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Technical lemmas and proofs of the main results are presented. In the following, the data are
considered to be random, andO(·) and Θ(·) denote the limiting behaviour when n goes to∞. For
two setsA andB, the sum of integrals

´
A f(x) dx+

´
B f(x) dx is written as (

´
A +
´
B)f(x) dx.

Recall that Tobs = anA(θ0)−1/2{sobs − s(θ0)} and by Condition 4, Tobs → N(0, Id) in distri-
bution, where Id is the identity matrix with dimension d. For a constant d× p matrix A, let the
minimum and maximum eigenvalues of ATA be λ2

min(A) and λ2
max(A). Obviously for any p-

dimension vector x, λmin(A)‖x‖ ≤ ‖Ax‖ ≤ λmax(A)‖x‖. For two matricesA andB, we say A
is bounded by B if λmax(A) ≤ λmin(B).

1. PROOF OF RESULTS FROM SECTION 3
1·1. Overview and Notation

We first give an overview of the proof to Theorem 1. The convergence of the maximum like-
lihood estimator based on the summary follows almost immediately from Creel & Kristensen
(2013). The minor extensions we used are summarized in Lemmas 1 and 2 below.

The main challenge with Theorem 1 are the results about the posterior mean of approximate
Bayesian computation. For the convergence of posterior means of approximate Bayesian com-
putation we need to consider convergence of integrals over the parameter space, Rp. We will
divide Rp into Bδ = {θ : ‖θ − θ0‖ < δ} and Bc

δ for some δ < δ0, and introduce the notation
π(h) =

´
h(θ)π(θ)fABC(sobs | θ) dθ. The posterior mean of approximate Bayesian computa-

tion is hABC = π(h)/π(1). We can write π(h), say, as π(h) = πBδ(h) + πBc
δ
(h), where

πBδ(h) =

ˆ
Bδ

h(θ)π(θ)fABC(sobs | θ) dθ, πBc
δ
(h) =

ˆ
Bc
δ

h(θ)π(θ)fABC(sobs | θ) dθ.

As n→∞ the posterior distribution of approximate Bayesian computation concentrates
around θ0. The first step of our proof is to show that, as a result, the contribution that comes
from integrating over Bc

δ can be ignored. Hence we need consider only πBδ(h)/πBδ(1).
Second, we perform a Taylor expansion of h(θ) around θ0. Let Dh(θ) and Hh(θ) denote the

vector of first derivatives and the matrix of second derivatives of h(θ) respectively. Then

h(θ) = h(θ0) +Dh(θ0)T (θ − θ0) +
1

2
(θ − θ0)THh(θ∗)(θ − θ0),
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2 W. LI AND P. FEARNHEAD

for some θ∗, that depends on θ and that satisfies ||θ∗ − θ0|| < ||θ − θ0||. We plug this into
πBδ(h), but re-express the integrals in term of the rescaled random vector

t(θ) = an,ε(θ − θ0),

and let t(Bδ) be the set {φ : φ = t(θ) for some θ ∈ Bδ}. This gives

πBδ(h)

πBδ(1)
= h(θ0) + a−1

n,εDh(θ0)T
πBδ(t)

πBδ(1)
+

1

2
a−2
n,ε

πBδ{tTHh(θt)t}
πBδ(1)

, (1)

where we write t for t(θ), and θt is the value θ∗ from remainder term in the Taylor expansion for
h(θ). We use the notation θt to emphasize its dependence on t, and note that θt belongs to Bδ.

Let f̃ABC(sobs | θ) =
´
f̃n(sobs + εnv | θ)K(v) dv, which is the likelihood approximation

that we get if we replace the true likelihood by its Gaussian limit, and define π̃Bδ(h) =´
Bδ
h(θ)π(θ)f̃ABC(sobs | θ) dθ. Our third step is to re-write (1) as

πBδ(h)

πBδ(1)
= h(θ0) + a−1

n,εDh(θ0)T
π̃Bδ(t)

π̃Bδ(1)
+ a−1

n,εDh(θ0)T
{
π̃Bδ(t)

π̃Bδ(1)
− πBδ(t)

πBδ(1)

}
+

1

2
a−2
n,ε

πBδ{tTHh(θt)t}
πBδ(1)

.

We bound the size of the last two terms, so that asymptotically hABC behaves as

h(θ0) + a−1
n,εDh(θ0)T

π̃Bδ(t)

π̃Bδ(1)
.

If we introduce the density gn(t, v), defined as gn(t, v, τ) in Section 4·3 of the main text but with
τ = 0, so

gn(t, v) ∝

N
{
Ds(θ0)t; anεnv +A(θ0)1/2Tobs, A(θ0)

}
K(v), anεn → c <∞,

N
{
Ds(θ0)t; v + 1

anεn
A(θ0)1/2Tobs,

1
a2nε

2
n
A(θ0)

}
K(v), anεn →∞,

then we can show that

π̃Bδ(t)

π̃Bδ(1)
≈

´
t(Bδ)

´
Rd tgn(t, v) dtdv´

t(Bδ)

´
Rd gn(t, v) dtdv

,

with a remainder that can be ignored. Putting this together, we get that asymptotically hABC is

h(θ0) + a−1
n,εDh(θ0)T

´
t(Bδ)

´
Rd tgn(t, v) dtdv´

t(Bδ)

´
Rd gn(t, v) dtdv

,

and the proof finishes by calculating the form of this.
A recurring theme in the proofs for the bounds on the various remainders is the need to bound

expectations of polynomials of either the rescaled parameter t, or a rescaled difference in the
summary statistic from sobs, or both. Later we will present a lemma, stated in terms of a general
polynomial, that is used repeatedly to obtain the bounds we need.

To define this we need to introduce a set of suitable polynomials. For any integer l and vector
x, if a scalar function of x has the expression

∑l
i=0 αi(x, n)Txi, where for each i, xi denotes the

vector with all monomials of x with degree i as elements and αi(x, n) is a vector of functions of
x and n, we denote it by Pl(x). Let Pl,x be the set

{Pl(x) : for all i ≤ l, as n→∞, αi(x, n) = Op(1) holds uniformly in x}
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ABC asymptotics 3

To simplify the notations, for two vectors x1 and x2, Pl{(xT1 , xT2 )T } and Pl,(xT1 ,xT2 )T are written
as Pl(x1, x2) and Pl,(x1,x2). Where the specific form of the polynomial does not matter, and we
only use the fact that it lies in Pl,x, we will often simplify expressions by writing it as Pl(x).

1·2. Proof of Theorem 1
For the maximum likelihood estimator based on the summary, Creel & Kristensen (2013)

gives the central limit theorem for θ̂MLES when an = n1/2 and P is compact. According to the
proof in Creel & Kristensen (2013), extending the result to the general an is straightforward.
Additionally, we give the extension for general P.

LEMMA 1. Assume Conditions 1,4-6. Then an(θ̂MLES − θ0)→ N{0, I−1(θ0)} in distribution
as n→∞.

Given Condition 3, by Lemma 1 and the delta method (Lehmann, 2004), the convergence of the
maximum likelihood estimator for general h(θ) holds as follows.

LEMMA 2. Assume the conditions of Lemma 1 and Condition 3. Then an{h(θ̂MLES)−
h(θ0)} → N{0, Dh(θ0)T I−1(θ0)Dh(θ0)} in distribution as n→∞.

The following lemmas are used for the result about the posterior mean of approximate
Bayesian computation, proofs of these are given in Section 1·3. Our first lemma is used to justify
ignoring integrals over Bc

δ .

LEMMA 3. Assume Conditions 2, 3–6. Then for any δ < δ0, πBc
δ
(h) = Op(e

−aαδn,εcδ) for some
positive constants cδ and αδ depending on δ.

The following lemma is used to calculate the form of
´
t(Bδ)

´
Rd tgn(t, v) dtdv´

t(Bδ)

´
Rd gn(t, v) dtdv

,

which is the leading term for {hABC − h(θ0)}.

LEMMA 4. Assume Condition 2. Let c be a constant vector, {kn} be a series converging to
k∞ ∈ (0,∞] and {b′n} be a series converging to a non-negative constant. Let bn = 1{k∞=∞} +
b′n1{k∞<∞}. Then for any d× p constant matrix A and any d× d constant matrix B,

ˆ
Rp

ˆ
Rd
t

N(At;Bnv + 1
kn
c, 1
k2n
Id)K(v)´

Rp
´
Rd N(At;Bnv + 1

kn
c, 1
k2n
Id)K(v) dtdv

dtdv =
1

kn

{
(ATA)−1AT c+R(A,Bn, kn, c)

}
,

where Bn = bnB, the expression of R(c;A,Bn, kn) is stated in the proof. Specifically,
R(A,Bn, kn, c) = o(1) when Bn = o(1) and O(1) otherwise.

Our final two lemmas are used to bound the remainder terms in the expansion for hABC we
presented in Section 1·1.
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4 W. LI AND P. FEARNHEAD

LEMMA 5. Assume Conditions 1, 2 and 4 hold. If εn = o(an
−1/2), there exists a δ < δ0 such

that

π̃Bδ(1) = ad−pn,ε

{
π(θ0)

ˆ
t(Bδ)

ˆ
Rd
gn(t, v) dvdt+Op(a

−1
n,ε) +Op(a

2
nε

4
n)
}
,

ˆ
t(Bδ)

ˆ
Rd
gn(t, v) dtdv = Θp(1),

π̃Bδ(t)

π̃Bδ(1)
=

´
t(Bδ)

´
Rd tgn(t, v) dtdv´

t(Bδ)

´
Rd gn(t, v) dtdv

+Op(a
−1
n,ε) +Op(a

2
nε

4
n), (2)

and π̃Bδ{P2(t)}/π̃Bδ(1) = Op(1) for any P2(t) ∈ P2,t.

LEMMA 6. Assume the conditions of Lemma 5 and Conditions 3 and 5. Then if εn =
o(an

−1/2), there exists a δ < δ0 such that

πBδ(h)

πBδ(1)
= h(θ0) + a−1

n,εDh(θ0)T
{
π̃Bδ(t)

π̃Bδ(1)
+Op(α

−1
n )

}
+

1

2
a−2
n,ε

[
π̃Bδ{tTHh(θt)t}

π̃Bδ(1)
+Op(α

−1
n )

]
,

(3)

Now we are ready to prove Theorem 1.

Proof of Theorem 1. The convergence of the maximum likelihood estimator based on the sum-
mary is given by Lemma 1 and Lemma 2.

We now focus on the convergence for the posterior mean of approximate Bayesian compu-
tation. The convergence of the posterior mean given the summaries follows from a similar, but
simpler, argument and is omitted.

We can bound tTH(θt)t for θ inBδ by the quadratic tTHmaxt, whereHmax is an upper bound
on H(θt) for θt in Bδ. This means that

π̃Bδ{t
THh(θt)t} = O(1).

Together with Lemmas 3, 5 and 6, we then have the expansion

hABC = h(θ0) + a−1
n,εDh(θ0)T

{´
t(Bδ)×Rd tgn(t, v) dtdv´
t(Bδ)×Rd gn(t, v) dtdv

+Op(a
−1
n,ε) +Op(a

2
nε

4
n) +Op(α

−1
n )

}
.

The analytical form of the integral in the above expansion, which we will denote by Egn(t),
can be obtained by applying Lemma 4 with A = A(θ0)−1/2DS(θ0), c = Tobs,

Bn =

{
anεnA(θ0)−1/2, cε <∞,
A(θ0)−1/2, cε =∞,

kn =

{
1, cε <∞,
anεn, cε =∞.

It can be seen that Egn(t) is Θp(k
−1
n ), and the remainder term, Op(a−1

n,ε) +Op(a
2
nε

4
n) +

Op(α
−1
n ), is op(1) as εn = o(a

−3/5
n ) and α−1

n = o(a
−2/5
n ). Then since a−1

n,εk
−1
n = a−1

n , we have

an{hABC − h(θ0)}

=Dh(θ0)T
[{
Ds(θ0)TA(θ0)−1Ds(θ0)

}−1
Ds(θ0)TA(θ0)−1/2Tobs +Rn(anεn, Tobs)

]
+ op(1),

(4)
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ABC asymptotics 5

where Rn(anεn, Tobs) is Dh(θ0)TR(A,Bn, kn, c) with R(A,Bn, kn, c) defined in Lemma 4.
We can interpret Rn(anεn, Tobs) as the extra variation brought by εn: an[hABC − E{h(θ) |
sobs}].

By the delta method, the first term in the right hand side of (4) converges to I(θ0)−1/2Z. For
the second term, since A(ATA)−1AT is a projection matrix, by eigen decompositition

I −A(ATA)−1AT = U

(
0 0
0 Id−p

)
UT , (ATA)−1/2AT =

(
Ip 0
0 0

)
UT ,

whereU is an orthogonal matrix. For a vector x, let xk1:k2 be the (k2 − k1 + 1)-dimension vector
containing the k1th–k2th coordinates of x. Let v′ = UTA(θ0)−1/2v, and T ′obs = UTTobs. Then
Rn(anεn, Tobs) can be written as

Rn(anεn, Tobs)

=Dh(θ0)T (ATA)−1/2anεn

´
v′1:pN{v′(p+1):d;−

1
anεn

T ′obs,(p+1):d,
1

a2nε
2
n
Id−p}K{A(θ0)1/2Uv′} dv′´

N{v′(p+1):d;−
1

anεn
T ′obs,(p+1):d,

1
a2nε

2
n
Id−p}K{A(θ0)1/2Uv′} dv′

.

(5)

Denote the weak limit ofRn(anεn, Tobs) asR(cε, Z). When d = p, obviouslyRn(anεn, Tobs) =
0 and therefore R(cε, Z) = 0. When d > p, if εn = o(1/an), Rn(anεn, Tobs) = op(1) by
Lemma 4 and therefore R(cε, Z) = 0. When the covariance matrix of K(·) is c2A(θ0), for con-
stant c > 0, K(v) ∝ K{c‖A(θ0)−1/2v‖2}. Then K{A(θ0)1/2Uv′} in (5) can be replaced by
K(c‖v′‖2) and for fixed v′(p+1):d, the integrand in the numerator, as a function of v′1:p, is sym-
metric around zero. Therefore Rn(anεn, Tobs) = 0 and R(cε, Z) = 0.

Otherwise, Rn(anεn, z) is not necessarily zero. Since for any n, Rn(anεn, z) as a function of
z is symmetric around 0, R(cε, z) is also symmetric and R(cε, Z) has mean zero. Since I−1(θ0)
is the Cramer-Rao lower bound, var{I(θ0)−1/2Z +R(cε, Z)} ≥ I−1(θ0).

For (i), the asymptotic normality holds for h(θ̂) by Lemma 2. �

1·3. Proof of Lemmas
Here we give the proofs of lemmas from Section 1·2.

Proof of Lemma 3. It is sufficient to show that for any δ, supθ∈Bc
δ
fABC(sobs | θ) =

Op(e
−aαδn,εcδ). By dividing Rd into {v : ‖εnv‖ ≤ δ′/3} and its complement, we have

sup
θ∈Bc

δ

fABC(sobs | θ) = sup
θ∈Bc

δ

ˆ
Rd
fn(sobs + εnv | θ)K(v) dv

≤ sup
θ∈Bc

δ
\Pc0

{
sup

‖s−sobs‖≤δ′/3
fn(s | θ)

}
+ sup
θ∈Pc0

{
sup

‖s−sobs‖≤δ′/3
fn(s | θ)

}
+ K̄(λmin(Λ)ε−1

n δ′/3)ε−dn ,

where λmin(Λ) is positive. In the above, as n→∞, the third term is exponentially decreasing
by Conditions 2(iv). For the second term, by Condition 4, with probability 1,

‖s− s(θ)‖ = ‖{s(θ0)− s(θ)}+ {sobs − s(θ0)}+ εnv‖
≥ δ′ − δ′/3− δ′/3 = δ′/3.

Recall that Wn(s) = anA(θ)−1/2{s− s(θ)}. Then by Condition 6, the second term is expo-
nentially decreasing. For the first term, when θ ∈ Bc

δ\Pc0 and ‖s− sobs‖ ≤ δ′/3, ‖Wn(s)‖ ≥
anδ
′r for some constant r. By Condition 5 and 6, fWn(w | θ) is bounded by the
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6 W. LI AND P. FEARNHEAD

sum of a normal density and α−1
n rmax(w), which are both exponentially decreasing, so

supθ∈Bc
δ
\Pc0 sup‖s−sobs‖≤δ′/3 fn(s | θ) is also exponentially decreasing. Finally, the sum of all

the above is O(e−a
αδ
n,εcδ) by noting that an,ε ≤ min(ε−1

n , an). �

The following additional lemma will be used repeatedly to bound error terms that appear in
Lemmas 5 and 6.

LEMMA 7. Assume Condition 2. For t ∈ Rp and v ∈ Rd, let {An(t)} be a series of d× p
matrix functions, {Cn(t)} be a series of d× d matrix functions, Q be a positive definite matrix
and g1(v) and g2(v) be probability densities in Rd. Let c be a random vector, {kn} be a series
converging to k∞ ∈ (0,∞] and {b′n} be a series converging to a non-negative constant. Let
bn = 1{k∞=∞} + b′n1{k∞<∞}. If

(i) g1(v) and g2(v) are bounded in Rd;
(ii) g1(v) and g2(v) depend on v only through ‖v‖ and are decreasing functions of ‖v‖;
(iii) there exists an integer l such that

´ ∏l+p
k=1 vikgj(v) dv <∞, j = 1, 2, for any coordinates

(vi1 , · · · , vil) of v;
(iv) there exists a positive constant m such that for any t ∈ Rp and n, λmin{An(t)} and

λmin{Cn(t)} are greater than m;
then for any Pl(t, v) ∈ Pl,(t,v),

ˆ
Rp

ˆ
Rd
Pl(t, v)kdng1[knCn(t){An(t)t− bnv − k−1

n c}]g2(Qv) dvdt = Op(1),

ˆ
Rp

ˆ
Rd
kdng1[knCn(t){An(t)t− bnv − k−1

n c}]g2(Qv) dvdt = Θp(1).

Proof. For simplicity, here
´

denotes the integration over the whole Euclidean space. Accord-
ing to (ii), g1(v) can be written as ḡ1(‖v‖). When k∞ <∞, assume kn = 1 without loss of gen-
erality. For any Pl(t, v) ∈ Pl,(t,v), by Cauchy–Schwarz inequality, there exists a Pl(‖t‖, ‖v‖) ∈
Pl,(‖t‖,‖v‖) with coefficient functions taking positive values such that |Pl(t, v)| is bounded by
Pl(‖t‖, ‖v‖) almost surely. Therefore for the first equality, it is sufficient to consider the equal-
ity where Pl(t, v) is replaced by Pl(‖t‖, ‖v‖) and the coefficient functions of Pl(‖t‖, ‖v‖) are
positive almost surely. For each n, divide Rp into V = {t : ‖An(t)t‖/2 ≥ ‖b′nv + c‖} and V c.
In V , ‖Cn(t){An(t)t− b′nv − c}‖ ≥ m2‖t‖/2; in V c, ‖t‖ ≤ 2m−1‖b′nv + c‖. With probability
tending to 1,

ˆ
Pl(‖t‖, ‖v‖)g1[Cn(t){An(t)t− b′nv − c}]g2(Qv) dvdt ≤
ˆ
Pl(‖t‖, ‖v‖)ḡ1(m2‖t‖/2)g2(Qv) dvdt+ sup

v∈Rd
g1(v)

ˆ ˆ
V c
dt Pl(2m

−1‖b′nv + c‖, ‖v‖)g2(Qv) dv.

In the above,
´
V c dt is the volume of V c in Rp and is proportional to ‖b′nv + c‖p. By (iii), the

right hand side of the above inequality is Op(1).
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When k∞ =∞, let v∗ = kn{A(t)t− v − k−1
n c}. Then for any Pl(t, v) ∈ Pl,(t,v), with prob-

ability 1, ∣∣∣∣ˆ Pl(t, v)kdng1[knCn(t){A(t)t− v − k−1
n c}]g2(Qv) dvdt

∣∣∣∣
=

∣∣∣∣ˆ Pl(t, v
∗)g2[Q{A(t)t− k−1

n v∗ − k−1
n c}]g1(Cn(t)v∗) dv∗dt

∣∣∣∣ ,
≤
ˆ
Pl(‖t‖, ‖v∗‖)g2[Q{A(t)t− k−1

n v∗ − k−1
n c}]g1(m‖v∗‖) dv∗dt

for some Pl(t, v∗) ∈ Pl,(t,v∗) and Pl(‖t‖, ‖v∗‖) ∈ Pl,(‖t‖,‖v∗‖). The right hand side of the above
inequality is similar to the integral when k∞ <∞ with g1(·) and g2(·) replaced by g2(·) and
g1(·) respectively. Therefore it is Op(1) by the same reasoning.

For Pl(t, v) = 1, by considering only the integral in a compact region, it is easy to see the
target integral is larger than 0. Therefore the lemma holds. �

Proof of Lemma 4. Let P = ATA. By matrix algebra,

N
(
At;Bnv +

1

kn
c,

1

k2
n

Id

)
K(v) = N

{
t;P−1AT

(
Bnv +

1

kn
c

)
,

1

k2
n

P−1
}
r(v;A,Bn,kn, c),

where

r(v;A,Bn,kn, c) =
kd−pn

(2π)(d−p)/2 exp
{
− k2

n

2

(
Bnv +

c

kn

)T
(I −AP−1AT )

(
Bnv +

c

kn

)}
K(v).

Then the target integral can be expanded as
ˆ
t

N(At;Bnv + 1
kn
c, 1
k2n
Id)K(v)´

N(At;Bnv + 1
kn
c, 1
k2n
Id)K(v) dtdv

dtdv =

ˆ
P−1AT

(
1

kn
c+Bnv

)
r(v;A,Bn,kn, c)´
r(v;A,Bn,kn, c) dv

dv

=
1

kn

{
(ATA)−1AT c+R(A,Bn, kn, c)

}
,

where

R(A,Bn, kn, c) = (ATA)−1ATBn

ˆ
knv

r(v;A,Bn,kn, c)´
r(v;A,Bn,kn, c) dv

dv.

The remainder term R(A,Bn, kn, c) depends on the mean of the probability density pro-
portional to r(v;A,Bn,kn, c) in the directions of (ATA)−1ATB. If Bn does not degener-
ate to 0 as n→∞, then in the directions orthogonal to those of (I −A(ATA)−1AT )1/2B,
r(v;A,Bn,kn, c) is symmetric around 0; in the directions of (I −A(ATA)−1AT )1/2B,
r(v;A,Bn,kn, c) is a product of a normal density whose mean is O(1/kn) and a rescaled K(v),
which is symmetric around 0, so its mean value isO(1/kn). Therefore when the spaces expanded
by (ATA)−1ATB and {I −A(ATA)−1AT }B are orthogonal, R(A,Bn, kn, c) = 0; when it is
not the case, R(A,Bn, kn, c) = O(1).

If Bn = o(1) as n→∞, which implies kn → c ∈ (0,∞), it is easy to see that´
knvr(v;A,Bn,kn, c) dv/

´
r(v;A,Bn,kn, c) dv is upper bounded as n→∞ and hence

R(A,Bn, kn, c) is o(1). �

In the following lemmas, to deal with the case where K(x) = K̄(||x||Λ) with Λ not the iden-
tity, we use the property that such a K(x) can be bounded above by a function that depends only
on ||x||. We refer to this bound as K(·) rescaled to have identity covariance matrix.
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8 W. LI AND P. FEARNHEAD

Proof of Lemma 5. First consider π̃Bδ(1). With the transformation t = t(θ),

π̃Bδ(1) = a−pn,ε

ˆ
t(Bδ)

ˆ
Rd
π(θ0 + a−1

n,εt)f̃n(sobs + εnv | θ0 + a−1
n,εt)K(v) dvdt. (6)

We can obtain an expansion of π̃Bδ(1) by expanding f̃n(sobs + εnv | θ0 + a−1
n,εt)K(v) as fol-

lows. The expansion needs to be discussed separately for two cases, depending on whether the
limit of anεn is finite or infinite.

When anεn → cε <∞, an,ε = an. We apply a Taylor expansion to s(θ0 + a−1
n t) and A(θ0 +

a−1
n t)−1/2 and have

f̃n(sobs + εnv | θ0 + a−1
n t) =

adn
|A(θ0 + a−1

n t)|1/2

×N
({
A(θ0)−1/2 + a−1

n rA(t, ε2)
}[
A(θ0)1/2Tobs + anεnv − {Ds(θ0) + a−1

n rs(t, ε1)}t
]
; 0, Id

)
,

(7)

where rs(t, ε1) is the d× p matrix whose ith row is tTHsi{θ0 + ε1(t)}, rA(t, ε2) is the d× d
matrix

∑p
k=1

d
dθk
A{θ0 + ε2(t)}−1/2tk, and ε1(t) and ε2(t) are from the remainder terms of

the Taylor expansions and satisfy ‖ε1(t)‖ ≤ δ and ‖ε2(t)‖ ≤ δ. For a d× d matrix τ2, let
gn(t, v; τ1, τ2) be the function gn(t, v; τ1), defined in Section 4·3 of the main text, with A(θ0)
replaced by {A(θ0)−1/2 + τ2}−2. Applying a Taylor expansion to the normal density in (7), we
have

f̃n(sobs + εnv | θ0 + a−1
n t)K(v)

=
adn|A(θ0)|1/2

|A(θ0 + a−1
n t)|1/2

[
gn(t, v) + a−1

n P3(t, v)gn{t, v; en1rs(t, ε1), en1rA(t, ε2)}
]
, (8)

where P3(t, v) is the function

1

2|A(θ0)−1/2 + r2(a−1
n t)|

× d

dx

∥∥∥{A(θ0)−1/2 + xrA(t, ε2)
}[

A(θ0)1/2Tobs + anεnv − {Ds(θ0) + xrs(t, ε1)}t
]∥∥∥2
∣∣∣∣
x=en1

,

and en1 is from the remainder term of Taylor expansion and satisfies |en1| ≤ a−1
n . Since

‖en1t‖ ≤ δ and rs(t, ε1) and rA(t, ε2) belong P1,t, this P3(t, v) belongs to P3,(t,v). Furthermore,
since rs(t, ε1) and rA(t, ε2) have no constant term, for any small σ, en1rs(t, ε1) and en1rA(t, ε2)
can be bounded by σId and σIp uniformly in n and t, if δ is small enough.

When anεn →∞, an,ε = ε−1
n . Let v∗(v) = A(θ0)1/2Tobs + anεnv − anεnDs(θ0)t. Under

the transformation v∗ = v∗(v), the expansion of f̃n(sobs + εnv | θ0 + εnt) obtained by applying
a Taylor expansion to s(θ0 + εnt) and A(θ0 + εnt)

−1/2 is

f̃n(sobs + εnv | θ0 + εnt)

=
adn

|A(θ0 + a−1
n t)|1/2

N

[{
A(θ0)−1/2 + anε

2
n

rA(t, ε4)

anεn

}{
v∗ − anε2

nrs(t, ε3)t
}

; 0, Id

]
,
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where ε3(t) and ε4(t) are from the remainder terms of the Taylor expansion and satisfy ‖ε3(t)‖ ≤
δ and ‖ε4(t)‖ ≤ δ. Let g∗n(t, v∗; τ1, τ2) be the function

g∗n(t, v∗; τ1, τ2)

= N
[
v∗; anεnτ1t, {A(θ0)−1/2 + τ2}−2

]
K

{
Ds(θ0)t+

1

anεn
v∗ − 1

anεn
A(θ0)1/2Tobs

}
,

so that (anεn)dg∗n(t, v∗; τ1, τ2) is gn(t, v; τ1, τ2) with transformed variable v∗ = v∗(v), and
g∗n(t, v∗) = g∗n(t, v∗; 0, 0). Denote a k1 × k2 matrix with element being Pl(t) by P (k1×k2)

l (t).
Then by applying a Taylor expansion to the normal density in the expansion above,

f̃n(sobs + εnv | θ0 + εnt)K(v)

=
ε−dn |A(θ0)|1/2

|A(θ0 + εnt)|1/2
[
g∗n(t, v∗) + anε

2
n

{
P

(d×1)
2 (t)v∗ +

1

anεn
v∗TP

(d×d)
1 (t)v∗

}
g∗n(t, v∗)

+ (anε
2
n)2P4(t, v∗)g∗n{t, v∗; en2rs(t, ε3), en2rA(t, ε4)}

]
(anεn)d, (9)

where P
(d×1)
2 (t) is the function tT rs(t, ε3)TA(θ0)−1/2/2, P

(d×d)
1 (t) is the function

−A(θ0)−1/2rA(t, ε4), en2 = e′n2/(anεn), e′n2 is from the remainder term of the Taylor expan-
sion and satisfies |e′n2| ≤ anε2

n, and P4(t, v∗) is a linear combination of {dρ(w)/dw}2 and
d2ρ(w)/dw2 at w = e′n2 with ρ(w) being the function

∥∥∥{A(θ0)−1/2 + w
rA(t, ε4)

anεn

}{
v∗ − wrs(t, ε3)t

}∥∥∥2
.

Obviously elements of P (d×1)
2 (t) and P

(d×d)
1 (t) belong to P2,t and P1,t respectively. Since

‖en2t‖ ≤ δ, the function P4(t, v∗) belongs to P4,(t,v∗) and, similar to before, en2rs(t, ε3) and
en2rA(t, ε4) can be bounded by σId and σIp uniformly in n and t for any small σ, if δ is small
enough.

For π(θ0 + a−1
n,εt) in the integral of π̃Bδ(1) in (6), a Taylor expansion gives that

π(θ0 + a−1
n,εt)

|A(θ0 + a−1
n,εt)|1/2

=
π(θ0)

|A(θ0)|1/2
+ a−1

n,εDθ
π{θ0 + ε5(t)}
|A{θ0 + ε5(t)}|1/2

t, |ε5(t)| ≤ δ. (10)

As mentioned before, δ can be selected such that Ds(θ0) + en1rs(t, ε1) and Ds(θ0) +
en2rs(t, ε3) are lower bounded by m1Ip and A(θ0)−1/2 + en1rA(t, ε2) and A(θ0)−1/2 +
en2rA(t, ε4) are lowered bounded by m2Id for some positive constant m1 and m2. We choose δ
satisfying these and, since ‖a−1

n,εt‖ ≤ δ, this means π(θ0 + a−1
n,εt)/|A(θ0 + a−1

n,εt)|1/2 is bounded
uniformly in t and n.
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10 W. LI AND P. FEARNHEAD

By plugging (8)–(10) into (6), it can be seen that the leading term of π̃Bδ(1) is
ad−pn,ε π(θ0)

´
t(Bδ)×Rd gn(t, v) dtdv. The remainder terms are given in the following,

ap−dn,ε π̃Bδ(1)− π(θ0)

ˆ
t(Bδ)×Rd

gn(t, v) dtdv

=a−1
n,ε

ˆ
t(Bδ)×Rd

|A(θ0)|1/2D π(θ0 + ε5)

|A(θ0 + ε5)|1/2
tgn(t, v) dvdt

+ a−1
n

ˆ
t(Bδ)×Rd

P3(t, v)gn{t, v; en1rs(t, ε1), en1rA(t, ε2)} dvdt 1{lim anεn<∞}

+ anε
2
n

ˆ
t(Bδ)

P
(d×1)
2 (t)

ˆ
Rd
v∗g∗n(t, v∗) dv∗dt 1{lim anεn=∞}

+ εn

ˆ
t(Bδ)×Rd

v∗TP
(d×d)
1 (t)v∗g∗n(t, v∗) dv∗dt 1{lim anεn=∞}

+ a2
nε

4
n

ˆ
t(Bδ)×Rd

P4(t, v∗)g∗n{t, v∗; en2rs(t, ε3), en2rA(t, ε4)} dv∗dt 1{lim anεn=∞}, (11)

where P3(t, v), P (d×1)
2 (t), P (d×d)

1 (t) and P4(t, v∗) are products of π(θ0 + a−1
n,εt)/|A(θ0 +

a−1
n,εt)|1/2 and corresponding terms in expansions (8) and (9). In the above, there are five re-

mainder terms. For the integrals in the first two terms, it is easy to write them in the form of
the first integral in Lemma 7 and conditions therein are satisfied, where g1(·) is the standard
normal density and g2(·) is K(v) rescaled to have identity covariance. Then the first two terms
are Op(a−1

n,ε) and Op(a−1
n ). The integral in the fourth term can also be written in this form where

g1(·) is the rescaled K(v) and g2(·) is the standard normal density. The integral in the fifth term
needs to use the transformation v∗∗ = v∗ − anεnen2rs(t, ε3)t, after which it can be written in a
similar form, as P5{t, v∗∗ + anεnen2rs(t, ε3)t} ∈ P5,(t,v∗∗) by the expression of P4(t, v∗) in (9).
Thus the fourth and fifth term are Op(εn) and Op(a2

nε
4
n).

The third term is somewhat different as the center of g∗n(t, v∗) in the direction of v∗ degenerates
to zero as n→∞. Let ψk be the d-dimension unit vector with 1 at the kth coordinate. Then
ˆ ∞
−∞

v∗kg
∗
n(t, v∗) dv∗k =

ˆ ∞
0

v∗k{g∗n(t, v∗)− g∗n(t, v∗ − 2v∗kψk)} dv∗k

=

ˆ ∞
0

v∗kN{v∗; 0, A(θ0)}[K{v(v∗)} −K{v(v∗ − 2v∗kψk)}] dv∗k,

which by a Taylor expansion is bounded by (anεn)−1c for some constant c. Hence the third term
is Op(εn). Combining the orders of all remainder terms, the expansion of π̃Bδ(1) in the lemma
holds.

For any P2(t) ∈ P2,t, π̃Bδ{P2(t)} can be expanded similarly to π̃Bδ(1) in (11), simply by
multplying P2(t) into every integral in (11). This gives that

π̃Bδ{P2(t)} = ad−pn,ε

{
π(θ0)

ˆ
t(Bδ)×Rd

P2(t)gn(t, v) dtdv +Op(a
−1
n,ε) +Op(a

2
nε

4
n)
}
.

Then since
´
t(Bδ)×Rd gn(t, v) dtdv = Θp(1) by the second result of Lemma 7,

π̃Bδ{P2(t)}/π̃Bδ(1) = Op(1) and (2) holds by taking P2(t) = t. �
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ABC asymptotics 11

Proof of Lemma 6. Let rn(s | θ) be the scaled remainder αn{fn(s | θ)− f̃n(s | θ)}. The error
of using π̃Bδ{Pl(t)} to approximate πBδ{Pl(t)} is

πBδ{Pl(t)} − π̃Bδ{Pl(t)} = α−1
n

ˆ
Bδ

ˆ
Pl{t(θ)}π(θ)rn(sobs + εnv | θ)K(v) dvdθ.

If this approximation error satisfies

πBδ{Pl(t)} − π̃Bδ{Pl(t)}
π̃Bδ(1)

= Op(α
−1
n ), (12)

then, since ap−dn,ε π̃Bδ(1) = Θp(1) by Lemma 5,

πBδ(1) = π̃Bδ(1){1 +Op(α
−1
n )}, πBδ{Pl(t)}

πBδ(1)
=
π̃Bδ{Pl(t)}
π̃Bδ(1)

+Op(α
−1
n ). (13)

By plugging (12) into (1),

πBδ(h)

πBδ(1)
= h(θ0) + a−1

n,εDh(θ0)T
{
π̃Bδ(t)

π̃Bδ(1)
+Op(α

−1
n )

}
+

1

2
a−2
n,ε

[
π̃Bδ{tTHh(θt)t}

π̃Bδ(1)
+Op(α

−1
n )

]
.

(14)
Verification of (12) is given by the following argument. With the transformation t = t(θ) we

have

πBδ{Pl(t)} − π̃Bδ{Pl(t)} = α−1
n a−pn,ε

ˆ
t(Bδ)

ˆ
Pl(t)π(θ0 + a−1

n,εt)rn(sobs + εnv | θ0 + a−1
n,εt)K(v) dvdt.

Let rWn(w | θ) = αn{fWn(w | θ)− f̃Wn(w | θ)}, and we have

rn(s | θ) = adn|A(θ)|−1/2rWn [anA(θ)−1/2{s− s(θ)} | θ].

For the value of δ, we choose the smaller value of the one from Lemma 5 and the one such
that Ds(θ) is lower bounded and A(θ)−1/2 is upper bounded by MId in Bδ for some M > 0.
Since rWn(w | θ) is upper bounded by rmax(w) according to Condition 5, by applying a Taylor
expansion to s(θ0 + a−1

n,εt) we have

|πBδ{Pl(t)} − π̃Bδ{Pl(t)}| ≤ α
−1
n ad−pn,ε sup

θ∈Bδ
|π(θ)A(θ)−1/2|

ˆ
t(Bδ)

ˆ
|Pl(t)|(ana−1

n,ε)
d

rmax

[
ana

−1
n,εM

{
Ds(θ0 + εt)t− an,εεnv −

1

ana
−1
n,ε
A(θ0)1/2Tobs

}]
K(v) dvdt,

where εt is from the remainder term of the Taylor expansion and satisfies |εt| ≤ δ. Since
π̃Bδ(1) = Θp(a

d−p
n,ε ) by Lemma 5, it is sufficient to show that the above integral is Op(1). This is

immediate by noting that when either lim anεn →∞ or lim anεn → cε <∞, the above integral
can be written in the form of the first integral in Lemma 7 and conditions therein are satisfied,
where g1(·) and g2(·) are rmax(·) and K(·) rescaled to have identity covariance matrix. �

2. PROOF OF RESULTS FROM SECTION 4
2·1. Proof of Proposition 2

The proof of Proposition 2 follows the standard asymptotic argument of importance sampling.
In the following we use the convention that for a vector x, the matrix xxT is denoted by x2.
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12 W. LI AND P. FEARNHEAD

Proof of Proposition 2. Algorithm 1 generates independent, indentically distributed triples,
(φi, θi, s

(i)
n ), where (θi, s

(i)
n ) is generated from gn(θ)f(sn | θ), and, conditional on sn = s

(i)
n ,

φi is generated from a Bernoulli distribution with probability Kεn(sn − sobs).
Now ĥ can be expressed as a ratio of sample means of functions of these independent, indenti-

cally distributed random variables. Thus we can use the standard delta method (Lehmann, 2004)
for ratio statistics to show that the central limit theorem holds. Further we obtain that the limiting
distribution has mean

E{h(θ1)w1φ1}
E(w1φ1)

=
E{h(θ1)w1Kεn(s

(1)
n − sobs)}

E{w1Kεn(s
(1)
n − sobs)}

=

´
h(θ)π(θ)fn(sn | θ)Kεn(sn − sobs) dsn dθ´
π(θ)fn(sn | θ)Kεn(sn − sobs) dsn dθ

,

which is equal to hABC. Its variance is

1

E2(w1φ1)
var{h(θ1)w1φ1}+

E2{h(θ1)w1φ1}
E4(w1φ1)

var(w1φ1)− 2
E{h(θ1)w1φ1}
E3(w1φ1)

cov{h(θ1)w1φ1, w1φ1}T

=p−2
acc,π

[
E{h(θ1)2w2

1φ1} − h2
ABCp

2
acc,π + h2

ABC

{
E(w2

1φ1)− p2
acc,π

}
−2hABC

{
E{h(θ1)w2

1φ1} − hABCp
2
acc,π

}T ]
=p−2

acc,πE[{h(θ1)2 − 2hABCh(θ1)T + h2
ABC}w2

1Kεn(s(1)
n − sobs)]

=p−1
acc,πEπABC

{
(h(θ)− hABC)2 π(θ)

qn(θ)

}
.

In the above expression we used pacc,π = E(w1φ1). It is easy to verify that

ΣABC,n = p−1
acc,πEπABC

{
(h(θ)− hABC)2 π(θ)

qn(θ)

}
, (15)

as required. �

2·2. Proof of Theorem 2
For simplicity, a consider one-dimensional function h(θ). For multi-dimensional functions,

the extension is trivial by considering each element of ΣIS,n seperately. Denote {h(θ)− hABC}2
by Gn(θ). In Theorem 2(i), ΣIS,n is just the ABC posterior variance of h(θ), and the derivation
of its order is similar to that of hABC in Section 1 of this supplementary material. The result is
stated in the following lemma.

LEMMA 8. Assume the conditions of Theorem 1. Then varπABC{h(θ)} = Op(a
−2
n,ε).

Proof. Using the notation of Section 1, varπABC [h(θ)] = π(Gn)/π(1). It follows immediately
from Lemma 3 that

varπABC{h(θ)} =
πBδ(Gn)

πBδ(1)
{1 + op(1)}.

Applying a first order Taylor expansion of h(θ) around θ = θ0 gives

πBδ(Gn)

πBδ(1)
= Gn(θ0) + 2a−1

n,ε{h(θ0)− hABC}
πBδ{Dh(θt)

T t}
πBδ(1)

+ a−2
n,ε

πBδ{tTDh(θt)Dh(θt)
T t}

πBδ(1)
,

(16)
where θt is from the remainder term and belongs to Bδ. In the above decomposition, Gn(θ0)
and a−1

n,ε{h(θ0)− hABC} are Op(a−2
n,ε) by Theorem 1. Since Dh(θt)

T t and tTDh(θt)Dh(θt)
T t

belong to P2,t, the two ratios in the above are Op(1) by Lemma 5 and Lemma 6. �
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The following lemma states that moments of K(v)γ exist for any postive constant γ.

LEMMA 9. Assume Condition 2. For any constant γ ∈ (0,∞) and coordinates (vi1 , · · · , vil)
of v with l ≤ p+ 6,

´ ∏l
k=1 vikK(v)γ dv <∞.

Proof. By Condition 2 (iv), for some positive constant M there exists x0 ∈ (0,∞) such that
when ‖v‖ > x0 , K(v) < Me−c1‖v‖

α1 . Then consider the integration in two regions {v : ‖v‖ ≤
x0} and {v : ‖v‖ > x0} separately. In the first region, since K(v) ≤ 1, we have

ˆ
‖v‖≤x0

l∏
k=1

vikK(v)γ dv ≤ xl0Vx0 ,

where Vx0 is the volume of the d-dimension sphere with radius x0, and is finite. In the second
region,

ˆ
‖v‖>x0

l∏
k=1

vikK(v)γ dv ≤M
ˆ
‖v‖>x0

‖v‖le−c1γ‖v‖α1 dv.

The right hand side of this is proportional to exp{−c1γx
α1/(l+d)
0 } by integrating in spherical

coordinates. �

Proof of Theorem 2. For (i), since pacc,π = εdnπ(1) and π(1) = Θp(a
d−p
n,ε ) by Lemmas 3, 5 and

6, then pacc,π = Θp(ε
d
na

d−p
n,ε ). Together with Lemma 8, (i) holds.

For (ii), if we can show that pacc,q = Θp(ε
d
na

d
n,ε), then the order of ΣIS,n is obvious from (15)

and the definition of ΣABC,n. Similar to the expansion of π(1) from Lemma 3 and (13),

pacc,q = εdn

ˆ
πABC(θ | sobs, εn)fABC(sobs | θ) dθ

= εdn

{´
Bδ
π(θ)f̃ABC(sobs | θ)2 dθ

π̃Bδ(1)
+Op(α

−1
n )

}
{1 + op(1)}.

The integral in the above differs from π̃Bδ(1) by the square power of f̃ABC(sobs | θ) in the
integrand. We will show that this integral has order Θp(a

2d−p
n,ε ), from which pacc,q = Θp(ε

d
na

d
n,ε)

trivially holds. Let g∗∗n (t, v; τ1, τ2) be the function

g∗∗n (t, v; τ1, τ2) = N [v; 0, {A(θ0)−1/2 + τ2}−2]K

[
{Ds(θ0) + τ1}t+

1

anεn
v∗ − 1

anεn
A(θ0)1/2Tobs

]
,

and g∗∗n (t, v; τ1, τ2) = g∗n(t, v + anεnτ1t; τ1, τ2). Here expansions (8) and (9) of f̃n(sobs + εnv |
θ0 + a−1

n,εt)K(v) are to be used in the form of

adn,ε|A(θ0)|1/2

|A(θ0 + a−1
n,εt)|1/2


{
gn(t, v) + a−1

n P3(t, v)gn,r(t, v)
}
, limn→∞ anεn <∞,{

g∗n(t, v∗) + anε
2
nP3(t, v∗)g∗n(t, v∗)

+(anε
2
n)2P4(t, v∗∗)g∗n,r(t, v

∗∗)
}

(anεn)d, limn→∞ anεn =∞,
(17)

where P3(t, v∗) ∈ P3,(t,v∗), gn,r(t, v) = gn{t, v; en1rs(t, ε1), en1rA(t, ε2)}, g∗n,r(t, v
∗∗) is

g∗∗n {t, v∗∗; en2rs(t, ε3), en2rA(t, ε4)} and P4(t, v∗∗) is P4(t, v∗) with the transformation v∗∗ =
v∗ − anεnen2rs(t, ε3)t, and the expansion of π(θ)/|A(θ)| similar to (10) is to be used.
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14 W. LI AND P. FEARNHEAD

By the expression of P4(t, v∗) in (9), it can be seen that P4(t, v∗∗) ∈ P4,(t,v∗∗). Ba-
sic inequalities (a+ εb)2 ≤ εa2 + (ε+ ε2)b2 and (a+ εb+ ε2c)2 ≤ (ε+ ε2)a2 + (ε+ ε2 +
ε3)b2 + (ε2 + ε3 + ε4)c2 for any real constants a, b, c and ε, from the fact that 2ab ≤ a2 + b2,
are also to be used. Then by the above expansions and inequalities, an expansion of the target in-
tegral similar to (11) can be obtained, with the leading term a2d−p

n,ε π(θ0)
´
t(Bδ)
{
´
gn(t, v) dv}2 dt

and remainder term with the following upper bound

∣∣∣ap−2d
n,ε

ˆ
Bδ

π(θ)f̃ABC(sobs | θ)2 dθ − π(θ0)

ˆ
t(Bδ)

{ˆ
gn(t, v) dv

}2
dt
∣∣∣

≤a−1
n,ε

ˆ
t(Bδ)

|A(θ0)|Dθ
π(θ0 + ε6)

|A(θ0 + ε6)|
t
{ˆ

gn(t, v) dv
}2
dt

+M

ˆ
t(Bδ)

[
a−1
n

{ˆ
gn(t, v) dv

}2
+ (a−1

n + a−2
n )
{ˆ

P3(t, v)gn,r(t, v) dv
}2]

dt1{lim anεn<∞}

+M

ˆ
t(Bδ)

[
{anε2

n + (anε
2
n)2}

{ˆ
g∗n(t, v∗) dv∗

}2

+ {anε2
n + (anε

2
n)2 + (anε

2
n)3}

{ˆ
P3(t, v∗)g∗n(t, v∗) dv∗

}2

+ {(anε2
n)2 + (anε

2
n)3 + (anε

2
n)4}

{ˆ
P4(t, v∗∗)g∗n,r(t, v

∗∗) dv∗∗
}2]

dt1{lim anεn=∞},

where M is the upper bound of π(θ)|A(θ0)|/|A(θ)| for θ ∈ Bδ with δ chosen so that M
exists. Then if we can show that for any P4(t, v) ∈ P5,(t,v), d× p matrix function rn1(t)
and d× d matrix function rn2(t) which can be bounded by σId and σIp uniformly in
n and t for any small δ if δ is small enough, (a)

´
t(Bδ)

{´
Rd gn(t, v) dv

}2
dt is Θp(1);

(b)
´
t(Bδ)

[´
Rd P4(t, v)gn{t, v; rn1(t), rn2(t)} dv

]2
dt is Op(1) when limn→∞ anεn <∞; (c)´

t(Bδ)

[´
Rd P4(t, v)g∗∗n {t, v; rn1(t), rn2(t)} dv

]2
dt is Op(1) when limn→∞ anεn =∞, the

lemma would hold.
Here δ is selected such that Ds(θ0) + rn1(t) is bounded bounded by m1Ip and m2Id ≤

A(θ0)−1/2 + rn2(t) ≤M2Id, for some positive constants m1, m2 and M2, uniformly in n and t.
For the purpose of bounding integrals, we can assume that A(θ0) = Id and rn2(t) = 0 without
loss of generality by the following inequality when limn→∞ anεn <∞,

gn{t, v; rn1(t), rn2(t)} ≤ Md
2

(2π)d/2
exp

[
− m2

2

2
‖anεnv +A(θ0)1/2Tobs − {Ds(θ0) + rn1(t)}t‖2

]
K(v),

and a similar one for g∗∗n {t, v; rn1(t), rn2(t)}.
Consider any P4(t, v) ∈ P4,(t,v). When limn→∞ anεn <∞, let E1 = {v : ‖anεnv‖2 ≤

β1‖{Ds(θ0) + rn1(t)}t−A(θ0)1/2Tobs‖2} for some β1 ∈ (0, 1). Then for any β2 ∈ (0, 1) we



673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

ABC asymptotics 15

haveˆ
Rd
P4(t, v)gn{t, v; rn1(t), rn2(t)} dv

≤

(ˆ
E1

+

ˆ
Ec1

)
P4(t, v)

Md
2

(2π)d/2
exp

[
−m

2
2

2
‖anεnv − {Ds(θ0) + rn1(t)}t+A(θ0)1/2Tobs‖2

]
K(v) dv

≤P4(t)

(
exp

[
−m

2
2(1− β1)

2
‖{Ds(θ0) + rn1(t)}t−A(θ0)1/2Tobs‖2

]
+K

β2

[
λ2

min(Λ)β1

a2
nε

2
n

‖{Ds(θ0) + rn1(t)}t−A(θ0)1/2Tobs‖2
])

, (18)

where P4(t) ∈ P4,t and the above inequality uses Lemma 9. Then using (a+ b)2 ≤ 2(a2 + b2),
ˆ
t(Bδ)

[ˆ
Rd
P4(t, v)gn{t, v; rn1(t), rn2(t)} dv

]2

dt

≤
ˆ
t(Bδ)

P8(t) exp
[
−m2

2(1− β1)‖{Ds(θ0) + rn1(t)}t−A(θ0)1/2Tobs‖2
]
dt

+

ˆ
t(Bδ)

P8(t)K
2β2

[
λ2

min(Λ)β1

a2
nε

2
n

‖{Ds(θ0) + rn1(t)}t−A(θ0)1/2Tobs‖2
]
dt,

where P8(t) ∈ P8,t.
When anεn →∞, let E2 = {v : ‖(anεn)−1v‖2 ≤ β1‖{Ds(θ0) + rn1(t)}t−

(anεn)−1A(θ0)1/2Tobs‖2} for some β1 ∈ (0, 1). Then for any β2 ∈ (0, 1) we have
ˆ
Rd
P4(t, v)g∗∗n {t, v; rn1(t), rn2(t)} dv

≤

(ˆ
E2

+

ˆ
Ec2

)
P4(t, v)K

[
1

anεn
v + {Ds(θ0) + rn1(t)}t− 1

anεn
A(θ0)1/2Tobs

]
(19)

× Md
2

(2π)d/2
exp

(
−m

2
2

2
‖v‖2

)
dv

≤P4(t)

(
K

[
λ2

min(Λ)(1− β1)‖{Ds(θ0) + rn1(t)}t− 1

anεn
A(θ0)1/2Tobs‖2

]
+ exp

[
−a

2
nε

2
nβ1m

2
2β2

2
‖{Ds(θ0) + rn1(t)}t− 1

anεn
A(θ0)1/2Tobs‖2

])
, (20)

where P4(t) ∈ P4,t. Then using (a+ b)2 ≤ 2(a2 + b2),
ˆ
t(Bδ)

[ˆ
Rd
P4(t, v)g∗∗n {t, v; rn1(t), rn2(t)} dv

]2

dt

≤
ˆ
t(Bδ)

P8(t)K
2
[
λ2

min(Λ)(1− β1)

2
‖{Ds(θ0) + rn1(t)}t− 1

anεn
A(θ0)1/2Tobs‖2

]
dt

+

ˆ
t(Bδ)

P8(t) exp

[
−a

2
nε

2
nβ1m

2
2β2

2
‖{Ds(θ0) + rn1(t)}t− 1

anεn
A(θ0)1/2Tobs‖2

]
dt

Applying Lemma 7 on these upper bounds, (b) and (c) hold.
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16 W. LI AND P. FEARNHEAD

For (a), to see that the limit of
´
t(Bδ)
{
´
Rd gn(t, v) dv}2 dt is lower bounded away from zero,

just use the positivity of the limit of the integrand and Fatou’s lemma to interchange the order of
limit and integral. �

2·3. Proof of Theorem 3
Now let wn(θ) be the importance weight π(θ)/qn(θ), define πBδ,IS(h) =´

Bδ
h(θ)π(θ)fABC(sobs | θ)wn(θ) dθ and define πBc

δ
,IS(h) correspondingly. Then by (15), we

have

ΣABC,n = p−1
acc,π

πBδ,IS(Gn) + πBc
δ
,IS(Gn)

πBδ(1) + πBc
δ
(1)

. (21)

Proof of Theorem 3. For pacc,qn , we only need to consider the case when β = 0. Re-
call that t(θ) = an,ε(θ − θ0). By the transformation t = t(θ), since an,εσn = 1, qn(θ) =

apn,ε|Σ|−1/2q{Σ−1/2(t− cµ)}. Then, similar to the expansion of π(1) from Lemma 3,

pacc,qn = εdn

ˆ
qn(θ)fABC(sobs | θ) dθ

= εdn|Σ|−1/2

ˆ
t(Bδ)

q{Σ−1/2(t− cµ)}f̃ABC(sobs | θ0 + a−1
n,εt) dt{1 + op(1)}.

The above integral differs from π̃Bδ(1) by replacing π(θ0 + a−1
n,εt) with the density q{Σ−1/2(t−

cµ)} which does not degenerate to a constant as n→∞. We will show that this integral has
order Θp(1). Plugging in the expansion (17) of f̃ABC(sobs | θ0 + a−1

n,εt) into pacc,qn , we can
obtain an expansion similar to (11), differing in that parts from expanding π(θ0 + a−1

n,εt)/|A(θ0 +

a−1
n,εt)|1/2 are replaced by the Taylor expansion

q{Σ−1/2(t− cµ)}
|A(θ0 + a−1

n,εt)|1/2
= q{Σ−1/2(t− cµ)}

[
1 + a−1

n,εDθ
1

|A{θ0 + ε6(t)}|1/2
t

]
,

where ‖ε6(t)‖ ≤ δ. The explicit form is ommitted here to avoid repetition. It can
be seen that pacc,qn = Θp(a

d
n,εε

d
n) if (a)

´
Rd×t(Bδ) q{Σ

−1/2(t− cµ)}gn(t, v) dvdt =

Θp(1); (b)
´
Rd×t(Bδ) P3(t, v)q{Σ−1/2(t− cµ)}gn{t, v; rn1(t), rn2(t)} dvdt =

Op(1) when limn→∞ anεn <∞; and (c)
´
Rd×t(Bδ) P3(t, v)q{Σ−1/2(t−

cµ)}g∗∗n {t, v; rn1(t), rn2(t)} dvdt = Op(1) when limn→∞ anεn =∞, where rn1(t) and
rn2(t) are defined as in the proof of Theorem 2. Since q{Σ−1/2(t− cµ)} is uniformly upper
bounded for t ∈ Rp, (b) and (c) hold and the integral in (a) is Op(1) following the arguments
for the similar cases in the proof of Theorem 2. By the positivity of the limit of the integrand
and Fatou’s lemma, the limit of the integral in (a) is lower bounded away from 0. Therefore
pacc,qn = Θp(a

d
n,εε

d
n) holds.

As ΣIS,n is equal to pacc,qnΣABC,n, by (15) we have

ΣIS,n =
pacc,qn

pacc,π

πBδ,IS(Gn) + πBc
δ
,IS(Gn)

πBδ(1) + πBc
δ
(1)

=
pacc,qn

pacc,π

πBδ,IS(Gn)

πBδ(1)
{1 + op(1)},

where the second equality holds by noting that ωn(θ) ≤ β−1. Given the obtained orders of pacc,qn

and pacc,π, ΣIS,n = Op(a
−2
n,ε) if πBδ,IS(Gn)/πBδ(1) = Op(a

−p−2
n,ε ). Similar to (16), we have the
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ABC asymptotics 17

following expansion

πBδ,IS(Gn)

πBδ(1)
= G(θ0)

πBδ,IS(1)

πBδ(1)

+ 2a−1
n,ε{h(θ0)− hABC}

πBδ,IS{Dh(θt)
T t}

πBδ(1)
+ a−2

n,ε

πBδ,IS{tTDh(θt)Dh(θt)
T t}

πBδ(1)
,

and we only need πBδ,IS{P2(t)}/πBδ(1) = Op(a
−p
n,ε) for any P2(t) ∈ P2,t. Since wn(θ) ≤ (1−

β)−1wn,0(θ), wherewn,0(θ) is the weight when β = 0, it is sufficient to consider the case β = 0.
Similar to the proof of Theorem 1, first the normal counterpart π̃Bδ,IS{P2(t)}/π̃Bδ(1) of

πBδ,IS{P2(t)}/πBδ(1), where fABC(sobs | θ) is replaced by f̃ABC(sobs | θ), is considered, then
it is shown that their difference can be ignored. Using the transformation t = t(θ) and plugging
in expansion (17) of f̃ABC(sobs | θ0 + a−1

n,εt) into π̃Bδ,IS{P2(t)}, we obtain an expansion similar
to (11), differing in that parts from expanding π(θ0 + a−1

n,εt)/|A(θ0 + a−1
n,εt)|1/2 are replaced by

the Taylor expansion

1

qn(θ)

π(θ0 + a−1
n,εt)

2

|A(θ0 + a−1
n,εt)|1/2

=
1

apn,ε|Σ|−1/2q{Σ−1/2(t− cµ)}

[
π(θ0)2 + a−1

n,εDθ
π{θ0 + ε7(t)}2

|A{θ0 + ε7(t)}|1/2
t

]
,

where ‖ε7(t)‖ ≤ δ. The explicit form is omitted here to avoid repetition. Then it can be seen that
if we can show that

(d)

ˆ
t(Bδ)

´
Rd P5(t, v)gn{t, v; rn1(t), rn2(t)} dv

q{Σ−1/2(t− cµ)}
dt = Op(1) when lim

n→∞
anεn <∞,

(e)

ˆ
t(Bδ)

´
Rd P5(t, v)g∗∗n {t, v; rn1(t), rn2(t)} dv

q{Σ−1/2(t− cµ)}
dt = Op(1) when lim

n→∞
anεn =∞,

where rn1(t) and rn2(t) are defined as in the proof of Theorem 2, π̃Bδ,IS{P2(t)} = Op(a
d−2p
n,ε )

and π̃Bδ,IS{P2(t)}/π̃Bδ(1) = Op(a
−p
n,ε) by Lemma 5. By (18) and the following equality for

d× p full column-rank matrix A and vector c,

‖At− c‖ = ‖P 1/2(t− P−1Ac)‖2 + cT (I −AP−1AT )c,

where P = ATA and P 1/2P 1/2 = P , for (d) we have´
Rd P5(t, v)gn{t, v; rn1(t), rn2(t)} dv

q{Σ−1/2(t− cµ)}

≤P5(t)
exp

{
−m2

1m
2
2γ

2 ‖t− P (θ0, t)Tobs‖2
}

q{Σ−1/2(t− cµ)}
exp

[
−m

2
2∆

2
‖{Ds(θ0) + rn1(t)}t−A(θ0)1/2Tobs‖2

]

+ P5(t)
K
α
{
λ2min(Λ)(1−γ−∆)m2

1

a2nε
2
n

‖t− P (θ0, t)Tobs‖2
}

q{Σ−1/2(t− cµ)}

×K∆
[
λ2

min(Λ)(1− γ −∆)

a2
nε

2
n

‖{Ds(θ0) + rn1(t)}t−A(θ0)1/2Tobs‖2
]
,

where P (θ0, t) = [{Ds(θ0) + rn1(t)}T {Ds(θ0) + rn1(t)}]−1{Ds(θ0) + rn1(t)}TA(θ0)1/2,
both P5(t) belong to P5,t and ∆ is chosen such that γ + ∆ ∈ (0, 1) and α+ ∆ ∈ (0, 1) for γ
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18 W. LI AND P. FEARNHEAD

and α in Condition 7. Then since both ratios on the right hand side of the above inequality are
Op(1) by Condition 7, by Lemma 7 and Lemma 9, (d) holds. Similarly by (20), for (e) we have´

Rd P5(t, v)g∗∗n {t, v; rn1(t), rn2(t)} dv
q{Σ−1/2(t− cµ)}

≤P5(t)
exp

{
−m2

1m
2
2γ

2 ‖t− 1
anεn

P (θ0, t)Tobs‖2
}

q{Σ−1/2(t− cµ)}

× exp

[
−(a2

nε
2
nβ1β2 − γ)m2

2

2
‖{Ds(θ0) + rn1(t)}t−A(θ0)1/2Tobs‖2

]

+ P5(t)
K
α
{
λ2

min(Λ)(1− β1)m2
1‖t− 1

anεn
P (θ0, t)Tobs‖2

}
q{Σ−1/2(t− cµ)}

×K1−α
[
λ2

min(Λ)(1− β1)‖{Ds(θ0) + rn1(t)}t−A(θ0)1/2Tobs‖2
]
,

where both P5(t) belong to P5,t. Thus by Condition 7, Lemma 7 and Lemma 9, (e) holds. There-
fore π̃Bδ,IS{P2(t)}/π̃Bδ(1) = Op(a

−p
n,ε).

To show that πBδ,IS{P2(t)}/πBδ(1) = Op(a
−p
n,ε), similar to the discussion of (13), it is suffi-

cient to show that
πBδ,IS{P2(t)} − π̃Bδ,IS{P2(t)}

π̃Bδ(1)
= Op(α

−1
n a−pn,ε). (22)

With the transformation t = t(θ) we have πBδ,IS{P2(t)} − π̃Bδ,IS{P2(t)} is equal to

α−1
n a−2p

n,ε

ˆ
t(Bδ)

ˆ
P2(t)π(θ0 + a−1

n,εt)
2
rn(sobs + εnv | θ0 + a−1

n,εt)K(v)

|Σ|−1/2q{Σ−1/2(t− cµ)}
dvdt.

Then by following the arguments of the proof of Lemma 6, we have

|πBδ,IS{P2(t)} − π̃Bδ,IS{P2(t)}| ≤ α−1
n ad−2p

n,ε sup
θ∈Bδ

|π(θ)2A(θ)−1/2|

×
ˆ
t(Bδ)

ˆ
|P2(t)|

(ana
−1
n,ε)

drmax

[
ana

−1
n,εM

{
Ds(θ0 + εt)t− an,εεnv − 1

ana
−1
n,ε
A(θ0)1/2Tobs

}]
K(v)

q{Σ−1/2(t− cµ)}
dvdt.

The ratio above is similar to the ratio of gn{t, v; r1(t), r2(t)}/q{Σ−1/2(t− cµ)} except that the
normal density is replaced by rmax(·). Then by Condition 7, previous arguments for proving (iv)
and (v) can be followed. Hence πBδ,IS{P2(t)} − π̃Bδ,IS{P2(t)} = Op(αna

d−2p
n,ε ) and (22) holds.

Therefore ΣIS,n = Op(a
−2
n,ε). �
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