freely, where

ωcor =
1

2

(√
ω2
c + 4ω2

p + ωc

)
(245)

is the cutoff frequency of the R mode.
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Immediately below this frequency propagation is not possible, however as the frequency further

decreases, it reaches a value known as the upper hybrid frequency ωh, where

ω2
h = ω2

c + ω2
p. (246)

Waves with frequency below this value can also propagate, provided their frequency is not less than

ωcol , where

ωcol =
1

2

(√
ω2
c + 4ω2

p − ωc
)
, (247)

is the cutoff frequency of the L mode.

Thus, the region ωcol < ω < ωh is another region in which propagation is possible. Note that

this behaviour only occurs if the plasma is magnetised; in an unmagnetised plasma ωcol = ωcor =

ωh = ωp and hence the lower allowed region vanishes.

We will explore both of these regions in the remainder of the section.

4.4.1 Analysis of the Dispersion Relation

Frequency Shift

The warm fluid correction to the frequency shift of the X mode is

θ

4

−ω2
c ω

2
p ω

2
0 − ω2

p ω
4
0 + 2ω4

p ω
2
0 − ω6

p

(ω4
c + 3ω2

c ω
2
p − 2ω2

0 ω
2
c + ω4

p + ω4
0 − 2ω2

p ω
2
0)ω0

. (248)

As with the other modes, this term is independent of the effects of radiation reaction.

Dominant Damping

The dominant damping term ζx for the case of the X mode is given by

ζx =
1

2

−ω2
c ω

2
0 ω

2
p − ω6

p − ω2
p ω

4
0 + 2ω2

0 ω
4
p

ω4
c + 3ω2

c ω
2
p − 2ω2

0 ω
2
c + ω4

p + ω4
0 − 2ω2

p ω
2
0

. (249)
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In the Region ωcol < ω < ωh

Let us first examine ζr in the region ωcol < ω < ωh. Note that there is little point examining

the behaviour of this region in the limit ωc << ωp, since in this limit the region vanishes.

Close to ωcol

ζx ≈ −
ω2
p

(
ω2
c − ωc

√
ω2
c + 4ω2

p + 2ω2
p

)
ω2
c + ωc

√
ω2
c + 4ω2

p + 4ω2
p

, (250)

which can be seen to be negligible when ωc >> ωp.

Close to ωh,

ζx ≈ −
(
ω2
c +

1

2
ω2
p

)
. (251)

Thus, frequencies close to ωcol will experience negligible damping, while the strength of the damping

that higher frequencies will experience is dependent on the strength of the background magnetic

field. This behaviour is plotted in Figure 11.

(a) (b)

Figure 11: Plots of the dominant damping term ζx (ω0) vs k(ω0) in the region ωcol < ω0 < ωh with
a) ωc

ωp
= 0.1, b) ωc

ωp
= 1.
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In the Region ωcor < ω0 <∞

Next we examine ζx for frequencies in the region ωcor < ω0 <∞. Close to ωcor we find

ζx ≈ −
ω2
p

(
ω2
c + ωc

√
ω2
c + 4ω2

p + 2ω2
p

)
ω2
c − ωc

√
ω2
c + 4ω2

p + 4ω2
p

. (252)

In the limit ωc << ωp this reduces to −1
2 ω

2
p as expected, while in the limit ωc >> ωp,

ζx ≈ −ω2
c . (253)

Far from ωcor we find

ζx ≈ −
1

2
ω2
p, (254)

which is independent of ωc.

Thus, high frequency waves will experience constant damping, while the damping experienced

by those frequencies close to cutoff will depend on the strength of the background field39. Figure

12 shows this behaviour.

39Though the damping such frequencies experience cannot be less than | − 1
2
ω2
p|.
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(a) (b)

(c) (d)

Figure 12: Plots of the dominant damping term ζx (ω0) vs k (ω0) in the region ω0 > ωcor with
ωc
ωp

= 0, 1, 3 and 10 respectively.

Note that the profile of ζx appears similar to that of ζr in Figure 4.

Subdominant Damping

In the Region ωcol < ω0 < ωh

We will again start by examining the subdominant damping term σx for frequencies in the

region ωcol < ω0 < ωh.
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Close to ωcol

σx ≈ −
2ω6

p ωc

(
ωc + 3

√
ω2
c + 4ω2

p

)
(
ω2
c + ωc

√
ω2
c + 4ω2

p + 4ω2
p

)3 , (255)

and can be shown to vanish for ωc >> ωp. Hence frequencies close to the lower cutoff ωcol experience

negligible damping, irrespective of the strength of the background field.

Close to ωh

σx =
1

2
ω2
c , (256)

and so the damping experienced by these frequencies is heavily dependent on the strength of the

background field. Figure 13 shows that within these limits interesting behaviour occurs.

Once again, we see that the subdominant term contains a turning point. We see that for the

lower frequency waves, σx acts to enhance the damping due to ζx. However for higher frequency

waves σx is positive, and thus acts to reduce the amount of damping the waves experience. Ad-

ditionally, increasing the strength of the background magnetic field, acts not only to increase the

magnitude of the damping, but also shifts the position of the peak, altering which frequencies are

affected the most.

dσx
dω0

is a twelfth order polynomial in ω0,

dσx
dω0

= ω12
c + 4ω10

c ω2
p − ω8

c ω
4
p − 25ω6

c ω
6
p − 41ω4

c ω
8
p − 20ω2

c ω
10
p + 3ω12

p

+ (4ω10
c + 34ω8

c ω
2
p + 110ω6

c ω
4
p + 160ω4

c ω
6
p + 76ω2

c ω
8
p − 18ω10

p )ω2
0

+(−23ω8
c − 120ω6

c ω
2
p − 210ω4

c ω
4
p − 104ω2

c ω
6
p + 45ω8

p)ω
4
0

+(32ω6
c + 104ω4

c ω
2
p + 56ω2

c ω
4
p − 60ω6

p)ω
6
0 + (−13ω4

c − 4ω2
c ω

2
p + 45ω4

p)ω
8
0

+(−4ω2
c − 18ω2

p)ω
10
0 + 3ω12

0 , (257)

and so just like with the L and R modes we cannot obtain an analytic expression for the turning

point40. We can however once again examine it in the limit ωc >> ωp. Carrying out a procedure

40Though it only contains even powers of ω0.
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(a) (b)

(c) (d)

Figure 13: Plots of the subdominant damping term σx (ω0) vs k (ω0) in the region ωcol < ω0 < ωh
with a) ωc

ωp
= 0.1, b) ωc

ωp
= 1, c) ωc

ωp
= 3 and d) ωc

ωp
= 10.
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identical to that of Sections 4.1 and 4.2, we obtain the equation

(
3χ4

x + 8χ2
x + 1

)
(χx − 1)4 (χx + 1)4 , (258)

where χx = ω0
ωp

.

Solutions to the quartic equation have no real roots, thus the maximal damping occurs when

ω0 = ωc (in the limit ωc >> ωp).

In the Region ωcor < ω0 <∞

Let us now examine frequencies in the region above ωcor . In this region, close to ωcor

σx ≈ −
2ω6

p ωc

(
ωc − 3

√
ω2
c + 4ω2

p

)
(
ω2
c − ωc

√
ω2
c + 4ω2

p + 4ω2
p

)3 . (259)

For ωc << ωp the subdominant term vanishes, however for ωc >> ωp

σx ≈
1

2
ω2
c . (260)

Far from ωcor , σx vanishes independently of the background magnetic field. However, we can see

from Figure 14 that we once again find a turning point between these limits.

Our earlier calculation of the location of the turning point holds for this region. Hence the

point still occurs at ω0 = ωc, however in this region σx is positive for all frequencies, thus acting in

opposition to ζx.
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(a) (b)

(c) (d)

Figure 14: Plots of the subdominant damping term σx (ω0) vs k (ω0) in the region above ωcor with
a) ωc

ωp
= 0, b) ωc

ωp
= 0.1, c) ωc

ωp
= 1 and d) ωc

ωp
= 3.
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4.5 A Practical Application : Neutron Star Crusts

So far, we have examined the properties of the dispersion relations of various modes of an electro-

magnetic wave travelling through a plasma. We have split these dispersion relations up into four

parts; the part found in cold, non-radiating plasmas, the part due to the warm fluid correction

and the part due to the radiative correction (which itself has been split into the part neglecting

the warm fluid approximation and the part that includes it). For convenience to the reader, these

parts are now summarised in Table 3, which can be found at the end of this section.

Up to this point, we have been primarily concerned with the overall behaviour of the individual

terms, and have not considered their application to a physical system, the goal of which is the focus

of this section.

It is not immediately obvious however which physical system we should choose to apply our

model to. We require a system that can be modelled as a single species electron plasma, that

contains electromagnetic fields strong enough that the dominant and subdominant damping terms

give measurable effects, yet not so high as to cause either term to become comparable to that of

the cold, non-radiating term41.

To date, the strongest continuous magnetic field produced in the laboratory[49] is 45 T, which

was achieved by Florida State University’s ‘National High Magnetic Field Laboratory’; however

we do not expect radiation reaction effects to become significant at such field strengths. Larger

magnetic fields can be created by utilising electromagnetic radiation. For example a typical laser

wakefield accelerator will produce a laser pulse with a magnetic field strength[50] of ∼ 10 kT, while

ELI hopes to produce even stronger pulses of ∼ 1 MT.

While one can expect radiation reaction to play a significant role in forthcoming ultra-high-

intensity laser-based accelerators, they are not an appropriate system in which to apply the results

of this section. Recall from (196) that we assumed the background magnetic field to be constant,

which is clearly not the case for the oscillatory magnetic field of a laser pulse. By treating the

oscillatory component of the fields as a perturbation to a constant background, we were able to

41Recall that throughout the previous chapters we have used a perturbative approach whereby we have assumed
that the dominant damping term is small in comparison to the non-radiative term, and that the subdominant damping
term is small in comparison to that of the dominant damping term.
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uncover some of the implications of radiation reaction via dispersion relations. However, non-

linearity plays an important role in laser wakefield accelerators and cannot be completely ignored.

We will return to this point in section 5 and consider some of the implications of non-linearity

there.

To find a physical system which satisfies our assumptions, in addition to producing a magnetic

field strong enough for radiation reaction effects to become significant, we turn our attention to

astrophysics, specifically, to the astrophysical bodies known as neutron stars.

4.5.1 What is a Neutron Star?

Figure 15: Cross-section of a neutron star42.

A neutron star is formed from the gravitational collapse of a massive star after a supernova[52];

some neutron stars rotate very rapidly, and are known as pulsars. Neutron stars have a radius

of approximately 12 km -13 km whilst having a mass approximately twice that of our sun, making

them the densest and smallest stars known to exist in the universe. Additionally, neutron stars

have very strong magnetic fields, a typical pulsar can have a surface magnetic field of 108 T, and

hence we can expect radiation reaction effects to play a significant role.

42This image has been created by Robert Schulze, using data from reference [51].
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While not known precisely, it is estimated that the density within a neutron star’s core is two

to three times the average density of the nucleus of an atom[53], ρ0. In the outer layer of a neutron

star, known as the neutron star crust, the average density is less than ρ0 and hence this area is more

amenable to modelling than the dense core43. Furthermore, one can consider the crust as a single

species of atomic nuclei suspended in an electron gas[54], and thus make the same assumption that

we made in Section 2.1.2 - that the atomic nuclei can be represented by a homogeneous background

field included in the external source four-current.

4.5.2 Our Fluid Model Applied to a Neutron Star Crust

Before we can substitute the parameters of a neutron star crust into our dispersion relations, we

must first ensure that they are of the correct dimension. Recall in Section 1.1.1 that in order to

simplify calculations we have used natural units where c = ε0 = µ0 = 1. Since, up to this point,

we have been interested only in the overall properties of the dispersion relations, using such a unit

system has been perfectly acceptable. However if we now wish to model a physical system we must

reintroduce these variables where appropriate.

To do this, me must multiply our definition of the plasma frequency (68) by 1
ε0

, θ must be

multiplied by a factor of 1
c2

, and the right hand sides of our expressions for k(ω0) - (207), (223),

(234) and (244) - must all be multiplied by a factor of 1
c2

.

A typical neutron star crust [55] has an average electron number density ne = 6.4× 1032 m−3,

magnetic field B = 108 T and temperature T = 106 K. To find a suitable range over which to

examine our dispersion relation, we must first compute the cutoff frequency of such a star.

Recall our expression (214) for the cutoff frequency of the R mode

ωcor =
1

2

(√
ω2
c + 4ω2

p + ωc

)
. (261)

Substituting the values given above into this we find ωcor = 1.77× 1019 rad s−1.

In Figure 16 below, we construct a log-log plot of the dominant and subdominant damping

43Note that such a large plasma density acts to reduce the size of θ in comparison to it’s laboratory value (for the
same temperature).
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terms44 of the R mode in the region ωcor ≤ ω0 ≤ 4× 1019 rad s−1.

(a) (b)

(c)

Figure 16: Plots of a) τ ζr (ω0) and b) τ θ σr (ω0), vs k(ω0) in the region ωcor ≤ ω0 ≤ 4×1019 rad s−1.

Figure c) plots |ζr|
|θ σr| vs k(ω0), showing the relative size of the two terms.

44Multiplied by their respective factors of θ and τ .
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From Figure 16(c) we see that the correction to the damping rate due to the finite temperature

of the plasma is small in comparison to that of the zero-temperature limit, and this result suggests

that it is reasonable to neglect the temperature when calculating the damping due to radiation

reaction of linear plasma waves in neutron star crusts.

However, we caution that the above analysis does not include important effects that can only

be investigated using the full kinetic theory, such as Landau damping of longitudinal space charge

waves. Further work is required to uncover the role of radiation reaction when such effects are

taken into account.
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5 Radiation Reaction and Large Amplitude Waves

In the previous sections we have dealt with waves whose amplitude is small in comparison to the

magnetic field of the plasma. However, plasma-based particle acceleration schemes exploit large

amplitude fields that do not satisfy linear partial differential equations. The purpose of the present

section is to illustrate the subtleties that immediately arise, even in the simplest of cases, when

including radiation reaction in the analysis of large amplitude waves.

Let us choose our coordinate system such that the wave travels along the ẑ axis. If we introduce

ξ = z − v t where v is the phase speed of the wave, the electromagnetic field tensor takes the form

F = E(ξ)dt ∧ dz, (262)

where E(ξ) is the amplitude of the wave.

In the previous sections we employed a perturbative approach, whereby we assumed that the

solutions we sought were those of the plasma in equilibrium, modified by a small correction term.

This is not unreasonable when dealing with small amplitude external fields. In this section however

we make no such assumption about the applied field, and hence we cannot use this approach.

Instead, all we can say is that all the components of the centred moments depend solely on ξ, i.e.

[
Rab:∅

]
=



R00:∅(ξ) R01:∅(ξ) R02:∅(ξ) R03:∅(ξ)

R10:∅(ξ) R11:∅(ξ) R12:∅(ξ) R13:∅(ξ)

R20:∅(ξ) R21:∅(ξ) R22:∅(ξ) R23:∅(ξ)

R30:∅(ξ) R31:∅(ξ) R32:∅(ξ) R33:∅(ξ)


(263)

and similarly for Ra:b∅ and R∅:ab.

Note that even though we are considering arbitrarily strong fields, we are still working within

the warm fluid approximation, and so we can still consider all centred moments of rank 3 or greater

to be zero.

Furthermore, since the electric field E(ξ) is directly solely along ẑ, we set all spatial components
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of Ua, Aa, Rab:∅, Ra:b and R∅:ab orthogonal to ẑ to zero. Thus the centred moments are given by

[
Rab:∅

]
=



R00:∅(ξ) 0 0 R03:∅(ξ)

0 0 0 0

0 0 0 0

R30:∅(ξ) 0 0 R33:∅(ξ)


, (264)

[
Ra:b

]
=



R0:0(ξ) 0 0 R0:3(ξ)

0 0 0 0

0 0 0 0

R3:0(ξ) 0 0 R3:3(ξ)


, (265)

and

[
R∅:ab

]
=



R∅:00(ξ) 0 0 R∅:03(ξ)

0 0 0 0

0 0 0 0

R∅:30(ξ) 0 0 R∅:33(ξ)


. (266)

Note that due to the symmetry of Rab:∅ and R∅:ab, R03:∅ = R30:∅ and R∅:03 = R∅:30.

Substituting the above into the equations of motion (91 - 96), and coupling them to Maxwell’s

equations, we obtain a system of sixteen unique differential equations for the eleven fields, a sample

of which is given below45.

−S∅A0 +
q

m
E S∅ U3 + τ

(
U3A0 S̀∅ + S∅A0 Ù3 + S∅ U3 À0 − U0A0 S̀∅ v − S∅A0 Ù0 v

−S∅ U0 À0 v − R̀0:0 v + R̀3:0 + S∅ U0 (A0)2 + U0R∅:00 + 2A0R0:0 − S∅ U0
(
A3
)2

−U0R∅:33 − 2A3R0:3
)

= 0, (267)

45For the full set of equations, see Appendix D.
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−S∅A3 +
q

m
E S∅ U0 + τ

(
S∅A3 Ù3 + S∅ U3 À3 + R̀3:3 + S∅ U3

(
A0
)2

+ U3R∅:30

+2A0R3:0 − S∅ U3
(
A3
)2 − U3R∅:33 − 2A3R3:3 − U0A3 S̀∅ v − S∅A3 Ù0

−S∅ U0 À3 v − R̀0:3 v + U3A3 S̀∅
)

= 0, (268)

· · · · · · · · · · · · · · · (269)

Note that in the above we have omitted the argument ξ from the functions for clarity, and that the

dots represent the remaining 14 equations. Additionally we have used X̀ = dX
dξ .

From a visual inspection of (267 - 269), we see that only the first nine equations contain

derivatives of the acceleration variables46, and that all of these derivatives are multiplied by a

factor of τ . Although we are now in the strong field regime, we still assume the corrections due to

radiation reaction to be small in comparison to the remaining terms, and hence we can still discard

terms O(τ2) and higher. Thus, we need only solve for the derivatives of the acceleration variables

to lowest order in τ , greatly simplifying the calculation.

To do this, we create a subset of the sixteen equations (267 - 269) that consists of the set’s first

nine equations and set τ to zero in each of them. These equations can then be algebraically manipu-

lated such that we obtain 9 equations for the 9 acceleration variables
{
A0, A3, R∅:00, R∅:30, R∅:33, R0:0 ,

R0:3, R3:0, R3:3
}

, yielding

A0(ξ) =
q

m
U3(ξ)E(ξ) +O

(
τ2
)
, (270)

A3(ξ) =
q

m
U0(ξ)E(ξ) +O

(
τ2
)
, (271)

R∅:00(ξ) =
q2

m2
E(ξ)2R33:∅(ξ) +O

(
τ2
)
, (272)

R∅:30(ξ) =
q2

m2
E(ξ)2R30:∅(ξ) +O

(
τ2
)
, (273)

R∅:33(ξ) =
q2

m2
E(ξ)2R00:∅(ξ) +O

(
τ2
)
, (274)

R0:0 =
q

2m
R30:∅(ξ)E(ξ) +O

(
τ2
)
, (275)

46By acceleration variables we mean the components of Aa, Ra:b and R∅:ab.
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R0:3 =
q

m
R00:∅(ξ)E(ξ) +O

(
τ2
)
, (276)

R3:0 =
q

m
R33:∅(ξ)E(ξ) +O

(
τ2
)
, (277)

R3:3 =
q

2m
R30:∅(ξ)E(ξ) +O

(
τ2
)
. (278)

We then differentiate (270 - 278) with respect to ξ, and substitute the resulting differentials

back into (267 - 269). If we now discard terms of O(τ2), all differentials of the acceleration variables

vanish from the system.

What remains is a system of algebraic equations for the acceleration variables themselves. The

best way to approach solving this system, however, is not clear. There are multiple roots for each of

those variables, and we are concerned only with those that are well behaved as τ → 0. In principal

one could solve for the acceleration variables first, and then inspect each root in turn; however such

a method is computationally intensive.

Instead, we use a perturbative approach, whereby we assume that all the acceleration variables

are of the form

A0(ξ) = A0
(0)(ξ) + τ A0

(1)(ξ), (279)

where the zeroth order terms are given by (270 - 278).

To obtain solutions to the first order terms we substitute the above ansätz into (267 - 269) and

solve for the coefficients of τ for each of the first nine equations in turn. These solutions can then

be substituted back into (267 - 269), resulting in 7 first order ordinary differential equations47 for

the remaining variables U0, U3, S∅, R00:∅, R03:∅, R33:∅ and E.

While again solvable in principal, we still run into problems due to resource limitations if we

try to solve this system directly. At first sight it might appear that we cannot reduce the system

any further; however recall from Section 2 that in addition to the equations of motion (91 - 96)

of our model, we also have the constraints (98 - 103). Note however that many of the constraints

contain terms involving the acceleration variables. Since we have just gone to some lengths to

eliminate these it is necessary to confine our attention only to those constraints that do not involve

47These equations are very large, and so are not included in this thesis.
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acceleration variables; (98) and (100). Of these five constraints, two are trivially satisfied. The

remaining three yield

−U0(ξ)R00:∅(ξ) +
1

2
U3(ξ)R30:∅(ξ) = 0, (280)

−1

2
U0(ξ)R30:∅(ξ) + U3(ξ)R33:∅(ξ) = 0, (281)

−R00:∅(ξ) +R33:∅(ξ) + S∅
(
−U0(ξ)2 + 1 + U3(ξ)2

)
= 0. (282)

These constraints can then be rearranged to obtain expressions for the remaining centred moments

in terms of U0(ξ), U3(ξ) and S∅:

R00:∅(ξ) =
U3(ξ)2 S∅

(
U0(ξ)2 − U3(ξ)2 − 1

)
U0(ξ)2 − U3(ξ)2

, (283)

R30:∅(ξ) =
2U3(ξ)S∅ U0(ξ)

(
U0(ξ)2 − U3(ξ)2 − 1

)
U0(ξ)2 − U3(ξ)2

, (284)

R33:∅(ξ) =
S∅ U0(ξ)2

(
U0(ξ)2 − U3(ξ)2 − 1

)
U0(ξ)2 − U3(ξ)2

. (285)

Substituting (283 - 285) back into the remaining seven equation system, and performing some

algebraic manipulation, one is able to obtain 4 differential equations for U0(ξ), U3(ξ), E(ξ), and

S∅(ξ), as well as 3 additional algebraic constraints on U0(ξ), U3(ξ), E3(ξ), and S∅(ξ).

Solving the first algebraic constraint yields

S∅ = − nion v

U3(ξ)− U0(ξ)
, (286)

where nion is the number density of the ions. Substitution of this solution back into the system of

7 equations, results in 6 equations for the three unknowns U0(ξ), U3(ξ), E(ξ).

What we now have is an over-prescribed system; we have more equations than we need in order

to solve for all the unknown variables. In general this is not a problem, provided you are working

with a consistent system. However, if we were to choose subsets of these equations, comprised of

different combinations of the 6 equation set, the solutions we would obtain would differ depending

on which equations we chose to use. Clearly then, we do not have a consistent system. The reason
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for this is that we have not yet completed our application of the warm fluid approximation. When

working in this regime, one must continue to apply the approximation, reducing the number of

equations one has until there are the same number of equations as unknowns.

In order to proceed then, we must introduce another parameter that can be used to determine

which equations can be discarded in the warm fluid regime.

Let us assume that U0(ξ) takes the form

U0(ξ) =
√

1 + U3(ξ)2 + κ(ξ). (287)

The first term on the right-hand side of the above is the solution for U0(ξ) in the cold fluid

approximation, with κ(ξ) a small correction48 of O(χ). Note that if we set κ(ξ) = 0 we obtain

the solution to the cold fluid regime, whereas if we require κ(ξ) to be small, we obtain a solution

close to, but not identical to that of the cold fluid. Hence κ(ξ) can be interpreted as a measure of

how far the state of our plasma deviates from that of a cold plasma. Substituting (287) into the

remaining two algebraic constraints, one finds that they vanish to order O(χ), and hence can be

discarded from our 6 equation system.

Thus, we arrive at a system of four differential equations for the three remaining unknowns

E(ξ), U3(ξ) and κ(ξ).

In order to eliminate one more equation, it is necessary to carry out some simplification. A

visual inspection of the remaining 4 equations shows that one of the equations is of the form

dU3(ξ)

dξ
= J

(
U3(ξ), E(ξ), κ(ξ)

)
. (288)

Substitution of the above back into the four-equation system allows us to simplify the system to a

point whereby we can algebraically solve two of the equations for κ(ξ) independently. Comparison

of these two solutions for κ(ξ) reveals them to be identical to O (χ), and hence we can eliminate

one from our system.

Hence we arrive at a system of three differential equations for the three unknowns E(ξ), U3(ξ)

48Recall from Section 4.1 that τ and θ are O (χ), and τ θ is O
(
χ2

)
.
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and κ(ξ). All that remains is to choose our initial conditions. We can choose E(ξ) and U3(ξ) freely,

but we must take care when choosing κ(ξ), as it must be that |κ(ξ)| <<
√

1 + U3(ξ)2 or else we

violate the warm fluid approximation49. From inspection of (287) it is clear that we can associate

κ(ξ) with the deviation of the plasma’s state from that of a cold plasma, or alternatively with the

pressure tensor of the plasma. Hence to see what effect pressure has on the electric field it is helpful

to examine plots with varying values of κ(0). Figure 17 is composed50 of such plots.

(a) (b)

(c)

Figure 17: Plots of E(ξ) vs ξ for a) κ(0) = 0 and b) κ(0) = 0.03. The range of plot c) is larger
than that of a) and b), for perspective.

49Additionally we must ensure that |κ(ξ)| does not get much larger than its initial value.
50In order to generate the following figures we have set U3(0) = 0.5, E(0) = 0, v = 0.6 and q = m = ne = 1.
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Note the sawtooth profile of the wave. From inspection of the above we see that increasing the

value of κ(0) has two effects. Firstly, the larger the value of κ(0) the lower the amplitude of the wave

near ξ = 0, and secondly we see that as κ(0) increases, the wavelength of the wave decreases. This

acts to increase the overall gradient of the wave, thus enhancing the sawtooth shape. Additionally,

from Figure 17(c) we see that the amplitude of the wave decreases as ξ becomes more negative, as

one would expect from a model that incorporates damping.

Recall that ξ is a coordinate that moves with the wave, and hence Figure 17 is a plot of the

amplitude of the wave, as seen in the wave frame. While we can integrate from any point in

the past of ξ, we cannot integrate arbitrarily far into the future of ξ. If we attempt to do so the

numerical integrator breaks down, likely due to a singularity, and calculation is halted. Interestingly,

increasing the value of κ reduces the distance into the future that we can integrate. This can be

seen in Figure 18 below; initially we set κ to zero and numerical integration halts at approximately

ξ = 16, while increasing κ to 0.01 causes the calculation to halt at ξ ≈ 10.

(a) (b)

Figure 18: Plots of E(ξ) vs ξ for a) κ(0) = 0 and b) κ(0) = 0.01.

Since this plot was obtained numerically, it is not clear exactly what is causing the singularity

to occur. However the presence of a singularity for some future value of ξ is not unreasonable.

As we saw in Section 1.2.3, waves of the form (262) do not spontaneously generate in a plasma,
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but rather are driven by a laser pulse that travels at speed v and overlaps the end of the wave. Our

model is not valid in the region of the pulse, and hence a singularity is not unexpected.

93



6 Conclusion and Future Work

In this thesis we have generated a new model of a warm plasma that takes radiation reaction into

account, and have examined some of its predictions for the behaviour of electric and electromagnetic

waves propagating through plasma.

We first derived our model in Section 2, whereby we took moments of an already established

kinetic description based upon the ALD equation. Later, in order to obtain solutions, we performed

an approximation procedure similar to that used to generate the Landau-Lifshitz equation. Our new

method has the advantage of generating a more compact set of moment equations than would be

obtained from Landau-Lifshitz kinetic theory, thus simplifying implementation of the fluid theory

in a symbolic algebra package.

Taking moments of a fluid description results in an infinite hierarchy of equations, that one

must somehow close in order to obtain solutions. We used an approach inspired by models of warm

fluids that do not take radiation reaction into account. Such a closure scheme allowed us to obtain

a finite set of equations, while making no additional assumptions about the bulk properties of the

plasma. However, there are other closure mechanisms one could apply, and this is certainly an area

open to future study.

We then went on to use the techniques of perturbation theory to examine the behaviour of

small amplitude electric waves, obtaining analytic descriptions of their dispersion relations. While

models exist that examine electric waves in the warm fluid regime, and take radiation reaction into

account, none so far have explored the properties of the τ θ correction in the warm fluid theory,

and so these results are a new addition to the field. Additionally, we obtained analytic expressions

for the bulk properties for the plasma51.

We subsequently examined small amplitude electromagnetic waves, deriving dispersion relations

in a similar manner to those of the electric wave. We then went on to apply the dispersion relation

we obtained for the R Mode to a physical system, that of neutron star crusts. Unfortunately, due

to the complexity of the solutions we obtained, we were unable to derive expressions for the bulk

properties of the plasma. This was simply due to computational limits, and perhaps in future, as

51i.e. the low rank centred moments of the 1-particle distribution function.
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computational speeds increase, we can revisit this aspect of the work. However, we did find that

it is not unreasonable to neglect the temperature when calculating the damping due to radiation

reaction of linear plasma waves in neutron star crusts; the contribution to the damping due to the

finite temperature is ∼ 10−4 − 10−3 times that of the zero temperature limit.

In the final section, noting that plasma-based wakefield accelerators operate in a non-linear

regime, we moved on from the perturbative approach and instead looked at an electric wave of

arbitrary amplitude. A natural extension of this thesis would be to examine electromagnetic waves

of arbitrary strength.

While we have only studied the effects of electromagnetic waves of infinite extent, experimental

research that is being carried out in laser based particle acceleration invariably involves short

pulses of electromagnetic waves. Hence, in order to compare the predictions of this model with

those observed experimentally, it would be helpful to model such a pulse.
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A Derivation of the Moment Equations

We begin with the Vlasov Equation, given by (82) in Section 2.1.2 and reproduced below;

Lf +
3

τ
f = 0. (289)

Recall that L is the Liouville operator, and is given by

L = ẋa
∂

∂xa
+ aµ

∂

∂vµ
+

[
ẍaẍav

µ +
1

τ

(
aµ +

q

m
Fµa ẋ

a
)] ∂

∂aµ
, (290)

where vµ = ẋµ and aµ = ẍµ.

Additionally, ẋa obeys the normalisation condition

ẋaẋa = −1, (291)

which can be differentiated to give

ẍaẋa = 0. (292)

A.1 Generation of the 1st Moment Equation

To begin, consider the expression52 ∫
ẋaψfdω, (293)

where ψ = ψ (xa, ẋa, ẍa) is an arbitrary function and dω = d3vd3a
1+v2 . Differentiation with respect to

xa yields

∂

∂xa

∫
ẋaψfdω =

∫
ẋa

∂

∂xa
(ψf)dω

=

∫
ẋa

∂ψ

∂xa
fdω +

∫
ψẋa

∂f

∂xa
dω. (294)

52Note that the measure dω has no relation to the frequencies ω discussed throughout this thesis.
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Rearranging (289) to obtain an expression for ẋa ∂f
∂xa , and substituting this into the above yields

∂

∂xa

∫
ẋaψfdω =

∫
ẋa

∂ψ

∂xa
fdω −

∫
ψaµ

∂f

∂vµ
dω

−
∫
ψ

[
ẍaẍav

µ +
1

τ

(
aµ +

q

m
Fµaẋ

a
)] ∂f

∂aµ
dω −

∫
ψ

3

τ
fdω. (295)

Applying integration by parts to the second and third terms we find,

∫
ẋa

∂

∂xa
(ψf) dω =

∫ {
ẋa

∂ψ

∂xa
+ aµ

∂ψ

∂vµ
+

[
ẍaẍav

µ +
1

τ

(
aµ +

q

m
Fµaẋ

a
)] ∂ψ

∂aµ

}
fdω (296)

+

∫
ψ

[
aµ

∂

∂vµ

(
1

1 + v2

)
(1 + v2) + vµ

∂

∂aµ
(ẍaẍa)

]
fdω, (297)

where the 1 + v2 terms arise from within dω.

From (291) and (292), one can show

ẍaẍa = −(vµaµ)2

1 + v2
+ a2. (298)

Taking the derivative of (298) with respect to aν , and contracting the resulting expression with vν ,

we find

vµ
∂

∂aµ
(ẍaẍa) =

2 aµvµ
1 + v2

= −aµ ∂

∂vµ

(
1

1 + v2

)
(1 + v2), (299)

and hence the second integral of the right-hand side of (297) vanishes. Thus

∂

∂xa

∫
ẋaψfdω =

∫
Lψfdω. (300)

Armed with (300) we are able to generate the first moment equation by setting ψ = 1;

∂

∂xa

∫
ẋafdω = ∂aS

a:∅ = 0. (301)
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A.2 Generation of the 2nd Moment Equation

Setting ψ = ẋb in (300) yields

∂

∂xa

∫
ẋaẋbfdω =

∫
Lẋbfdω. (302)

One can easily show that Lẋa = ẍa, resulting in the second moment equation;

∂

∂xa

∫
ẋaẋbfdω =

∫
ẍbfdω. (303)

A.3 Generation of the 3rd Moment Equation

Setting ψ = ẍb in (300) yields

∂

∂xa

∫
ẋaẍbfdω =

∫
Lẍbfdω. (304)

To proceed further we must evaluate Lẍa. In order to simplify the calculation let us first look at

the zeroth component,

Lẍ0 = L

(
aβvβ√
1 + v2

)
= aµ

∂

∂vµ

(
aβvβ√
1 + v2

)
+

[
ẍbẍbv

µ +
1

τ

(
aµ +

q

m
Fµaẋ

a
)] ∂

∂aµ
aβvβ√
1 + v2

, (305)

where (292) has been used in the first step to eliminate ẋ0.

Carrying out the differentiation we find,

Lẍ0 =
1√

1 + v2

a2 −
(
aβvβ

)2
(1 + v2)︸ ︷︷ ︸

=ẍaẍa

+ẍaẍav
2

+
1

τ

 aβvβ√
1 + v2︸ ︷︷ ︸
=ẍ0

+
q

m
Fµaẋ

a vµ√
1 + v2


= ẍaẍa

(
1√

1 + v2
+

v2

√
1 + v2

)
︸ ︷︷ ︸

=
√
1+v2=ẋ0

+
1

τ

[
ẍ0 +

q

m
(Fµ0vµ + Fµαv

αvµ)
]
. (306)
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The last term in the above, Fµαv
αvµ, vanishes due to symmetry. Thus

Lẍ0 = ẍaẍaẋ
0 +

1

τ

(
ẍ0 +

q

m
F 0

aẋ
a
)
. (307)

If we next look at the spatial components;

Lẍα = Laα

=

[
ẍbẍbv

µ +
1

τ

(
aµ +

q

m
Fµaẋ

a
)]
δαµ

= ẍbẍbẋ
α +

1

τ

(
ẍα +

q

m
Fαaẋ

a
)
. (308)

Combining (307) and (308) we find

Lẍa = ẍbẍbẋ
a +

1

τ

(
ẍa +

q

m
F abẋ

b
)
. (309)

Substituting (309) into (304) yields

∂

∂xa

∫
ẋaẍbfdω =

∫
ẍcẍcẋ

b +
1

τ

(
ẍb +

q

m
F baẋ

a
)
fdω, (310)

the third moment equation.

All other moment equations are generated in a similar manner.
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B Centred Moment Expansions

We begin with the definition of the centred moments

Ra1...al:b1...bn =

∫
(ẋa1 − Ual) . . . (ẋal − Ual)×

(
ẍb1 −Ab1

)
. . .
(
ẍbn −Abn

)
× fdω, (311)

where dω = d3vd3a
1+v2 .

From this definition we can express all nth order centred moments in terms of (n-1)th centred

moments and a single nth order natural moment by expanding the brackets, as follows:

Rab:∅ = Sab:∅ − S∅UaU b, (312)

Ra:b = Sa:b − S∅UaAb, (313)

R∅:ab = S∅:ab − S∅AaAb, (314)

Rabc:∅ = Sabc:∅ − UaRbc:∅ − U bRac:∅ − U cRab:∅ − S∅UaU bU c, (315)

Rab:c = Sab:c − UaRb:c − U bRa:c −AcRab:∅ − S∅UaU bAc, (316)

Ra:bc = Sa:bc − UaR∅:bc −AbRa:c −AcRa:b − S∅UaAbAc, (317)

R∅:abc = S∅:abc −AaR∅:bc −AbR∅:ac −AcR∅:ab − S∅AaAbAc, (318)

and similarly for the centred moments of higher rank.
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C Electromagnetic Electron Wave Dispersion Relations

Here we list the four dispersion relations, in full, for the R, L, O and X modes of an electromagnetic

wave travelling through a magnetised plasma, with radiation reaction taken into account.

R Mode

ω(ω0) = ω0 −
θ

2

(
3ω2

c ω0 + 2ωc ω
2
p − 4ωc ω

2
0 + ω3

0

)
ω2
p ω0

(ωc − ω0)
2 (2ω2

c ω0 + ωc ω2
p − 4ωc ω2

0 + 2ω3
0

)
−i τ

[
ω2
p ω

3
0

2ω2
c ω0 + ωc ω2

p − 4ωc ω2
0 + 2ω3

0

+
1

2

θ ω2
0 ωc ω

2
p(

2ω2
c ω0 + ωc ω2

p − 4ωc ω2
0 + 2ω3

0

)3
(ωc − ω0)

2

×
(

32ω5
c ω

3
0 + 56ω4

c ω
2
p ω

2
0 − 136ω4

c ω
4
0 + 32ω3

c ω
4
p ω0 − 160ω3

c ω
2
p ω

3
0 + 224ω3

c ω
5
0

+6ω2
c ω

6
p − 45ω2

c ω
4
p ω

2
0 + 148ω2

c ω
2
p ω

4
0 − 176ω2

c ω
6
0 + 4ωc ω

4
p ω

3
0 − 40ωc ω

2
p ω

5
0 + 64ωc ω

7
0

+9ω4
p ω

4
0 − 4ω2

p ω
6
0 − 8ω8

0

)]
.

L Mode

ω(ω0) = ω0 −
θ

2

(
3ω2

c ω0 − 2ωc ω
2
p + 4ωc ω

2
0 + ω3

0

)
ω2
p ω0

(ωc + ω0)
2 (2ω2

c ω0 − ωc ω2
p + 4ωc ω2

0 + 2ω3
0

)
−iτ

[
ω2
p ω

3
0

2ω2
c ω0 − ωc ω2

p + 4ωc ω2
0 + 2ω3

0

+
1

2

θ ω2
0 ωc ω

2
p(

2ω2
c ω0 − ωc ω2

p + 4ωc ω2
0 + 2ω3

0

)3
(ωc + ω0)

2

×
(

32ω5
c ω

3
0 − 56ω4

c ω
2
p ω

2
0 + 136ω4

c ω
4
0 + 32ω3

c ω
4
p ω0 − 160ω3

c ω
2
p ω

3
0 + 224ω3

c ω
5
0

−6ω2
c ω

6
p + 45ω2

c ω
4
p ω

2
0 − 148ω2

c ω
2
p ω

4
0 + 176ω2

c ω
6
0 + 4ωc ω

4
p ω

3
0 − 40ωc ω

2
p ω

5
0 + 64ωc ω

7
0

−9ω4
p ω

4
0 + 4ω2

p ω
6
0 + 8ω8

0

)]
.
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O Mode

ω(ω0) = ω0 −
θ

4

(
3ω2

c − 2ω2
p − ω2

0

)
ω2
p

ω0 (ωc − ω0) (ωc + ω0)
− i τ

2
ω2
p

+
i τ θ

2

ω2
p

(
ω4
c + ω2

c ω
2
p − 3ω2

c ω
2
0 − ω4

p + 2ω2
p ω

2
0

)
(ωc − ω0)

2 (ωc + ω0)
2 .

X Mode

ω(ω0) = ω0 −
θ

4

(
ω2
c ω

2
0 + ω4

p − 2ω2
p ω

2
0 + ω4

0

)
ω2
p(

ω4
c + 3ω2

c ω
2
p − 2ω2

c ω
2
0 + ω4

p − 2ω2
p ω

2
0 + ω4

0

)
ω0

− i τ
2

[
ω2
p

(
ω2
c ω

2
0 + ω4

p − 2ω2
p ω

2
0 + ω4

0

)
ω4
c + 3ω2

c ω
2
p − 2ω2

c ω
2
0 + ω4

p − 2ω2
p ω

2
0 + ω4

0

+
θ ω2

c ω
2
p(

ω4
c + 3ω2

c ω
2
p − 2ω2

c ω
2
0 + ω4

p − 2ω2
p ω

2
0 + ω4

0

)3 × (ω8
c ω

2
0 + ω6

c ω
4
p

+ω6
c ω

2
p ω

2
0 + 4ω4

c ω
6
p − 11ω4

c ω
4
p ω

2
0 + 13ω4

c ω
2
p ω

4
0 − 6ω4

c ω
6
0 + 5ω2

c ω
8
p

−23ω2
c ω

6
p ω

2
0 + 39ω2

c ω
4
p ω

4
0 − 29ω2

c ω
2
p ω

6
0 + 8ω2

c ω
8
0 + 3ω10

p − 15ω8
p ω

2
0

+30ω6
p ω

4
0 − 30ω4

p ω
6
0 + 15ω2

p ω
8
0 − 3ω10

0

)]
.
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D The System of Equations Describing a Non-Linear Wave

In Section 5, for convenience, we listed only a sample of the full system53 of equations that we

obtained. Here we list the system of sixteen equations in full. As in Section 5, we have omitted the

argument ξ of the fields for clarity.

τ
(
− U0A0 S̀∅ v − S∅A0 Ù0 v − S∅ U0 À0 v − R̀0:0 v + U3A0 S̀∅ + S∅A0 Ù3

+S∅ U3 À0 + R̀3:0 + S∅ U0
(
A0
)2

+ U0R∅:00 + 2A0R0:0 − S∅ U0
(
A3
)2 − U0R∅:33

−2A3R0:3
)
− S∅A0 +

q

m
E S∅ U3 = 0, (319)

τ
(
− U0A3 S̀∅ v − S∅A3 Ù0 v − S∅ U0 À3 v − R̀0:3 v + U3A3 S̀∅ + S∅A3 Ù3

+S∅ U3 À3 + R̀3:3 + S∅ U3
(
A0
)2

+ U3R∅:00 + 2A0R3:0 − S∅ U3
(
A3
)2 − U3R∅:33

−2A3R3:3
)
− S∅A3 +

q

m
E S∅ U0 = 0, (320)

τ
(
−R∅:00 Ù0 v − U0 R̀∅:00 v − 2R0:0 À0 v − 2A0 R̀0:0 v + U3

(
A0
)2
S̀∅

+S∅
(
A0
)2
Ù3 − U0

(
A0
)2
S̀∅ v − S∅

(
A0
)2
Ù0 v + 2S∅ U3A0 À0 − 2S∅ U0A0

(
A3
)2

+R∅:00 Ù3 + U3 R̀∅:00 + 2R3:0 À0 + 2A0 R̀3:0 − 2
(
A3
)2
R0:0 + 6

(
A0
)2
R0:0

−2U0A0R∅:33 − 4A0A3R0:3 − 2U0A3R∅:30 + 2S∅ U0 (A0)3 + 6U0A0R∅:00

−2S∅ U0A0 À0 v
)
− 2S∅

(
A0
)2 − 2R∅:00 + 2

q

m
E
(
S∅ U3A0 +R3:0

)
= 0, (321)

53Given by (262 - 269).
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τ
(

2S∅ U3
(
A0
)2
A3 − U0 R̀∅:33 v − 2R0:3 À3 v − 2A3 R̀0:3 v + U3

(
A3
)2
S̀∅

+S∅
(
A3
)2
Ù3 −R∅:33 Ù0 v − 6

(
A3
)2
R3:3 + 2

(
A0
)2
R3:3 − 2S∅ U3

(
A3
)3

−6U3A3R∅:33 + 4A0A3R3:0 + 2U3A0R∅:30 + 2U3A3R∅:00 + 2A3 R̀3:3 +R∅:33 Ù3

+U3 R̀∅:33 + 2R3:3 À3 − S∅
(
A3
)2
Ù0 v + 2S∅ U3A3 À3 − U0

(
A3
)2
S̀∅ v

−2S∅ U0A3 À3 v
)
− 2S∅

(
A3
)2 − 2R∅:33 + 2

q

m
E
(
S∅ U0A3 +R0:3

)
= 0, (322)

τ
(
− 2R0:0 Ù0 v − 2U0 R̀0:0 v −R00:∅ À0 v −A0 R̀00:∅ v −

(
U0
)2
R∅:33

−
(
A3
)2
R00:∅ − S∅

(
U0
)2 (

A3
)2 − 4U0A3R0:3 + S∅

(
U0
)2 (

A0
)2

+4U0A0R0:0 +
(
U0
)2
R∅:00 +

(
A0
)2
R00:∅ − 2S∅ U0A0 Ù0 v − S∅

(
A0
)2

−R∅:00 + U0 U3A0 S̀∅ + S∅ U3A0 Ù0 + S∅ U0A0 Ù3 + S∅ U0 U3 À0

−
(
U0
)2
A0 S̀∅ v − S∅

(
U0
)2
À0 v +R3:0 Ù0 + U0 R̀3:0 +R0:0 Ù3 + U3 R̀0:0

+
1

2
R30:∅ À0 +

1

2
A0 R̀30:∅

)
− S∅ U0A0 −R0:0 +

q

m
E
(
S∅ U0 U3 +

1

2
R30:∅

)
= 0, (323)

τ
(
−R3:3 Ù0 v − U0 R̀3:3 v −R0:3 Ù3 v − U3 R̀0:3 v − 1

2
R30:∅ À3 v

−1

2
A3 R̀30:∅ v +

(
U3
)2
A3 S̀∅ + S∅

(
U3
)2
À3 + 2S∅ U3A3 Ù3 + S∅

(
U3
)2 (

A0
)2

+4U3A0R3:0 − S∅
(
A3
)2 −R∅:33 + 2R3:3 Ù3 + 2U3 R̀3:3 +R33:∅ À3

+A3 R̀33:∅ −
(
U3
)2
R∅:33 −

(
A3
)2
R33:∅ +

(
U3
)2
R∅:00 +

(
A0
)2
R33:∅

−S∅
(
U3
)2 (

A3
)2 − 4U3A3R3:3 − U0 U3A3 S̀∅ v − S∅ U3A3 Ù0 v − S∅ U0A3 Ù3 v

−S∅ U0 U3 À3 v
)
− S∅ U3A3 −R3:3 +

q

m
E
(
S∅ U0 U3 +

1

2
R30:∅

)
= 0, (324)
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τ
(
− S∅ U0 U3

(
A3
)2

+ U0 U3R∅:00 + 2U0A0R3:0 + 2U3A0R0:0

− U0 U3R∅:33 − 2U0A3R3:3 − 2U3A3R0:3 − 2R0:3 Ù0 v − 2U0 R̀0:3 v −R00:∅ À3 v

−A3 R̀00:∅ v + S∅ U0 U3
(
A0
)2

+
1

2

(
A0
)2
R30:∅ − 2S∅ U0A3 Ù0 v − S∅A0A3

− 1

2
R∅:30 −

(
U0
)2
A3 S̀∅ v − S∅

(
U0
)2
À3 v + U0 U3A3 S̀∅ + S∅ U3A3 Ù0

+ S∅ U0A3 Ù3 + S∅ U0 U3 À3 +R3:3 Ù0 + U0 R̀3:3 +R0:3 Ù3 + U3 R̀0:3 +
1

2
R30:∅ À3

+
1

2
A3 R̀30:∅ − 1

2

(
A3
)2
R30:∅

)
− S∅ U0A3 −R0:3 +

q

m
E
(
S∅
(
U0
)2

+R00:∅
)

= 0, (325)

τ
(
− U0 U3A0 S̀∅ v − S∅ U3A0 Ù0 v − S∅ U0A0 Ù3 v − S∅ U0 U3 À0 v − 1

2
R30:∅ À0 v

−S∅ U0 U3
(
A3
)2

+ U0 U3R∅:00 + 2U0A0R3:0 + 2U3A0R0:0 − U0 U3R∅:33 − 2U0A3R3:3

−2U3A3R0:3 + S∅ U0 U3
(
A0
)2

+
1

2

(
A0
)2
R30:∅ − S∅A0A3 − 1

2
R∅:30 + 2S∅ U3A0 Ù3

+
(
U3
)2
A0 S̀∅ + S∅

(
U3
)2
À0 −R3:0 Ù0 v − U0 R̀3:0 v −R0:0 Ù3 v − U3 R̀0:0 v

−1

2
A0 R̀30:∅ v +A0 R̀33:∅ + 2U3 R̀3:0 +R33:∅ À0 + 2R3:0 Ù3 − 1

2

(
A3
)2
R30:∅

)
−S∅ U3A0 −R3:0 +

q

m
E
(
S∅
(
U3
)2

+R33:∅ = 0, (326)

τ
(
− S∅ U3A0

(
A3
)2

+
1

2
R∅:30 Ù3 +

1

2
U3 R̀∅:30 +R3:3 À0 +A0 R̀3:3 +R3:0 À3

+A3 R̀3:0 + S∅ U0
(
A0
)2
A3 −

(
A3
)2
R3:0 + 3U3A0R∅:00 +

(
A0
)2
R0:3 − 1

2
R∅:30 Ù0 v

+3
(
A0
)2
R3:0 − 3

(
A3
)2
R0:3 − U3A0R∅:33 − 2A0A3R3:3 − U3A3R∅:30 + S∅ U3

(
A0
)3

−R0:3 À0 v −A0 R̀0:3 v −R0:0 À3 v −A3 R̀0:0 v − S∅ U0
(
A3
)3 − 3U0A3R∅:33 + U0A3R∅:00

+2A0A3R0:0 + U0A0R∅:30 + U3A0A3 S̀∅ + S∅A0A3 Ù3 + S∅ U3A3 À0 + S∅ U3A0 À3

−S∅ U0A0 À3 v − U0A0A3 S̀∅ v − S∅A0A3 Ù0 v − S∅ U0A3 À0 v − 1

2
U0 R̀∅:30 v

)
−2S∅A0A3 −R∅:30 +

q

m
E
(
S∅ U3A3 +R3:3 + S∅ U0A0 +R0:0

)
= 0, (327)
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−
(
U0
)2
S̀∅ v − 2S∅ U0 Ù0 v − R̀00:∅ v + U0 U3 S̀∅

+S∅ U3 Ù0 + S∅ U0 Ù3 +
1

2
R̀30:∅ − S∅A0 = 0, (328)

−U0 U3 S̀∅ v − S∅ U3 Ù0 v − S∅ U0 Ù3 v − 1

2
R̀30:∅ v +

(
U3
)2
S̀∅

+2S∅ U3 Ù3 + R̀33:∅ − S∅A3 = 0, (329)

−
(
U0
)3
S̀∅ v − 3S∅

(
U0
)2
Ù0 v − 3R00:∅ Ù0 v − 3U0 R̀00:∅ v

+
(
U0
)2
U3 S̀∅ + 2S∅ U0 U3 Ù0 + S∅

(
U0
)2
Ù3 +R30:∅ Ù0 + U0 R̀30:∅

+R00:∅ Ù3 + U3 R̀00:∅ − 2S∅ U0A0 − 2R0:0 = 0, (330)

−U0
(
U3
)2
S̀∅ v − S∅

(
U3
)2
Ù0 v − 2S∅ U0 U3 Ù3 v −R33:∅ Ù0 v

−U0 R̀33:∅ v −R30:∅ Ù3 v − U3 R̀30:∅ v +
(
U3
)3
S̀∅ + 3S∅

(
U3
)2
Ù3

+3R33:∅ Ù3 + 3U3 R̀33:∅ − 2S∅ U3A3 − 2R3:3 = 0, (331)

−
(
U0
)2
U3 S̀∅ v − 2S∅ U0 U3 Ù0 v − S∅

(
U0
)2
Ù3 v −R30:∅ Ù0 v − U0 R̀30:∅ v

−R00:∅ Ù3 v − U3 R̀00:∅ v + U0
(
U3
)2
S̀∅ + S∅

(
U3
)2
Ù0 + 2S∅ U0 U3 Ù3

+R33:∅ Ù0 + U0 R̀33:∅ +R30:∅ Ù3 + U3 R̀30:∅ − S∅ U0A3 −R0:3

−S∅ U3A0 −R3:0 = 0, (332)

−È + q S∅ U0 − q nion = 0, (333)

−È v + q S∅ U3 = 0. (334)
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