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Abstract: This paper presents an alternative way of describing local density in the cloud-based
evolving systems. The Mahalanobis distance among the data samples is used which leads to the
density that is more suitable when the data are scattered around the input-output surface. All
the algorithms for the identification of the cloud parameters are given in a recursive form which
is necessary for the implementation of the evolving systems. It is also shown that a simple
linearised model can be obtained without identification of the consequent parameters. All the
proposed algorithms are illustrated on a simple simulation model of a static system.
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1. INTRODUCTION

Recently, a special type of fuzzy rule-based (FRB) systems
with non-parametric antecedents has been proposed by
Angelov and Yager (2010). Unlike traditional Mamdani
and Takagi-Sugeno FRB systems, the approach does not
require an explicit definition of fuzzy sets (and their corre-
sponding membership functions) for each input variable. It
introduced the concept of granules in Angelov and Yager
(2010) and later clouds (Angelov and Yager, 2011) that
rely on relative data density to define antecedents. Data
clouds are subsets of previous data samples with common
properties. In the original works (Angelov and Yager,
2010, 2011) data closeness has been used as a similarity
measure. The approach itself is not limited to any par-
ticular similarity measure to classify data into clouds. In
identification of dynamical systems it is very important
to distinguish among the operating regions that represent
different system dynamics. Those regions could be seen as
natural clouds. Even if we choose to select the framework
of cloud based system identification, there are still a num-
ber of subtasks that have to executed. There are also some
possible changes that can be introduced to the original
method while still keeping the general methodology.

The relative density in the original papers (Angelov and
Yager, 2010, 2011) was based on Euclidean distance among
the data samples in the cloud although it was stated that
any other distance could be used. In the current paper
two distance metrics are compared: the original Euclidean
distance and Mahalanobis distance where we introduced
some versions for calculating actual density.

2. TAKAGI-SUGENO FUZZY MODEL OF A
NONLINEAR SYSTEM

A typical Takagi-Sugeno fuzzy model (Takagi and Sugeno,
1985) is given in the form of rules:

if z1 is A1,k1
. . . and zq is Aq,kq

then y = φj(x)

j = 1, . . . ,m k1 = 1, . . . , f1 kq = 1, . . . , fq (1)

The q-element vector zT = [z1, ..., zq] denotes the input or
variables in the antecedent part of the rules, and variable
y is the output of the model. With each variable in the
antecedent zi (i = 1, . . . , q), fi fuzzy sets (Ai,1, . . . ,Ai,fi)
are associated, and each fuzzy set Ai,ki

(ki = 1, . . . , fi)
is associated with a real-valued function µAi,ki

(zi) : R →

[0, 1], that produces membership grade of the variable zi
with respect to the fuzzy set Ai,ki

. To make the list of
fuzzy rules complete, all possible variations of fuzzy sets
are given in Eq. (1), yielding the number of fuzzy rules
m = f1 × f2 × · · · × fq. The variables zi are not the
only inputs of the fuzzy system. Implicitly, the n-element
vector xT = [x1, ..., xn] also represents the input to the
system. It is usually referred to as the consequence vector.
The functions φj(·) can be arbitrary smooth functions
in general, although linear or affine functions are usually
used.

The system in Eq. (1) is easily described in the closed form
in the case of a product-sum Takagi-Sugeno fuzzy model

y =

∑f1
k1=1 · · ·

∑fq
kq=1 µA1,k1

(z1) . . . µAq,kq
(zq) φj(x)

∑f1
k1=1 · · ·

∑fq
kq=1 µA1,k1

(z1) . . . µAq,kq
(zq)

(2)

Note a slight abuse of notation in Eq. (2) since j is not
explicitly defined as a running index. From Eq. (1) it is



evident that each j corresponds to a specific variation of
indexes ki, i = 1, . . . , q.

To simplify Eq. (2), a partition of unity is considered where
functions βj(z) defined as

βj(z) =
µA1,k1

(z1) . . . µAq,kq
(zq)

∑f1
k1=1 · · ·

∑fq
kq=1 µA1,k1

(z1) . . . µAq,kq
(zq)

j = 1, . . . ,m (3)

give information about the fulfilment of the respective
fuzzy rule in the normalized form. It is obvious that
∑m

j=1 βj(z) = 1 irrespective of z as long as the denom-

inator of βj(z) is not equal to zero (this can be easily
prevented by stretching the membership functions over
the whole potential area of z). Combining Eqs. (2) and
(3) and changing summation over ki by summation over j
we arrive to the following equation:

y =

m
∑

j=1

βj(z)φj(x) (4)

From Eq. (4) it is evident that the output of a fuzzy system
is a function of the antecedent vector z (q-dimensional) and
the consequence vector x (n-dimensional). The dimension
of the input space d may be and usually is lower than
(q + n) since it is very usual to have the same variables
present in vectors z and x.

The class of fuzzy models have the form of linear models,
this refers to {βj} as a set of basis functions. The use
of membership functions in input space with overlapping
receptive fields provides interpolation and extrapolation.
It is very common to define the output value as a linear
combination of consequence variables x

φj(x) = θθθ
T
j x, j = 1, . . . ,m, θθθ

T
j = [θj1, . . . , θjn] (5)

If the matrix of the coefficients for the whole set of rules is
denoted as ΘΘΘT = [θθθ1, ..., θθθm] and the vector of membership

values as βββT (z) = [β1(z), . . . , βm(z)], then Eq. (4) can be
rewritten in the matrix form

y = βββ
T (z)ΘΘΘx =

m
∑

j=1

βj(z)θθθ
T
j x (6)

A fuzzy model in the form given in Eq. (6) is referred
to as an affine Takagi-Sugeno model and can be used
to approximate any arbitrary function that maps any
compact set C ⊂ R

d from the input space (the input space
is the space of the union of variables in x and z) to R with
any desired degree of accuracy.

3. IDENTIFICATION OF THE ANTECEDENT PART

The local density is defined by a suitable kernel over
the distance between the current sample z(k) and all the
previous samples that have already been classified to a
particular cloud (j-th in this case) (Angelov and Yager,
2011):

γ
j
k =

1

1 + ρ

∑

Mj

i=1
d
j

ki

Mj

j = 1, ...,m (7)

where d
j
ki denotes the square of the distance between the

current data sample z(k) and the i-th sample of the j-th

cloud z
j
i , while M j is the number of input data samples

associated with the j-th cloud. Note the factor ρ which
is not present in Angelov and Yager (2011) and will be
discussed later.

3.1 Density based on Mahalanobis distance

Mahalanobis distance is conceptually different. It is de-
fined between an observation and a group of observations.
The latter is characterised with its mean and the corre-
sponding covariance matrix. In our case the distance will
be calculated between two samples but taking into account
the covariance matrix of the cloud data samples. The mean
value of the samples in the j-th cloud will be denoted with
µµµj while the associated covariance matrix will be denoted
with ΣΣΣj . The square of the distance between the current
data sample z(k) and the i-th sample of the j-th cloud

(zji ) can therefore be computed as

d
j
ki = (z(k)− z

j
i )

T (ΣΣΣj

Mj )
−1(z(k)− z

j
i ) (8)

where the lower index in µµµj(k) and ΣΣΣj(k) gives the
number of data samples taken into account during their
calculation:

µµµ
j

Mj =
1

M j

Mj

∑

i=1

z
j
i

ΣΣΣj

Mj =
1

M j − 1

Mj

∑

i=1

(zji − µµµ
j

Mj )(z
j
i − µµµ

j

Mj )
T

(9)

By introducing (8) into (7) we obtain the non-recursive
formula for density calculation:

γ
j
k =

1

1 + ρ

∑

Mj

i=1
(z(k)−z

j

i
)T (ΣΣΣj

Mj
)−1(z(k)−z

j

i
)

Mj

(10)

Eq. (10) can be transformed into the recursive form by
further developing the summation in it:

Mj

∑

i=1

(z(k) − z
j
i )

T (ΣΣΣj

Mj )
−1(z(k) − z

j
i ) =

=

Mj

∑

i=1

((z(k) −µµµ
j

Mj )− (zji −µµµ
j

Mj ))
T (ΣΣΣj

Mj )
−1×

× ((z(k) − µµµ
j

Mj )− (zji −µµµ
j

Mj )) =

= M j(z(k)− µµµ
j

Mj )
T (ΣΣΣj

Mj )
−1(z(k) −µµµ

j

Mj )−

− 2

Mj

∑

i=1

(zji − µµµ
j

Mj )
T (ΣΣΣj

Mj )
−1(z(k) −µµµ

j

Mj )+

+

Mj

∑

i=1

(zji −µµµ
j

Mj )
T (ΣΣΣj

Mj )
−1(zji −µµµ

j

Mj )

(11)

To try to simplify the expression further we need to fulfill
the conditions for the covariance matrix inversion. First
denote the matrix of all the vectors (zji − µµµ

j

Mj ) of the j-

th cloud in its columns by ΞΞΞj (dimension q ×M j). The

matrix ΣΣΣj

Mj from (9) is non-singular if and only if ΞΞΞj has
rank q. Since all the rows in ΞΞΞj have zero mean, at least
q + 1 columns are needed for the matrix ΞΞΞj to achieve
full rank. If M j ≥ q + 1 and all the measurements are
independent, the matrix ΣΣΣj

Mj can be inverted (its inverse



is (M j − 1)(ΞΞΞjΞΞΞ
T
j )

−1). Then it is easy to see that the last

term in (11) is identical to (M j−1) trace(ΞΞΞT
j (ΞΞΞjΞΞΞ

T
j )

−1ΞΞΞj)

which is in turn equal to (M j − 1)q (q is the dimension of
the antecedent vector). The term before last is identical to

0 due to the definition of µµµj

Mj in (9). The formula for the
relative density (10) therefore takes the form suitable for
the recursive implementation:

γ
j

k
=

1

1 + ρ

[

(z(k)− µµµ
j

Mj
)T (ΣΣΣj

Mj
)−1(z(k)− µµµ

j

Mj
) +

(Mj
−1)q

Mj

]

(12)

The expression in square brackets in Eq. (12) is equivalent
to the quadratic form in Eq. (10) and therefore always
positive. Now it is properly to discuss the parameter ρ.
Small values of ρ have similar effect as wide membership
functions in the context of fuzzy systems. By increasing ρ,
the membership functions become narrower.

The benefit of using Mahalanobis distance is to describe
the ellipsoidally shaped clouds. In fact any cloud stretched
in a certain direction can be described easier. The size
and the shape of the ellipsoid depends on the covariance
matrix of the data in the cloud. While the idea of having
such clouds is appealing, it holds a caveat. If a cloud is
based on some measurements in a small region of space,
the covariance matrix ΣΣΣj

Mj becomes small and a relatively
close measurement may have low density with respect to
this particular cloud. The problem lies in the fact that
the volume of the cloud (or better of the ellipsoid defined
by its covariance matrix) is too small. To prevent this
phenomenon, the inverse of the covariance matrix in Eq.
(12) is replaced by its normalised version:

γ
j

k
=

1

1 + ρ





(z(k)−µµµ
j

Mj
)T (ΣΣΣ

j

Mj
)−1(z(k)−µµµ

j

Mj
)

√

det
(

(ΣΣΣ
j

Mj
)−1

)

+
(Mj

−1)q

Mj





(13)

The normalising factor is the square root of the determi-
nant of the matrix which is proportional to the volume of
the ellipsoid. In practice one does not divide by the square

root. Instead multiplication with (detΣΣΣj

Mj )
1

2 is used.

It is also possible to only perform normalisation if
(detΣΣΣj

Mj )
1

2 falls below a certain threshold. Thus, auto-
matic normalisation of “big” signals is still achieved via
the Mahalanobis metric while over-shrinking of clouds is
prevented.

Eq. (9) is not suitable for implementation in the recursive
identification algorithm. This algorithm can be adapted
for our purpose as follows. If a new data sample (say z) is
assigned to the j-th cloud, the update of the mean and the
covariance matrix can be calculated using the Algorithm
1:

M j ←M j + 1
d← z− µµµj

µµµj ← µµµj + 1
Mj d

Sj ← Sj + d(z−µµµj)T

ΣΣΣj ← 1
Mj

−1S
j

All the states (M j , µµµj , Sj) of this algorithm are initialised
with zeros. Note that the lower indexes are omitted in the
algorithms due to the nature of the algorithm implemen-
tation.

In order to calculate the relative density (12) or (13),
one needs the inverse of the covariance matrix. To avoid
inverting the matrix in each sampling instant, Woodbury
matrix identity is used to obtain the recursive form for the
matrix inversion. Last two steps of Algorithm 1 therefore
change in Algorithm 2:

S̄j ← S̄j − S̄jd
[

1 + (z−µµµj)T S̄jd
]

−1
(z− µµµj)T S̄j

(ΣΣΣj)−1 ← (M j − 1)S̄j

Algorithm 2 introduces a new state S̄j as an inverse of Sj

from Algorithm 1. It is initialised with a large positive
definite matrix, usually a diagonal one. Note that the
inverse in Algorithm 2 applies to a (positive) scalar and
is not problematic. Note also that Algorithm 1 exactly
reproduces the mean and the covariance matrix from (9)
while Algorithm 2 also achieves this but there is a slight
difference in the initialisation phase (the inversion of zero
is undefined). After the full rank of the covariance matrix
is achieved, all three algorithms become identical.

But since starting a new cloud with enough initial data
is extremely important for robust operation, the above
mentioned small difference is irrelevant. Enough initial
data means that data are kept in a buffer before a decision
for starting a new cloud is taken. Usually, this means that
more than q + 1 measurements are kept. Then, there is
no need of initialising the inverse of the covariance matrix
with a big positive matrix. Instead, real data from the
buffer are used.

3.2 The determination of the input-output mapping

Any nonlinear mapping that maps a compact set from the
input space to R can be approximated by a number of
general approximators. One possibility is to use a Takagi-
Sugeno model given in Eq. (6). The problem of identifying
the model is a very well-known one and has been treated
by many authors in the last decades. Most traditional
approach is to somehow estimate the parameters θθθj while
simultaneous identification of parameters θθθj and functions
βj(·) has also received quite some attention in the litera-
ture.

Here we will try to obtain a very simple and also not so
accurate model by only analysing the covariance matrices
of the clouds. We will assume that measurement vectors
are composed of the input vector x and the corresponding
output y:

zT =
[

xT y
]

(14)

One possibility to obtain input-output mapping is to de-
duce it solely by analysing the input part of the FRB. For
this purpose, the following idea is used. The data in the
input-output space lie along the hyper-surface representing
the input-output mapping. Due to disturbances, measure-
ment noise, parasitic disturbances and other sources of
errors, the data do not lie exactly on the surface, but are
spread in the vicinity of the hyper-surface. Analysing the
data in the cloud it turns out that the eigenvectors asso-
ciated with the dominant eigenvalues lie along the hyper-
surface while the smallest eigenvalue is associated with
the eigenvector that is perpendicular to the the hyper-
surface. For the j-th cloud, this normal vector is denoted
by nj . This vector determines the tangential hyper-plane
in the centre of the cloud. In the context of nonlinear
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Fig. 1. The clouds obtained with the Euclidean distance
in the density calculation

systems, the normal vector to the hyper-plane changes
from one operating point to another. The normal vector
in a certain operating can be obtain by linear combination
of individual normal vectors associated with individual
clouds. The factors of the linear combination can also be
normalised densities associated with the clouds:

nk =

∑m
j=1 γ

j
knj

∑m
j=1 γ

j
k

(15)

When a measurement zTk =
[

xT
k yk

]

is obtained, a local
linearised model can be obtained:

[

xT − xT
k y − yk

]

nk = 0 (16)

This method enables obtaining the local linear model
without the need for performing the identification of the
consequent part of the FRB. The method also has some
drawbacks due to the fact that the data inside a cloud
usually do not lie along a hyper-plane and the required
normal direction to the surface is contaminated with the
direction of the nonlinearity in a certain direction.

4. SIMULATION EXAMPLES

First the static system

y = u3 (17)

has been treated. The data collected from the system are
depicted in Figs. 1 and 2. In Fig. 1 the data clouds obtained
by calculating the densities using Euclidean distance are
shown in different colours. Fig. 2 shows the results of the
example where the density is calculated by the second
version of the Mahalanobis distance (Eq. 13). The ellipses
show the one standard deviation boundary. All other
parameters are the same in both approaches: new cloud is
started when the local density falls below 0.4, ρ = 1

n
= 1

2 .
The first thing to note is that lower number of clouds is
obtained in Fig. 2 which is understandable because the
clouds adapt their shape to the data to a certain extent.

In Fig. 3 the data clouds are depicted together with
the normal vectors. The left part of the figure shows
the case with high noise (the same data as in Figs. 1
and 2) while in the right part the case with low noise
is analysed. As expected, normal vectors are estimated
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Fig. 2. The clouds obtained with the density given by (13)
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Fig. 3. The data in the clouds and the normal vector
calculated from the eigenvectors by Eq. (15)

very well when the data lie almost along the hyper-plane.
Around nonlinearities and/or in the case of higher noise
the estimated normal to the surface becomes less accurate
leading to the wrong linearised model.

The input partition of the two models (illustrated in Figs.
1 and 2) was used to design two fuzzy models where
the consequent parameters were estimated by the classical
least squares method (global optimum of the parameters
is searched for in a non-recursive way). Fig. 4 shows the
true output of the system with a green colour and the
measured one with the black colour. Both outputs of the
fuzzy models are also shown. The model that is based
on Euclidean distance is shown in red, the one based on
Mahalanobis distance is shown in blue. The comparison of
errors shows that the proposed method results in the mean
square error (MSE) of 0.0172 among the model output and
the true output while the MSE of 0.0232 is achieved in
the case of Euclidean-distance-based model. This means
that the lower error is achieved while lower number of
parameters is tuned (4 clouds instead of 7).
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Fig. 4. The comparison of the two simulated outputs with
the original one
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