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Summary We look at how to choose genetic distance so as to maximise the power of

detecting spatial structure. We answer this question through analysing two population

genetic models that allow for a spatially structured population in a continuous habitat.

These models, like most that incorporate spatial structure, can be characterised by a

separation of time scales: the history of the sample can be split into a scattering and

collecting phase, and it is only during the scattering phase that the spatial locations of

the sample affects the coalescence times. Our results suggest that the optimal choice of

genetic distance is based upon splitting a DNA sequence into segments, and counting

the number of segments at which two sequences differ. The size of these segments

depends on the length of the scattering phase for the population genetic model.
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Introduction

We consider the problem of learning about spatial structure from population genetic

data. We focus on the situation where we have both genetic and spatial data from a

random sample of individuals from a population in a continuous habitat. The spatial

information relates to the sampling location of the individuals, and the genetic infor-

mation will be the genetic type of those individuals at a series of loci. From this data

we would like to answer questions such as whether there is spatial structure within

the population (as opposed to the data being consistent with a panmictic population),

and if so to quantify features of how this structure affects the genetic diversity of the

population.

A simple, but commonly used, approach to answering whether there is spatial structure

is to look for correlation between the spatial and genetic distance between two individ-

uals from the population. This can be calculated by considering all pairs of individuals

within the data set, calculating the correlation between the set of paired spatial and ge-

netic distances, and then assessing the significance of any observed correlation through

a permutation test (Sokal and Oden, 1978; Shimatani and Takahashi, 2003). This idea

can be extended to look at the relationship of spatial separation on genetic difference

by plotting a smoothed estimate of how genetic distance varies with spatial separation

for the pairs of individuals within the data set (see e.g. Shimatani and Takahashi, 2003;

French et al., 2005).

However to implement these approaches requires the definition of spatial and genetic

distance for a pair of individuals. Often Euclidean distance is a natural choice for spatial

distance. However, there can be multiple possible choices of genetic distance, and in

some situations the choice of distance can effect the results of the subsequent analysis

(Shimatani and Takahashi, 2003).

As a motivating example, consider the study of Campylobacter jejuni in French et al.

(2005). Here the genetic data for each C. jejuni isolate consisted of multi-locus sequence

types (MLSTs). An MLST records the DNA sequence of the isolate at ≈500bp frag-

ments of 7 housekeeping genes which are roughly evenly spread around the genome. If

we consider the data from two isolates at a single gene, then two natural measures of ge-

netic distance are (i) the number of polymorphic differences between the two sequences;

(ii) whether or not the sequences are identical. There are also alternative measures of

distance that could be considered (see METHODS). A natural and important question
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is which choice of distance is best in terms of detecting and learning about the effect of

any spatial structure on genetic diversity.

We investigate this question via analysis of two spatial population genetic models (see

METHODS). Both models assume a population that exists in a continuous habitat,

and that the spatial location of an offspring is centred around the location of its parent.

Both models only apply to non-recombining loci, and thus we focus on the choice of

genetic distance for a single non-recombining locus. (We are unaware of appropriate

spatial genetic models which incorporate recombination.)

METHODS

Spatial Genetic Models

Our results are based on two population genetic models for continuous spatial habitats,

also known as Isolation by Distance (IBD) models. The first assumes complete density

regulation: that is that the population density is constant through space and time. This

model can be constructed as the limit of a 2-dimensional stepping stone model as the

number of demes tends to infinity. This model has been analysed by Maruyama (1971)

Malécot (1975), Barton and Wilson (1995), Barton and Wilson (1996) and Barton

et al. (2002) amongst others. However here we use the simulation method and analytic

approximations of Wilkins (2004), and throughout this paper we call this model the

Wilkins’s IBD model.

The second is based on the Isolation by Distance model of Wright (1943). We call this

Wright’s IBD model. This model has no density regulation, which has the disadvantage

that it produces infinite clumping of the population (Felsenstein, 1975).

As we are interested in the property of estimators that use the genetic and spatial

information on pairs of chromosomes, we consider samples of size 2 from these models.

We consider a single non-recombining locus and assume this locus consists of L sites,

with two alleles at each site. We further assume the same mutation rate at each site,

and parameterise the mutation rate in terms of a scaled rate per site θ = 2Neu where

Ne is the effective (haploid) population size and u is the per generation mutation rate

for the locus. The effective populations size is defined so that the mean number of

mutations in the locus that separates a randomly sampled pair of haploid individuals

will be Lθ.

Wilkins’s IBD model
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We consider a haploid population inhabiting a square habitat [0, 10]×[0, 10]. The model

is parameterised in terms of a population density, ρ, and a dispersion parameter σ2.

A simple description of the ancestral process for this model is as described below (see

Wilkins, 2004; Wilkins and Wakeley, 2002, for fuller details). Note that this model

is equivalent to one for a habitat [0, 10/c] × [0, 10/c] with population density c2ρ and

dispersal rate σ2/c2, for any c > 0.

We consider a sample taken from known locations. We can then trace the ancestry of

our sample back in time. At any time in the past this ancestry will consist of a number

of lineages, which correspond to the unique descendants of the population at that time.

The position of a lineage undergoes a two-dimensional symmetric Gaussian random

walk, with variance σ2 in each direction. (We assume reflecting boundaries at the edge

of the habitat.) Two lineages coalesce (share a common ancestor) if the lineages fall

within an area containing a single individual (which is of size 1/ρ).

Wilkins (2004) shows that qualitatively the genealogy from this model can be split into

two phases, known as the “scattering” and “collecting” phase (this terminology was

first used in Wakeley, 1999). The scattering phase is the initial phase of the genealogy,

and corresponds to the period of time that the coalescence times depends on the sam-

pling locations. This is then followed by the collecting phase, when coalescences are

independent of the sampling locations and the genealogy can be closely approximate by

Kingman’s coalescent (Kingman, 1982).

During the collecting phase, the distribution of the genealogy is described by a single

parameter: the effective population size Ne. This governs the rate of coalescence of

a pair of lineages (which is 1/Ne). Wilkins (2004) gives various approximation for

Ne in terms of the parameters of the model; and this can also be estimated through

simulation. Within the scattering phase, the distribution of the coalescent time for a

pair of individuals sampled at x1 and x2 respectively depends on the scaled distance

||x1 − x2||/σ, where || · || is the standard Euclidean distance.

To show this we plotted the hazard function of the coalescent time distribution for a

range of distances between the sampled individuals. The hazard function of a random

variable T is defined as Pr(T = t)/ Pr(T ≥ t). Under a panmictic population model,

the hazard function of the coalescent time would be constant through time and equal to

1/Ne. Figure 1(a) shows the hazard functions we obtained, and we see that these tend

to a constant value of approximately 1/Ne regardless of the position of the sample. In
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Figure 1: Plot of log hazard function for the coalescent time distribution of a sample

of size 2. (a) Wilkins’s IBD model with σ = 0.1, ρ = 200; (b) Wright’s IBD model

with σ = 0.1. In both cases Ne = 28, 000 and the habitat was [0, 10] × [0, 10]. The

different curves in each plot correspond to different degrees of separation of the sample,

and the values chosen where 0, σ, 2σ, 5σ, 10σ and 20σ. (The lines are ordered with

smaller distances having larger hazard values at small numbers of generations.) The

sampled locations were chosen to be in the middle of the habitat. Hazard function for

(a) was calculated via the approximation’s in Wilkins (2004), but simulation results

gave qualitatively identical results.
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this case convergence occurs at around the 1,000th generation. Prior to this time, we

notice quite difference behaviour in the hazard functions.

A further important parameter of the model is the time at which the scattering phase

ends and the collecting phase starts, which we call Tc. Wilkins (2004) gives ways of

calculating this; though we have resorted to using visual pictures such as Figure 1 to

estimate an appropriate value. (In practice this time is not clearly defined, and rough

estimates, such as the value of 1,000 generations for Figure 1a are sufficient for our

needs.)

We considered a range of parameter values for the results we present here. In each case

we calculated the distribution of the coalescence time for a sample of two individuals.

We examined this using both the analytic approximation of Wilkins (2004), and through

simulation using the tracker program (available from

http://www.santafe.edu/∼wilkins/software.html).

In all cases we sampled individuals from close to the centre of the habitat, to avoid any

edge-effects of the model.

Wright’s IBD Model

This is also a model for a haploid population. We consider a slight generalisation of the

IBD model of Wright (1943).

We consider a random sample from a structured population. By random, we mean that

the probability of an individual being sampled does not depend on its genetic type.

We do allow the sampling to depend on the location of the individuals, and calculate

the distribution of the coalescence time of a pair of individuals conditional on their

sampling locations. To calculate this conditional distribution we first need to consider

the unconditional distribution of the coalescence time, and the distribution of the spatial

locations given the coalescence time.

Forward in time, the model assumes a fixed population size evolving over discrete gen-

erations. Ignoring the spatial information, the evolution of the population is given by

the Wright-Fisher model: each descendent in the next generation “chooses” its parent

independently and uniformly from the individuals in the current generation. Condi-

tional on this, the location of the descendent is a small perturbation of the location of

its parent. By considering a suitable limit as the population size tends to infinity we

have a model where, marginal to the spatial information, the genealogy of a sample
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is given by Kingman’s coalescent (Kingman, 1982). Conditional on the genealogy and

the location of the MRCA of the sample, the location of the sampled individuals is ob-

tained by simulating Brownian motion along the branches of the genealogy. Thus if we

consider a branch in the genealogy of length t, if the parental node is at location y then

the location of the daughter node (or tip) is drawn from a transition density pt(x|y),

where pt(x|y) is a (2-dimensional) Gaussian distribution with mean y and variance tσ2

in each direction.

We consider the special case of a model for a population on a closed habitat. We again

choose the habitat to be [0, 10] × [0, 10]. For this model the transition density, pt(x|y),

is defined to be that of 2-dimensional Brownian motion constrained to the habitat. So

if x = (x1, x2) and y = (y1, y2)

pt(x|y) =
2

∏

i=1

[

∞
∑

k=−∞

(

N (xi + 20k; yi, σ
2t) + N (20k − xi; yi, σ

2t)
)

]

,

where N (·; µ, σ2) is the density of the Gaussian random variable with mean µ and

variance σ2. The infinite sum in this expression is to allow for the reflecting boundary

of the habitat (see the Appendix of Wilkins, 2004). This model is chosen to have the

same spatial dynamics as the Wilkins’s IBD model. For this model, the distribution

of the location of the MRCA is given by the stationary distribution of the transition

density pt(x|y), which is just uniform on the habitat.

Intuitively this model behaves similarly to a neutral coalescent model, where we treat

the location of the individual in the same way as a genetic locus. In this case the

“type” of the individual at this locus lies in [0, 10]× [0, 10], and the “mutation” process

is Brownian motion with reflecting boundaries. The type of the MRCA is drawn from

the stationary distribution of this mutation process.

Now we can calculate the conditional distribution of the coalescence time of a sample of

size 2 given their sampling locations. Consider a sample taken from specified locations,

x and y say. For a population of effective population size Ne the conditional distribution

of the number of generations until the sample has a common ancestor is given, using

Bayes’ formula, by

p(t|x,y) ∝ exp{−t/Ne}p2t(x|y).

Here the first time comes from the exponential prior distribution of the coalescence

time, and the second term is the conditional distribution of the location of the sample

given the coalescence time. (This simplifies due to the reversibility of the dispersal
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process.) Note that here we have defined time in terms of generations, so σ2 for our

model is defined in terms of the variance of the dispersal over one generation.

Plots of the hazard function of the coalescence times for this model again show a sep-

aration of time-scales effect (Figure 1b). Again it will be appropriate to summarise

the model by two parameters: the effective sample-size, Ne, and the time at which the

collecting phase starts (the hazard rate is approximately 1/Ne), Tc. For this model the

time depends only on σ and the habitat size. For our habitat Tc ≈ 10/σ2.

Genetic Distances

The two most natural measures of genetic distance between a pair of sequences at a

locus are (i) the number of segregating sites, which we call dL; and (ii) whether or not

the sequences at the locus are the same, which we call d1. Note the d1 = I(dL > 0).

We can obtain a range of measurements in between these extremes by considering

segments made up of subsets of the L sites at the locus. Consider such a set of l

such segments, each of which consists of L/l sites. (The natural definition would be

to consider the first segment to consist of the first L/l sites; the second the next L/l

sites, and so on.) Now define the genetic distance to be the number of these segments

at which the two sequences differ. We define this to be dl.

Power to detect Spatial Structure

Consider a choice of genetic distance. Let µ̃ be the expectation of this distance under

a panmictic population model; and µ(x) and V (x) be the expectation and variance of

this under a spatial model for samples chosen at distance x from each other. Then we

(indirectly) measure the power to detect spatial structure through

D(x) = (µ(x) − µ̃)2/V (x). (1)

This is a natural measure, as it directly relates to the non-centrality parameter of a

chi-squared statistic to detect whether µ(x) 6= µ̃.

RESULTS

We first examined the distribution of the number of segregating sites in a sample of size

2. We simulated data assuming a bi-allelic mutation model at each site, with mutation

rate θ = 2Neu = 0.01. Thus for a locus consisting of 500 bases we would expect around 5

segregating sites in a sample of 2 chromosomes, which is consistent with Camplyobacter

jejuni MLST data. (Fearnhead et al., 2005).
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Figure 2: Plot of the hazard function for the number of segregating sites for Wilkins’s

IBD model. The top row corresponds to a locus with 500bp; the middle row one with

2500bp and the bottom row one with 12500bp. The columns correspond to different

demographic parameters (from left): σ = 0.1, ρ = 200; σ = 0.1, ρ = 50; σ = 0.2,

ρ = 50; σ = 0.1, ρ = 1000. (These correspond to Ne values of 28,000; 13,000; 6,700; and

108,000.) The different colour lines represent different distances between the sampled

chromosomes: these are 0 (red), 5σ (green), 10σ (blue) and 20σ (light blue). (Note that

the curves are ordered, with smaller distances producing higher hazard values.) Results

are based on 10,000 draws from the distribution of coalescence times, and 100 simulated

data sets for each draw. The horizontal line shows the hazard under a panmictic model.
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In Figure 2 we plot the hazard function for the number of segregating sites for the

Wilkins’s IBD model. We consider a range of demographic parameters, and three sizes

of locus: 500bp, 2500bp and 12500bp. If S is the the number of segregating sites then

the hazard function evaluated at the value s is defined as Pr(S = s)/ Pr(S ≥ s). We plot

this as under a panmictic model the hazard function is constant; and thus it highlights

deviation from the panmictic model.

Each plot shows the hazard for four different degrees of separation of the sample chro-

mosomes (for full details see figure caption). The common feature of the plots is that

for the 500bp locus, the only noticeable difference in the hazard is for 0 segregating

sites, with greater probability for closely sampled pairs of chromosomes. As the size of

the locus increases (and with it the mutation rate of the locus) we observe differences

in the hazard for other numbers of segregating sites.

The importance of this result is that for small loci, the only information about the

spatial model will be found in the proportion of pairs of identical chromosomes at

different distances. (Conditional on S > 0 the hazards are almost identical for different

spatial separations, so there is almost no information in the conditional distribution

of the number of S given S > 0.) Thus measuring genetic distance via whether two

chromosomes are identical at that locus will be optimal. However, for larger loci there

is likely to be information over and above whether two chromosomes are identical:

and in these situations other genetic distances may perform better at detecting spatial

structure.

The reason for this dependence on locus size is related to the separation of time-scales

property of spatial models. It is only during the scattering phase (up to time Tc see

METHODS) that the hazard of coalescence times depends on the spatial separation of

the chromosomes. This difference will manifest itself in the hazard only for small num-

bers of segregating sites. For two lineages that coalesce prior to time Tc, the expected

number of mutations will be bounded by 2TcLu = LθTc/Ne, and only when this is of

the order of 1 or more will you observe a noticeable difference in the hazard function at

1 or more segregating sites. For the columns of Figure 2, Tc/Ne ≈ 0.04, 0.08, 0.04 and

0.01 respectively. Thus LθTc/Ne < 1 for L = 500 in all cases, and also for L = 2500 for

the rightmost column.

Note that the results depend primarily on the value of Lθ, and changing L and θ whilst

keeping this product the same has little affect on the results (at least while θ << 1).
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Figure 3: Plot of the hazard function for the number of segregating sites for Wright’s

IBD model. The top row corresponds to a locus with 500bp; the middle row one with

2500bp and the bottom row one with 12500bp. The columns correspond to different

demographic parameters (from left): σ = 0.1, Ne = 28, 000; σ = 0.1, Ne = 13000;

σ = 0.2, Ne = 6700; σ = 0.1, Ne = 5000. (The first three have the same σ and Ne

values as the model in the corresponding column of Figure 2). The different colour lines

represent different distances between the sampled chromosomes: these are 0 (red), 5σ

(green), 10σ (blue) and 20σ (light blue).(Note that the curves are ordered, with smaller

distances producing higher hazard values.) Results are calculated analytically. The

horizontal line shows the hazard under a panmictic model.

Furthermore the patterns we observe in Figure 2 are representative of a range of choices

of the demographic parameters (results not shown). Note that for Wilkins’s IBD model

there is a limit on the range of values of Tc/Ne that can be obtained (due to their

co-dependence on σ); and the choices given in Figure 2 show models with a reasonable

spread over the possible values of Tc/Ne.

Similar qualitative results are obtained for Wright’s IBD model (see first three columns

of Figure 3). The first three columns of Figure 3 have identical Tc and Ne values to the

first three columns of Figure 2, and we obtain qualitatively very similar results. For the

rightmost column we have chosen Ne to be sufficiently small so that Tc/Ne = 0.2 and

in this case we observe differences in the hazard for S = 1 even when L = 500.
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Secondly, we looked at the effect of different measures of genetic distance on the power

to detect spatial structure. We did this through fixing a spatial separation x and

calculating the normalised distance D(x), (see Eqn 1 in METHODS). Larger values of

D(x) correspond to greater power. The top two rows of Figure 4 correspond to four

different spatial models, for x = 0 and x = 5σ. There are similar patterns for the

different values of x for a given model - the main difference is that the power to detect

variation from a panmictic model increases as x decreases. This pattern is observed

over a greater range of x values (results not shown).

For each plot in the top two rows of Figure 4 we plot the power for four different choices

of genetic distance, as a function of the size of the locus being analysed. These genetic

distances include the two extremes, namely the number of segregating sites (denoted

dL, see METHODS) and whether or not the two sequences are identical (d1). The two

further distances are based on splitting the locus into 2 or 3 segments, and counting

the number of segments at which the two sequences differ (d2 and d3 respectively). The

optimal choice of distance varies with both size of locus and with the spatial model.

To investigate this further the bottom row of Figure 4 shows equivalent results in the

x = 0 case, but now each curve is based on splitting the locus into segments of different

size. We see that for each scenario there appears to be an optimal size of segment; and

now increasing the size of the locus has little effect, with the D(x) values converging to

a fixed value for each choice of size of segment.

The optimal size of segment varies between spatial models; and the reason for this

is the different Tc/Ne values for these models. Choosing different sized segments is

equivalent to looking at differences in the distribution of coalescent events over different

time-scales. Very large segments correspond to focusing on differences over very short

time-scales; whereas small segment focus on differences over much large time-scales.

Thus models with small Tc/Ne values should use large segments; and vice versa. As

an approximate rule, the optimal segment size has population-scaled mutation rate θs

where θsTc/Ne ≈ 1. This can be seen from the bottom row of plots in Figure 4. The

Ne/Tc values are approximately 28, 100, 28 and 5 for the four models. Over the values

of θs considered, the optimum appears to be 100, 20 and 5 for the last three models;

with θs = 20 and θs = 50 giving very similar results for the first model.

DISCUSSION

We have looked at two spatial population genetic models to give us insight into the
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Figure 4: Plot of D(x) values against locus size (measured by locus mutation rate

θ) for different spatial models. Columns from right: Wilkins’s IBD model ρ = 200,

Ne = 28, 000; Wilkins’s IBD model ρ = 1000, Ne = 108, 000; Wright’s IBD model

Ne = 28, 000; and Wright’s IBD model Ne = 5, 000; all models use σ = 0.1, and

Tc ≈ 1, 000. (Thus Ne/Tc is approximately 28, 100, 28 and 5 for these 4 models.) First

two rows plot D(x) against choice of genetic distance: d1 (red, full line), d2 (green,

dashed line), d3 (blue, dotted line) and dL (black, full line). Top row is for x = 0, and

middle row for x = 5σ. The bottom row shows plots for x = 0 but with each curve

relating to segments of different lengths (see text), measured in terms of the segment’s

mutation rate θs: θs = 2 (black, full line), θs = 5 (black, dashed line), θs = 10 (black,

dotted line), θs = 20 (red, full line), θs = 50 (red, dashed line) and θs = 100 (red,

dotted line).
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choice of genetic distance for detecting spatial structure in population genetic data.

The models we considered differed in their assumptions of density regulation, and they

each take one of the two extreme possibilities. Wilkins’s IBD model assumes complete

density regulation, whereas Wright’s IBD model assumes no density regulation. Both

models are unrealistic in real-life (in particular the Wright’s IBD model leads to infinite

population density) but the similarity in the results we obtain for both cases suggest

that our results are informative about more realistic scenarios that lie between these

two extremes.

The qualitative features of our results can be traced to the separation of time scales

properties of these models: namely that there is an, often short, scattering period where

the spatial location of the samples affects the genealogy, and that this is then followed

by a collecting phase where the initial locations have no effect on the genealogy. The

choice of distance should be based upon looking for differences across segments of DNA,

where the size of the segment is chosen so that there will be of the order of 1 mutation

expected between two haploid individuals that coalesce within the scattering phase.

The fact that many spatial models (Wilkins and Wakeley, 2002; Wilkins, 2004; Slade

and Wakeley, 2005) can be described via a separation of time scales suggests that this

guideline will apply quite generally.

One difficulty with applying this result is knowing or inferring the length of the scat-

tering phase, Tc (or the ratio Tc/Ne). All we can do is draw some general conclusions.

For models with strong density regulation, like the Wilkins’s IBD model, there are

constraints on the values that Tc/Ne can take, and the results that we presented are

representative of the results obtained for a range of different parameter values for the

model. These suggest the segment you choose should have a high mutation rate; of the

order of 20–50. (It is possible to choose parameter values that require larger segments,

but not smaller ones.) So for example, for the C. jejuni MLST data the mutation rate

is of the order of 5-10 for a gene fragment. Thus the optimal choice of genetic distance

will be to look at whether or not sequences for a gene fragment are identical. Note also

that some spatial models are equivalent to Tc ≈ 0 (Slade and Wakeley, 2005), in which

case measuring genetic distance by whether or not the complete DNA sequence at a

locus is identical would be best. Non-equilibrium changes in population structure, such

as range expansion or contraction, will affect the values that Tc/Ne can take. Historic

contraction would increase the value Tc/Ne which would result in segments with lower

mutation rates being preferred.
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In our study we have ignored recombination, this is due to the difficulty with analysing

or simulating from spatial genetic models which include recombination. However, the

results we present may be robust to situations where there is some recombination. The

reason for this is that in looking for spatial structure, we are looking for differences

in the distribution of coalescence times within the scattering phase, up to Tc. Thus it

is only recombination events that occur before Tc that will affect our conclusions. As

Tc/Ne is often small, the probability of such recombination events will be small except

for large or highly recombinant loci. In particular, for genetic loci that do not include a

recombination hotspot (McVean et al., 2004), the effect of recombination may be small.

One final conclusion from our work is that, as spatial structure affects the genealogy

of a sample only during the, generally short, scattering phase, large amounts of genetic

data may be needed to make strong conclusions about the presence and effect of spatial

structure on genetic variation. In particular, it is likely to be beneficial to type fewer

individuals over more of the genome.
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