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Abstract 

The human endometrium is a highly regenerative tissue that experiences functional and structural 

changes during each menstrual cycle in order to provide a favourable environment for implantation 

of the embryo. Underpinning this cycle must be a stem cell population. The aim of this project was to 

characterise this stem cell population in situ in post-menopausal endometrium. To this end, Scanning 

electron microscopy, image analysis and biospectroscopy techniques, Fourier transform Infrared 

spectroscopy and Raman spectroscopy, were employed.  

In a menstruating endometrium, the functional layer is sloughed off during each cycle whilst the basal 

layer, which contains the potential for endometrial regeneration remains intact. Cyclical and 

functional changes of the endometrium are regulated by the production of oestrogen and 

progesterone during the ovarian cycle. Post-menopausal endometrium is thinner and is primarily 

composed of the basal layer. It is inactive and undergoes apoptotic changes however it retains its 

regenerative capacity to respond to exogenous hormones. The current evidence supports the 

hypothesis that epithelial stem/progenitor cells are located in the endometrial crypts, which probably 

reach the basal layer and migrate to the functional layer to regenerate the epithelial lining of the 

endometrial glands whilst stromal stem/progenitor cells are located near blood vessels in the 

functional and basal layer and are responsible for restoring the lost stroma surrounding the 

endometrial glands.  

Results from Scanning electron microscopy revealed the different architecture of the endometrial 

surface in the samples examined.  Variations were noticed in cellular morphology as well as in 

formation of ciliated cells and pinopode-like structures. It was also observed that cells surrounding 

the endometrial crypts had a more elongated shape relative to the cells away from the crypts which 

exhibited a more spherical shape. 

To the best of our knowledge, no prior studies have investigated endometrial stem cell populations 

by means of biospectroscopy techniques. Spectra were collected from epithelial cells at the base and 
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the lumen of endometrial glands as well as from cells in the surrounding stroma. Pre-processing and 

subsequent multivariate analysis were applied on the derived spectra to examine segregation 

between the three populations of cells as well as to characterise their biochemical composition in the 

hope of identifying spectral regions that discriminate the cell populations and thus support the theory 

about the putative location of endometrial stem/progenitor cells. Unfortunately, we were not 

successful in achieving our objectives; however a degree of separation was observed between the 

different cell types with epithelial cells at the lumen of the glands being the most dissimilar whilst cells 

at the base of the glands and the surrounding stroma were more similar with respect to each other. 

Our work though can be used to develop new approaches to further study and provide more insights 

about stem cell populations in the human endometrium. 
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1.1 Setting the scene 

 

1.1.1 The female reproductive system 

 

The main function of the female reproductive system is to produce ova which upon fertilisation will 

form an embryo. Secretion of hormones provides a favourable environment for embryo implantation 

and its subsequent growth into a fetus. The system undergoes several changes to support pregnancy 

but after parturition the original conditions are established. Despite the pregnancy period, structural 

as well as functional changes occur during the life of a female i.e. form childhood to puberty to 

menopause under the influence of hormones. Most of these changes take place in the menstrual cycle 

during the reproductive years of a female. 

Three main structural units constitute the female reproductive system based on their function; the 

ovaries, the genital tract (fallopian tubes, uterus vagina) and the breasts (Young et al., 2006). The 

ovaries are the site of oogenesis and produce oestrogen and progesterone in a cyclical manner under 

the influence of luteinising hormone (LH) and follicle stimulating hormone (FSH) via a feedback 

mechanism (Young et al., 2006). The fallopian tubes are the site of ova release and fertilisation. The 

uterus is the site of embryo implantation and experiences the most alterations due to ovarian 

hormones and to support pregnancy. At birth, the baby passes out of the body through the vagina. 

The breasts develop during puberty and are the site of lactation during pregnancy. 

 

Uterus 

The uterus is a flattened pear-shaped muscular organ and it is anatomically divided into the body, 

including the fundus at its upper part, and the cervix which opens into the vagina (Fig.1.1). The 

endometrium is the mucosal lining of the uterine wall whilst the myometrium constitutes the outer 

thick muscular layer. The endometrium undergoes cyclical changes during the menstrual cycle to 
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establish conditions for embryo implantation in which case both layers grow and differentiate to 

support pregnancy (Ross et al., 1995). After menopause the layers become atrophic and thinner. 

 

The endometrium 

The endometrium is separated into two main layers; the stratum basale/basal layer and the stratum 

functionale/ functional layer (Fig.1.1.1.1). The latter is sloughed off in each menstrual cycle whilst the 

first remains intact and provides the tools for regeneration of the lost tissue. During the reproductive 

years of a female the thickness of the endometrium varies in thickness from 1 to 6 mm (Ross et al., 

1995) due to cyclical functional and structural changes. Simple columnar epithelial cells line the 

endometrial surface along with some secretory and ciliated cells. Mesenchymal cells are the main cell 

type making the connective tissue of the endometrial stroma (Spencer et al., 2005). Invagination of 

the stroma results in the formation of endometrial glands.  

In postmenopausal women the endometrium experiences profound changes as well; it becomes 

atrophic and thin consisting only of the basal layer, the glands are made up of cuboidal or low 

columnar epithelial cells and become inactive, the stroma loses its mitotic activity and contains more 

collagen fibres (Young et al., 2006). 

The radial artery in the myometrium branches into the basal layer as a straight artery which becomes 

highly coiled and spiral as it enters the functional layer. The arterioles of the spiral arteries form a rich 

capillary bed at the endometrial surface (Ross et al., 1995). Spiral arteries are sensitive to fluctuating 

levels of oestrogen and progesterone during the menstrual cycle so they also proliferate and 

degenerate resulting into bleeding. So the menstrual flow contains blood from the ruptured 

vasculature along with the shed stromal and epithelial cells from the functional layer. 

The endometrium of the cervix though is a lot different from the endometrium of the uterine body. 

No tissue is lost during the menstrual cycle but the ovarian hormones influence secretion of mucus 

from the tall columnar epithelial cells in such a way as to provide optimal conditions for sperm 
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migration and subsequent fertilisation of the egg (Ross et al., 1995). Whereas glycogen secretions in 

the rest of the endometrium are responsible for the nutrition of the implanted embryo until the 

placenta is formed (Young et al., 2006). 

 

 

 

 

 

 

Figure 1.1: Schematic drawing of the uterus and a magnification of the uterine wall showing the myometrium 

and the structure of the endometrium (reproduced from Embryology.ch). 
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1.1.2 The menstrual cycle 

 

The cyclical morphological and functional changes of the endometrial glands and stroma happen every 

28 days, on average, during the reproductive years of a female. The cycle is orchestrated with follicular 

development since it is regulated by the ovarian hormones. According to the observed changes the 

cycle is divided into three successive phases; menstruation, proliferation and secretion. 

The menstrual phase starts on the first day of menstruation and lasts for about five days. If neither 

fertilisation nor implantation take place, the corpus luteum regresses and consequently there is a 

rapid fall in levels of progesterone and oestrogen so the endometrial thickness cannot be maintained. 

The walls of the spiral arteries contract and consequently the blood flow to the functional layer 

decreases. As a result it becomes ischemic, secretion from the endometrial glands ceases and the 

stroma becomes less edematous (Ross et al., 1995). Eventually the vasculature ruptures and the 

menstrual flow contains blood and the sloughed off and desquamated stromal and epithelial cells. The 

remnants at the surface of the undisturbed basal layer will restore the lost tissue. This depends on the 

new cycle of follicular development whereby the secreted oestrogen stimulates the proliferation and 

migration of endometrial cells (Young et al., 2006).  

The proliferative phase starts and ends with ovulation (mid-cycle) due to the effects of the increasingly 

oestrogen production during the development of ovarian follicles (Young et al., 2006). The rapid 

proliferation of epithelial, stromal and endothelial cells re-establish the glands, connective tissue and 

vasculature respectively. By the end of this phase, which is just after ovulation, the glands start 

producing glycogen and the endometrium is about 3 mm thick. 

Events occurring in the secretory phase are primarily under the regulation of progesterone which is 

produced by the active corpus luteum at the end of ovulation. Epithelial cells get hypertrophic, instead 

of undergoing mitosis, the glands enlarge and are full with secretory products. Spiral arteries also grow 

to reach the endometrial surface. Both oestrogen and progesterone trigger the decidualisation of 
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stromal cells which get rich in glycogen and fat. By the end of this phase the endometrium is 

edematous and at its maximum thickness providing the necessary conditions for implantation. 

Restoration of the epithelial surface at the wound areas begins at the same time with menstrual 

breakdown (Henriet et al., 2009; Maybin et al., 2009) and it only takes about 48 hours for the whole 

process of re-epithelisation to finish (Ludwig et al., 1990; Okulicz et al., 1998). 

 

Hormonal regulation in menstruating endometrium 

Fluctuating levels of oestrogen and progesterone affect primarily regeneration processes in the 

functional layer rather the basal layer since the latter is not that sensitive to hormonal changes 

(Brenner et al., 2003; Slayden et al., 2004). In the proliferative phase, once re-epithelisation is 

completed, increasing levels of oestrogen trigger the rapid proliferation of epithelial and stromal cells 

for glandular and stroma regeneration via activation of oestrogen receptor-α (ERα) and progesterone 

receptor (PR) (Padykula et al., 1989). The vasculature is also regenerated to ensure oxygen and 

nutrient supply to the growing tissue (Gargett and Rogers, 2001). Interaction of oestrogen with 

oestrogen ERα on stromal cells and the subsequent production of growth factors result in the indirect 

regulation of proliferation of endometrial epithelial cells (Cooke et al., 1997; Kurita et al., 2005). 

Wnt signalling pathway, which itself is regulated by oestrogen, is also involved in regulating 

proliferation of epithelial cells (van der Horst et al., 2011). This can be supported by the differential 

expression of Wnt signalling molecules between epithelial cells in the post- and pre-menopausal 

endometrium (Nguyen et al., 2012). Also the expression of the negative regulator AXIN2 of this 

pathway (Cong and Varmus, 2004) in the epithelium of the basal layer in post- and pre-menopausal 

endometrium suggests that Wnt signalling restricts its proliferative effect within the functional layer 

(Nguyen et al., 2012). 

With the formation of corpus luteum after ovulation and the subsequent release of progesterone, 

differentiation is mediated with the beginning of the secretory phase.  Production of progesterone 
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negatively regulates responses of the functional layer, but not of the basal layer, to oestrogen via 

suppressing expression of ERα and PR and thus promoting differentiation (Jabbour et al., 2006). 

However, PR of stromal cells are still activated and cells continue to proliferate and start forming 

decidualised cells (Gargett et al., 2012). In the meantime, differentiation of endometrial glands results 

in glycogen accumulation preparing the endometrium for implantation (Spencer et al., 2005). If 

implantation does not take place, decidualized stromal cells undergo apoptosis due to cessation of 

progesterone production as the corpus luteum regresses (Gargett et al., 2012). A sequence of events 

results in menstruation and the subsequent shedding of the functionalis and the process of 

endometrial regeneration starts once again (Salamonsen, 2003). 

 

Postmenopausal endometrium and response to hormones 

The loss of oestrogen-sensitive cells by apoptosis in the functional layer and the low circulating levels 

of oestrogen account for the atrophic and inactive status of postmenopausal endometrium (Gargett 

et al., 2012). However it has the potential to regenerate and gain its normal thickness and function 

under the influence of hormonal therapies (Ferenczy et al., 1991; Ettinger et al., 1997) and be able to 

support pregnancy via IVF (Paulson et al., 2002). This response of postmenopausal endometrium to 

exogenous sex steroid hormones is brought about by the expression of oestrogen receptors (Sauer et 

al., 1993; Klaassens et al., 2006). Activation of these receptors triggers proliferation and differentiation 

of epithelial, stromal and endothelial cells to re-establish the endometrium (Gargett et al., 2012). This 

property of postmenopausal endometrium can be supported by the fact that genes expressed in 

epithelial cells are similar to genes expressed in the pre-menopausal (Nguyen et al., 2012) and 

menstrual (Gaide Chevronnay et al., 2009) endometrial epithelium in the basal layer.  
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1.1.3 Gynaecological diseases 

 

Endometrial conditions 

Endometriosis, endometrial carcinoma, endometrial hyperplasia, adenomyosis, fibroids and cysts are 

the most common pathologies of the endometrium that lead to its abnormal growth or spread and 

may result in infertility, chronic pelvic pain, abnormal menstrual cycle and vaginal bleeding in 

postmenopausal females along with other symptoms. 

Endometriosis is defined as the abnormal growth of endometrial tissue at areas outside the uterus 

such as the fallopian tubes, vagina and intestines. These endometrial ‘implants’ are responsive to 

ovarian hormones and get thicker during the menstrual cycle and bleed. However, there is no route 

available to release the blood so these areas get irritated and sore and eventually scar tissue or cysts 

are formed. Endometrial implants block the fallopian tubes and decrease the chances of conception 

and successful pregnancy. Available therapies include medication to decrease inflammation or the 

stimulation by steroid hormones and the surgical removal of the implants. Endometriosis affects 

millions of women. Some of the risk factors that make women prone to develop endometriosis are 

family history, never been pregnant, frequent and long periods and starting menstruating at an early 

age. 

Endometrial hyperplasia is defined as the increased proliferation of endometrial glands relative to the 

stroma. This proliferation results in glands varying in size and shape. According to the architecture and 

cytological presentation of endometrial glands, hyperplasia is classified into simple, complex and 

atypical with the latter being more prone to develop into malignancy. The main cause of hyperplasia 

is the prolonged oestrogen stimulation due to increased oestrogen production or being on oestrogen 

replacement therapy, obesity and anovulation.  

Endometrial carcinoma is the most common invasive cancer of the female genital tract and accounts 

for 7% of all invasive cancers in women. It occurs more commonly in peri & postmenopausal women 
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with a peak incidence age of 55 to 65 years old. According to the pathology endometrial carcinomas 

are classified into type I (the most common) and type II which can be further classified into 

adenocarcinoma, adenosquamous carcinoma, serous carcinoma and clear cells carcinoma according 

to their histological appearance. Along with the risk factors of endometrial hyperplasia, infertility, 

endometrial atrophy and family history increase the chances of cancer development. 

In adenomyosis endometrial glands and/or stroma from the basal layer invade the myometrium. It 

results in the expansion of the uterine wall and upon examination several small cysts are observed. 

The main cause is unknown but it is associated with smooth muscle hyperplasia (Gargett, 2007). 

Adenomyosis affects 15-20% of women and is more frequently seen in women with endometriosis. 

 

Infertility 

Infertility is a complex and multidimensional health issue that affects 8-10% of couples globally. It is 

defined as the inability of a woman, aged over than 35 years old, to get pregnant whilst having normal 

sexual intercourse during a period of 6 months to a year without any means of birth control (Roupa et 

al., 2009). The problem could be in either the male or the female however it is discovered only after 

marriage and in some cases the causes may be unknown. 

Concerning the females, both the incident and causes of infertility are associated with geographical 

differences (Roupa et al., 2009). As mentioned above, endometrial conditions have a negative effect 

on female fertility. Other health related causes include problems with the fallopian tubes, disorders 

of the menstrual cycle, ovarian failure, vagina and uterus problems. Lifestyle factors considered as 

causes of infertility include smoking, obesity, sexual disorders, stress and deciding to have a child at 

an older age. The latter can be explained by the fact that women have high career goals and use 

contraceptive pills to delay pregnancy until they are settled in the professional arena. The 

consequences of giving birth at an older age are the decreased reproductive capacity whilst the 

chances of having a miscarriage and chromosomal abnormalities increase. 
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The problem of infertility has been addressed by the development of assisted reproductive technology 

(ART). In the case of male infertility the method of intracytoplasmic sperm injection is employed whilst 

in vitro fertilisation is used to overcome male and female infertility. However not all couples use the 

approach of ART to treat their problem because they do not like the idea or because they cannot 

afford it. Many successful pregnancies have been achieved via ART however it can have adverse 

outcomes for women and infants. 

Assisted reproduction attempts to get pregnant may fail as well especially if the endometrium, the 

main tissue that supports pregnancy, does not function properly. Surrogacy is an option to overcome 

this problem or it is often for couples to consider adoption. Research in medicine and science is on-

going and has given many solutions to health problems and the research on stem cells for regenerative 

medicine is evolving. What if the engineering of endometrial tissue was a solution not only for 

infertility but also for the proliferative conditions mentioned above? Several studies have been carried 

out that provide evidence for the existence of stem cells in the human endometrium however the 

location of this stem cell population and its niche is yet to be defined. 
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1.2 Stem cells 

 

1.2.1 Biology of stem cells 

 

Stem cells exist as soon as a zygote is formed and at this stage they are known as embryonic stem 

cells. When a female gamete is fertilised a zygote is formed whose cells are totipotent which means 

that they can produce all the cell types in the embryo and the extraembryonic tissues (Eckfeldt et al., 

2005). Division and maturation of the zygote result in the formation of an embryo. Human embryonic 

stem cells are found in the inner cell mass of the blastocyst and since they are more mature than the 

cells of the zygote they are pluripotent with the ability to differentiate into all derivatives of the germ 

layers (ectoderm, mesoderm and endoderm) and also trophoectoderm (Gage, 2000; Trounson, 

20006). However this differentiation potential gets restricted during the process of embryonic 

development (Eckfeldt et al., 2005). Despite their pluripotency, another property that distinguishes 

embryonic stem cells is their ability to propagate themselves indefinitely especially when under 

defined conditions. 

Multipotential somatic stem cells, also known as adult stem cells, are the progeny of endometrial stem 

cells and reside in many adult tissues and organs. They are in an undifferentiated state until triggered 

to differentiate into the types of cells making up that tissue.  Along with the differentiation potential, 

self-renewability and high proliferative potential are functional characteristics specific for stem cells 

(Morrison et al., 1997; Weissman, 2002). 

Stem cells undergo asymmetric cell division whereby they produce either identical daughter cells to 

maintain the stem cell pool within tissues, or progenitor cells (Gargett, 2007). Proliferation of 

progenitor cells produces transit amplifying cells which further proliferate and differentiate into 

terminally differentiated functional cells which can no longer proliferate (Fuchs et al., 2004; Chan et 

al., 2004). 
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The functions of adult stem cells are regulated by their microenvironment niche (Schofiled, 1978). 

Within this niche, stem cells are in close communication with each other, the surrounding 

differentiated tissue and the extracellular matrix (Li and Xie, 2005). Molecules secreted by niche cells 

initiate signalling pathways whereby resident stem cells either remain in a dormant state or undergo 

cellular division (Fuchs et al., 2004) or in the case of injury and apoptosis they are induced to 

proliferate and differentiate to replace the lost tissue (Moore and Lemischka, 2006). Thus a balance is 

achieved between self-renewal and differentiation which is necessary to maintain tissue homeostasis 

and avoid tumour growth (Shostak, 2006). 

Sometimes the need to replace the lost cells can be sensed by stem cells of other lineages whose 

location allows them to circulate within the body. Plasticity is the term given to the ability of adult 

stem cells to adapt to changes of their present extracellular environment and transdifferentiate into 

cells of lineages other than the tissue they normally reside and consequently acquiring all the 

characteristics of the new cell type (Gargett, 2007; Tosh and Slack, 2002; Wagers and Weissman, 

2004). 

An important breakthrough in stem cell research was the achievement to generically reprogramme 

differentiated human somatic cells and induce characteristics similar to those of embryonic stem cells 

so these cells are called as induced pluripotent stem cells (Takahashi et al., 2007). These cells are 

modified to express genes and transcription factors (Oct3/4, Sox2, c-Myc, and Klf4) which are 

responsible for the distinguishing properties of endometrial stem cells. However induced pluripotent 

stem cells are rather pluripotent. 

The human body has several tissues that undergo continuous and rapid turnover such as the skin and 

the intestine. Their ability to regenerate is due to the presence of an adult stem cell population whose 

niche has been identified and characterised; stem cells of the skin are located at the bulge of the hair 

follicle and at the interfollicular regions of the epidermis (Morris et al., 2004; Ito et al., 2005) whilst 

stem cells in the intestine are located just above the Paneth cells at the loop of the microvilli (Sancho 
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et al., 2004). A stem cell population underpins the mechanisms of structural and functional changes 

taking place in endometrial regeneration during each menstrual cycle. Definitive identification of this 

pool and niche which give rise to progenitor/stem cells is yet to be achieved. It has been long 

hypothesised and generally accepted that adult stem/progenitor cells reside in the basal layer since it 

remains intact during the menstrual cycle. Specifically the loop and base of endometrial glands in the 

basal layer are thought to be the location of epithelial stem cells whilst endometrial mesenchymal 

stem/stromal cells (eMSC) are located near blood vessels (Fig. 1.2). Stem cells persist in the atrophic 

postmenopausal endometrium (Gargett, 2007) since it is mainly comprised by the basal layer. 

Examination of menstrual debris remaining in the uterine cavity, provided evidence for the presence 

of stem cells in the functional layer and their contribution to endometrial regeneration (Maruyama et 

al., 2010) based on markers specific for endometrial stem/progenitor cells (Schwab and Gargett, 

2007). In addition, stem cells from the bone marrow can sometimes participate in endometrial 

regeneration (Du and Taylor, 2010). 

 

 

 

 

 

Figure 1.2: Schematic drawing of the hypothesised location of candidate stem/progenitor cells in human endometrium. 

Epithelial progenitor cells are located at the base of glands in the basal layer and endometrial MSC-like cells are located 

near blood vessels in the functional and basal layer (reproduced from Gargett and Masuda, 2010). 
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1.2.2 Evidence for stem/progenitor cells in human endometrium 

 

Colony forming unit (CFU) activity 

Functional studies measuring the ability of endometrial cells to produce clones provided the first 

evidence for the existence of stem/progenitor cells in human endometrium (Gargett, 2004; Schwab 

et al., 2005). Single cell suspensions of epithelial (EpCAM+) and stromal (EpCAM_) cells were freshly 

isolated and purified from hysterectomised endometrial tissue of menstruating women (Chan et al., 

2004). Both types of cells, 0.22% and 1.25% of epithelial and stromal cells respectively, produced large 

and small CFUs (Chan et al., 2004). Clonogenic activity of stromal and epithelial cells was also observed 

when isolated from post- and peri-menopausal women and no differences in their frequency was 

found when compared with proliferative and secretory endometrium (Gargett, 2006; Schwab et al., 

2005). Even though large colonies were rare, they showed a significant capacity to self-renew in vitro 

and a high proliferative potential whereas in the small loose colonies these two functional properties 

were limited (Gargett et al., 2009) and displayed no differentiation (Gargett et al., 2012). When 

cultured in appropriate conditions, large CFUs of epithelial cells differentiated into cytokeratin+ gland-

like structures and large CFUs of stromal cells displayed a multipotency by differentiating into 

adipocytes, osteoblasts, chondrocytes and smooth muscle cells (Gargett et al., 2012). It was also 

observed that large stromal CFUs expressed surface markers specific for the phenotype of 

mesenchymal stem cells (MSC) (Dominici et al., 2006). Plasticity of endometrial stromal cells was 

displayed by their ability to differentiate into lineages of mesodermal, ectodermal and endodermal 

origin (Wolff et al., 2010; Santamaria et al., 2011). 

Based on the expansion and differentiation of the colonies it can be concluded that a population of 

epithelial and stromal progenitor cells residing in the basal layer give rise to large CFUs whereas transit 

amplifying cells with limited proliferative capacity residing in the functional layer give rise to small 

CFUs (Gargett and Masuda, 2010). The presence of eMSC in human endometrium accounts for 
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properties observed in stromal colonies and have similar multipotent properties with MSC found in 

bone marrow and adipose tissue (Gargett et al., 2009). Also these eMSC are responsible for stromal 

regeneration since they were absent from the myometrium and fallopian tubes (Gargett and Masuda, 

2010). 

 

Side population (SP) cells 

Some adult stem cells can be identified by their ability to efflux the DNA-binding dye Hoechest 33342 

via the ATP-binding cassette transporter G2 (ABCG2) which is considered to be a marker for this 

discrete population of stem cells (Gargett et al., 2012; Challen and Little, 2006). Somatic stem cells 

showing such activity have been isolated from several adult tissues (Preffer et al., 2002; Smalley and 

Clarke, 2005) using dual wavelength flow cytometry (Goodell et al., 1997) and they are characterised 

as SP cells since this ability is not conserved in all adult stem cells. 

A very small percentage of freshly isolated human endometrial cells were identified as SP cells 

(Masuda et al., 2010) which when cultured displayed little clonogenic activity so it was suggested that 

they were in quiescence and thus inactive (Tsuji et al., 2008). It was also observed that they expressed 

intermediate levels of telomerase along with markers specific for the undifferentiated state (Cervello 

et al., 2010). SP cells were also identified in cultured human endometrial cells in similar percentages 

but in this case SP cells displayed an enhanced proliferative capacity to form colonies since they were 

primarily in G1, M or S phase of the cell cycle (Tsuji et al., 2008). Phenotypic analysis revealed typical 

characteristics of MSC in SP populations of endometrial epithelial and stromal cells (Cervello et al., 

2010). Immunofluorescence staining illustrated the expression of ABCG2 in the basal and functional 

layers of human cyclic endometrium (Zhou et al., 2001); specifically the expression was detected at 

the vascularised areas since it was co-localised with CD13+ cells (Masuda et al., 2010). It was also 

observed that SP cells occurred more frequently in proliferative (Masuda et al., 2010; Tsuji et al., 2008) 
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and menstrual (Kato et al., 2007) human endometrium despite that their numbers varied amongst 

individuals. 

Identification of SP cells in human endometrium provides evidence for the existence of 

progenitor/stem cells which appear to be in close association with the vascular niche (Gargett, 2007) 

but their exact nature is yet to be defined (Gargett and Masuda, 2010). 

 

Markers of stem/progenitor cells 

At the moment identification of specific markers for epithelial cells in human endometrium is yet to 

be achieved. On-going studies asses the functions of candidate adult stem cells, such as clonogenic 

activity, self-renewal, ability to differentiate and proliferative potential, for their verification (Garget 

and Ye, 2012).  However, there are known markers which are specific for endometrial MSC. 

Endometrial stromal cells with clonogenic activity expressed CD146, a characteristic surface 

phenotype of MSC, along with the platelet derived growth factor receptor β (PDGF-Rβ) (Schwab and 

Gargett, 2007) which is important for regulating proliferation and differentiation. These cells showed 

their multipotent nature by their ability to differentiate into mesodermal lineages, such as adipocytes, 

smooth muscle cells, chondrocytes and osteocytes. It was also found that they occupied perivascular 

areas in the basal and functional layer (Schwab and Gargett, 2007). These observations were 

confirmed in another study by application of gene profiling on endometrial stromal cells whereby 

expression of pericyte markers as well as expression of genes associated with angiogenesis were 

identified (Spitzer et al., 2012). Genes responsible for maintaining self-renewal and multipotency in 

MSC were upregulated i.e. hypoxia response and signalling pathway genes. In the same study it was 

suggested that CD146+PDGF-Rβ+ cells are more likely to differentiate into stromal fibroblasts since 

they clustered with endometrial fibroblasts but could be distinguished from endothelial cells (Spitzer 

et al., 2012). Other MSC surface markers expressed by CD146+PDGFRβ+ eMSC were CD29, CD44, CD73, 

CD90 and CD 105 (Dominici et al., 2006) but no expression of heamatopoietic (CD34) and endothelial 
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(CD34 and CD31) stem cell markers was detected (Dimitrov et al., 2008). Endometrial and MSC cells 

can be identified by expressing MSCA-1, a surface marker for MSC in the bone marrow. In this case 

though, a second marker is needed to distinguish the two cell types (Sobiesiak et al., 2010). Because 

of their identified location in both layers of the endometrium, it can be said with certainty that 

mesenchyme cells in the stroma are shed in menstrual blood and it is very likely to be transported to 

neighbouring sites where they consequently induce growth of endometrial tissue which is what 

defines endometriosis (Gargett and Masuda, 2010). 

Application of antibodies to examine the expression of perivascular markers in endometrial tissue and 

cell suspensions revealed W5C5 as a novel marker for MSC in human endometrium (Gargett et al., 

2012). Endometrial cells expressing W5C5 were isolated and showed similar differentiation properties 

and behaviour to CD146+PDGF-Rβ+ cells during in vitro studies (Masuda et al., 2012). Transplantation 

of these cells in immunocompromised mice resulted in the generation of human endometrial tissue 

(Schuring et al., 2011). Mesenchymal stromal cells have been found in the functional layer of 

endometrial biopsies (Schuring et al., 2011) which could serve as a source of W5C5+ cells with the 

potential to be used in cell therapies for tissue regeneration (Gargett et al., 2012). 

Pluripotency in embryonic stem cells is maintained by expression of the transcription factor Oct-4 

which was  found to be expressed in adult stem cells too (Tai et al., 2005). Expression of this marker 

was observed in human endometrium without identifying though, neither the cell types nor their 

location (Matthai et al., 2006). In a cohort study hysterectomised endometrial tissue taken during the 

follicular or luteal phase of menstruating women expressed OCT-4 mRNA however no differences in 

expression patterns were detected during the cycle (Bentz et al., 2010). Identification of other adult 

stem cell markers in endometrial tissue includes bcl-2, c-kit and CD34 (Cho et al., 2000) but they were 

expressed by many endometrial cells other than clonogenic or side population cells so they could not 

be considered as definitive markers (Chan et al., 2004; Kato et al., 2007). 
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A known epithelial progenitor cell marker is Musashi-1, an RNA-binding protein which regulates self-

renewal (Gotte et al., 2008). Musashi-1 positive cells were found in endometrial glands and stroma. 

In addition, during the proliferative phase of the menstrual cycle their numbers increased in the 

stroma and glands of the basalis in comparison to the functionalis. Secretory endometrium had less 

cells expressing Musashi-1 which is an indication that they probably function as stem/progenitor cells 

during the proliferative phase. Significant high levels of Musashi-1 were detected in cells from 

endometriotic and endometrial carcinoma tissue (Gotte et al., 2008). 

 

Mesenchymal cells in menstrual blood 

The presence of endometrial MSC in menstrual blood was examined in culture studies whereby 

menstrual blood cells were grown in similar way as MSC from bone marrow (Hida et al., 2008). 

Cultured cells looked like fibroblasts and had a high proliferative potential when in vitro (Patel et al., 

2008). They displayed stable karyotype and telomerase activity as well as expression of characteristic 

eMSC surface phenotype (Meng et al., 2009). They were able to differentiate into various types of cells 

of mesodermal (Cui et al., 2007) and ectodermal (Patel et al., 2008) origin and also cardiac and skeletal 

muscle cells (Cui et al., 2007). Expression of immune-modulatory genes (Murphy et al., 2008) was 

found in menstrual blood cells and expressed only MHC-class I genes suggesting that they have low 

immunogenicity (Caplan, 2009). These immune properties have also been observed in MSC of bone 

marrow and adipose tissue. The fact that eMSC are found in menstrual blood is also an indication of 

their possible role in endometrial growth at ectopic sites (Sasson and Taylor, 2008). 

 

Epithelial stem/progenitor cells in the basal layer 

Application of the HUMARA assay for the X-linked androgen receptor gene (Tanaka et al., 2003) 

demonstrated the monoclonality of individual glands. The results from this assay showed the shared 

clonality between adjacent glands and concluded that they were derived from the same epithelial 
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progenitor cells whose location though could not been precisely indicated. Monoclonal endometrial 

glands have been identified in normal human endometrium by using PTEN immunostaining (Mutter 

et al., 2000). PTEN gene, a tumour suppressor gene that responds to oestrogen (Mutter et al., 2001), 

was not expressed in some glands either because of mutation or deletion or both (Mutter et al., 2000) 

and clones of these glands were found in the basal layer and proliferation of their cells during 

successive menstrual cycles resulted in the formation of PTEN-null glands in the functional layer. In 

endometrial hyperplasia the number of PTEN-null glands increases since unopposed oestrogen 

stimulation results in continuous proliferation of cells and no expression of the gene (Mutter et al., 

2001). 

Methylation patterns of genes have been used as epigenetic markers to indicate the presence of 

epithelial stem/progenitor cells in individual glands of human endometrium (Kim et al., 2005). Mitotic 

activity of adult stem cells resulted in the inheritance of these markers by their daughter cells whereas 

markers in TA or more mature cells, residing in the functional layer, were lost as the cells were shed 

in menstrual blood (Figueira et al., 2011). Studies on methylation patterns in endometrial glands 

revealed that the number of epigenetic markers reflected the rounds of stem/progenitor cell divisions 

(Ro and Rannala, 2001). Kim et al. observed that the degree of gene methylation increased with age 

but remained constant during menopause inferring the presence and activity of endometrial epithelial 

progenitor cells in the basal layer in menstruating and inactive endometrium. 

Also the fact that epithelial cells were not detected in cultures of menstrual blood is an indication that 

their progenitors are located in the basal layer which remains intact during menstruation (Musina et 

al., 2008). 
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1.2.3 Role of endometrial stem cells in endometrial disorders 

 

Adult stem cells in all regenerative tissues are responsible for their homeostasis i.e. they ensure that 

cell loss is balanced with cell turnover and thus maintain normal function of the tissue. Endometriosis, 

adenomyosis, endometrial hyperplasia and endometrial cancer are gynaecological diseases 

characterised by abnormal proliferation of endometrial cells. It is believed that initiation and 

progression of these diseases is due to abnormal functioning of either the endometrial 

stem/progenitor cells or their niche or both (Gargett, 2007).  

 

Endometriosis 

Ectopic growth of endometrial glands and stroma is the typical characteristic of endometriosis which 

can be described as a chronic benign disease. The growth usually occurs in pelvic organs, the 

peritoneum and the rectovaginal pouch resulting in symptoms such as pain, infertility and 

inflammation (Giudice and Kao, 2004). The mechanism underlying the formation of endometrial 

implants involves the attachment of inappropriately shed endometrial cells on the peritoneal cavity 

to achieve invasion into the mesothelium and the cells then survive and proliferate (Jensen and 

Coddington, 2010). The pathogenesis of endometriosis is not clearly understood; a few hypotheses 

have been developed to explain the origin of endometriotic implants. The most accepted theory states 

that retrograde menstruation results in deposition of menstrual debris in the peritoneal cavity 

establishing endometrial implants (Sampson, 1927b). The coelomic metaplasia theory suggests that 

endometriosis results from induced metaplastic changes in the cells lining the visceral and abdominal 

peritoneum (Gruenwald, 1942). It is also believed that remnant fetal mullerian cells can establish 

ectopic growth of endometrial tissue (von Recklinghausen, 1986). The last theory sets the lymphatic 

system as a mean for the spread of endometrial cells to ectopic sites (Sampson, 1927a). 
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Studies have provided evidence for the presence of endometrial stem/progenitor cells in 

endometriotic lesions and thus suggesting their possible role in the pathogenesis of the disease. 

Cultures of stromal cells from endometriotic tissue were found to have MSC-like cells which expressed 

a typical MSC surface phenotype and displayed multipotent differentiation potential (Kao et al., 2011). 

Ovarian endometrioma was found to have epithelial and stromal cells with clonogenic activity; CFU of 

both types of cells were able to self-renew whilst stromal CFU showed multipotency (Chan et al., 

2011). Some endometriotic lesions were found to contain monoclonal epithelial cells whilst other 

lesions had polyclonal stromal cells leading to the conclusion that a single cell can initiate the 

formation of the lesion which can get contaminated by cells from other sources, such as the bone 

marrow, or stem cells from shed endometrial fragments may be established within the lesion (Gargett 

and Masuda, 2010).   

Further examinations are needed to define the direct role of endometrial stem/progenitor cells or 

bone marrow stem cells in endometriosis. It was suggested though that stem cells in the basalis are 

taken up by the blood flow during menstruation and reach the peritoneal cavity via the fallopian tube 

where they eventually develop endometriotic implants (Sasson and Taylor, 2008). Abnormal 

functioning of endometrial stem cells is a possible cause for ectopic growth but also an abnormal 

peritoneum may provide favourable conditions for normal stem cells to implant and establish 

endometrial growth (Figueira et al., 2011).  

 

Endometrial cancer 

Cancer cells vary in their ability to proliferate, differentiate, initiate tumors, express different markers 

and genes, and vary in their lifespan too (Gargett et al., 2012). Genetic or epigenetic changes 

constitute the transformation of normal adult stem cells, progenitor or mature cells into cancer stem 

cells (CSC) which are able to self-renew (Jordan, 2006) as well as produce more differentiated daughter 

tumour cells (Visvader and Lindeman, 2008). As tumour development progresses though, CSC may 
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acquire more mutations which will eventually result in changes in CSC population and its phenotype 

(Nguyen at al., 2012).  

The underlying cause of endometrial adenocarcinoma is the loss of control over proliferation and 

regeneration of endometrial epithelial cells. Type I adenocarcinoma develops in pre- and peri-

menopausal women and is oestrogen dependent whereas type II affects post-menopausal women and 

is oestrogen independent (Di Cristofano and Ellenson, 2007). Also these two types of endometrial 

adenocarcinoma result from mutations in different genes; mutations in Pten, K-ras and β-catenin 

genes are associated with type I whilst mutations in p53 and HER-2/neu account for type II (Di 

Cristofano and Ellenson, 2007). 

A subpopulation of CSC was found in human endometrial cancer cell lines (Friel et al., 2008). Some 

freshly isolated endometrial cancer cells were able to self-renew in vitro and in vivo and had 

clonogenic activity (Hubbard et al., 2009). Expression of genes responsible for self-renewal in stem 

cells, such as BMI-1, NANOG and SOX2, was detected in clonogenic endometrial cancer cells (Hubbard 

et al., 2009). 

It is believed that SP cells also have a role in tumour development as they have been identified in 

endometrial cancer and endometrial cancer cell lines (Kato et al., 2010). In one type of cell line, SP 

cells were in quiescence but could self-renew and showed chemoresistance (Friel et al., 2008) whilst 

in other cell lines, used as a model of type II adenocarcinoma, SP cells had properties of self-renewal 

and were also able to produce clones and large tumours in vivo (Kato et al., 2010). 

Two studies used CD133 as a marker of CSC in human endometrial cancer tissue. Cells expressing 

CD133 formed clones more efficiently, displayed higher proliferative potential and chemoresistance. 

Either expressing CD133 or not, cells failed to initiate tumours in vivo in contrast to CD133+ and CD133- 

cells from endometrial cancer cell xenografts which were equally able to form tumours (Rutella et al., 

2009). In the other study though, it was observed that tumours were initiated more readily by CD133+ 

cells (Friel et al., 2010). The use of CD133 as a marker for the presence of CSC in endometrial tissues 
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is not agreed (Mather, 2012) so it requires further research but their role in tumor initiation and 

progression cannot be doubted.  

 

Adenomyosis 

It is very possible that invasion of the myometrium in adenomyosis is caused by the abnormal 

behaviour of endometrial stem cells or even the cells constituting their niche microenvironment 

(Gargett, 2007). An abnormal orientation of the niche may result in differentiated cells establishing 

layers within the myometrium instead of moving towards the functional layer. Niche cells may lose 

regulation over differentiation potential of endometrial stem cells which may cause their excessive 

differentiation into smooth muscle cells and this can account for myometrial hyperplasia which is a 

feature of adenomyosis (Gargett, 2007). In terms of pathophysiology, it was suggested that injury to 

the endometrial myometrial junction is caused by the contractions of myometrium for sperm 

transport (Leyendecker et al., 2009). This results in production of oestrogen at the damaged area 

which in turn activates endometrial stem cells in the basal layer as a response to tissue injury. Stem 

cells proliferate and invade the myometrium to repair the damaged tissue (Gargett and Masuda, 

2010). The presence of stromal cells in adenomyotic tissue was proven by their ability to differentiate 

into lineages of mesodermal origin and express markers for MSC surface phenotype when cultured 

(Chen et al., 2010). But no other conclusions were drawn concerning their clonogenicity and ability to 

self-renew. Application of gene profiling on these cells though showed their differences with stromal 

cells from normal endometrium and that they over expressed COX-2 which has a key role in repairing 

the injured myometrial tissue and local release of oestrogen (Leyendecker et al., 2009). 

 

Inadequate endometrial regeneration 

In conditions such as Asherman’s syndrome or in endometrial areas covered with scar tissue the 

endometrium is thin and dysfunctional possibly because stem/progenitor cells are either reduced in 
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number or have reduced function or both (Gargett and Ye, 2012). The endometrium cannot support 

implantation (Gargett and Healy, 2011) so some of the symptoms associated with these conditions 

are infertility and unsuccessful pregnancy (Panayiotides et al., 2009). Intrauterine adhesions which 

establish Asherman’s syndrome are a consequence of trauma to the basal and the myometrium 

caused by miscarriage, elective abortion, curettage or pelvic surgeries (Yu et al., 2008). Release of 

inflammatory mediators as a response to infection and inflammation inhibits the regeneration of the 

traumatised endometrial tissue by damaging stem cells or their niche and instead induces the 

formation of fibrotic tissue (Gargett et al., 2012). The epithelial surface of the endometrium is re-

established without any scar tissue during the menstrual cycle and after parturition (Salamonsen, 

2003). A major trauma at the basal layer and the underlying myometrium can lead to the damage or 

loss of resident stem cells so the endometrium is thin, atrophic and inactive (Yu et al., 2008). The MSC 

in the functional layer cannot compensate for this loss so endometrial regeneration fails and the 

intrauterine adhesions get covered with fibrotic tissue and eventually a scar is formed (Schenker and 

Margalioth, 1982).  

 

1.2.4 Regenerative medicine 

 

Adult stem cell therapies 

The ability of stem cells to self-renew and differentiate into various types of cells has been of great 

interest in regenerative medicine and tissue engineering over the years for the development of adult 

stem cell therapies. Even though embryonic stem cells have a wide range of differentiation potential, 

their use in regenerative medicine is limited due to several ethical issues so multipotent mesenchymal 

stem cells derived from adult tissues have been used as an alternative. Several clinical cases have 

reported the use of bone-marrow derived mesenchymal cells to treat bone loss (Vacanti et al., 2001), 

fracture non-union (Bajada et al., 2007), osteogenesis imperfecta (Horwitz et al., 1999; 2001), knee 
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osteoarthritis by generation of cartilage (Wakitani et al., 2002), acute spinal cord injury whereby 

improvement of sensory and motor function was observed (Park et al., 2005), myocardial infarction 

whereby implantation of stem cells resulted in significant reduction of myocardial infarct size and 

better systolic function (Janssens et al., 2006). The stem cells in the corneal limbus have been well 

characterised and their application in stem cell therapies was identified quite early. Pallegrini et al., 

(1997) cultivated corneal progenitor cells taken from the patients to produce autologous corneal 

epithelial sheets which were then grafted on the damaged eye and resulted in restoration the corneal-

limbal surface. 

 

Application of endometrial stem cells  

Endometrial MSC have shown similar properties to MSC derived from bone marrow and adipose tissue 

such as differentiation into adipocytes, osteoblasts and chondrocytes (Gargett et al., 2007; Kao et al., 

2011), self-renewal and colony-forming ability. MSC from bone marrow and adipose tissue have been 

used in regenerative medicine for tissue repair (Caplan, 2009) since they promote angiogenesis and 

proliferation of stem cells, prevent fibrosis and inflammatory responses and have low immunogenicity 

(Caplan, 2007). Hysterectomy endometrial tissue (Massassa and Taylor, 2012), endometrial biopsies 

and menstrual blood (Patel et al., 2008) are an available source for eMSC whose application in tissue 

regeneration has been of great interest recently and their potential has been examined in animal and 

human studies. 

The regenerative potential of eMSC from menstrual blood was first seen in a mouse model of 

Duchenne muscular dystrophy whereby transplantation of the cells into atrophied skeletal muscle 

fibres contributed to muscle repair (Cui et al., 2007). Cell fusion and in situ differentiation were 

postulated as mechanisms for repair but it also appeared that angiogenesis had a role in the reparative 

effect since the transplanted eMSC homed to peri-muscle fibre regions which are vascularised (Cui et 

al., 2007). The role of angiogenesis in tissue repair was reported in a mouse study where menstrual 
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blood MSCs improves critical limb ischaemia induced by femoral artery ligation (Murphy et al., 2008). 

In a tissue engineering approach, EGFP-labelled menstrual blood MSCs were grafted in a murine model 

of myocardial infarction whereby grafted cells were able to differentiate into striated muscle cells 

expressing troponin and actinin and there was a significant reduction in infarct area when compared 

to control animals treated MSC from bone marrow (Hida et al., 2008). In a murine model of 

encephalomyelitis, endometrial stem cells were intraperitoneally delivered and whereby their anti-

inflammatory effect was observed (Peron et al., 2012). In another murine model of intracranial glioma, 

a decrease in tumor size was observed after the intravenous administration of endometrial stem cells 

probably because of their anti-angiogenic effects (Han et al., 2009). It was reported that eMSC can 

promote survival and regeneration of neural cells by exerting a trophic effect as it was observed in 

oxygen-deprived primary neuronal cell cultures and in a murine model of ischaemic stroke whereby 

histological and behavioural improvement was observed after injection of eMSC (Borlongan et al., 

2010). 

Application of tissue engineering to treat pelvic organ prolapse, a disorder resulting from vaginal birth 

injury, by incorporating eMSC into scaffolds has been tested in vivo on an animal skin wound repair 

model and the observations were enhanced neovascularization, tissue integration, reduced 

inflammation and deposition of collagen fibres (Ulrich et al., 2012; Edwards et al., 2013). The scaffolds 

were constructed using artificial meshes which displayed distensibility after they were transplanted 

and enhanced integration within the tissue due to eMSC preventing tissue responses to foreign 

bodies. In another approach to engineer the urinary bladder wall, endometrial stem cells were 

incorporated into fabricated nanofibrous silk-collagen fibres and subsequently were able to 

differentiate into smooth muscle cells (Shoae-Hassani et al., 2013). 

In the case of human studies, clinical-grade MSC from menstrual blood were administered via 

intravenous and intrathecal routes in multiple sclerosis patients during a phase I clinical trial and 

neither immunological reactions neither adverse side effects were reported after a year (Zhong et al., 
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2009). Similarly no side effects were reported during a period of 3 years after the intramuscular 

injections of endometrial stem cells in a patient with Duchenne muscular dystrophy (Ichim et al., 

2010). On the contrary the muscles got stronger and the patient had less respiratory infections. 

Endometrial stem cells were administered via intravenous routes in a patient suffering from 

congestive heart failure and after a year of follow up the ventricular pumping was improved (Ichim et 

al., 2010). 

There are always limitations though about using endometrial stem cells for regenerative therapeutics. 

Endometrial stem cells can be isolated using magnetic beads based on the expression of W5C5 marker 

however W5C5 is not considered as a definitive marker specific for MSC. Also there is a risk of vaginal 

infection by the use of the menstrual cup for collection of menstrual blood to derive MSC. More 

importantly larger animal studies need to be introduced in order to asses and get a better 

understanding of the mechanisms underlying the regenerative potential of endometrial stem cells 

before being further applied in human studies (Verdi et al., 2014). 

 

Endometrial tissue generation 

Human embryonic stem cells (hESC) are pluripotent and their differentiation can be manipulated in a 

clinical setting for tissue regeneration (Murry and Keller, 2008). The use though of human embryos to 

derive pluripotent stem cells raises some ethical issues so research has been focused on using induced 

pluripotent stem (iPS) cells instead. In addition, the use of iPS cells also eliminates the immunological 

issues posed by hESC (Gargett et al., 2012). 

A model of endometrial epithelial cells of human endometrium was generated from hESC (Ye et al., 

2011). At first the aim was to mimick the development of the Mullerian duct and this was achieved by 

inducing mesodermal differentiation in embryoid bodies which were then combined with 

mesenchyme cells from the uterus of a neonatal mouse. The recombinant tissue produced was then 

transplanted in vivo whereby further differentiation resulted in expression of characteristic Mullerian 
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duct markers and formation of ciliated cells was also observed (Ye et al., 2012). The function of the 

hESC-derived epithelium was assessed by exposure to exogenous oestrogen which induced the 

proliferation of cells and production of glycodelin A. generation of a functional hormonally responsive 

epithelium tissue resembling adult human endometrial epithelium was achieved emphasising the role 

of endometrial MSC in regulating differentiation of hESC. This strategy can be applied in vitro for the 

generation of an adult human endometrial epithelium using the patient’s own iPS cells and 

endometrial stromal cells to produce Mullerian derivatives (Gargett and Ye, 2012) which could 

potentially be transplanted into patients for the in vivo regeneration of endometrial tissue. 
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1.3 Background on applied methods 

 

1.3.1 Scannning electron microscopy 

 

Endometrial architecture during the menstrual cycle 

Ludwig and Spornitz (1991) were amongst the firsts to visualise the changes in the microarchitecture 

of human endometrium under the Scanning electron microscope (SEM). They examined normal 

human endometrium hysterectomised from women with mostly cervical pathologies and they 

ordered the events of changes on the endometrial surface according to the day of the menstrual cycle 

of the patients. 

They observed that on the first day of the cycle, during which there is on-going bleeding, epithelial 

cells are already lost from some areas of the endometrial surface and open capillary vessels run in 

parallel to the wound. Desquamation of the functionalis results in the appearance of stumps, from the 

remaining glands in the basalis, on the stroma on the second and third day of the menstrual cycle. 

Epithelial cells at the margins of the stumps were seen to grow horizontally towards the surface but 

formation of the new glands of the functionalis requires grow in a vertical direction so that the glands 

have an appropriate length. Soon the glandular stumps adopt a cone shape. Newly synthesised 

epithelial cells come out from the stumps at the wound areas whilst the surrounding tissue is covered 

by a fibrin network and trapped red blood cells. 

Rapid proliferation of epithelial cells continuous during the fourth day of the cycle; they grow in a 

spiral pattern and fuse to produce the new epithelial lining. They manage to cover most of the 

denuded surface as local fibrinolytic activity breaks down the fibrin mesh which is not seen after day 

four. It is quite common that the rapid epithelial proliferation from the remaining glands results in the 
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formation of micropolyps next to the glandular openings. The few though that are able to survive grow 

larger and become vascularised. 

By days five and six the endometrial wound is covered by the new epithelial lining, the stromal tissue 

starts to grow and the endometrium gets thicker. Stromal cells grow at a higher rate than glandular 

cells, as a result the endometrial surface appears to be uneven and glandular openings are depressed. 

By the middle of the cycle the surface becomes smooth and this appearance persists for a while. 

Probably the endometrium now provides favourable conditions for implantation to take place. 

Ciliated cells seen during the first days of the menstrual cycle are those which already existed within 

the surviving glandular tissue. By the beginning of the second week new ciliated cells appear between 

epithelial cells. Depending on the location and maturation stage within the endometrium, ciliogenesis 

occurs at different rates and the ciliated cells vary in type i.e. ciliated cells at the endometrial surface 

are of different type than the ciliated cells found at the glandular epithelium of the basalis. By midcycle 

though, ciliated cells reach full development. 

White blood cells and macrophages migrate to the stroma when menstrual breakdown is about to 

begin, that is around day 22. They serve to clear away secretions and cellular debris filling the glandular 

opening. If implantation does not take place, epithelial cells at the surface lining lose their integrity 

and clefts appear on the surface. Just before menstruation on day 28, apical defects are noticed on 

the membrane of some cells. On the other hand, ciliated cells remain unchanged; some though may 

have flat microvilli or even lack microvilli. 

The vasculature breaks down and bleeding commences, as a result white and red blood cells 

accumulate on the endometrial surface. Local fibrinolytic, lysososmal and macrophage activity 

increases to clear away the fibrin mesh and cellular debris as well as to create a non-coaguable 

menstrual flow. The triggering factors at this point are considered to be paracrine and 

endocrinological. By definition, the onset of menstrual bleeding is taken as the first day of the 

menstrual cycle. 
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1.3.2 Biospectroscopy 

 

In the recent years, biomedical studies turned their focus on the application of vibrational 

spectroscopic techniques which have shown their potential as vary important diagnostic tools for the 

detection of malignancy and cancer (Dukor et al., 2002; Choo-Smith et al., 2002; Parker, 2005). These 

techniques are very simple in the context of sample preparation, are easily repeated and most 

importantly they are non-destructive to the tissues (Zanyar et al., 2007; 2008). Spectroscopy results 

in a molecular fingerprint for the biochemical composition of a tissue. Vibrational spectral bands 

provide direct information about the types of bonds and functional groups present within a molecule. 

In diseased tissues, the molecules experience structural and conformational changes which 

consequently result in changes on the spectral bands and thus enabling the optical detection of these 

molecular changes (Short et al., 2006; Sebag et al., 1993). Application of biospectroscopy imaging 

techniques has also allowed for cancer detection (Zeng et al., 2004; Dekker and Fockens, 2005; Demos 

et al., 2006). Of great interest is the use of spectroscopy for the characterisation (Adam et al., 2007; 

and isolation (Patel et al., 2012) of stem cells in human tissues. In this project Fourier Transform 

Infrared (FTIR) spectroscopy and Raman spectroscopy have been employed in an attempt to locate 

the stem cell population in endometrial tissue. 

 

FTIR Spectroscopy 

For a molecule to be IR active its chemical bonds must experience a change in electric dipole moment 

(Stuart, 2004). These vibrational changes allow biomolecules in cells to absorb in the mid IR-region 

(λ=2.5-25µm) (Kelly et al., 2009; Walsh et al., 2007) and thus they are quantitatively measurable 

(Griffiths and Haseth, 2007) and can be used for comparisons between samples. A spectrum of 

wavenumbers is generated with absorbance intensities according to the biochemical composition of 

the cell (Llabjani et al., 2011). In FTIR spectroscopy this information is found between the spectral 



32 
 

region 1800-900 cm-1; the so called; ‘biochemical cell fingerprint’ (Martin et al., 2010). Certain regions 

of wavenumbers and their assignments which are of particular importance during interrogation of a 

biological sample with IR spectroscopy include 1650 cm-1 for Amide I, 1550 cm-1 for Amide II, 1425 cm-

1 for protein, 1260 cm-1 for Amide III, 1225 cm-1 for asymmetric phosphate stretching vibrations (Vas 

PO2
-), 1155 cm-1 for carbohydrate, 1080 cm-1 for symmetric phosphate stretching vibrations (Vs PO2

-) 

and 970 cm-1 for protein phosphorylation (Patel et al., 2011). Despite FTIR spectroscopy, other IR 

techniques of equivalent importance which are employed in research are attenuated total reflection 

fourier transform IR (ATR-FTIR), photothermal microscopy, synchrotron FTIR and pressure-tunning 

FTIR. 

Biomedical studies have different aims and objectives depending on what is being investigated, 

however it has always been the case that application of FTIR analysis gave significant results. FTIR 

spectroscopy can be used as a diagnostic tool for cervical cancer screening (Wood et al., 1996), to 

observe maturation and differentiation of cells allowing detection of abnormalities (Chiriboga et al., 

1998; 1998), to detect biomarkers that are either common between normal and diseased tissues (i.e. 

cancer, malignant or benign tissues) or enable the types of tissues to be distinguished (Mordechai et 

al., 2004).  Also, the application of more than one IR technique in a study can indicate which of those 

techniques is more suitable to obtain meaningful results of good quality (Wong et al., 1995). 

Parameters within the system can be set according to the experimental design and the type of tissue 

or cells being investigated. 

 

Raman spectroscopy 

For a molecule to be considered as ‘Raman-active’ there should be a change in the molecular 

polarisation (Patel et al., 2011). Collision of an incident photon, from a laser beam, with a molecule 

results in a transfer of energy between the two. Chemical bonds within the molecule get excited but 

then they relax into a different vibrational state causing the scattered photon be at a lower or higher 
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energy level than the incident photon. These changes in energy levels results in Raman scattering and 

frequency shift (Singh and Reiser, 1993; Lin-Vien et al., 1991). The IR spectra is generated based on 

the difference between the incident and vibrational frequencies of the molecular bonds in the sample 

(Martin et al., 2010). The ‘biochemical cell fingerprint’ in Raman spectroscopy, including frequency 

shifts assigned for important cellular biomolecules, is between the region 1800-900 cm-1. Important 

regions of frequency shifts and their assignments include 1660 cm-1 for Amide I, 1575 cm-1 for nucleic 

acids (DNA/RNA), 1460 cm-1 for lipid and protein, 1265 cm-1 for Amide III, 1001 cm-1 for phenylalanine, 

787 cm-1 for DNA and 530 cm-1 for protein (Patel et al., 2011). Raman spectroscopy is a complementary 

technique to IR spectroscopy because it allows spectral acquisition from aqueous samples (Kelly et al., 

2011). Other Raman spectroscopic techniques are near-infrared (NIR) Raman spectroscopy, surface-

enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy. The latter two allow for 

rapid and greater signal-to-noise ratio spectral acquisitions by enhancing the inelastic scattering of 

photons which can be relatively weak (Wood et al., 2009; Kneipp et al., 2002). 

Similarly to FTIR spectroscopy, Raman spectroscopy has been employed in several biomedical studies 

to characterise tissues producing significant outcomes and conclusions as well. This technique can be 

used as a method for the in vivo detection of cervical precancer based on squamous dysplasia 

(Utzinger et al., 2001), classification of cancer in epithelial tissues (Stone et al., 2004; 2002), diagnosis 

of lung cancer (Huang et al., 2003), discriminating skin lesions and thus allow for detection and 

classification of skin cancer (Sigurdsson et al., 2004), diagnosis of basal cell carcinoma (Gniadecka et 

al., 1997). Raman spectroscopy can also be used to derive images from biological tissues which provide 

significant information as well for tissue analysis (Patel et al., 2011). 

 

1.3.3 Spectral pre-processing 

There are several pre-processing techniques to be applied and the choice of method depends on the 

instrument being used. It is important to mention that the choice in turn affects the results of 
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multivariate analysis. Many issues may arise during spectral acquisition or sample preparation which 

are corrected by pre-processing of raw spectra so as to make sure that the resulted spectra is a proper 

representation of the biochemical composition of the sample. Common issues that may appear on the 

acquired raw spectra have to do with sloped or oscillatory baseline effects due to the dispersion of IR 

light (i.e. Mie scattering) (Basson et al., 2009;2010), correction of noise, and variations in absorbance 

intensity due to variations in sample thickness, concentration or contact between the sample being 

examined and the instrument. The latter is a main concern when using ATR spectroscopy whereby the 

sample comes in contact with the ATR crystal. 

To approach these issues, usually the first step is to cut the spectra to the region of interest, i.e. for 

FTIR spectroscopy that is the region between 1800-900 cm-1 and for Raman spectroscopy is between 

1750-500 cm-1. The most common technique used to remove sloped or oscillatory baseline is the 

rubber-band baseline correction. Removal of discrepancies in absorbance intensities is achieved by 

applying normalisation to a consistent peak; for example in FTIR spectroscopy normalisation to the 

Amide I peak is often applied. Whereas in Raman spectroscopy, or in cases when the spectra does not 

contain a consistent peak, vector normalisation is applied instead (Kelly et al., 2009). These 

normalisation techniques account for noise-reduction as well (Kelly et al., 2009). 

 

1.3.4 Computational analysis 

Multivariate analysis is employed after pre-processing of spectra datasets in order to allow 

observation of similarities and differences between the classes within the dataset and to identify the 

peaks responsible for these observations (Martin et al., 2010). There are several techniques of data 

analysis that can be used. The multivariate techniques applied in this project were Principal 

Component Analysis (PCA-LDA) and Linear Discriminant Analysis (LDA).  
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Both techniques transform the spectra dataset into linear combinations by forming new variables or 

factors based on the original variables, which in this case are the absorbance intensities (Martin et al., 

2010). The linear combinations are represented by a loading vector but these two techniques use 

different approaches to generate their respective loading vectors (Martin et al., 2010). 

 

PCA 

PCA is an unsupervised method that does not take into account the assigned classes. It reduces the 

dataset into a few factors (10-20), called principal components (PCs), which are uncorrelated with 

each other (Duda et al., 2001) and capture as much as 99% of the variance within the dataset (Fearn, 

2002). 

Application of PCA allows for data to be visualised in a reduced dimensional space of one, two or three 

dimensions whilst capturing most of the information from the dataset (Martin et al., 2010). However, 

in this concept, heterogeneity in the dataset and thus the observed results account for variations 

within the classes rather than variations between the classes which cannot be distinguished by PCA 

(Martin et al., 2010). So further analysis is required for a more valid interpretation of the results. 

 

LDA  

On the other hand, LDA is a supervised technique that maximises variation between classes in relation 

to variation within classes (Duda et al., 2001). The issue in this approach is the over fitting especially 

when the data sets are small, but this can be avoided by applying LDA after PCA. PCA reduces the 

number of variables into a few factors which are used as an input for the application of LDA (Martin 

et al., 2010). So in this concept, the analysis method is termed as PCA-LDA and allows for segregation 

of classes to be visualised in a dimensional space of one, two or three dimensions. 
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Visualisation  

Scores plots are scatter plots whereby the first two or three factors allow for similarities and 

differences between classes to be visualised at the axes (Martin et al., 2010). Whereas, loadings or 

cluster vectors allow for peaks responsible for segregation or similarities to be identified by visualising 

loading vectors as a function of wavenumbers (Martin et al., 2010).  

 

1.4 Aims and objectives 

Post-menopausal endometrium has not been investigated a lot. In this project, Scanning electron 

microscopy was used to investigate the architecture of post-menopausal endometrium in different 

endometrial biopsies with attention to the cellular composition at areas where crypts of endometrial 

glands were located. Biospectroscopy techniques were employed to investigate the biochemical 

composition of epithelial cells of the glandular elements as well as of stromal cells in the surrounding 

connective tissue in an attempt to identify and characterise the location of endometrial 

stem/progenitor cells and thus get a more clear understanding about their role in the structure and 

function of post-menopausal endometrium. 
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CHAPTER 2 
Materials and Methods 
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2.1 Samples 

 

For all the experiments, endometrial samples were provided by the Royal Preston Hospital. An 

informed consent was obtained from the patients, who had undergone hysterectomy, for the 

experimental use of their endometrial biopsies. All experimental procedures were ethically approved 

by the Research Ethics Committee (REC).  

Endometrial specimens were provided from female patients who experienced postmenopausal 

bleeding because of either endometrial tumours or endometriosis. Hysterectomised endometrial 

samples were used for Scanning Electron Microscopy (SEM) investigation whilst for biospectroscopy 

examination, using Fourier Transform Infrared (FTIR) spectrometer and Raman spectrometer, paraffin 

embedded blocks of the samples were provided. See table 2.1 for detailed information on patients 

and the samples. 

Sample Diagnosis Examination Blocks supplied 

ECNT 68 Endometrial cancer SEM, Biospectroscopy, H&E H09-12890-9 (tumour) 
 

  H09-12890-11 (normal endometrium) 

ECNTN 50 Endometriosis SEM, Biospectroscopy, H&E H09-12292-1 (normal endometrium) 

ECNTN 49 Normal SEM, Biospectroscopy, H&E H09-11708-4 (normal endometrium) 

ECNT 65 G1 endometrial cancer SEM 
 

ECNTN 51 Endometriosis SEM 
 

ECNT 64 G1 endometrial cancer SEM, Biospectroscopy, H&E H09-9102-1 (tumour) 
 

  H09-9102-6 (normal endometrium) 

ECNT 70 Clear cell endometrial carcinoma SEM, Biospectroscopy, H&E H09-13558-A5 (tumour) 
 

  H09-13558-A8 (normal endometrium) 

ECNT 69 G3 endometrial cancer SEM 
 

 

 

 

Table 2.1: Information provided by the Preston Hospital about the endometrial biopsies examined by SEM and the 

paraffin embedded blocks used in biospectroscopy and H&E staining. 
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2.2 Scanning Electron Microscopy 

 

2.2.1 Sample preparation 

All the steps were carried out in the fume hood. 

Prior to processing, samples were kept in 10% formalin for fixation and stored at 4oC for preservation. 

Before SEM examination, samples were cut into smaller pieces using a blade (Agar Scientific Ltd/ 

Stansted, Essex, UK) and were then fixed in 2.5% glutaraldehyde in Phosphate Buffered Saline (PBS) 

(Sigma® Life Science, sigma-aldrich.com/ St. Louis, MO, USA) for an overnight wash at 4oC. This solution 

was prepared by adding 10ml of 25% glutaraldehyde EM (TAAB Laboratories Equipment LTD/ 

Aldermaston, Berks, England) in 90ml of PBS. 

The overnight wash was followed by three washes in PBS, each lasting five minutes. Samples were 

then post-fixed in Osmium tetroxide (OsO4) 2% solution (Agar Scientific Ltd/ Stansted, Essex, UK) for 

90 minutes. The lids of the vials were discarded in a plastic bag and replaced by new ones. Three more 

washes of 10 minutes in PBS were then carried out. A series of ethanol washes was performed to 

dehydrate the samples; single washes of 30 minutes in 50%, 70%, 80% and 90% ethanol followed by 

two washes of 40 minutes in 100% ethanol. Hexamethyldisilazane (HMDS) (Sigma® Life Science, sigma-

aldrich.com/ St. Louis, MO, USA) was used for sample drying during two washes of 30 minutes each.  

A new volume of HMDS was then added for an overnight wash of the samples in glass vials whose tops 

were removed.  

 

2.2.2 Sputter coating 

The pieces of the samples were attached on the adhesive disc on an aluminium SEM stub with 

conductive carbon cement. The SEM stubs were then placed in Edwards S150A sputter coater to be 

coated with gold. 
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The vacuum chamber of the coater was evacuated by opening the air admit valve. Once an ideal gas 

pressure of 10-1 mbar (1mbar=100Pa) was reached, indicated by the pirani gauge, Argon gas was 

introduced in the chamber at a pressure of 4psi (pound per square inch). The pressure was then 

increased by turning the gas admit valve anticlockwise and a low current of 40mA but with high voltage 

was then applied in the chamber for four minutes. This ionised Argon gas and turned it into plasma 

which could be seen as a purple glow. The gas admit valve and the argon cylinder were closed and the 

chamber was again evacuated. 

 

2.2.3 Examination 

A digital Scanning Electron Microscope (JEOL JSM 5600, Herts, UK) was used for examination of the 

endometrial samples. Digital images were taken from different areas and at different magnifications 

allowing for cells to be distinguished. 

 

2.2.4 Image Analysis 

The computer software iTEM (Universal ITEM Imaging Platform, Soft Imaging System) was used for 

image analysis. Images were manually calibrated and the parameters of the cells of interest were 

manually defined as well (Fig. 2.1). 

 Area: the area of the particle is (number of pixels of the particle) times (calibration factors in 

X and Y direction). 
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 Perimeter: the sum of the pixel distances along the closed boundary. 

 

 

 

 

 Diameter max: to evaluate the maximum diameter of a particle, the diameter for different 

evaluation axes will be determined. The evaluation axis is varied in 1o steps and the maximum 

diameter at each angle is determined. 

 

 

 

 Diameter mean: the arithmetic mean of all diameters of a particle (for angles in the range 0o 

through 179o with step width 1o). 

 

 

 

 Diameter min: the minimum diameter of a particle (for angles in the range 0o through 179o 

with step width 1o). 
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 Shape Factor: the shape factor provides information about the “roundness” of the particle. 

For a spherical particle the shape factor is 1, for all other particles it is smaller than 1. 

 

 

 

 

 

 Sphericity: describes the sphericity or “roundness” of the particle by using central moments. 

 

 

 

 

 

 Aspect ratio: the maximum ratio of width and height if a bounding rectangle for the particle.  
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b 
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Figure 2.1: The analysed parameters and their defined measurements. 
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Microsoft Office Excel 2013 was used to represent the parameters of the counted cells on bar charts 

and allow for comparisons and further data analysis. GraphPad Prism 4.0 Software was used to 

perform the statistical analysis (unpaired t-test) which allowed the testing of the significant difference 

between the counted cells in the concept of the measured parameters, whereby a p-value of <0.05 

was considered to be statistically significant. 

 

2.3 Biospectroscopy 

 

2.3.1 Sample preparation 

Paraffin embedded blocks of endometrial tissues were prepared by the Royal Preston Hospital. A 

microtome (Surgipath Medical Industries. INC.) was used to cut tissue sections of 10µm thickness from 

the paraffin embedded blocks of endometrial tissues. Histochoice Clearing Agent (Sigma® Life Science, 

sigma-aldrich.com/ St. Louis, MO, USA) was used to clean the microtome and the bench area prior to 

cutting of the tissues.  The sections were then floated in water at 40oC in a paraffin section mounting 

bath to be then placed onto low-E reflective microscope slides (Kevley Technologies/ Chesterland, OH, 

USA) and were then left in air to dry. Dewaxing of tissue sections was achieved through three 

sequential washes of five minutes each in fresh xylene (Fisher Scientific/ Loughborough, UK) and were 

then washed and cleared acetone (Fisher Scientific/ Loughborough, UK) for five minutes to ensure 

removal xylene and thus avoiding tissue contamination. The washes took place in the fume hood. 

Slides were left again in air to dry and were later placed in petri dishes to be stored in a dessicator, to 

avoid sample contamination from moisture, until they were examined. 

The same eight tissue sections (H09-12890-9/11, H09-9102-1/6, H09-13558-A5/8, H09-12292-1, H09-

11708-4) were used for both types of biospectroscopy examination; FTIR and Raman 

microspectroscopy.  
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2.3.2 Experimental design 

Spectra were acquired from five, randomly chosen, different glandular elements of each tissue. 

Specifically a point map was used to select 10 individual points for spectral acquisition from the 

luminal and basal cells of each gland and its surrounding connective tissue/stromal cells (a total of 30 

spectra per glandular area and 150 spectra per tissue section).  

 

2.3.3 FTIR microspectroscopy 

Spectral acquisition was recorded using a Thermo Nicolet 6700 FTIR spectrometer coupled to a Nicolet 

Continuµm microscope (Thermo Fisher Scientific/ Waltham, MA, USA) equipped with a KBr beam 

splitter and a mercury cadmium telluride detector. Liquid nitrogen was used to cool down the 

spectrometer before, in the middle and at the end of the experiment. The Thermo OMNIC software 

was used to operate the spectrometer for spectral acquisition in reflection mode and for the 

conversion of spectra to absorbance. Spectra were collected at a resolution of 4 cm-1 and co-added 

for 256 scans. The Atlus microscope application was used to visualise the glandular elements through 

a x15 Reflachromat objective lens at a 40 x 40 µm aperture size in order to achieve a good signal-to-

noise ratio. Background spectra were acquired from a region of no sample, after recording each set of 

10 spectral points, for the automatic removal of atmospheric spectra from the sample spectra.   

 

2.3.4 Raman microspectroscopy 

Spectral acquisition was recorded using an InVia Renishaw Raman spectrometer (Renishaw PLC, 

Gloucestershire, UK) configured to a 785 nm laser diode operating at 1200 lines per millimetre (1 cm-

1 spectral resolution) diffraction grating whereby Raman signals were detected by a Master Renishaw 

Pelletier cooled charge-coupled detector camera. Using a white light camera mounted on a Leica 

microscope, glandular elements and locations for spectral acquisition were visualised through a x50 

objective lens. Spectral acquisition was set up using Renishaw Wire 3.1 software whereby an extended 
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grating scan type and a spectrum range of 500-2000 (Raman shift/ cm-1) were selected. Locations for 

spectral acquisition were exposed to Raman signals for 25 s at 100% laser power and acquisitions were 

repeated twice.  

Whilst the laser power was switched on, a Renishaw silicon calibration source was used to calibrate 

the system before spectral recording. The ideal wavenumber shifts for the centre of the recorded 

spectra should be 520.5 waves/cm and for the width it should be 4.1-4.2 waves/cm. The height should 

be as high as possible. When the recorded spectra exceeded the variation range of 0.1-0.2 waves/cm, 

calibration process was performed again. 

 

2.3.5 Data pre-processing 

Raw spectra were pre-processed using MATLAB R2013b software (TheMathsWorks, Nattick, MA, USA) 

and the IRootLab software (http://code.google.com/p/irootlab/) was applied as a toolbox for data 

pre-processing and analysis. FTIR spectra were cut between the spectral range 1800-900 cm-1 and 

were then pre-processed using second order differentiation followed by vector normalisation and 

wavelet de-noising. Cosmic rays were removed from Raman spectra using Renishaw Wire 3.1. Raman 

spectra were cut to the region 1750-500 cm-1 and were then rubber band baseline corrected followed 

by vector normalisation and wavelet de-noising. Rubber band baseline correction eliminates slopes 

while differentiation methods resolve the overlapped bands as well. Vector normalisation accounts 

for confounding factors such as variations in sample thickness.  

 

2.3.6 Computational analysis  

MATLAB was also used for the application of multivariate analysis to obtain spectral differences 

between the segregated classes. Principal Component Analysis (PCA), an unsupervised classification 

technique, was firstly used to reduce the dataset into linear variables, called PCs, and allowing for 

variance between and within the classes. PCA Pareto charts were plotted to derive the number of PCs 

http://code.google.com/p/irootlab/
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for which PCA was applied. The PCs were chosen according to when the graph started to plateau whilst 

capturing a very high variance of about 99%. The maximum number though of the chosen PCs was 10. 

Linear Discriminant Analysis (LDA), a supervised classification technique, was applied to the output of 

PCA so the whole process is called PCA-LDA. LDA maximises inter-category variance whilst minimizing 

intra-category variance of the specified classes and thus allowing for optimal class segregation. 

Segregation of classes, was visualised on score plots whilst the wavenumbers accounting for the 

segregation were shown on loading plots and cluster vector plots.  

Statistical analysis, unpaired t-test and one-way analysis of variance (ANOVA) test, were performed 

using GraphPad Prism 4.0 Software to determine the significance of segregation. A p value <0.05 

suggested significant difference. 

 

2.4 Light Microscopy 

 

2.4.1 Sample preparation 

All steps were carried out in the fume hood. 

Parallel tissue sections of 4µm in thickness were cut from the paraffin embedded blocks of the samples 

used in biospectroscopy. They were bathed on microslides (Chance Propper Ltd/ West Midlands, UK) 

and left in air to dry. Tissue sections were then heated in a 60oC oven for 15 minutes and then de-

waxed in xylene for five minutes. Tissues were rehydrated through two minutes washes in 100% and 

95% alcohol and a minute wash in 70% alcohol. They were then washed in distilled water for a minute 

and then stained in Gill 3 haematoxylin (Thermo Scientific/ Waltham, MA, USA) for four minutes. A 

one minute wash in running tap water was followed by and repeated after differentiation in 1% acid 

alcohol for three seconds. Bluing reagent Thermo Scientific/ Waltham, MA, USA) was added in the 

water and left for a minute after which tissues were washed again in running tap water for a minute. 
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Tissues were left for a minute in 70% alcohol to partially dehydrate and were then stained in Eosin Y 

alcoholic (Thermo Scientific/ Waltham, MA, USA) for a minute. Dehydration was completed in 95% 

alcohol for two minutes followed by a two minutes and a minute wash in 100% alcohol. Sections were 

finally cleared in xylene for five minutes and were mounted with DPX mountant (Sigma® Life Science, 

sigma-aldrich.com/ St. Louis, MO, USA) and covered with a coverslip. 

Images of the tissue sections were taken using the Live video tool on Renishaw Wire 3.1 software of 

the Raman spectrometer. Glandular areas of interest were visualised through the x5 objective lens. 

These images were used for histological comparison with observations from biospectroscopy analysis. 
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CHAPTER 3 
Results 
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3.1 Scanning Electron Microscopy 

 

3.1.1 Scanning Electron Photomicrographs 

The ultrastructure of human postmenopausal endometrium was examined using SEM (Fig. 3.1-3.38). 

A menstruating endometrium experiences structural and functional changes during the reproductive 

years of a female. In postmenopause though, the endometrium becomes atrophic and inactive but it 

can gain back its regenerative capacity when exposed to exogenous steroid hormones. Most of the 

related studies so far, characterised menstruating endometrium or endometrium of postmenopausal 

females taking hormonal therapies. In this study endometrial biopsies taken from patients who 

experienced postmenopausal bleeding because of endometrial cancer or endometriosis were 

examined (Table 2.1), however no information was given if the patients had received or were receiving 

hormonal therapy. Also the provided biopsies were taken from non-diseased sites of the 

endometrium. The endometrium is a complex tissue and knowledge so far is limited so further 

research is required to establish a more clear understanding and characterisation. 

Representative photomicrographs of examined samples are illustrated below.  
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Figure 3.1: Scanning electron micrograph of human postmenopausal endometrium. A remaining stumps of 

an endometrial gland forming a crypt on the surface. The surrounding tissue is mainly composed of fibrin 

network. Scale bar: 50 µm. 

Figure 3.2: Scanning electron micrograph of human postmenopausal endometrium. Epithelial cells within 

the fibrin mesh present a flat pattern of microvilli (red arrows). A few red blood cells can also be 

distinguished (yellow arrows). Scale bar: 5 µm. 
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Figure 3.3: Scanning electron micrograph of human postmenopausal endometrium. The endometrial surface 

is mainly covered by fibrin whilst epithelial cells can be identified. In some cells the microvilli are flat whereas 

in other cells they are absent. Scale bar: 10 µm. 

Figure 3.4: Scanning electron micrograph of human postmenopausal endometrium. Epithelial cells of various 

sizes. A few red blood cells can be seen on the right of the image. Scale bar: 10 µm. 
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All the above images (Figures 3.1- 3.5) were taken from non-diseased endometrial sites from the 

same patient who was diagnosed with grade 1 endometrial cancer (sample ECNT 64m see Table 2.1). 

  

Figure 3.5: Scanning electron micrograph of human postmenopausal endometrium. The image was taken at 

an endometrial crypt which on the outside is surrounded by a fibrin mesh whilst the inside is covered with 

epithelial surface. However borders of epithelial cells are indiscernible. Scale bar: 5 µm. 
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Figure 3.6: Scanning electron micrograph of human postmenopausal endometrium. Pinopode-like 

structures of the same maturation state. They appear to have a more rounded shape rather than biconcave 

like red blood cells. Scale bar: 10 µm. 

Figure 3.7: Scanning electron micrograph of human postmenopausal endometrium. Rounded epithelial cells 

covered with low microvilli. Apical defects can be noticeable (red arrows). Pinopode-like structures arising 

from the fibrin mesh (yellow arrow). Scale bar: 5 µm. 
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Figure 3.8: Scanning electron micrograph of human postmenopausal endometrium. Pinopode-like 

structures some of which present secretory droplets (red arrows). One is also presenting a cilia-like 

projection (yellow arrow). Scale bar: 5 µm. 

Figure 3.9: Scanning electron micrograph of human postmenopausal endometrium. Endometrial surface is 

covered with pinopode-like structures. Most of the pinopodes appear to be fully developed whilst a few 

present features of regression. Scale bar: 10 µm. 
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Figure 3.10: Scanning electron micrograph of human postmenopausal endometrium. Pinopode-like 

structures can be seen at the bottom right hand corner. Endometrial surface is covered by flat cells without 

cell borders. A few glandular stumps protrude from the stroma. Focal disruptions can be noticed at the 

epithelial surface. Scale bar: 10 µm. 

All the above images (Figures: 3.6-3.10) were taken from non-diseased endometrial sites from the 

same patient who was diagnosed with endometrial cancer (sample ECNT 65, see Table 2.1). 
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Figure 3.11: Scanning electron micrograph of human postmenopausal endometrium. An endometrial gland 

at the site where the specimen was cut. Borders of epithelial cells are not clearly distinguished, however 

cells appear to be tall presenting low microvilli at the lumen of the gland. The surrounding stroma is covered 

by fibrin. Scale bar: 10 µm. 

Figure 3.12: Scanning electron micrograph of human postmenopausal endometrium. The illustrated cells 

most probably are red blood cells squashed into strange shapes since endometrial cells have not been 

reported to have such morphology. Scale bar: 5 µm. 
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Figure 3.13: Scanning electron micrograph of human postmenopausal endometrium. Ciliated cells are 

created within the lining of the epithelial surface. Epithelial cells have numerous microvilli. The borders of 

some epithelial cells can be defined. Scale bar: 5 µm. 

Figure 3.14: Scanning electron micrograph of human postmenopausal endometrium. A fully developed 

ciliated cell found at the epithelial surface. Scale bar: 2 µm. 
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Figure 3.15: Scanning electron micrograph of human postmenopausal endometrium. The biconcave shape 

presented by the cells suggests that they are red blood cells. The endometrial surface with which they are 

in contact has retained their shape. Scale bar: 2 µm. 

All the above images (Figures 3.11-3.15) were taken from non-diseased endometrial sites from the 

same patient who was diagnosed with endometrial cancer (sample ECNT 68, see Table 2.1). 
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Figure 3.16: Scanning electron micrograph of human postmenopausal endometrium. Epithelial cells of 

various sizes. Their position relative to each other and their shape result in endometrial surface having a 

cobblestone-like appearance. Scale bar: 10 µm. 

Figure 3.17: Scanning electron micrograph of human postmenopausal endometrium. A higher magnification 

of Figure 3.16. Epithelial cells are covered with low microvilli and a few present apical defects. A space can 

be noticed separating adjacent cells. Scale bar: 5 µm. 
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Figure 3.18: Scanning electron micrograph of human postmenopausal endometrium. Endometrial surface 

has a cobbled-stone appearance. Invaginations are also presented. Epithelial cells are pleomorphic with 

obvious variations in size and shape. Scale bar: 20 µm. 

Figure 3.19: Scanning electron micrograph of human postmenopausal endometrium. Endometrial cells at 

the centre of the image appear to be more elongated and fuse with adjacent cells thus cellular borders are 

lost. Scale bar: 20 µm. 



61 
 

 

  

Figure 3.20: Scanning electron micrograph of human postmenopausal endometrium. Break-down of the 

membrane of epithelial cells. Apical defects vary in size among cells. Scale bar: 2 µm. 

All the above images (Figures 3.16-3.20) were taken from non-diseased endometrial sites from the 

same patient who was diagnosed with grade 3 endometrial cancer (sample ECNT 69, see Table 

2.1). 
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Figure 3.21: Scanning electron micrograph of human postmenopausal endometrium. Red blood cells 

trapped within fibrin mesh. Scale bar: 10 µm. 

Figure 3.22: Scanning electron micrograph of human postmenopausal endometrium. The interior of the 

endometrial crypt is lined with fused epithelial cells whilst the outside is covered by a fibrinous stroma. Scale 

bar: 10 µm. 
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Figure 3.23: Scanning electron micrograph of human postmenopausal endometrium. Pinopode-like 

structures presenting sings of regression. Scale bar: 10 µm. 

All the above images (Figures 3.21-3.23) were taken from non-diseased endometrial sites from the 

same patient who was diagnosed with endometrial cancer (sample ECNT 70, see Table 2.1). 
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Figure 3.24: Scanning electron micrograph of human postmenopausal endometrium. An endometrial gland 

forming a crypt on the surface. Cells of various sizes and shapes surrounding the crypt. Some show a spiral 

orientation. Scale bar: 20 µm. 

Figure 3.25: Scanning electron micrograph of human postmenopausal endometrium. An endometrial crypt 

from which epithelial cells seem to emerge. Cells present depressions on their surface rather than apical 

defects. Scale bar: 20 µm. 
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Figure 3.26: Scanning electron micrograph of human postmenopausal endometrium. A representative image 

of the endometrial surface of the specimen. Cell flattening is presented rather than cell bulging like 

previously observed. A few fields are scant from cells whilst some cells have depressions on their surface. 

No signs of fibrinous stroma were observed. Scale bar: 10 µm. 

Figure 3.27: Scanning electron micrograph of human postmenopausal endometrium. A closer look at the 

side of the endometrial crypt. Certain fields are interspersed. Even though blurry, cells can be seen at the 

depths of the crypt. Scale bar: 10 µm. 
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All the above images (Figures 3.24-3.27) were taken from normal post-menopausal endometrium 

(sample ECNTN 49, see Table 2.1). 
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Figure 3.28: Scanning electron micrograph of human postmenopausal endometrium. Numerous ciliated cells 

at the luminal surface of the glandular crypt. Scale bar: 10 µm. 

Figure 3.29: Scanning electron micrograph of human postmenopausal endometrium. Ciliated cells arise 

within the epithelial surface. Cilia vary in their length whilst epithelial cells are covered by a dense microvillus 

net. Scale bar: 5 µm. 
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Figure 3.30: Scanning electron micrograph of human postmenopausal endometrium. Shorter cilia than 

previously observed. Epithelial cells seem to be elongated however their cell borders are not clearly 

identified. Scale bar: 5 µm. 

Figure 3.31: Scanning electron micrograph of human postmenopausal endometrium. Ciliated cells are rather 

spread and their cilia seem to regress. Epithelial cells are flat and scattered and vary in morphology. Scale 

bar: 10 µm. 
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Figure 3.32: Scanning electron micrograph of human postmenopausal endometrium. Epithelial surface 

interspersed with ciliated cells. Surface of epithelial cells is covered by microvilli whilst a few present apical 

defects (red arrows). Secretory droplets-like can also be seen (yellow arrows). Scale bar: 10 µm. 

All the above images (Figures 3.28-3.32) were taken from normal post-menopausal endometrium 

of a patient diagnosed with endometriosis (sample ECNTN 50, see Table 2.1). 
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Figure 3.33: Scanning electron micrograph of human postmenopausal endometrium. Epithelial cells at the 

margin of a glandular opening. Cells are elongated and fuse with each other. Defects on the cell surface can 

also be noticed. Scale bar: 10 µm. 

Figure 3.34: Scanning electron micrograph of human postmenopausal endometrium. Epithelial cells at the 

margins of a glandular opening which is surrounded by a fibrinous stroma. Fusiform cells display a spiral 

growth. Scale bar: 10 µm. 
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Figure 3.35: Scanning electron micrograph of human postmenopausal endometrium. Two glandular stumps 

on the endometrial surface surrounded by fibrin mesh. Scale bar: 20 µm. 

Figure 3.36: Scanning electron micrograph of human postmenopausal endometrium. Higher magnification 

of glandular opening in Figure 3.1.1.35. Fused epithelial cells line the internal surface of the opening one of 

which presents an apical defect. Scale bar: 10 µm. 
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Figure 3.37: Scanning electron micrograph of human postmenopausal endometrium. (A) An endometrial 

gland opens through the fibrinous surface. Scale bar: 50 µm. (B) At higher magnification layers of epithelial 

cells can be seen at the margins of the glandular opening. Borders of some adjacent cells are vaguely 

identified. Scale bar: 10 µm. 
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Figure 3.38: Scanning electron micrograph of human postmenopausal endometrium. Opening of an 

endometrial gland from which red blood cells and macrophages come out. Scale bar: 10 µm. 

All the above images (Figures 3.33-3.38) were taken from normal post-menopausal endometrium 

of a patient diagnosed with endometriosis (sample ECNTN 51, see Table 2.1). 
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3.1.2 Image Analysis 

The images obtained during SEM examination, specifically the images taken from sample ECNTN 49, 

where used to assess the ultrastructure of cells around from the crypts of endometrial glands and cells 

away from the crypts. Figures 3.39-3.46 illustrate the results obtained from analysis of the parameters 

(Area, Perimeter, Diameter Max, Diameter Mean, Diameter Min, Shape Factor, Sphericity, Aspect 

Ratio) of the two groups of cells and the statistical analysis (Unpaired t-test) 

 

 

  

  P value 0.1302 

    

  Mean ± SEM of crypts (n=200) 11.68 ± 0.3259  

  Mean ± SEM of no crypts (n=200) 11.00 ± 0.3086  

 

  

 

The obtained results suggested that groups of cells were not significantly different from each other. 

The mean area of cells around from the crypts was higher than the mean of cells away from the crypts. 

Neither group maintained higher number of cells through the ranges of measured area. 
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Figure 3.39: (A) Number of cells surrounding the crypts (blue) and away from the crypts (orange) for each range of 

measured area. (B) Results of statistical analysis by employment of Unpaired t-test. The total number of cells measured 

from each group was 200. 
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  P value 0.0194 

  

  Mean ± SEM of crypts (n=200) 14.30 ± 0.2058  

  Mean ± SEM of no crypts (n=200) 13.63 ± 0.1955  

 

 

 

The obtained results suggested that groups of cells were significantly different from each other. The 

mean perimeter of cells around from the crypts was higher than the mean of cells away from the 

crypts. Number of cells away from the crypts was higher only for the region 10-14.99 µm. 
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Figure 3.40: (A) Number of cells surrounding the crypts (blue) and away from the crypts (orange) for each range of 

measured perimeter. (B) Results of statistical analysis by employment of Unpaired t-test. The total number of cells 

measured in each group was 200. 
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  P value 0.0025 

  

  Mean ± SEM of crypts (n=200) 5.182 ± 0.08580  

  Mean ± SEM of no crypts (n=200) 4.838 ± 0.07388  

 

 

 

The obtained results suggested that groups of cells were significantly different from each other. The 

mean diameter max of cells around from the crypts was higher than the mean of cells away from the 

crypts. Neither group maintained higher number of cells through the ranges of measured diameter 

max. 
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Figure 3.41: (A) Number of cells surrounding the crypts (blue) and away from the crypts (orange) for each range of 

measured diameter max. (B) Results of statistical analysis by employment of Unpaired t-test. The total number of cells 

measured in each group was 200. 
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  P value 0.0038 

  

  Mean ± SEM of crypts (n=200) 4.599 ± 0.07082 

  Mean ± SEM of no crypts (n=200) 4.326 ± 0.06181 

 

 

 

The obtained results suggested that groups of cells were significantly different from each other. The 

mean diameter mean of cells around from the crypts was higher than the mean of cells away from the 

crypts. Neither group maintained higher number of cells through the ranges of measured diameter 

mean. 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

45

50

N
u

m
b

e
r 

o
f 

ce
lls

Diameter Mean (µm)

crypts

no crypts

A 

B 

Figure 3.42: (A) Number of cells surrounding the crypts (blue) and away from the crypts (orange) for each range of 

measured diameter mean. (B) Results of statistical analysis by employment of Unpaired t-test. The total number of cells 

measured in each group was 200. 
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  P value 0.5891 

    

  Mean ± SEM of crypts (n=200) 3.356 ± 0.05314  

  Mean ± SEM of no crypts (n=200) 3.318 ± 0.04715  

 

 

 

The obtained results suggested that groups of cells were not significantly different from each other. 

The mean diameter min of cells around from the crypts was slightly higher than the mean of cells away 

from the crypts. Neither group maintained higher number of cells through the ranges of measured 

diameter min. 
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Figure 3.43: (A) Number of cells surrounding the crypts (blue) and away from the crypts (orange) for each range of 

measured diameter min. (B) Results of statistical analysis by employment of Unpaired t-test. The total number of cells 

measured in each group was 200. 
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  P value 0.0631 

    

  Mean ± SEM of crypts (n=200) 0.7065 ± 0.008933 

  Mean ± SEM of no crypts (n=200) 0.7265 ± 0.005908  

 

 

 

The obtained results suggested that groups of cells were not significantly different from each other. 

The mean shape factor of cells away from the crypts was higher than the mean of cells around from 

the crypts. Number of cells away from the crypts was higher only for the region 0.81-0.9. 
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Figure 3.44: (A) Number of cells surrounding the crypts (blue) and away from the crypts (orange) for each range of 

measured shape factor. (B) Results of statistical analysis by employment of Unpaired t-test. The total number of cells 

measured in each group was 200. 
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  P value 0.0121 

  

  Mean ± SEM of crypts (n=200) 0.4606 ± 0.01393  

  Mean ± SEM of no crypts (n=200) 0.5111 ± 0.01440  

 

 

 

The obtained results suggested that groups of cells were significantly different from each other. The 

mean sphericity of cells away from the crypts was higher than the mean of cells around from the 

crypts. Neither group maintained higher number of cells through the ranges of measured sphericity. 
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Figure 3.45: (A) Number of cells surrounding the crypts (blue) and away from the crypts (orange) for each range of 

measured sphericity. (B) Results of statistical analysis by employment of Unpaired t-test. The total number of cells 

measured in each group was 200. 
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  P value 0.0049 

  

  Mean ± SEM of crypts (n=200) 1.580 ± 0.03357  

  Mean ± SEM of no crypts (n=200) 1.465 ± 0.02288  

 

 

 

The obtained results suggested that groups of cells were significantly different from each other. The 

mean aspect ratio of cells around from the crypts was higher than the mean of cells away from the 

crypts. Neither group maintained higher number of cells through the ranges of measured area 

however both groups show a decrease in cell numbers after the range 1.21-1.4 until 2.61-2.8. 
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Figure 3.46: (A) Number of cells surrounding the crypts (blue) and away from the crypts (orange) for each range of 

measured aspect ratio. (B) Results of statistical analysis by employment of Unpaired t-test. The total number of cells 

measured in each group was 200. 
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3.2 FTIR spectroscopy 

 

Tissue samples were interrogated using FTIR spectroscopy in the hope of identifying potential 

biomarkers for basal, luminal and stromal cells by analysing their biochemical composition. Diseased 

tissue sections, H09-12890-9, H09-9102-1 and H09-13558-A5, were taken form cancerous lesions of 

the endometrium. Their corresponding non-diseased tissues, H09-12890-11, H09-9102-6 and H09-

13558-A8, were taken from normal sites of the endometrium away from the cancerous lesions. The 

interrogated non-diseased tissue samples which did not have corresponding diseased samples were 

H09-12292-1 and H09-11708-4. The first was taken from a patient with endometriosis but for the 

latter sample no information was provided about the health status of the patient. More information 

about the samples can be found in Table 2.1.  

Five randomly selected glandular areas from each sample were exposed to FTIR spectroscopy whereby 

spectra was collected from the basal, luminal cells of the glands and stromal cells surrounding the 

glands (Fig. 3.47). A x15 Reflachromat objective lens was used to visualise and select the glandular 

elements. Spectra were collected from 10 points corresponding to the location of basal epithelial cells 

(hypothesised location of epithelial stem/progenitor cells) in a gland (Fig. 3.47 D), 10 points from 

locations of luminal epithelial cells (Fig. 3.47 C), which is adjacent to the lumen of the gland, and 10 

points from stromal cells from the surrounding connective tissue (Fig. 3.47 E). A total of 30 spectral 

points were selected in each glandular element and a total of 150 spectral points per tissue sample.  
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The raw spectral fingerprint acquired from the cells was pre-processed by application of second-order 

differentiation followed by vector normalisation and wavelet-denoising to remove any issued that 

arose during spectral collection (Fig. 3.48). Pre-processing was followed by multivariate analysis via 

employment of PCA-LDA to allow segregation of classes which was visualised on scores plots of one-

dimensional (1D), two-dimensional (2D) or three-dimensional (3D) space, depending on the number 

of classes. In each case generation of loading plots revealed five major discriminant wavenumbers 

responsible for variations and thus segregation of classes. Cluster vector plots were presented in a 

different way illustrating the expression levels of wavenumbers in the classes. Classes were 

represented by different shapes whose sizes correlated to expression levels i.e. the bigger the size of 

the shape the higher the expression.  

The aim of data analysis was to identify potential biomarkers for basal, luminal and stromal cells that 

would enable their characterisation based on their location within the glandular elements and 

eventually assess their ‘stemness’ bases on the hypothesised location of endometrial stem/progenitor 

cells. In this concept basal cells were expected to have more endometrial-like nature. For 

Figure 3.47: Experimental design – an example of a tissue sample. (A): shape of interrogated tissue section indicating the locations of 

the 5 different glandular areas, (B): 10 selected points for spectral acquisition from basal cells, (C): 10 selected points for spectral 

acquisition from luminal cells and (D): 10 selected points for spectral acquisition from surrounding stromal cells. 

 



84 
 

wavenumbers and/or spectral regions to present a potential as biomarkers, they should be shared in 

common among classes being compared. 

Statistical analysis was also employed to assess significance of inter-class variations. One-way ANOVA 

or unpaired t-test were performed, depending on number of classes being analysed at each section. 

On a first approach, the biochemical composition of basal, luminal and stromal cells in tissue samples 

was analysed individually. Then their spectra was compared and analysed. Unfortunately the spectra 

acquired during FTIR spectroscopy did not have the expected shape of an FTIR spectra, but due to 

limited time available the obtained data was analysed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.48: An example of (A) raw spectra obtained during interrogation of a tissue sample by FTIR spectroscopy and class means (B) 

before and (C) after pre-processing. 

 

A 
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3.2.1 Basal Cells Vs Basal Cells 

 

In individual tissue samples 

 

Basal cells from all glandular areas in an individual tissue were compared. Basal cells from all tissues 

exhibited a very similar shape in mean spectra displaying variations in peak intensities (Fig. 3.49). No 

peaks were detected in the spectral region 900-1300 cm-1. Also shape of spectra was relatively 

consistent among tissues. No specific observations were made that would correlate corresponding 

diseased and non-diseased tissues. 

Statistical analysis (Fig. 3.50) indicated that in most tissues at least three areas were not significantly 

different from the tissue as a whole. Whereas when individual areas within a tissue were compared 

with each other, they were significantly different in most of the cases. 
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Figure 3.49: Mean FTIR spectra for comparison of 

spectra acquired from basal cells between the five 

glandular areas in non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-12292-

1) and diseased (H09-9102-1, H09-12890-9, H09-

13558-A5) tissue sections. Spectra of corresponding 

non-diseased (H09-9102-6, H09-12890-11, H09-

13558-A8) and diseased (H09-9102-1, H09-12890-9, 

H09-13558-A5) tissue samples are illustrated next to 

each other. 
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H09-12890-11 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P < 0.01 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.001 

  Area A vs Area E P < 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P > 0.05 

  Area B vs Area E P < 0.01 

  Area C vs Area D P > 0.05 

  Area C vs Area E P > 0.05 

  Area D vs Area E P > 0.05 

 

H09-9102-6 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.01 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-13558-A8 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.001 

  Area A vs Area E P < 0.001 

  Area B vs Area C P < 0.01 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.01 

  Area C vs Area E P > 0.05 

  Area D vs Area E P > 0.05 

 

H09-11708-4 
 

Parameters P value 

  LDA1 vs Area A P < 0.05 

  LDA1 vs Area B P < 0.01 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P < 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P > 0.05 

  Area A vs Area D P > 0.05 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-12292-1 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-9102-1 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P < 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.01 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P < 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P > 0.05 

  Area C vs Area E P < 0.001 

  Area D vs Area E P < 0.001 
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Segrregation of spectra acquired from the glandular elements was visualised in scores plots of 1D and 

3D space. Figure 3.51 illustrates scores plots of non-diseased tissue samples and figure 3.52 illustrates 

scores plots of diseased tissue samples. No consistency amongst samples was observed; the spectra 

from an individual area would overlap with the spectra of at least two other areas classes or no 

overlapping was observed. In the 3D scores plot spectral points of individual areas would either have 

a compact or spread arrangment. No observations were made that would correlate corresponding 

non-diseased and diseased tissue sections. 

 

H09-12890-9 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-13558-A5 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P < 0.01 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P < 0.001 

  Area D vs Area E P > 0.05 

 

Figure 3.50: Obtained p-values by employment of One-way ANOVA test coupled with Tukey’s multiple comparison test to compare 

spectra acquired from basal in five glandular elements in individual non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8, H09-

11708-4, H09-9102-1) and diseased (H09-9102-1, H09-12890-9, H09-13558-A5) tissue sections. 
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Figure 3.51: 1D scores plots and their corresponding 3D scores plots in non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-

13558-A8, H09-11708-4, H09-12292-1) produced after application of PCA-LDA on the spectra acquired from basal cells from five 

different glandular elements. 

Figure 3.52: 1D scores plots and their corresponding 3D scores plots in diseased tissue sections (H09-9102-1, H09-12890-9, H09-13558-

A5) produced after application of PCA-LDA on the spectra acquired from basal cells from five different glandular elements. 
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Figure 3.53 illustrates the laoding plot for each tissue sample revealing the discriminant wavenumbers 

responsible for variations between the spectra acquired from basal cells at glandular areas. In sample 

H09-9102-6 the discriminant wavenumbers were 1771 cm-1, 1715 cm-1, 1504 cm-1 (phenyl rings), 1456 

cm-1 (lipids and proteins) and 901 cm-1. In sample H09-12890-11 the wavenumbers were 1717 cm-1 

(amide I, DNA/RNA, purine base), 1653 cm-1 (amide I), 1539 cm-1 (amide II), 1504 cm-1 (phenyl rings) 

and 1456 cm-1 (lipids and proteins). For sample H09-13558-A8 the identified wavenumbers were 1786 

cm-1, 1747 cm-1, 1715 cm-1, 1651 cm-1 and 1520 cm-1 (amide II). In sample H09-11708-4 the 

wavenumbers were 1771 cm-1, 1705 cm-1 (lipids), 1556 cm-1, 1504 cm-1 (phenyl rings) and 1456 cm-1 

(lipids and proteins). The wavenumbers identified in sample H09-12292-1 were 1786 cm-1, 1717 cm-1 

(amide I, DNA/RNA, purine base), 1682 cm-1, 1558 cm-1 and 1506 cm-1. In the diseased tissue H09-

9102-1 the wavumbers were 1717 cm-1 (amide I, DNA/RNA, purine base), 1666 cm-1 (amide I), 1539 

cm-1 (amide II), 1504 cm-1 (phenyl rings) and 1456 cm-1 (lipids and proteins). In sample H09-12890-9 

the observed wavenumbers were 1796 cm-1, 1717 cm-1 (amide I, DNA/RNA, purine base), 1651 cm-1, 

1558 cm-1 and 1520 cm-1 (amide II). In sample H09-13558-A5 the wavenumbers were 1771 cm-1, 1717 

cm-1 (amide I, DNA/RNA, purine base), 1558 cm-1, 1520 cm-1 (amide II) and 901 cm-1. 
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Figure 3.53:  Loadings plots showing 

wavenumbers that discriminate basal cells 

between five glandular areas in non-diseased 

(H09-9102-6, H09-12890-11, H09-13558-A8, H09-

11708-4, H09-12292-1) and diseased (H09-9102-1, 

H09-12890-9, H09-13558-A5) tissue sections. 

Loading plots of corresponding non-diseased and 

diseased tissue samples are illustrated next to 

each other. The red line is a pseudospectra and the 

dotted line is the actual pre-processed spectrum 

used as a reference spectrum. 
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Cluster vector plots of non-diseased (Fig. 3.54) and diseased (Fig. 3.55) tissue samples were analysed 

in a different way in the hope of identifying possible biomarkers for basal cells, based on the 

occurrence of wavenumbers and their expression levels in the glandular areas. Looking at individual 

samples, for a wavenumber and/or spectral region to display a potential as biomarker it should be 

commonly shared between three or more glandular areas and also have a smooth vertical alignment 

on the plots.  

In most plots, the wavenumbers displaying common occurence were the same as the discriminant 

wavenumbers observed in loading plots. In sample H09-9102-6 the wavenumbers for which three 

areas were common were 1771 cm-1 and 1682 cm-1 whilst four areas were common for 1717 cm-1 

(amide I, DNA/RNA, purine base) with 1715 cm-1, 1504 cm-1 (phenyl rings) and 1456 cm-1 (lipids and 

proteins). Common occurrence of 1732 cm-1 (lipids), 1506 cm-1 with 1504 cm-1 (phenyl rings), and 1456 

cm-1 (lipids and proteins) was observed in three, five and four areas respectively in sample H09-12890-

11. In sample H09-13558-A8 three glandular areas were common for 1747 cm-1, 1651 cm-1, 1556 cm-

1, 1520 cm-1 (amide II) and 1456 cm-1 (lipids and proteins) and four areas were common for 1715 cm-

1. In sample H09-11708-4 common occurrence was displayed by three, four and five areas for 1556 

cm-1, 1506 cm-1 with 1504 cm-1 (phenyl rings) and 1456 cm-1 (lipids and proteins) respectively. The 

wavenumber 1786 cm-1 was observed in three areas of sample H09-12292-1 and four areas were 

common for 1558 cm-1 and 1456 cm-1 (lipids and proteins). Three areas in sample H09-9102-1 were 

common for 1771 cm-1, 1717 cm-1 (amide I, DNA/RNA, purine base), 1663 cm-1 and 1541 cm-1 (amide 

II) with 1539 cm-1 (amide II), four areas were common for 1506 cm-1 and 1504 cm-1 (phenyl rings) whilst 

all five areas were common for 1456 cm-1 (lipids and proteins). In sample H09-12890-9 the 

wavenumbers 1796 cm-1, 1717 cm-1 (amide I, DNA/RNA, purine base) with 1715 cm-1, and 1558 cm-1 

with 1556 cm-1 were commonly shared among four areas whilst three areas were common for 1520 

cm-1 (amide II). In sample H09-13558-A5 four areas dwere common for 1558 cm-1 with 1556 cm-1, and 

1456 cm-1 (lipids and proteins) with 1454 cm-1 (asymmetric methyl deformation) whilst 1506 cm-1 was 

commonly shared between three areas. 
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Figure 3.54: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from basal cells, in five glandular areas in individual non-diseased tissue 

sections (H09-9102-6, H09-12890-11, H09-13558-A8, H09-11708-4, H09-12292-1). The red rectangles highlight the wavenumbers 

shared in common among glandular areas. 

Figure 3.55: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from basal cells, in five glandular areas in individual diseased tissue sections 

(H09-9102-1, H09-12890-9, H09-13558-A5). The red rectangles highlight the wavenumbers shared in common among glandular areas.  
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Between all normal tissue samples 

 

All the non-diseased tissue samples were compared between them for the spectra interrogated from 

their basal cells. Classes of tissue samples were labelled according to the information given about the 

samples (see Table 2.1); Normal (H09-11708-4), Normal-Endo. (H09-12292-1), Normal-C1 (H09-12890-

11), Normal-C2 (H09-9102-6) and Normal-C3 (H09-13558-A8). Sample H09-11708-4 was diagnosed as 

normal whilst the other samples were taken from non-diseased sites of the endometrium from 

patients diagnosed with endometriosis (H09-122292-1) and endometrial cancer (H09-12890-11, H09-

9102-6, H09-13558-A8). In this section tissues will be referred according to their class labels to 

associate plots with observations. All classes representing individual tissues, exhibited a very similar 

shape in mean spectra with most evident variations in absorbance intensities occuring at ~1572 cm-1, 

~1556 cm-1, ~1522 cm-1, ~1506 cm-1, ~1491 cm-1 and ~1456 cm-1 (Fig. 3.56). No peaks were detected 

in the spectral region 900-1300 cm-1. Statistical analysis (Fig. 3.57) indicated that classes were 

significantly different for the spectra acquired from basal cells but Normal-C1 was not significantly 

different from Normal and Normal-C2. The latter was also not significantly different from Normal-C3. 

 

 

 

 

 

 

 

 

 

Figure 3.56: Mean FTIR spectra for comparison of spectra acquired from basal cells in non-diseased tissue samples (H09-11708-4, H09-

12292-1, H09-12890-11, H09-9102-6, H09-13558-A8) represented by the class labels Normal, Normal-Endo., Normal-C1, Normal-C2 

and Normal-C3 respectively. 
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Parameters P value 

  LDA1 vs Normal P < 0.001 

  LDA1 vs Normal-Endo. P < 0.001 

  LDA1 vs Normal-C1 P < 0.01 

  LDA1 vs Normal-C2 P > 0.05 

  LDA1 vs Normal-C3 P > 0.05 

  Normal vs Normal-Endo. P < 0.001 

  Normal vs Normal-C1 P > 0.05 

  Normal vs Normal-C2 P < 0.001 

  Normal vs Normal-C3 P < 0.05 

  Normal-Endo. vs Normal-C1 P < 0.001 

  Normal-Endo. vs Normal-C2 P < 0.001 

  Normal-Endo. vs Normal-C3 P < 0.001 

  Normal-C1 vs Normal-C2 P < 0.001 

  Normal-C1 vs Normal-C3 P > 0.05 

  Normal-C2 vs Normal-C3 P > 0.05 

 

Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D, 

2D and 3D space (Fig. 3.58). All classes would overlap with each other either throughout their whole 

spectra or spectral regions. The spectral points of class Normal had a relatively more compact 

arrangment which signified the least intra-class variation. Whereas spectral points of classes Normal-

Endo. and Normal-C2 displayed a relatively spread arrangment and thus more intra-class variation. 

  

 

Figure 3.58: Scores plots of segregation of spectra 

acquired from basal cells, in in non-diseased tissue 

samples (H09-11708-4, H09-12292-1, H09-12890-11, 

H09-9102-6, H09-13558-A8) represented by the class 

labels Normal, Normal-Endo., Normal-C1, Normal-C2 and 

Normal-C3 respectively, illustrated in (A) 1D space, (B) 2D 

space and (C) 3D space. In (B) LD1 would discriminate 

spectral points between the different classes of tissues 

whereas as LD2 contributed to intra-class variation. 

 

Figure 3.57: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

basal cells in all five glandular elements between 

non-diseased tissue sections H09-11708-4, H09-

9102-1, H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Normal, Normal-

Endo., Normal-C1, Normal-C2 and Normal-C3 

respectively. 



98 
 

The five major discriminant wavenumbers identified in loading plots accounting for variations 

between tissue samples  were 1732 cm-1 (lipids), 1699 cm-1 (guanine/thymine), 1645 cm-1, 1539 cm-1 

(amide II) and 1506 cm-1 (Fig. 3.59).  

 

 

 

 

 

 

 

 

Cluster vector plots (Fig. 3.60) were presented and analysed in a different way in order to identify 

potential biomarkers for basal cells by observing the occurrence and expression levels of 

wavenumbers and/or spectral regions between the tissues by having a class as a reference origin or 

when no class was used as a reference origin. Wavenumbers would display common occurrence if 

they were observed in at least three classes representing the tissues as long as they had a smooth 

vertical alignment in the plots. 

Having no class as a reference, three tissues were common for 1732 cm-1 (lipids) and all five tissues 

were common for 1701 cm-1, 1699 cm-1 (guanine/thymine), 1645 cm-1, 1539 cm-1 (amide II) whilst four 

tissues were common only for 1506 cm-1. Using class Normal as a reference, common occurrence of 

1732 cm-1 (lipids), 1539 cm-1 (amide II), 1506 cm-1 with 1504 cm-1 (phenyl rings), and 1456 cm-1 (lipids 

and proteins) was observed amongst three tissues whilst four tissues were common for 1701 cm-1, 

Figure 3.59:  Loadings plots showing wavenumbers that discriminate basal cells in non-diseased tissue sections (H09-11708-4, H09-

12292-1, H09-12890-11, H09-9102-6, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed 

spectrum used as a reference spectrum. 
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1699 cm-1 (guanine/thymine) and 1697 cm-1. Having class Normal-Endo. as a reference, four tissues 

were common for 1732 cm-1 (lipids), 1699 cm-1 (guanine/thymine), 1539 cm-1 (amide II) and 1506 cm-

1 whilst 1645 cm-1 was commonly shared between three tissues. Having class Normal-C1 as reference 

the wavenumbers 1732 cm-1 (lipids) and 1539 cm-1 (amide II) were commonly shared by four tissues 

and 1699 cm-1 (guanine/thymine), 1697 cm-1, 1506 cm-1 with 1504 cm-1 (phenyl rings) were commonly 

shared by three tissues. Having class Normal-C2 as reference, common occurrence of 1701 cm-1, 1699 

cm-1 (guanine/thymine) and 1645 cm-1 was observed in three tissues and four tissues were found 

common for 1539 cm-1 (amide II) and 1506 cm-1. Having class Normal-C3 as a reference, three tissues 

were common for 1732 cm-1 (lipids) and 1539 cm-1 (amide II) whilst four tissues were common for 1701 

cm-1, 1699 cm-1 (guanine/thymine), 1697 cm-1 and 1506 cm-1 with 1504 cm-1 (phenyl rings). 
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Between non-diseased samples from patients with endometrial cancer 

 

The biochemical composition of basal cells in only non-diseased tissue samples (H09-12890-11, H09-

9102-6, H09-13558-A8) taken from patients with endometrial cancer was analysed and compared. 

Classes were labelled as Patient 1, Patient 2 and Patient 3 to represent the samples H09-12890-11, 

H09-9102-6 and H09-13558-A8 respectively. In this section classes of tissue samples will be referred 

according to their labels for the purpose of associating data analysis with what is shown on the plots.  

Figure 3.60: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from basal cells, amongst non-diseased tissue sections. (A) & (B) no sample 

used as a reference, (C) & (D) Normal (H09-11708-4) reference class, (E) & (F) Normal-Endo. (H09-12292-1) reference class, (G) & (H) 

Normal-C1 (H09-12890-11) reference class, (I) & (J) Normal-C2 (H09-9102-6) reference class and (K) & (L) Normal-C3 (H09-13558-A8) 

reference class. The red rectangles in the cluster vector peak location plots highlight the wavenumbers occurring commonly in different 

tissue samples. 
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All classes had a similar shape of mean FTIR spectra with most evident variations in absorbance 

intensities occurring at ~1717 cm-1, ~1558 cm-1, ~1539 cm-1, ~1522 cm-1, ~1506 cm-1, ~1491 cm-1 and 

~1456 cm-1 (Fig. 3.61). No peaks were detected in the spectral region 900-1300 cm-1.  

Statistical analysis indicated that all tissues were significantly different from each other (Fig. 3.62). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D 

and 2D space  (Fig. 3.63). Patient 1 and Patient 2 overlapped with each other throughout most of their 

spectra. Both classes ovrerlapped with almost half of the spectra of patient 3. Spectral points of 

Patient 1 appeared to have a more compact arrangement relative to the other class which signified 

that Patient 1 had the least intra-class variation. 

Figure 3.61: Mean FTIR spectra for comparison of spectra acquired from basal cells in non-diseased tissue sections (H09-12890-11, H09-

9102-6, H09-13558-A8). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-12890-11, 

H09-9102-6 and H09-13558-A8 respectively. 

Parameters P value 

  LDA1 vs Patient 1 P > 0.05 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P < 0.001 

  Patient 1 vs Patient 2 P < 0.01 

  Patient 1 vs Patient 3 P < 0.001 

  Patient 2 vs Patient 3 P < 0.001 

 

Figure 3.62: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

basal cells between non-diseased tissue sections 

H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Patient 1, Patient 2 

and Patient 3 respectively. 
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The five  major discriminant wavenumbers identified in loading plots accounting for variations 

between tissue samples were 1771 cm-1, 1717 cm-1 (amide I, DNA/RNA, purine base), 1682 cm-1, 1489 

cm-1 (CH bending/deformation C-H) and 1418 cm-1 (deformation C-H) (Fig. 3.64). 

 

 

 

 

 

 

 

 

 

 

Figure 3.63: Scores plots for segregation 

of spectra in (A) 1D and (B) 2D space. 

Classes of tissues were labelled as 

Patient 1 (red), Patient 2 (blue) and 

Patient 3 (green) representing the 

tissues H09-12890-11, H09-9102-6 and 

H09-13558-A8 respectively. In (B) LD1 

would discriminate spectral points 

between the different classes of tissues 

whereas as LD2 contributed to intra-

class variation. 

Figure 3.64:  Loadings plots showing wavenumbers that discriminate basal cells in non-diseased tissue sections (H09-9102-6, H09-

12890-11, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 
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Cluster vector plots (Fig. 3.65) were presented and analysed in a different way in order to identify 

potential biomarkers for basal cells by observing the occurrence and expression levels of 

wavenumbers and/or spectral regions between the tissues by having a class as a reference origin or 

when no class was used as a reference origin. Wavenumbers would display common occurrence if 

they were observed in three classes representing the tissues as long as they had a smooth vertical 

alignment in the plots. When a class was set as the reference origin, a wavenumber would display 

common occurrence if it was observed in the cluster vectors of the two other classes. 

Having no class as a reference origin the wavenumbers displaying common occurrence were 1732 cm-

1 (lipids), 1539 cm-1 (amide II), 1506 cm-1 with 1504 cm-1 (phenyl rings), and 1456 cm-1 (lipids and 

proteins). Using Patient 1 as reference the commonly shared wavenumbers were 1539 cm-1 (amide II), 

1504 cm-1 (phenyl rings) and 1456 cm-1 (lipids and proteins). Using Patient 3 as reference common 

occurrence was observed only for 1717 cm-1 (amide I, DNA/RNA, purine base). No wavenumber was 

observed to be common among classes when Patient 2 was used as a reference class. 
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Between diseased samples from patients with endometrial cancer 

 

The biochemical composition of basal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-

13558-A5) taken from cancerous lesions in the endometrium was analysed and compared. Classes 

were labelled as Patient 1, Patient 2 and Patient 3 to represent the samples H09-12890-9, H09-9102-

1 and H09-13558-A5 respectively. In this section classes of tissues will be referred according to their 

labels for the purpose of associating data analysis with what is shown on the plots. All classes had a 

very similar shape in mean FTIR spectra with most pronounced variations in peak intensities occurring 

at ~1786 cm-1, ~1771 cm-1, ~1717 cm-1, ~1701 cm-1 and ~1506 cm-1 (Fig. 3.66). No peaks were detected 

in the spectral region 900-1300 cm-1. 

Statistical analysis indicated that tissues were significantly different from each other (Fig. 3.67). 

Figure 3.65: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and expression 

levels of wavenumbers, from spectra acquired from basal cells among non-diseased tissue sections from patients with endometrial 

cancer. (A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-11) reference class, (E) & (F) Patient 2 (H09-9102-6) 

reference class and (G) & (H) Patient 3 (H09-13558-A8) reference class. The red rectangles highlight the wavenumbers occurring 

commonly in classes.  
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Segregation of classes resulting from application of PCA-LDA was visualised in scores plots of 1D and 

2D space (Fig. 3.68). No overlapping was observed between Patient 2 and Patient 3 but Patient 1 

overlapped with both classes. Spectral points of Patient 2 had a more spread arrangement which 

signified more intra-class variation relative to the other classes. 

Figure 3.66: Mean FTIR spectra for comparison of spectra from basal cells in diseased tissue sections (H09-12890-9, H09-9102-1, H09-

13558-A5). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-12890-9, H09-9102-1 and 

H09-13558-A5 respectively. 

Parameters P value 

  LDA1 vs Patient 1 P > 0.05 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P < 0.001 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P < 0.001 

  Patient 2 vs Patient 3 P < 0.001 

 

Figure 3.67: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

basal cells between diseased tissue sections H09-

9102-1, H09-12890-9, H09-13558-A5 represented 

by the class labels Patient 1, Patient 2 and Patient 3 

respectively. 
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Generation of loading plots revealed five major discriminant wavenumbers accounting for variations 

between the classes (Fig. 3.69). The identified wavenumbers were 1771 cm-1, 1697 cm-1, 1651 cm-1, 

1556 cm-1 and 1456 cm-1 (lipids and proteins). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.68: Scores plots for segregation of 

spectra acquired from basal cells in (A) 1D and 

(B) 2D space. Classes of tissues were labelled as 

Patient 1 (red), Patient 2 (blue) and Patient 3 

(green) representing the tissues H09-12890-9, 

H09-9102-1 and H09-13558-A5 respectively. In 

(B) LD1 would discriminate spectral points 

between the different classes of cells whereas 

as LD2 contributed to intra-class variation. 

Figure 3.69:  Loadings plots showing wavenumbers that discriminate basal cells in diseased tissue sections (H09-9102-1, H09-12890-9, 

H09-13558-A5). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference spectrum. 
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The same approach as before was applied to analyse cluster vector plots for identification of 

biomarkers (Fig. 3.70). Having no class as a refernce origin, all classes were common for 1771 cm-1, 

1651 cm-1, 1556 cm-1 and 1456 cm-1 (lipids and proteins). The wavenumbers observed to have common 

occurrence when Patient 1 was the reference class were 1771 cm-1 and 1556 cm-1. These 

wavenumbers along with 1456 cm-1 displayed common occurrence when Patient 2 was the class 

reference. Having Patient 3 as reference, common occurrence was displayed by 1771 cm-1, 1697 cm-1, 

1651 cm-1 and 1556 cm-1.  
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Diseased tisues Vs Non-Diseased tissues 

 

The spectra acquired from the basal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-

13558-A5) was compared with the spectra acquired from basal cells in their corresponding non-

diseased tissue samples (H09-12890-11, H09-9102-6, H09-13558-A8) taken from patients with 

endometrial cancer. The class representing diseased tissue sections was labelled as ‘Cancer’ whilst the 

class representing non-diseased tissue sections was labelled as ‘Normal’. In this section classes of 

tissues will be referred according to their labels for the purpose of associating data analysis with what 

is shown on the plots. The FTIR mean spectra of both classes was very similar with most evident 

variations on peak intensities occurring only at ~1786 cm-1 and ~1771 cm-1 whereby Cancer had the 

highest peaks (Fig. 3.71 A). No peaks were detected in the spectral region 900-1300 cm-1. Application 

of PCA-LDA resulted in segregation of classes which was visualised in scores plot of 1D space whereby 

classes would overlap with each other (Fig. 3.71 B). However, classes were significantly different from 

each other according to the statistical analysis (Fig. 3.72). 

 

Figure 3.70: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and expression 

levels of wavenumbers, from spectra acquired from basal cells among diseased tissue sections from patients with endometrial cancer. 

(A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-9) reference class, (E) & (F) Patient 2 (H09-9102-1) reference class 

and (G) & (H) Patient 3 (H09-13558-A5) reference class. The red rectangles highlight the wavenumbers occurring commonly in classes. 
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The discriminant wavenumbers  identified in loading plots responsible for variations between the two 

classes were 1796 cm-1, 1717 cm-1 (amide I, DNA/RNA, purine base), 1556 cm-1, 1456 cm-1 (lipids and 

proteins) and 1418 cm-1 (deformation C-H) (Fig. 3.73). 

 

Parameters P Value 

Cancer Vs Normal P<0.0001 

Figure 3.71: (A) Mean FTIR spectra for comparison of spectra from basal cells in all diseased tissue sections (H09-12890-9, H09-9102-1, 

H09-13558-A5) and their corresponding non-diseased tissue sections (H09-12890-11, H09-9102-6, H09-13558-A8). (B) Scores plots for 

segregation of spectra in 1D space. Diseased and non-diseased tissue samples are represented by the class labels ‘Cancer’ (red) and 

‘Normal’ (blue) respectively. 

Figure 3.72: Obtained p-value by employment of 

Unpaired t-test to compare spectra acquired from 

basal cells between non diseased (H09-9102-6, 

H09-12890-11, H09-13558-A8) and their 

corresponding diseased (H09-9102-1, H09-12890-

9, H09-13558-A5) tissue sections represented by 

the class labels Normal and Cancer respectively. 

Figure 3.73:  Loadings plots showing wavenumbers that discriminate spectra from basal cells in all diseased (H09-9102-1, H09-12890-

9, H09-13558-A5) and their corresponding non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8) tissue sections. The red line is a 

pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference spectrum. 
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The five major wavenumbers in loading plots were also observed in cluster vector plots occuring in 

both classes (Fig. 3.74). Also expression levels of these wavenumbers were found to be the same 

between the classes as indicated by the size of the shapes representing the classes. Highest expression 

levels were observed for 1717 cm-1, medium levels were observed for 1796 cm-1, 1556 cm-1 and 1456 

cm-1. The lowest expression levels were indicated for 1418 cm-1 (deformation C-H) . Biomarkers that 

would specify either ‘Normal’ or ‘Cancer’ basal cells could not be identified since the identified 

discriminant wavenumbers displayed common occurrence between the classes. For a wavenumber to 

have a potential as a biomarker for either of the classes, it should have been observed in only one 

class. 

 

 

 

 

  

Figure 3.74: Alternative presentation of 

cluster vector plots, produced after 

application of PCA-LDA, showing 

occurrence and expression levels of 

wavenumbers, from spectra acquired from 

basal cells among all corresponding 

diseased (H09-12890-9, H09-9102-1, H09-

13558-A5) and non-diseased (H09-12890-

11, H09-9102-6, H09-13558-A8) tissue 

sections. The red rectangles highlight the 

wavenumbers occurring commonly in 

classes. 
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3.2.2 Luminal Cells Vs Luminal Cells 

 

In individual tissue samples 

 

Biochemical composition of luminal cells was also analysed in the hope of identifying potential 

biomarkers using the same approach as before. Spectra acquired from all five glandular areas in 

individual tissue samples was analysed. All tissues exhibited relatively the same shape in mean FTIR 

spectra whereby variations in peak intensities would mainly occur at ~1786 cm-1, ~1771 cm-1, ~1717 

cm-1, ~1700 cm-1, ~1572 cm-1, ~1556 cm-1, ~1539 cm-1, ~1522 cm-1, ~1506 cm-1 and ~1491 cm-1 (Fig. 

3.75). No peaks were detected in the spectral region 900-1300 cm-1. 

Statistical analysis (Fig. 3.76) indicated that in the majority of the tissues at least one area was 

significantly different from the tissue as a whole. Whereas when individual areas within a tissue were 

compared with each other, they were not significantly different in most of the cases. 

 

 

 

 

 

 

 



114 
 

  

  

  

 

 

 

Figure 3.75: Mean spectra for comparison of spectra 

acquired from luminal cells between the five 

glandular areas in non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-12292-

1) and diseased (H09-9102-1, H09-12890-9, H09-

13558-A5) tissue sections. Spectra of corresponding 

non-diseased (H09-9102-6, H09-12890-11, H09-

13558-A8) and diseased (H09-9102-1, H09-12890-9, 

H09-13558-A5) tissue samples are illustrated next to 

each other. 
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H09-9102-6 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P < 0.001 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.01 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P < 0.001 

  Area B vs Area E P < 0.001 

  Area C vs Area D P > 0.05 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.01 

 

H09-12890-11 
 

Parameters P value 

  LDA1 vs Area A P < 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.01 

  LDA1 vs Area D P < 0.01 

  LDA1 vs Area E P < 0.01 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.05 

  Area B vs Area D P < 0.01 

  Area B vs Area E P > 0.05 

  Area C vs Area D P > 0.05 

  Area C vs Area E P < 0.001 

  Area D vs Area E P < 0.001 

 

H09-13558-A8 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P < 0.01 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P < 0.01 

  Area B vs Area C P < 0.01 

  Area B vs Area D P < 0.001 

  Area B vs Area E P < 0.01 

  Area C vs Area D P < 0.001 

  Area C vs Area E P < 0.001 

  Area D vs Area E P > 0.05 

 

H09-11708-4 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-12292-1 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-9102-1 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P < 0.001 

  Area D vs Area E P > 0.05 
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Segregation of classes of spectra, resulted from application of PCA-LDA, was visualised in scores plot 

of 1D and 3D space. Figure 3.77 illustrates scores plots of non-diseased tissue samples and figure 3.78 

illustrates scores plots of diseased tissue samples. No consistency amongst samples was observed; 

spectra of classes, representing the glandular areas, would either display overlapping amongst a few 

classes or no overlap was observed. In the 3D scores plot spectra would either have a compact or 

spread arrangment. No observations were made that would correlate corresponding non-diseased 

and diseased tissue sections. 

 

H09-12890-9 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-13558-A5 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P < 0.001 

  Area D vs Area E P > 0.05 

 

Figure 3.76: Obtained p-values by employment of One-way ANOVA test coupled with Tukey’s multiple comparison test to compare 

spectra acquired from luminal in five glandular elements in individual non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8, H09-

11708-4, H09-9102-1) and diseased (H09-9102-1, H09-12890-9, H09-13558-A5) tissue sections. 



117 
 

  

  

  

  



118 
 

  

 

 

 

 

 

 

Figure 3.77: 1D scores plots and their corresponding 3D scores plots in non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-

13558-A8, H09-11708-4, H09-12292-1) produced after application of PCA-LDA on the spectra acquired from luminal cells from five 

different glandular elements. 

Figure 3.78: 1D scores plots and their corresponding 3D scores plots in diseased tissue sections (H09-9102-1, H09-12890-9, H09-13558-

A5) produced after application of PCA-LDA on the spectra acquired from luminal cells from five different glandular elements. 
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Figure 3.79 illustrates the laoding plot for each tissue sample revealing the discriminant wavenumbers 

responsible for variations between the spectra acquired from luminal cells at glandular areas. In 

sample H09-9102-6 the discriminant wavenumbers were 1792 cm-1,1715 cm-1, 1645 cm-1, 1541 cm-1 

(amide II) and 1504 cm-1 (phenyl rings). In sample H09-12890-11 the wavenumbers were 1717 cm-1 

(amide I, DNA/RNA, purine base), 1653 cm-1 (amide I), 1541 cm-1 (amide II), 1504 cm-1 (phenyl rings) 

and 1456 cm-1 (lipids and proteins). For sample H09-13558-A8 the identified wavenumbers were 1796 

cm-1, 1747 cm-1, 1715 cm-1, 1651 cm-1 and 1472 cm-1. In sample H09-11708-4 the wavenumbers were 

1697 cm-1, 1653 cm-1 (amide I), 1539 cm-1 (amide II), 1506 cm-1 and 1456 cm-1 (lipids and proteins). The 

wavenumbers identified in sample H09-12292-1 were 1786 cm-1, 1699 cm-1 (guanine/thymine), 1555 

cm-1 (ring base/amide II), 1520 cm-1 (amide II) and 1456 cm-1 (lipids and proteins). In the diseased tissue 

H09-9102-1 the wavumbers were 1732 cm-1 (lipids), 1699 cm-1 (guanine/thymine), 1539 cm-1 (amide 

II), 1504 cm-1 (phenyl rings) and 1456 cm-1 (lipids and proteins). In sample H09-12890-9 the identified 

wavenumbers were 1732 cm-1 (lipids), 1651 cm-1, 1558 cm-1, 1520 cm-1 (amide II) and 1487 cm-1 

(deformation C-H/protein). In sample H09-13558-A5 the wavenumbers were 1796 cm-1, 1747 cm-1, 

1715 cm-1, 1651 cm-1 and 1472 cm-1. 
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Figure 3.79:  Loadings plots showing wavenumbers 

that discriminate luminal cells between five 

glandular areas in non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-

12292-1) and diseased (H09-9102-1, H09-12890-9, 

H09-13558-A5) tissue sections. Loading plots of 

corresponding non-diseased and diseased tissue 

samples are illustrated next to each other. The red 

line is a pseudospectra and the dotted line is the 

actual pre-processed spectrum used as a reference 

spectrum. 
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Cluster vector plots of non-diseased (Fig. 3.80) and diseased (Fig. 3.81) tissue samples were presented 

and analysed in the same approach as before in the hope of identifying possible biomarkers for luminal 

cells, based on the occurrence of wavenumbers and their expression levels in the glandular areas. In 

most plots, the wavenumbers displaying common occurence were the same as the discriminant 

wavenumbers identified in loading plots.  

In sample H09-9102-6 four areas were common for 1558 cm-1 and 1456 cm-1 (lipids and proteins) and 

all five areas were common for 1506 cm-1 with 1504 cm-1 (phenyl rings). In sample H09-12890-11 four 

areas were common for 1717 cm-1 (amide I, DNA/RNA, purine base), 1653 cm-1 (amide I), 1504 cm-1 

(phenyl rings) and 1456 cm-1 (lipids and proteins) whilst three areas were common for 1541 cm-1 

(amide II). In sample H09-13558-A8 four areas were common for 1796 cm-1, and 1715 cm-1 whilst 1522 

cm-1 was commonly shared between three areas. In sample H09-11708-4, 1699 cm-1 

(guanine/thymine) with 1697 cm-1 were commonly shared between four areas, five areas were 

common for 1506 cm-1 with 1504 cm-1 (phenyl rings), and 1456 cm-1 (lipids and proteins) whilst 1558 

cm-1 with 1556 cm-1 were commonly shared among three areas. In sample H09-12292-1, four areas 

were common only for 1699 cm-1 (guanine/thymine) whilst three areas were common 1786 cm-1,  1506 

cm-1 with 1504 cm-1 (phenyl rings), and 1456 cm-1 (lipids and proteins). In sample H09-9102-1 1506 cm-

1 with 1504 cm-1 (phenyl rings) were commonly shared in all five areas, only 1699 cm-1 

(guanine/thymine) was shared between four areas, whilst three areas were common for 1653 cm-1 

(amide I) with 1651 cm-1, 1539 cm-1 (amide II) and 1456 cm-1 (lipids and proteins). In sample H09-

12890-9 three areas displayed common occurrence for were 1558 cm-1 with 1555 cm-1 (ring 

base/amide II), and 1520 cm-1 (amide II) and four areas were common for 1487 cm-1 (deformation C-

H, protein). Lastly in sample H09-13558-A5 three areas were common for 1796 cm-1 and 1717 cm-1 

(amide I, DNA/RNA, purine base) with 1715 cm-1, whilst 1456 cm-1 (lipids and proteins) was commonly 

shared between four areas.  
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Figure 3.80: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from luminal cells, in five glandular areas in individual non-diseased tissue 

sections (H09-9102-6, H09-12890-11, H09-13558-A8, H09-11708-4, H09-12292-1). The red rectangles highlight the wavenumbers 

shared in common among glandular areas. 

 

Figure 3.81: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from luminal cells, in five glandular areas in individual diseased tissue sections 

(H09-9102-1, H09-12890-9, H09-13558-A5). The red rectangles highlight the wavenumbers shared in common among glandular areas.  
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Between all normal tissue samples 

 

All the non-diseased tissue samples were compared between them for the spectra interrogated from 

their luminal cells. Classes representing tissues were labelled as before; Normal (H09-11708-4), 

Normal-Endo. (H09-12292-1), Normal-C1 (H09-12890-11), Normal-C2 (H09-9102-6) and Normal-C3 

(H09-13558-A8).  In this section tissues will be referred according to their class labels to associate plots 

with observations. All classes of tissues exhibited relatively the same shape in mean FTIR spectra with 

most evident variations in peak intensities occuring at ~1786 cm-1, ~1771 cm-1, ~1730 cm-1, ~1717 cm-

1, ~1699 cm-1, ~1558 cm-1, ~1543 cm-1, ~1522 cm-1, ~1506 cm-1, ~1491 cm-1, ~1456 cm-1 and ~1441 cm-

1 (Fig. 3.82). No specific class was observed as having the highest or lowest peak intensities throughout 

the spectra. No peaks were detected in the spectral region 900-1300 cm-1. 

Statistical analysis (Fig. 3.83) indicated that classes were significantly different from each other for the 

spectra acquired from luminal cells but Normal was not significantly different from Normal-C1 neither 

from Normal-C2. 

 

 

Figure 3.82: Mean FTIR spectra for comparison of spectra acquired from luminal cells in non-diseased tissue samples (H09-11708-4, 

H09-12292-1, H09-12890-11, H09-9102-6, H09-13558-A8) represented by the class labels Normal, Normal-Endo., Normal-C1, Normal-

C2 and Normal-C3 respectively. 
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Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D, 

2D and 3D space (Fig. 3.84). All classes would overlap with each other mainy throughout their whole 

spectra. Spectral points of class Normal-Endo. exhibited a relatively more spread arrangement which 

signified the most intra-calss variation. Spectral points of classes Normal, Normal-C1 and Normal-C2 

had a more compact arrangement and thus less intra-class variation. 

  

 

Figure 3.84: Scores plots of segregation of spectra 

acquired from luminal cells, in in non-diseased tissue 

samples (H09-11708-4, H09-12292-1, H09-12890-11, 

H09-9102-6, H09-13558-A8) represented by the class 

labels Normal, Normal-Endo., Normal-C1, Normal-C2 

and Normal-C3 respectively, illustrated in (A) 1D space, 

(B) 2D space and (C) 3D space. In (B) LD1 would 

discriminate spectral points between the different 

classes of tissues whereas as LD2 contributed to intra-

class variation. 

 

Parameters P value 

  LDA1 vs Normal P < 0.05 

  LDA1 vs Normal-Endo. P < 0.001 

  LDA1 vs Normal-C1 P < 0.001 

  LDA1 vs Normal-C2 P > 0.05 

  LDA1 vs Normal-C3 P > 0.05 

  Normal vs Normal-Endo. P < 0.001 

  Normal vs Normal-C1 P > 0.05 

  Normal vs Normal-C2 P > 0.05 

  Normal vs Normal-C3 P < 0.001 

  Normal-Endo. vs Normal-C1 P < 0.001 

  Normal-Endo. vs Normal-C2 P < 0.001 

  Normal-Endo. vs Normal-C3 P < 0.001 

  Normal-C1 vs Normal-C2 P < 0.01 

  Normal-C1 vs Normal-C3 P < 0.001 

  Normal-C2 vs Normal-C3 P < 0.01 

 

Figure 3.83: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

luminal cells in all five glandular elements between 

non-diseased tissue sections H09-11708-4, H09-

9102-1, H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Normal, Normal-

Endo., Normal-C1, Normal-C2 and Normal-C3 

respectively. 



126 
 

The discriminant wavenumbers identified in loading plots accounting for variations between the 

samples were 1732 cm-1 (lipids), 1699 cm-1 (guanine/thymine), 1651 cm-1, 1558 cm-1 and 1456 cm-1 

(lipids and proteins) (Fig. 3.85). 

 

 

 

 

 

 

 

 

 

 

 

Cluster vector plots (Fig. 3.86) were presented and analysed in a different way in order to identify 

potential biomarkers for luminal cells by observing the occurrence and expression levels of 

wavenumbers and/or spectral regions between the tissues by having a class as a reference origin or 

when no class was used as a reference origin. Wavenumbers would display common occurrence if 

they were observed in at least three classes representing the tissues as long as they had a smooth 

vertical alignment in the plots. 

Having no class as a reference, all five classes of tissues were common for 1699 cm-1 and four tissues 

were common for 1732 cm-1 (lipids), 1651 cm-1, 1558 cm-1 and 1456 cm-1 (lipids and proteins). Using 

class Normal as a reference, four tissues were common for 1732 cm-1 (lipids) and 1651 cm-1 and three 

tissues were common for 1699 cm-1, 1558 cm-1 and 1456 cm-1 (lipids and proteins). Having class 

Normal-Endo. as a reference origin four tissues were common for 1732 cm-1 (lipids) and 1651 cm-1 and 

three tissues were common for 1699 cm-1, 1558 cm-1 and 1456 cm-1 (lipids and proteins). Having class 

Figure 3.85:  Loadings plots showing wavenumbers that discriminate luminal cells in non-diseased tissue sections (H09-11708-4, H09-

12292-1, H09-12890-11, H09-9102-6, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed 

spectrum used as a reference spectrum. 
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Normal-C1 as reference the wavenumbers 1732 cm-1 (lipids), 1651 cm-1 and 1558 cm-1 were commonly 

shared by four tissues whilst three tissues were common for 1699 cm-1 and 1456 cm-1 (lipids and 

proteins). Having class Normal-C2 as reference four tissues were common for 1732 cm-1 (lipids) and 

1651 cm-1 whilst three tissues were common for 1558 cm-1 and 1506 cm-1 with 1504 cm-1 (phenyl rings). 

Having class Normal-C3 as a reference, 1732 cm-1 (lipids) and 1651 cm-1 were commonly shared by four 

tissues whilst 1699 cm-1, 1558 cm-1 and and 1456 cm-1 (lipids and proteins) were commonly shared by 

three tissues. 
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Between non-diseased samples from patients with endometrial cancer 

 

Spectra from luminal cells in only non-diseased tissue samples (H09-12890-11, H09-9102-6, H09-

13558-A8) taken from patients with endometrial cancer were compared. Classes representing the 

samples were labelled as before so they will be referred accordingly to associate data analysis with 

what is shown on the plots.  

All classes had relatively the same shape for their FTIR mean spectra with most evident variations in 

absorbance intensities occurring at ~1717 cm-1, ~1699 cm-1, ~1558 cm-1, ~1543 cm-1, ~1522 cm-1, ~1506 

Figure 3.86: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from luminal cells, amongst non-diseased tissue sections. (A) & (B) no sample 

used as a reference, (C) & (D) Normal (H09-11708-4) reference class, (E) & (F) Normal-Endo. (H09-12292-1) reference class, (G) & (H) 

Normal-C1 (H09-12890-11) reference class, (I) & (J) Normal-C2 (H09-9102-6) reference class and (K) & (L) Normal-C3 (H09-13558-A8) 

reference class. The red rectangles in the cluster vector peak location plots highlight the wavenumbers occurring commonly in different 

tissue samples. 
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cm-1, ~1491 cm-1, ~1456 cm-1 and ~1441 cm-1(Fig. 3.87). Highest peaks were mainly observed in Patient 

2. No peaks were detected in the spectral region 900-1300 cm-1. 

Statistical analysis indicated that all tissues were significantly different from each other (Fig. 3.88). 

 

 

 

 

 

 

 

 

 

 

 

 

Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D 

and 2D space  (Fig. 3.89). All classes would overlap with each other throughout most of their spectra. 

Spectral points of Patient 3 had a relatively more spread arrangment in the dimensional space which 

signified a more intra-class variation. 

Parameters P value 

  LDA1 vs Patient 1 P < 0.001 

  LDA1 vs Patient 2 P > 0.05 

  LDA1 vs Patient 3 P < 0.001 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P < 0.001 

  Patient 2 vs Patient 3 P < 0.001 

Figure 3.87: Mean FTIR spectra for comparison of spectra acquired from luminal cells in non-diseased tissue sections (H09-12890-11, 

H09-9102-6, H09-13558-A8). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-12890-

11, H09-9102-6 and H09-13558-A8 respectively. 

 

Figure 3.88: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

luminal cells between non-diseased tissue sections 

H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Patient 1, Patient 2 

and Patient 3 respectively. 
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The five major discriminant wavenumbers identified in loading plots accounting for variations 

between tissue samples were 1699 cm-1 (guanine/thymine), 1645 cm-1, 1558 cm-1, 1506 cm-1 and 1456 

cm-1 (lipids and proteins) (Fig. 3.90). 

 

Figure 3.89: Scores plots for segregation 

of spectra in (A) 1D and (B) 2D space. 

Classes of tissues were labelled as 

Patient 1 (red), Patient 2 (blue) and 

Patient 3 (green) representing the 

tissues H09-12890-11, H09-9102-6 and 

H09-13558-A8 respectively. In (B) LD1 

would discriminate spectral points 

between the different classes of tissues 

whereas as LD2 contributed to intra-

class variation. 

Figure 3.90:  Loadings plots showing wavenumbers that discriminate luminal cells in non-diseased tissue sections (H09-9102-6, H09-

12890-11, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 
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These wavenumbers were also observed in cluster vectors plots (Fig. 3.91). These plots were 

presented and analysed in the same approach as before in an attempt to identify potential biomarkers 

for luminal cells. Having no class as a reference origin the wavenumbers displaying common 

occurrence amongst tissue samples were 1699 cm-1 (guanine/thymine), 1666 cm-1 (amide I), 1558 cm-

1 with 1556 cm-1, 1504 cm-1 (phenyl rings) and 1456 cm-1 (lipids and proteins). Using Patient 1 as 

reference, 1506 cm-1 with 1504 cm-1 (phenyl rings), and 1456 cm-1 (lipids and proteins) were commonly 

shared between classes. Using Patient 2 as reference the only commonly shared wavenumber was 

1504 cm-1 (phenyl rings). Using Patient 3 as reference common occurrence was observed for 1699 cm-

1 (guanine/thymine), 1558 cm-1 with 1556 cm-1, and 1506 cm-1 with 1504 cm-1 (phenyl rings).  
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Between diseased samples from patients with endometrial cancer 

Spectra acquired from luminal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-13558-

A5) taken from cancerous lesions in the endometrium were analysed and compared. Classes 

representing the samples were labelled as before so they will be referred accordingly to associate data 

analysis with what is shown on the plots. All classes had relatively the same shape of mean spectra 

and the most evident variations in peak intensities could be identified at ~1786 cm-1, ~1771 cm-1, 

~1763 cm-1, ~1730 cm-1, ~1717 cm-1, ~1699 cm-1 and ~1441 cm-1 (Fig. 3.92). No peaks were detected 

in the spectral region 900-1300 cm-1.  

Statistical analysis indicated that tissues were significantly different from each other (Fig. 3.93). 

 

Figure 3.91: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and expression 

levels of wavenumbers, from spectra acquired from luminal cells among non-diseased tissue sections from patients with endometrial 

cancer. (A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-11) reference class, (E) & (F) Patient 2 (H09-9102-6) 

reference class and (G) & (H) Patient 3 (H09-13558-A8) reference class. The red rectangles highlight the wavenumbers occurring 

commonly in classes.  
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Segregation of classes resulting from application of PCA-LDA was visualised in scores plots of 1D and 

2D space (Fig. 3.94). All classes would overlap with each other. Mainly most of the spectra of Patient 

3 overlaped with spectra of the other two classes. Spectral points of Patient 2 had a relative more 

spread arrangment in the dimensional shape whilst spectral points of Patient 3 exhibited a more 

compact arrangment. This signified that the first class had more intra-class variation whereas the latter 

class had less intra-class variation. 

Parameters P value 

  LDA1 vs Patient 1 P < 0.001 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P > 0.05 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P < 0.001 

  Patient 2 vs Patient 3 P < 0.001 

Figure 3.92: Mean FTIR spectra for comparison of spectra from luminal cells in diseased tissue sections (H09-12890-9, H09-9102-1, H09-

13558-A5). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-12890-9, H09-9102-1 and 

H09-13558-A5 respectively. 

 

Figure 3.93: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

luminal cells between diseased tissue sections H09-

9102-1, H09-12890-9, H09-13558-A5 represented 

by the class labels Patient 1, Patient 2 and Patient 3 

respectively. 
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Generation of loading plots revealed five major wavenumbers responsible for variations between the 

interrogated tissue samples (Fig. 3.95). The identified wavenumbers were 1732 cm-1 (lipids), 1651 cm-

1, 1558 cm-1, 1520 cm-1 (amide II) and 1456 cm-1 (lipids and proteins). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.94: Scores plots for segregation 

of spectra acquired from luminal cells in 

(A) 1D and (B) 2D space. Classes of 

tissues were labelled as Patient 1 (red), 

Patient 2 (blue) and Patient 3 (green) 

representing the tissues H09-12890-9, 

H09-9102-1 and H09-13558-A5 

respectively. In (B) LD1 would 

discriminate spectral points between 

the different classes of cells whereas as 

LD2 contributed to intra-class variation. 

Figure 3.95:  Loadings plots showing wavenumbers that discriminate luminal cells in diseased tissue sections (H09-9102-1, H09-12890-

9, H09-13558-A5). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 
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Cluster vectors plots (Fig. 3.96) were presented and analysed as before to observe occurrence of 

wavenumbers amongst tissue samples and identify potential biomarkers. Having no class as a refernce 

origin the wavenumbers displaying common occurrence were 1771 cm-1, 1717 cm-1 (amide I, 

DNA/RNA, purine base), 1653 cm-1 (amide I) with 1651 cm-1, and 1506 cm-1. The wavenumbers 

observed to have common occurrence when Patient 1 was the reference class were only 1651 cm-1 

and 1558 cm-1. When Patient 2 was the class reference the wavenumbers displaying common 

occurrence were 1651 cm-1 and 1558 cm-1. Having Patient 3 as reference, common occurrence was 

displayed by 1771 cm-1, 1717 cm-1 (amide I, DNA/RNA, purine base) and 1651 cm-1.  
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Diseased tisues Vs Non-Diseased tissues 

 

The spectra of the luminal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-13558-A5) 

were compared with the spectra of luminal cells in their corresponding non-diseased tissue samples 

(H09-12890-11, H09-9102-6, H09-13558-A8) taken from patients with endometrial cancer and the 

classes were labelled as ‘Cancer’ and ‘Normal’ according to the tissue samples they represented. 

Classes of tissues will be referred according to their labels to associate data analysis with what is 

shown on the plots. Both classes had the same shape in mean FTIR spectra whereby most evident 

variations in peak intensities identified at ~1785 cm-1, ~1695 cm-1, ~1666 cm-1, ~1651 cm-1, ~1572 cm-

1 and ~1556 cm-1 (Fig. 3.97 A). No peaks were detected in the spectral region 900-1300 cm-1. 

Application of PCA-LDA resulted in segregation of classes which was visualised in scores plot of 1D 

space whereby classes would overlap with each other (Fig. 3.97 B). However, classes were significantly 

different from each other according to the statistical analysis (Fig. 3.98). 

 

Figure 3.96: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and expression 

levels of wavenumbers, from spectra acquired from luminal cells among diseased tissue sections from patients with endometrial cancer. 

(A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-9) reference class, (E) & (F) Patient 2 (H09-9102-1) reference class 

and (G) & (H) Patient 3 (H09-13558-A5) reference class. The red rectangles highlight the wavenumbers occurring commonly in classes. 
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The discriminant wavenumbers  identified in loading plots responsible for variations between the two 

classes were 1732 cm-1 (lipids), 1651 cm-1, 1537 cm-1, 1504 cm-1 (phenyl rings) and 1456 cm-1 (lipids and 

proteins) (Fig. 3.99). 

 

Parameters P Value 

Cancer Vs Normal P<0.0001 

Figure 3.97: (A) Mean FTIR spectra for comparison of spectra from luminal cells in all diseased tissue sections (H09-12890-9, H09-9102-

1, H09-13558-A5) and their corresponding non-diseased tissue sections (H09-12890-11, H09-9102-6, H09-13558-A8). (B) Scores plots 

for segregation of spectra in 1D space. Diseased and non-diseased tissue samples are represented by the class labels ‘Cancer’ (red) and 

‘Normal’ (blue) respectively. 

Figure 3.99:  Loadings plots showing wavenumbers that discriminate spectra from luminal cells in all diseased (H09-9102-1, H09-12890-

9, H09-13558-A5) and their corresponding non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8) tissue sections. The red line is a 

pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference spectrum. 

Figure 3.98: Obtained p-value by employment of 

Unpaired t-test to compare spectra acquired from 

luminal cells between non diseased (H09-9102-6, 

H09-12890-11, H09-13558-A8) and their 

corresponding diseased (H09-9102-1, H09-12890-

9, H09-13558-A5) tissue sections represented by 

the class labels Normal and Cancer respectively. 
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These wavenumbers were also observed in cluster vector plots (Fig. 3.100). The wavenumbers 

displayed common occurrence in both classes so none of the wavenumbers was identified to have a 

potential as a biomarker to specify either ‘Normal’ or ‘Cancer’ luminal cells.  Also the wavenumbers 

exhibited the same concentration levels in both classes with 1651 cm-1 exhibiting the highest 

concentration levels. 

 

 

 

 

  

 

  

Figure 3.100: Alternative presentation of 

cluster vector plots, produced after 

application of PCA-LDA, showing 

occurrence and expression levels of 

wavenumbers, from spectra acquired from 

luminal cells among all corresponding 

diseased (H09-12890-9, H09-9102-1, H09-

13558-A5) and non-diseased (H09-12890-

11, H09-9102-6, H09-13558-A8) tissue 

sections. The red rectangles highlight the 

wavenumbers occurring commonly in 

classes. 
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3.2.3 Stromal Cells Vs Stromal Cells 

 

In individual tissue samples 

 

Spectra acquired from stromal cells from the tissue surrounding an individual glandular element was 

compared with the spectra acquired from the other glandular elements within individual tissue 

samples. The shape of the mean FTIR spectra of stromal cells was relatively the same amongst 

glandular areas and amongst tissue samples as well. Most pronounced in absorbance intensities could 

be identified at ~1786 cm-1, ~1771 cm-1, ~1717 cm-1, ~1699 cm-1, ~1684 cm-1, ~1572 cm-1, ~1556 cm-1, 

~1539 cm-1 and ~1524 cm-1 (Fig. 3.101). No peaks were detected in the spectral region 900-1300 cm-1. 

Statistical analysis (Fig. 3.102) indicated that in the non-diseased tissues the majority of the glandular 

areas were significantly different from the tissue as a whole whereas the majority of glandular areas 

in diseased tissues were not significantly different from the tissue as a whole. In most of the tissues 

the majority of the areas were not significantly different from each other. 
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Figure 3.101: Mean spectra for comparison of 

spectra acquired from stromal cells between the five 

glandular areas in non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-12292-

1) and diseased (H09-9102-1, H09-12890-9, H09-

13558-A5) tissue sections. Spectra of corresponding 

non-diseased (H09-9102-6, H09-12890-11, H09-

13558-A8) and diseased (H09-9102-1, H09-12890-9, 

H09-13558-A5) tissue samples are illustrated next to 

each other. 
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H09-9102-6 
 

Parameters P value 

  LDA1 vs Area A P < 0.05 

  LDA1 vs Area B P < 0.001 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P > 0.05 

  Area A vs Area D P > 0.05 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P < 0.001 

  Area B vs Area E P < 0.001 

  Area C vs Area D P > 0.05 

  Area C vs Area E P > 0.05 

  Area D vs Area E P > 0.05 

 

H09-12890-11 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P < 0.001 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.05 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.05 

  Area B vs Area E P < 0.001 

  Area C vs Area D P < 0.05 

  Area C vs Area E P < 0.001 

  Area D vs Area E P < 0.05 

 

H09-13558-A8 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.001 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.05 

  Area C vs Area E P > 0.05 

  Area D vs Area E P > 0.05 

 

H09-11708-4 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P < 0.01 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-12292-1 
 

Parameters P value 

  LDA1 vs Area A P < 0.01 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P < 0.01 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-9102-1 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P < 0.001 

  Area D vs Area E P > 0.05 
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Segregation of classes of spectra, resulted from application of PCA-LDA, was visualised in scores plot 

of 1D and 3D space. Figure 3.103 illustrates scores plots of non-diseased tissue samples and figure 

3.104 illustrates scores plots of diseased tissue samples. In the majority of the tissues, spectral points 

of at least three glandular areas would overlap with each other. In some tissues, spectral points of 

individual areas were spread in the dimensional space (H09-12890-11, H09-11708-4, H09-9102-1, 

H09-13558-A5) whereas in other tissues spectral points of individual areas displayed a compact 

arrangment (H09-9102-6, H09-12890-9, H09-13558-A8, H09-12292-1). No observations were made 

that would correlate corresponding non-diseased and diseased tissue sections. 

H09-12890-9 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-13558-A5 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P < 0.001 

  Area D vs Area E P > 0.05 

 

Figure 3.102: Obtained p-values by employment of One-way ANOVA test coupled with Tukey’s multiple comparison test to compare 

spectra acquired from stromal in five glandular elements in individual non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8, H09-

11708-4, H09-9102-1) and diseased (H09-9102-1, H09-12890-9, H09-13558-A5) tissue sections. 
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Figure 3.103: 1D scores plots and their corresponding 3D scores plots in non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-

13558-A8, H09-11708-4, H09-12292-1) produced after application of PCA-LDA on the spectra acquired from stromal cells from five 

different glandular elements. 

Figure 3.104: 1D scores plots and their corresponding 3D scores plots in diseased tissue sections (H09-9102-1, H09-12890-9, H09-

13558-A5) produced after application of PCA-LDA on the spectra acquired from stromal cells from five different glandular elements. 
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Figure 3.105 illustrates the laoding plots for each tissue sample revealing the discriminant 

wavenumbers responsible for variations between the spectra acquired from stromal cells at glandular 

areas In sample H09-9102-6 the discriminant wavenumbers were 1790 cm-1, 1749 cm-1, 1715 cm-1, 

1456 cm-1 (lipids and proteins) and 1418 cm-1 (deformation C-H). In sample H09-12890-11 the 

wavenumbers were 1715 cm-1, 1651 cm-1, 1541 cm-1 (amide II), 1504 cm-1 (phenyl rings) and 1456 cm-

1 (lipids and proteins). For sample H09-13558-A8 the identified wavenumbers were 1771 cm-1, 1715 

cm-1, 1645 cm-1, 1558 cm-1 and 1456 cm-1 (lipids and proteins). In sample H09-11708-4 the 

wavenumbers were 1747 cm-1, 1705 cm-1 (lipids), 1666 cm-1 (amide I), 1556 cm-1 and 1472 cm-1. The 

wavenumbers identified in sample H09-12292-1 were 1771 cm-1, 1717 cm-1 (amide I, DNA/RNA, purine 

base), 1684 cm-1 (guanine deformation), 1645 cm-1 and 1539 cm-1 (amide II). In the diseased tissue 

H09-9102-1 the wavumbers were 1771 cm-1, 1732 cm-1 (lipids), 1684 cm-1 (guanine deformation), 1541 

cm-1 (amide II) and 1504 cm-1 (phenyl rings). In sample H09-12890-9 the observed wavenumbers were 

1745 cm-1 (triglycerides/polysaccharides, pectin), 1697 cm-1, 1558 cm-1, 1526 cm-1 (guanine) and 1472 

cm-1. Lastly in sample H09-13558-A5 the wavenumbers were 1771 cm-1, 1715 cm-1, 1645 cm-1, 1558cm-

1 and 1456 cm-1 (lipids and proteins). 
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Figure 3.105:  Loadings plots showing wavenumbers 

that discriminate stromal cells from between glandular 

areas in non-diseased (H09-9102-6, H09-12890-11, H09-

13558-A8, H09-11708-4, H09-12292-1) and diseased 

(H09-9102-1, H09-12890-9, H09-13558-A5) tissue 

sections. Loading plots of corresponding non-diseased 

and diseased tissue samples are illustrated next to each 

other. The red line is a pseudospectra and the dotted 

line is the actual pre-processed spectrum used as a 

reference spectrum. 
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Cluster vector plots of non-diseased (Fig. 3.106) and diseased (Fig. 3.107) tissue samples were 

presented and analysed in the same approach as before in the hope of identifying possible biomarkers 

for stromal cells, based on the occurrence of wavenumbers and their expression levels in the glandular 

areas. Wavenumbers identified in loading plots were also observed in cluster vector plots of their 

corresponding tissue. 

In sample H09-9102-6 three areas were common 1717 cm-1 (amide I, DNA/RNA,  purine base) with 

1715 cm-1 and 1558 cm-1 with 1556 cm-1 whilst all five areas were common for 1456 cm-1 (lipids and 

proteins). In sample H09-12890-11, 1715 cm-1 was commonly shared by all five areas, four areas were 

common for 1651 cm-1 and three areas were common for 1541 cm-1 (amide II) and 1456 cm-1 (lipids 

and proteins). In sample H09-13558-A8 wavenumbers observed to occur between glandular areas 

were 1796 cm-1, 1697 cm-1 with 1695 cm-1, 1558 cm-1, 1520 cm-1 (amide II) and 1456 cm-1 (lipids and 

proteins). In sample H09-11708-4 three areas were common for 1717 cm-1 (amide I, DNA/RNA,  purine 

base), 1682 cm-1 and 1504 cm-1 (phenyl rings) whilst four areas were common for 1418 cm-1 

(deformation C-H). In sample H09-12292-1 four areas were common for 1771 cm-1, 1645 cm-1 (phenyl 

rings) and 1539 cm-1 (amide II) with 1537 cm-1 whilst three areas were common for 1684 cm-1 

(guanine/thymine). In sample H09-9102-1, 1771 cm-1 and  1504 cm-1 (phenyl rings) were commonly 

shared by three areas whilst 1717 cm-1 (mide I, DNA/RNA,  purine base) with 1715 cm-1, and 1539 cm-

1 (amide II) were commonly shared by four areas. In sample H09-12890-9 common occurrence for 

1745 cm-1 (ring base/amide II), 1558 cm-1 with 1556 cm-1, 1472 cm-1 and 1418 cm-1 (deformation C-H) 

was dispalyed by three areas whilst 1697 cm-1 was commonly shared by four areas. In sample H09-

13558-A5, three, four and five areas were common for 1771 cm-1, 1558 cm-1 and 1456 cm-1 (lipids and 

proteins) respectively. 
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Figure 3.106: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from stromal cells, in five glandular areas in individual non-diseased tissue 

sections (H09-9102-6, H09-12890-11, H09-13558-A8, H09-11708-4, H09-12292-1). The red rectangles highlight the wavenumbers 

shared in common among glandular areas. 

 

Figure 3.107: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from stromal cells, in five glandular areas in individual diseased tissue sections 

(H09-9102-1, H09-12890-9, H09-13558-A5). The red rectangles highlight the wavenumbers shared in common among glandular areas.  
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Between all normal tissue samples 

 

All the non-diseased tissue samples were compared between them for the spectra interrogated from 

their stromal cells. Classes representing tissues were labelled in the same way as before and will be 

referred according to their class labels to associate plots with observations. All classes of tissues 

exhibited relatively the same mean FTIR spectra with most evident variations in peak intensities 

occuring at ~1786 cm-1, ~1771 cm-1, ~1717 cm-1, ~1701 cm-1, ~1684 cm-1, ~1539 cm-1, ~1522 cm-1, 

~1506 cm-1, ~1491 cm-1, ~1456 cm-1 and ~1441 cm-1 (Fig. 3.108). Classes Normal and Normal-C2 had 

mainly the highest peak intensities throughout the spectra. No peaks were detected in the spectral 

region 900-1300 cm-1. 

Statistical analysis (Fig. 3.109) indicated that classes were significantly different from each other for 

the spectra acquired from stromal cells but Normal was not significantly different from Normal-C3. 

 

 

 

 

Figure 3.108: Mean FTIR spectra for comparison of spectra acquired from stromal cells in non-diseased tissue samples (H09-11708-4, 

H09-12292-1, H09-12890-11, H09-9102-6, H09-13558-A8) represented by the class labels Normal, Normal-Endo., Normal-C1, Normal-

C2 and Normal-C3 respectively. 
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Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D, 

2D and 3D space (Fig. 3.110). All classes would overlap with each other. Spectral points of Normal had 

the most compact arrangement which signified the least intra-class variations whereas spectral points 

of Normal-Endo., Normal-C1 and Normal-C2 exhibited a spread arrangement in the dimensional space 

which signified more intra-class variation. 

 

 

Figure 3.110: Scores plots of segregation of spectra 

acquired from stromal cells, in in non-diseased tissue 

samples (H09-11708-4, H09-12292-1, H09-12890-11, 

H09-9102-6, H09-13558-A8) represented by the class 

labels Normal, Normal-Endo., Normal-C1, Normal-C2 

and Normal-C3 respectively, illustrated in (A) 1D space, 

(B) 2D space and (C) 3D space. In (B) LD1 would 

discriminate spectral points between the different 

classes of tissues whereas as LD2 contributed to intra-

class variation. 

 

Parameters P value 

  LDA1 vs Normal P < 0.001 

  LDA1 vs Normal-Endo. P < 0.001 

  LDA1 vs Normal-C1 P > 0.05 

  LDA1 vs Normal-C2 P < 0.001 

  LDA1 vs Normal-C3 P < 0.001 

  Normal vs Normal-Endo. P < 0.001 

  Normal vs Normal-C1 P < 0.001 

  Normal vs Normal-C2 P < 0.001 

  Normal vs Normal-C3 P > 0.05 

  Normal-Endo. vs Normal-C1 P < 0.001 

  Normal-Endo. vs Normal-C2 P < 0.01 

  Normal-Endo. vs Normal-C3 P < 0.001 

  Normal-C1 vs Normal-C2 P < 0.001 

  Normal-C1 vs Normal-C3 P < 0.001 

  Normal-C2 vs Normal-C3 P < 0.001 

 

Figure 3.109: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

stromal cells in all five glandular elements between 

non-diseased tissue sections H09-11708-4, H09-

9102-1, H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Normal, Normal-

Endo., Normal-C1, Normal-C2 and Normal-C3 

respectively. 
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The discriminant wavenumbers identified in loading plots accounting for variations between the 

samples were 1699 cm-1 (guanine/thymine), 1666 cm-1 (amide I), 1558 cm-1, 1506 cm-1 and 1454 cm-1 

(asymmetric methyl deformation) (Fig. 3.111).  

 

 

 

 

 

 

 

 

 

 

 

These wavenumbers, as well as new wavenumbers, were also identified in cluster vectors (Fig. 3.112). 

Common occurrence of wavenumbers and their expression levels amongst classes was assessed in the 

same approach as before in order to identify wavenumbers displaying biomarker potential for stromal 

cells in normal endometrial tissues.  

The wavenumbers observed to have common occurrence amongst classes of tissues in all the plots 

were 1666 cm-1 (amide I), 1558 cm-1 and 1506 cm-1. Common occurrence of 1699 cm-1 

(guanine/thymine) and 1456 cm-1 (lipid and proteins) was not observed only when class Normal was 

used as a reference origin. The wavenumber 1558 cm-1 with 1556 cm-1  were commonly shared when 

no class was used as a reference and when classes Normal and Normal-C1 were the refernece origin. 

Also common occurrence of 1506 cm-1 with 1504 cm-1 (phenyl rings) was observed three times; when 

no class was used as a refernece and when classes Normal and Normal-C3 were set as the reference 

Figure 3.111:  Loadings plots showing wavenumbers that discriminate stromal cells in non-diseased tissue sections (H09-11708-4, H09-

12292-1, H09-12890-11, H09-9102-6, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed 

spectrum used as a reference spectrum. 
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origin. The wavenumber 1456 cm-1 (lipids and proteins) displayed common occurrence with 1454 cm-

1 (asymmetric methyl deformation) in all plots where 1456 cm-1 was identified, except when class 

Normal-C1 was the refernece origin whereby 1454 cm-1 (asymmetric methyl deformation) was not 

identified. 
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Between non-diseased samples from patients with endometrial cancer 

 

Spectra from stromal cells in only non-diseased tissue samples (H09-12890-11, H09-9102-6, H09-

13558-A8) taken from patients with endometrial cancer were compared. Classes representing the 

samples were labelled as before and will be referred accordingly to associate data analysis with what 

is shown on the plots. All classes had relatively the same shape for their FTIR mean spectra with most 

evident variations in absorbance intensities occurring at ~1786 cm-1, ~1771 cm-1, ~1760 cm-1, ~1717 

cm-1, ~1701 cm-1 and ~1684 cm-1. Highest peaks were mainly exhibited by Patient 2. No peaks were 

detected in the spectral region 900-1300 cm-1 (Fig. 3.113).  

Statistical analysis indicated that all tissues were significantly different from each other (Fig. 3.114). 

Figure 3.112: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from stromal cells, amongst non-diseased tissue sections. (A) & (B) no sample 

used as a reference, (C) & (D) Normal (H09-11708-4) reference class, (E) & (F) Normal-Endo. (H09-12292-1) reference class, (G) & (H) 

Normal-C1 (H09-12890-11) reference class, (I) & (J) Normal-C2 (H09-9102-6) reference class and (K) & (L) Normal-C3 (H09-13558-A8) 

reference class. The red rectangles in the cluster vector peak location plots highlight the wavenumbers occurring commonly in different 

tissue samples. 
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Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D 

and 2D space  (Fig. 3.115). Class labelled as Patient 1 overlapped with the other two classes throughout 

all of its spectra. Almost half of the spectra of Patient 2 and Patient 3 overlapped with each other and 

with Patient 1. Spectral points of Patient 1 had a relatively more compact arrangement and thus less 

intra-class variation. 

Parameters P value 

  LDA1 vs Patient 1 P > 0.05 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P < 0.001 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P < 0.001 

  Patient 2 vs Patient 3 P < 0.001 

Figure 3.113: Mean FTIR spectra for comparison of spectra acquired from stromal cells in non-diseased tissue sections (H09-12890-11, 

H09-9102-6, H09-13558-A8). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-12890-

11, H09-9102-6 and H09-13558-A8 respectively. 

 

Figure 3.114: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

stromal cells between non-diseased tissue sections 

H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Patient 1, Patient 2 

and Patient 3 respectively. 
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The five major discriminant wavenumbers identified in loading plots accounting for variations 

between tissue samples were 1786 cm-1, 1747 cm-1, 1695 cm-1, 1651 cm-1 and 1658 cm-1 (Fig. 3.116). 

 

 

Figure 3.115: Scores plots for 

segregation of spectra in (A) 1D and (B) 

2D space. Classes of tissues were 

labelled as Patient 1 (red), Patient 2 

(blue) and Patient 3 (green) representing 

the tissues H09-12890-11, H09-9102-6 

and H09-13558-A8 respectively. In (B) 

LD1 would discriminate spectral points 

between the different classes of tissues 

whereas as LD2 contributed to intra-

class variation. 

Figure 3.116:  Loadings plots showing wavenumbers that discriminate stromal cells in non-diseased tissue sections (H09-9102-6, H09-

12890-11, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 
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These wavenumbers along with other wavenumbers were observed in cluster vectors plots (Fig. 

3.117). Plots were presented and analysed like previously to identify potential biomarkers for stromal 

cells. Having no class as a reference origin the wavenumbers displaying common occurrence amongst 

tissue samples were 1747 cm-1, 1695 cm-1, 1651 cm-1, 1558 cm-1, 1504 cm-1 (phenyl rings) and 1456 

cm-1 (lipids and proteins). Using Patient 1 as reference the only wavenumber observed to have 

common occurrence in classes was 1796 cm-1. Classes were not found to be common for any 

wavenumber when Patient 2 was set as the reference origin. Using Patient 3 as reference common 

occurrence was observed for 1747 cm-1, 1695 cm-1, 1558 cm-1 and 1456 cm-1 (lipids and proteins).  
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Between diseased samples from patients with endometrial cancer 

 

Spectra acquired from stromal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-13558-

A5) taken from cancerous lesions in the endometrium were analysed and compared. Classes 

representing the samples were labelled as before so they will be referred accordingly to associate data 

analysis with what is shown on the plots. Relatively the same shape in mean FTIR spectra was exhibited 

by all classes and most pronounced variations in absorbance intensities occurred at ~1786 cm-1, ~1771 

cm-1, ~1755 cm-1, ~1735 cm-1, ~1717 cm-1, ~1701 cm-1, ~1684 cm-1 and ~1487 cm-1 (Fig. 3.118). Highest 

peak intensities were mainly observed in Patient 3. No peaks were detected in the spectral region 900-

1300 cm-1.  

Statistical analysis indicated that Patient 2 was significantly different from Patient 3 and Patient 1 but 

the two latter were not found to be significantly different (Fig. 3.119). 

Figure 3.117: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from stromal cells among non-diseased tissue sections from patients with 

endometrial cancer. (A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-11) reference class, (E) & (F) Patient 2 (H09-

9102-6) reference class and (G) & (H) Patient 3 (H09-13558-A8) reference class. The red rectangles highlight the wavenumbers occurring 

commonly in classes.  
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Segregation of classes resulting from application of PCA-LDA was visualised in scores plots of 1D and 

2D space (Fig. 3.120). Spectra of Patient 1 overlapped with both Patient 2 and Patient 3, whereas the 

latter two classes did not overlap with each other. Spectral points of Patient 2 had a relatively more 

compact arrangment in the dimensional space which signified the least intra-class variation. 

Figure 3.118: Mean FTIR spectra for comparison of spectra from stromal cells in diseased tissue sections (H09-12890-9, H09-9102-1, 

H09-13558-A5). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-12890-9, H09-9102-

1 and H09-13558-A5 respectively. 

 

Parameters P value 

  LDA1 vs Patient 1 P < 0.001 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P < 0.001 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P > 0.05 

  Patient 2 vs Patient 3 P < 0.001 

 

Figure 3.119: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

stromal cells between diseased tissue sections H09-

9102-1, H09-12890-9, H09-13558-A5 represented 

by the class labels Patient 1, Patient 2 and Patient 3 

respectively. 
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Generation of loading plots identified five major wavenumbers which would discriminate classes of 

tissues (Fig. 3.121). The identified wavenumbers were 1771 cm-1, 1715 cm-1, 1682 cm-1, 1558 cm-1 and 

1456 cm-1 (lipids and proteins). 

 

 

 

 

 

 

 

 

 

Figure 3.120: Scores plots for segregation of 

spectra acquired from stromal cells in (A) 1D 

and (B) 2D space. Classes of tissues were 

labelled as Patient 1 (red), Patient 2 (blue) and 

Patient 3 (green) representing the tissues H09-

12890-9, H09-9102-1 and H09-13558-A5 

respectively. In (B) LD1 would discriminate 

spectral points between the different classes of 

cells whereas as LD2 contributed to intra-class 

variation. 

Figure 3.121:  Loadings plots showing wavenumbers that discriminate stromal cells in diseased tissue sections (H09-9102-1, H09-12890-

9, H09-13558-A5). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 
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Classes of tissue samples displayed common occurrence for the above mentioned wavenumbers as 

illustrated in cluster vector plots (Fig. 3.122) Plots were presented and analysed as before to observe 

occurrence and expression levels of wavenumbers amongst tissue samples and identify potential 

biomarkers. All the wavenumbers displayed common occurrence amongst the classes when  no class 

was set as the refernce origin. The only wavenumbers to display common occurrence when Patient 1 

was the reference class was 1558 cm-1. When Patient 2 was the class reference all the wavenumbers 

exhibited common occurrence except 1771 cm-1. Having Patient 3 as reference, common occurrence 

was displayed only by 1771 cm-1 and 1558 cm-1.  
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Diseased tisues Vs Non-Diseased tissues 

The spectra of the stromal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-13558-A5) 

were compared with the spectra of stromal cells in their corresponding non-diseased tissue samples 

(H09-12890-11, H09-9102-6, H09-13558-A8) taken from patients with endometrial cancer and tissue 

samples were represented by the classes ‘Cancer’ and ‘Normal’ respectively. Classes of tissues will be 

referred according to their labels to associate data analysis with what is shown on the plots. Relatively 

the same shape in mean FTIR spectra was exhibited by both classes and most evident variations in 

peak intensities were identified at ~1572 cm-1, ~1556 cm-1, ~1539 cm-1, ~1456 cm-1, ~1441 cm-1 and 

~1418 cm-1 (Fig. 3.123 A). Highest peak intensities were mainly observed in Normal. No peaks were 

detected in the spectral region 900-1300 cm-1. Application of PCA-LDA resulted in segregation of 

classes which was visualised in scores plot of 1D space whereby almost the whole spectra of Normal 

would overlap with amlost half of the spectra of Cancer (Fig. 3.123 B). Statistical analysis indicated 

that classes were not significantly different from each other (Fig. 3.124). 

 

 

 

 

Figure 3.122: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from stromal cells among diseased tissue sections from patients with 

endometrial cancer. (A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-9) reference class, (E) & (F) Patient 2 (H09-

9102-1) reference class and (G) & (H) Patient 3 (H09-13558-A5) reference class. The red rectangles highlight the wavenumbers occurring 

commonly in classes. 
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The five major wavenumbers identified in loading responsible for discriminating the classes of tissue 

samples were 1747 cm-1, 1715 cm-1, 1556 cm-1, 1520 cm-1 (amide II) and 1456 cm-1 (lipids and proteins) 

(Fig. 3.125). 

 

 

 

 

 

 

 

 

 

 

Parameters P Value 

Cancer Vs Normal P<0.0001 

Figure 3.123: (A) Mean FTIR spectra for comparison of spectra from stromal cells in all diseased tissue sections (H09-12890-9, H09-

9102-1, H09-13558-A5) and their corresponding non-diseased tissue sections (H09-12890-11, H09-9102-6, H09-13558-A8). (B) Scores 

plots for segregation of spectra in 1D space. Diseased and non-diseased tissue samples are represented by the class labels ‘Cancer’ (red) 

and ‘Normal’ (blue) respectively. 

Figure 3.124: Obtained p-value by employment of 

Unpaired t-test to compare spectra acquired from 

stromal cells between non diseased (H09-9102-6, 

H09-12890-11, H09-13558-A8) and their 

corresponding diseased (H09-9102-1, H09-12890-

9, H09-13558-A5) tissue sections represented by 

the class labels Normal and Cancer respectively. 

Figure 3.125:  Loadings plots showing wavenumbers that discriminate spectra from stromal cells in all diseased (H09-9102-1, H09-

12890-9, H09-13558-A5) and their corresponding non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8) tissue sections. The red 

line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference spectrum. 
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These wavenumbers were also observed in cluster vector plots which were presented and analysed in 

the same approach as previously (Fig. 3.126). The wavenumbers displayed common occurrence in 

both classes and exhibited same expression levels amongst classes so none of the wavenumbers was 

identified to have a potential as a biomarker to specify either ‘Normal’ or ‘Cancer’ stromal cells though 

highest expression levels were exhibited by 1715 cm-1 whereas 1747 cm-1 exhibited the lowest levels. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.126: Alternative presentation of 

cluster vector plots, produced after 

application of PCA-LDA, showing 

occurrence and expression levels of 

wavenumbers, from spectra acquired from 

stromal cells among all corresponding 

diseased (H09-12890-9, H09-9102-1, H09-

13558-A5) and non-diseased (H09-12890-

11, H09-9102-6, H09-13558-A8) tissue 

sections. The red rectangles highlight the 

wavenumbers occurring commonly in 

classes. 
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3.2.4 Basal Cells Vs Luminal Cells Vs Stromal Cells 

 

In individual tissue samples 

The biochemical composition of basal, luminal and stromal cells from all five glandular elements in 

individual tissue sections were analysed and compared. Figure 3.127 shows the mean FTIR spectra of 

all the classes of cells acquired from all five glandular elements in each tissue section. All three classes 

of cells in all tissue samples exhibited relatively the same shape in mean FTIR spectra whereby most 

evident variations in absorbance intensities occurred at ~1682 cm-1, ~1666 cm-1, ~1640 cm-1, ~1572 

cm-1, ~1556 cm-1, ~1539 cm-1, ~1522 cm-1, ~1506 cm-1, ~1491 cm-1 and ~1456 cm-1. No specific 

observations were made that could correlate in any way non-diseased tissue samples with their 

corresponding diseased tissue. No peaks were detected in the spectral region 900-1300 cm-1. 

Classes of cells were significantly different from each other except in tissue sample H09-9102-1 

whereby the obtained P value suggested no significant difference between basal and stromal cells (Fig. 

3.128). 
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Figure 3.127: Mean FTIR spectra for comparison of 

spectra acquired from basal (red), luminal (blue) and 

stromal (green) cells from all five glandular areas in 

non-diseased (H09-9102-6, H09-12890-11, H09-13558-

A8, H09-11708-4, H09-12292-1) and diseased (H09-

9102-1, H09-12890-9, H09-13558-A5) tissue sections. 

Spectra of corresponding non-diseased (H09-9102-6, 

H09-12890-11, H09-13558-A8) and diseased (H09-

9102-1, H09-12890-9, H09-13558-A5) tissue samples 

are illustrated next to each other. 
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H09-12292-1 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.01 

  Luminal Cells vs Stromal Cells P < 0.001 

 

H09-12890-9 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.01 

  Basal Cells vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

 

H09-13558-A5 
 

Parameters P value 

  LDA1 vs Basal Cells P < 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.05 

  Luminal Cells vs Stromal Cells P < 0.001 

 

H09-12292-1 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.01 

  Luminal Cells vs Stromal Cells P < 0.001 

 

H09-9102-6 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

H09-12890-11 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

H09-13558-A8 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

H09-11708-4 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

Figure 3.128: Obtained p-values by employment of One-way ANOVA test coupled with Tukey’s multiple comparison test to compare 

spectra acquired from basal, luminal and stromal cells from five glandular elements in individual non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-9102-1) and diseased (H09-9102-1, H09-12890-9, H09-13558-A5) tissue sections. 
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Figure 3.129 and figure 3.130 illustrate scores plots of non-diseased and diseased tissue sections 

respectively. In sample H09-9102-6, basal cells overlapped with both luminal and stromal cells. 

Luminal and stromal cells would overlap slightly with each other. None of the classes displayed to have 

neither more nor less intra-class variation based on arrangement of spectral points within the 

dimensional space. 

In sample H09-12890-11 basal cells overlapped with both luminal and stromal cells whereas the two 

latter classes displayed less overlap between them. None of the classes displayed to have neither more 

nor less intra-class variation based on arrangement of spectral points within the dimensional space. 

In sample H09-13558-A8, basal cells overlapped with luminal and stromal cells whilst little overlap was 

observed between luminal and stromal cells. Spectral points of stromal cells had a relatively more 

compact arrangement signifying less intra-class variation.  

In sample H09-11708-4 basal cells overlapped with both luminal and stromal cells. Less overlapping 

was displayed between luminal and stromal cells. Spectral points of basal cells had a relatively more 

spread arrangement which signified more intra-class variation.  

In sample H09-12292-1, degree of overlapping was relatively the same between all classes. Spectral 

point of basal cells displayed a more compact arrangement which signified less intra-class variation.  

In sample H09-9102-1, most overlapping was observed between basal and stromal cells. Both classes 

displayed little overlap with luminal cells. Spectral point of luminal cells had a more spread 

arrangement within the dimensional space which signified the most intra-class variation.  

In sample H09-12890-9 all classes overlapped with each other to a certain degree. None of the classes 

displayed to have neither more nor less intra-class variation based on arrangement of spectral points 

within the dimensional space. 

In sample H09-13558-A5 overlapping was mainly displayed between basal and stromal cells, both of 

which would slightly overlap with luminal cells. Spectral point of stromal cells had a relatively more 
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compact arrangement which signified less intra-class variation. No specific observations were made 

that would associate the corresponding non-diseased and diseased tissue sections.  
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Figure 3.129: 1D and 2D scores plots in non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-13558-A8, H09-11708-4, H09-

12292-1) produced after application of PCA-LDA on the spectra acquired from basal (red), luminal (blue) and stromal (green) cells from 

all glandular elements in individual samples. In 2D plots LD1 would discriminate spectral points between the different classes of cells 

whereas as LD2 contributed to intra-class variation. 
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Generation of loading plots identified five major discriminant wavenumbers responsible for variations 

between classes of basal, luminal and stromal cells from all the interrogated glandular elements in 

individual samples (Fig. 3.131). The identified wavenumbers in sample H09-9102-6 were 1786 cm-1, 

1747 cm-1, 1715 cm-1, 1666 cm-1 (amide I) and 1504 cm-1 (phenyl rings). In H09-12890-11 the 

wavenumbers were 1771 cm-1, 1732 cm-1 (lipids), 1695 cm-1, 1558 cm-1 and 1504 cm-1 (phenyl rings). 

In sample H09-13558-A8 the discriminant wavenumbers were 1771 cm-1, 1699 cm-1 

(guanine/thymine), 1645 cm-1, 1556 cm-1 and 1504 cm-1 (phenyl rings). In H09-11708-4 the major 

wavenumbers were 1732 cm-1 (lipids), 1697 cm-1, 1645 cm-1, 1558 cm-1 and 1504 cm-1 (phenyl rings). 

In H09-12292-1 the wavenumbers were 1747 cm-1, 1699 cm-1 (guanine/thymine), 1645 cm-1, 1558 cm-

1 and 1504 cm-1 (phenyl rings). In the diseased sample H09-9102-1 the wavenumbers were 1771 cm-1, 

1699 cm-1 (guanine/thymine), 1666 cm-1 (amide I), 1558 cm-1 and 1456 cm-1 (lipids and proteins). In 

sample H09-12890-9 the identified wavenumbers were 1697 cm-1, 1651 cm-1, 1558 cm-1, 1506 cm-1  

and 1456 cm-1 (proteins and lipids). In sample H09-13558-A5 the discriminant wavenumbers were 

1717 cm-1 (amide I, DNA/RNA), 1651 cm-1, 1558 cm-1, 1504 cm-1 (phenyl rings) and 1456 cm-1 (proteins 

and lipids). The wavenumbers 1558 cm-1 and 1504 cm-1 (phenyl rings) were observed to occur 

commonly in loading plots among tissue samples. 

Figure 3.130: 1D and 2D scores plots in diseased tissue sections (H09-9102-1, H09-12890-9, H09-13558-A5) produced after application 

of PCA-LDA on the spectra acquired from basal (red), luminal (blue) and stromal (green) cells from all glandular elements in individual 

samples. In 2D plots LD1 would discriminate spectral points between the different classes of cells whereas as LD2 contributed to intra-

class variation. 
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Figure 3.131:  Loadings plots showing wavenumbers that 

discriminate basal, luminal and stromal cells from all 

glandular areas in non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-12292-1) 

and diseased (H09-9102-1, H09-12890-9, H09-13558-A5) 

tissue sections. Loading plots of corresponding non-

diseased and diseased tissue samples are illustrated next 

to each other. The red line is a pseudospectra and the 

dotted line is the actrual pre-processed spectrum used as 

a reference spectrum. 
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Cluster vector plots were analysed in an alternative way in an attempt to identify potential biomarkers 

for basal, luminal and stromal cells (Fig. 3.132). Observations were based on expression levels of 

wavenumbers in the different classes of cells and which wavenumbers and/or spectral regions were 

commonly shared among classes and which wavenumbers occurred only in one class. The expression 

levels of shared wavenumbers were the same among classes, unless stated differently. 

In sample H09-9102-6 the wavenumbers shared in common between all classes of cells were 1747 cm-

1, 1715 cm-1, 1666 cm-1 (amide I) and 1504 cm-1 (phenyl rings). Wavenumbers occurring only in basal, 

luminal and stromal cells were 1541 cm-1 (amide II), 1556 cm-1 and 1786 cm-1 respectively. 

In sample H09-12890-11 all three classes were common for 1695 cm-1, 1558 cm-1 and 1504 cm-1 (phenyl 

rings). Luminal and stromal cells were common for 1732 cm-1 (lipids) and the first were also common 

with basal cells for 1456 cm-1 (lipids and proteins). Wavenumbers for which basal and stromal cells 

were unique were 901 cm-1 and 1771 cm-1 respectively. 

In sample H09-13558-A8 all classes of cells were common for 1558 cm-1 only. Luminal and stromal 

cells were common for 1699 cm-1 (guanine/thymine) and 1645 cm-1 whilst basal and stromal cells were 

common for 1456 cm-1 (lipids and proteins) whose expression levels were higher in basal cells. 

Wavenumbers found only in basal cells were 1747 cm-1, 1715 cm-1 and 1651 cm-1 whilst luminal cells 

were unique for 1771 cm-1  and 1472 cm-1. 

In sample H09-11708-4 all three classes of cells were common for 1558 cm-1 and 1556 cm-1 and 1504 

cm-1 (phenyl rings). Wavenumbers for which luminal and stromal cells were common were 1732 cm-1 

(lipids), 1697 cm-1 and 1645 cm-1. Basal cells were found to be unique for 1717 cm-1 (amide I, 

DNA/RNA), 1682 cm-1 and 1456 cm-1 (lipids and proteins). 

In sample H09-12292-1 all classes of cells were common only for 1699 cm-1 (guanine/thymine). Basal 

and luminal cells were common for 1558 cm-1, luminal and stromal cells were common for 1645 cm-1 

whilst basal and stromal cells were common for 1506 cm-1. Basal cells were unique for 1796 cm-1 and 
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1651 cm-1. Luminal cells were unique for 1732 cm-1 (lipids) and 1516 cm-1 (amide II) whilst stromal cells 

were unique only for 1747 cm-1. 

In sample H09-9102-1 no wavenumber was found to be common among all three classes of cells. Basal 

and luminal cells were common for 1699 cm-1 (guanine/thymine), 1666 cm-1 (amide I) and 1456 cm-1 

(lipids and proteins). Expression levels of the latter were higher in basal cells. Luminal and stromal 

cells were common for 1771 cm-1 and 1558 cm-1 whose expression levels were higher in stromal cells. 

Basal cells were unique for 1541 cm-1 (amide II) and 1504 cm-1 (phenyl rings) whilst stromal cells were 

unique for 1713 cm-1 (C=O thymine), 1651 cm-1 and 1520 cm-1 (amide II). No wavenumbers were 

observed to occur only in luminal cells.  

In sample H09-12890-9 the wavenumbers 1558 cm-1 and 1556 cm-1 were commonly shared among all 

classes of cells. Basal and stromal cells were common for 1730 cm-1 (fatty acid ester) and 1697 cm-1. 

Basal and luminal cells were common for 1651 cm-1 and 901 cm-1 whilst common occurrence of 1506 

cm-1 with 1504 cm-1 was observed between stromal and luminal cells. Also luminal and stromal cells 

were unique for 1715 cm-1 and 1456 cm-1 (lipids and proteins) respectively. 

In sample H09-13558-A5 all classes of cells were common for 1651 cm-1, 1556 cm-1 with 1558 cm-1, 

1504 cm-1 (phenyl rings) and 1456 cm-1 (lipids and proteins). Expression levels of 1651 cm-1 were higher 

in basal cells and levels of 1504 cm-1 (phenyl rings) were lower in luminal cells. Wavenumbers found 

only in basal, luminal and stromal cells were 1771 cm-1, 1717 cm-1 (amide I, DNA/RNA) and 1418 cm-1 

(deformation C-H) respectively. 
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In non-diseased tissues 

 

The biochemical composition of all basal, luminal and stromal cells in non-diseased tissue samples 

(H09-9102-6, H09-12890-11, H09-13558-A8) taken from patients with endometrial cancer was 

analysed. All classes of cells exhibited relatively the same shape in mean FTIR spectra whereby evident 

variations in absorbance intensities were observed at ~1682 cm-1, ~ 1666 cm-1, ~1635 cm-1, ~1572 cm-

1, ~1556 cm-1, ~1539 cm-1, ~1522 cm-1, ~1506 cm-1, ~1491 cm-1 and ~1456 cm-1 (Fig. 3.133). Luminal 

cells had the highest peak intensities at these spectral regions. No peaks were detected in the spectral 

region 900-1300 cm-1. Classes of cells were significantly different from each other as indicated by the 

P values obtained from statistical analysis (Fig. 3.134). 

Figure 3.132:  Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers among basal (red), luminal (blue) and stromal (green) cells from all glandular areas in individual non-

diseased (H09-9102-1, H09-12890-9, H09-13558-A5,H09-11708-4, H09-12292-1) and diseased tissue sections (H09-9102-1, H09-12890-

9, H09-13558-A5). The red rectangles highlight wavenumbers shared in common between classes of cells. 
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Figure 3.133: Mean FTIR spectra for comparison of spectra acquired from all basal (red), luminal (blue) and stromal (green) cells in non-

diseased tissue sections (H09-9102-6, H09-12890-11, H09-13558-A8) to analyse their biochemical composition. 

Figure 3.134: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from all 

basal, luminal and stromal cells in non-diseased tissue 

sections (H09-9102-6, H09-12890-11, H09-13558-A8). 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 
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Segregation of classes after application of PCA-LDA was visualised in scores plots of 1D and 2D space 

(Fig. 3.135). Basal and luminal cells overlapped with each other throughout most of their spectra. 

Stromal cells overlapped more with basal cells than with luminal cells. Spectral point of all classes were 

spread within the dimensional space but relatively more compact arrangement was displayed by 

spectra of stromal cells and thus signifying less intra-class variation. 

 

A 

B 

Figure 3.135: Scores plots of (A) 1D and (B) 2D space illustrating segregation of spectra acquired from basal (red), luminal (blue) and 

stromal (green) cells in non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-13558-A8) produced after application of PCA-

LDA. In (B) LD1 would discriminate spectral points between the different classes of cells whereas as LD2 contributed to intra-class 

variation. 
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The five major discriminant wavenumbers identified in loading plots (Fig. 3.136) accounting for 

variations between classes of cells were 1796 cm-1, 1732 cm-1 (lipids), 1666 cm-1 (amide I), 1556 cm-1 

and 1504 cm-1 (phenyl rings).  

 

 

Cluster vector plots were analysed in an alternative way in an attempt to identify potential biomarkers 

for basal, luminal and stromal cells in non-diseased tissue samples (Fig. 3.137). Observations were 

based on expression levels of wavenumbers in the different classes of cells and which wavenumbers 

and/or spectral regions were commonly shared among classes and which wavenumbers occurred only 

in one class. The expression levels of shared wavenumbers were the same among classes. All classes 

of cells were common for 1796 cm-1, 1558 cm-1, 1556 cm-1 and 1504 cm-1 (phenyl rings). Luminal and 

stromal cells were common for 1732 cm-1 (lipids) and 1666 cm-1 (amide I). Wavenumbers occurring 

only in basal cells were 1699 cm-1 (guanine/thymine) and 1645 cm-1. 

 

 

 

Figure 3.136:  Loadings plots showing five major wavenumbers that discriminate basal, luminal and stromal cells in non-diseased tissue 

sections (H09-9102-6, H09-12890-11, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed 

spectrum used as a reference spectrum. 
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Figure 3.137:  Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers among basal (red), luminal (blue) and stromal (green) cells in  non-diseased tissue sections (H09-

9102-6, H09-12890-11, H09-13558-A8). The red rectangles highlight wavenumbers shared in common between classes of cells. 
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In diseased tissues 

 

The biochemical composition of all basal, luminal and stromal cells in diseased tissue samples (H09-

9102-1, H09-12890-9, H09-13558-A5) taken from cancerous lesions of the endometrium was 

analysed. All classes of cells exhibited relatively the same shape in mean FTIR spectra (Fig. 3.138). 

Evident variations in absorbance intensities were observed at ~1786 cm-1, ~ 1771 cm-1, ~1682 cm-1, 

~1666 cm-1, ~1647 cm-1, ~1634 cm-1, ~1572 cm-1, ~1556 cm-1, ~1539 cm-1, ~1506 cm-1 and ~1491 cm-1. 

Within the spectral region ~1796-1738 cm-1 slightly higher peaks were exhibited by basal cells whereas 

within the region ~1700-1500 cm-1 highest peaks were exhibited by luminal cells. No peaks were 

detected in the spectral region 900-1300 cm-1. Statistical analysis suggested that basal and stromal 

cells were not significantly different from each other but both were significantly different from luminal 

cells (Fig. 3.139). 

 

 

Figure 3.138: Mean FTIR spectra for comparison of spectra acquired from all basal (red), luminal (blue) and stromal (green) cells in 

diseased tissue sections (H09-9102-1, H09-12890-9, H09-13558-A5) to analyse their biochemical composition. 
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Segregation of classes after application of PCA-LDA was visualised in scores plots of 1D and 2D space 

(Fig. 3.140). Basal and stromal cells overlapped more with each other relative to the overlap exhibited 

by either class with luminal cells. Spectral points of luminal cells had a relative more spread 

arrangement which signified more intra-class variation. 
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Figure 3.140: Scores plots of (A) 1D and (B) 2D space illustrating segregation of spectra acquired from basal (red), luminal (blue) and 

stromal (green) cells in diseased tissue sections (H09-9102-1, H09-12890-9, H09-13558-A5) produced after application of PCA-LDA. In 

(B) LD1 would discriminate spectral points between the different classes of cells whereas as LD2 contributed to intra-class variation.  

Figure 3.139: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from all 

basal, luminal and stromal cells in diseased tissue 

sections (H09-9102-1, H09-12890-9, H09-13558-A5). 

Parameters P value 

  LDA1 vs Basal Cells P < 0.001 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P > 0.05 

  Luminal Cells vs Stromal Cells P < 0.001 
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The five major discriminant wavenumbers identified in loading plots (Fig. 3.141) accounting for 

variations between classes of cells were 1732 cm-1 (lipids), 1699 cm-1 (guanine/thymine), 1651 cm-1, 

1537 cm-1 (stretching C=N) and 1456 cm-1 (lipids and proteins).  

 

 

Cluster vector plots were analysed in an alternative way in an attempt to identify potential biomarkers 

for basal, luminal and stromal cells in diseased tissue samples (Fig. 3.142). Observations were based 

on expression levels of wavenumbers in the different classes of cells and which wavenumbers and/or 

spectral regions were commonly shared among classes and which wavenumbers occurred only in one 

class. The expression levels of shared wavenumbers were the same among classes. The wavenumbers 

commonly shared between all three classes of cells were 1651 cm-1 and 1456 cm-1 (lipids and proteins). 

Luminal and stromal cells were common for 1699 cm-1 (guanine/thymine) and 1537 cm-1 (stretching 

C=N). Wavenumbers occurring only in basal cells were 1717 cm-1 (amide I, DNA/RNA), 1556 cm-1 and 

1506 cm-1. Luminal and stromal cells were unique for 1732 cm-1 (lipids) and 1418 cm-1 (deformation C-

H) respectively. 

 

Figure 3.141:  Loadings plots showing five major wavenumbers that discriminate basal, luminal and stromal cells in diseased tissue 

sections (H09-9102-1, H09-12890-9, H09-13558-A5). The red line is a pseudospectra and the dotted line is the actual pre-processed 

spectrum used as a reference spectrum. 
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Figure 3.142:  Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers among basal (red), luminal (blue) and stromal (green) cells in  diseased tissue sections (H09-9102-1, 

H09-12890-9, H09-13558-A5). The red rectangles highlight wavenumbers shared in common between classes of cells. 
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3.3 Raman spectroscopy 

 

The same tissue sections interrogated using FTIR spectroscopy were also interrogated using Raman 

spectroscopy. A x50 objective lens was used to visualise the five randomly selected glandular elements 

in a tissue section and locations for spectral acquisition. For each tissue sample a point map was used 

as a methodological approach to select points for spectral acquisition (Fig. 3.143). Spectra was 

collected from 10 points corresponding to the location of basal epithelial cells (hypothesised location 

of epithelial stem/progenitor cells) in a gland(Fig.3.143 D), 10 points from locations of luminal 

epithelial cells (Fig.3.143 C), which is adjacent to the lumen of the gland, and 10 points from stromal 

cells from the area surrounding the glandular element (Fig.3.143 E). A total of 30 spectral points were 

selected in each glandular element and a total of 150 spectral points per tissue sample.  

 

 

The raw spectral fingerprint acquired from the cells was pre-processed by application of rubber band 

baseline correction followed by vector normalisation and wavelet-denoising to remove any issued that 

arose during spectral collection (Fig. 3.144). Pre-processing was followed by multivariate analysis via 

Figure 3.143: Experimental design – an example of a tissue sample. (A): shape of interrogated tissue section indicating the locations 

of the 5 different glandular areas, (B): glandular element as seen through the white light camera, (C): 10 selected points for spectral 

acquisition from basal cells, (D): 10 selected points for spectral acquisition from luminal cells and (E): 10 selected points for spectral 

acquisition from surrounding stromal cells. 
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employment of PCA-LDA to allow segregation of classes which was visualised on scores plots of one-

dimensional (1D), two-dimensional (2D) or three-dimensional (3D) space, depending on the number 

of classes. In each case generation of loading plots revealed five major discriminant wavenumbers 

responsible for variations and thus segregation of classes. Cluster vector plots were presented in a 

different way illustrating the expression levels of wavenumbers in the classes. Classes were 

represented by different shapes whose sizes correlated to expression levels i.e. the bigger the size of 

the shape the higher the expression.  

The aim of data analysis was to identify potential biomarkers for basal, luminal and stromal cells that 

would enable their characterisation based on their location within the glandular elements and 

eventually assess their ‘stemness’ bases on the hypothesised location of endometrial stem/progenitor 

cells. In this concept basal cells were expected to have more endometrial-like nature. For 

wavenumbers and/or spectral regions to present a potential as biomarkers, they should be shared in 

common among classes being compared. 

Statistical analysis was also employed to assess significance of inter-class variations. One-way ANOVA 

or unpaired t-test were performed, depending on number of classes being analysed at each section. 

On a first approach, the biochemical composition of basal, luminal and stromal cells in tissue samples 

was analysed individually. Then their spectra was compared and analysed. 

 

 

 

 

 

 

 

 

 

A 

C B 

Figure 3.144: An example of (A) raw spectra 

obtained during interrogation of a tissue 

sample by FTIR spectroscopy and class 

means (B) before and (C) after pre-

processing. 
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3.3.1 Basal Cells Vs Basal Cells 

 

In individual tissue samples 

 

By looking at the mean Raman spectra of basal cells from the five different glandular elements in each 

tissue sample (Fig. 3.145) it was observed that areas within individual tissues exhibited relatively the 

same shape in mean Raman spectra. The shape of the spectra was relatively consistent between 

samples. It was also observed that the mean spectra of basal cells in non-diseased tissue samples 

exhibited a very similar shape with their corresponding diseased tissue samples. In all tissues most 

evident variations in absorbance intensities occurred at ~1660 cm-1, ~1445 cm-1, ~1343 cm-1, ~1293 

cm-1, ~1250 cm-1, ~1129 cm-1, ~1063 cm-1, ~1002 cm-1, ~943 cm-1, ~852 cm-1 and 757 cm-1. 

Statistical analysis (Fig. 3.146) indicated that in most tissues at least three areas were not significantly 

different from the tissue as a whole. Whereas in the majority of the tissues, most areas were 

significantly different from each other. 
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Figure 3.145: Mean Raman spectra for comparison of 

spectra acquired from basal cells between the five 

glandular areas in non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-12292-

1) and diseased (H09-9102-1, H09-12890-9, H09-

13558-A5) tissue sections. Spectra of corresponding 

non-diseased (H09-9102-6, H09-12890-11, H09-

13558-A8) and diseased (H09-9102-1, H09-12890-9, 

H09-13558-A5) tissue samples are illustrated next to 

each other. 
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H09-9102-6 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-12890-11 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P < 0.01 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.01 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.05 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-13558-A8 
 

Parameters P value 

  LDA1 vs Area A P < 0.01 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.01 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-11708-4 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.001 

  Area A vs Area E P < 0.001 

  Area B vs Area C P < 0.01 

  Area B vs Area D P < 0.001 

  Area B vs Area E P < 0.05 

  Area C vs Area D P > 0.05 

  Area C vs Area E P > 0.05 

  Area D vs Area E P > 0.05 

 

H09-12292-1 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P < 0.05 

  LDA1 vs Area C P < 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-9102-1 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.001 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P > 0.05 
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Segrregation of spectra acquired from the glandular elements was visualised in scores plots of 1D and 

3D space. Figure 3.147 illustrates scores plots of non-diseased tissue samples and figure 3.148 

illustrates scores plots of diseased tissue samples. Not all areas overlapped with each other in 

individual tissues and spectral points of all areas had relatively the same arrangement in the 

dimensional space which was rather spread. No specific observations were made that would correlate 

corresponding non-diseased and diseased tissue sections. 

 

 

 

 

 

 

 

 

H09-12890-9 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P < 0.01 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-13558-A5 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

Figure 3.146: Obtained p-values by employment of One-way ANOVA test coupled with Tukey’s multiple comparison test to compare 

spectra acquired from basal in five glandular elements in individual non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8, H09-

11708-4, H09-9102-1) and diseased (H09-9102-1, H09-12890-9, H09-13558-A5) tissue sections. 
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Figure 3.147: 1D scores plots and their corresponding 3D scores plots in non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-

13558-A8, H09-11708-4, H09-12292-1) produced after application of PCA-LDA on the spectra acquired from basal cells from five 

different glandular elements. 

Figure 3.148: 1D scores plots and their corresponding 3D scores plots in diseased tissue sections (H09-9102-1, H09-12890-9, H09-

13558-A5) produced after application of PCA-LDA on the spectra acquired from basal cells from five different glandular elements. 
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Figure 3.149 illustrates the laoding plot for each tissue sample revealing the discriminant 

wavenumbers responsible for variations between the spectra acquired from basal cells at glandular 

areas. In tissue sample H09-9102-6 the discriminant wavenumbers and their assignements were as 

follows; 1662 cm-1 (amide I), 1574 cm-1 (purine rings, DNA/RNA), 1094 cm-1 (DNA), 782 cm-1 

(cytosine/uracil, DNA/RNA) and 725 cm-1 (DNA/RNA bases). In sample H09-12890-11 the discriminant 

wavenumbers were 1444 cm-1 (lipids), 1294 cm-1 (methylene twisting), 1131 cm-1 (lipids), 1061 cm-1 

(paraffin) and 857 cm-1. For tissue H09-13558-A8 the discriminant wavenumbers were 1451 cm-1 

(proteins and lipids), 1383 cm-1, 1306 cm-1, 1083 cm-1 (proteins and lipids) and 700 cm-1. For tissue H09-

11708-4 the identified wavenumbers were 1417 cm-1 (quinoid ring), 1340 cm-1 (nucleic acids/collagen), 

1294 cm-1 (methylene twisting), 1232 cm-1 and 1130 cm-1 (lipids). For tissue H09-12292-1 the 

wavenumbers were 1434 cm-1, 1379 cm-1 (lipids), 1132 cm-1 (proteins and lipids), 999 cm-1 

(phospholipid, glucose-I-phosphate) and 731 cm-1. In sample H09-9102-1 the identified wavenumbers 

were 1661 cm-1, 1394 cm-1, 1098 cm-1, 1002 cm-1 (phenylalanine) and 810 cm-1 

(phosphodiester/phosphate backbone). In sample H09-12890-9, the wavenumbers were 1537 cm-1, 

1435 cm-1, 1296 cm-1 (CH2 deformation), 1162 cm-1 and 781 cm-1 (cytosine/uracil) . In sample H09-

13558-A5 the wavenumbers were 1435 cm-1, 1400 cm-1 (proteins), 1294 cm-1 (methylene twisting), 

1131 cm-1 (lipids) and 1061 cm-1 (paraffin).  
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Figure 3.149:  Loadings plots showing 

wavenumbers that discriminate basal cells between 

different glandular areas in non-diseased (H09-

9102-6, H09-12890-11, H09-13558-A8, H09-11708-

4, H09-12292-1) and diseased (H09-9102-1, H09-

12890-9, H09-13558-A5) tissue sections. Loading 

plots of corresponding non-diseased and diseased 

tissue samples are illustrated next to each other. 

The red line is a pseudospectra and the dotted line 

is the actual pre-processed spectrum used as a 

reference spectrum. 
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Cluster vector plots of non-diseased (Fig. 3.150) and diseased (Fig. 3.151) tissue samples were 

presented and analysed in the same approach as before based on the common occurrence and 

expression levels of wavenumbers in an attempt to identify potential biomarkers for basal cells. 

In sample H09-9102-6, three areas were common for 1436 cm-1 (lipids) with 1434 cm-1 and 1432 cm-1, 

and 782 cm-1 (cytosine/uracil) with 781 cm-1 (cytosine/uracil). In sample H09-12890-11 three areas 

were common for 858 cm-1 with 857 cm-1 and four areas were common for 1436 cm-1 (lipids) with 1437 

cm-1 (proteins and lipids), 1294 cm-1 (methylene twisting) with 1297 cm-1, 1131 cm-1 (lipids) and 1061 

cm-1 (paraffin). In sample H09-13558-A8 common occurrence of 1449 cm-1 (proteins and lipids) with 

1451 cm-1 and 1452 cm-1, 1382 cm-1 with 1383 cm-1 and 1384 cm-1, and 1303 cm-1 (collagen) with 1306 

cm-1 was displayed by four areas whilst three areas were common for 1082 cm-1 (proteins) and 1083 

cm-1 (proteins and lipids). In sample H09-11708-4 three areas were common for 1418 cm-1 with 1417 

cm-1 and 1416 cm-1, and 1132 cm-1 with 1131 cm-1 (lipids) and 1130 cm-1 (phospholipids) whilst four 

areas were common for the 1294 cm-1 (methylene twisting) and 1232 cm-1 (amide III). In sample H09-

12292-1 three areas showed similarity for the wavenumbers 1431 cm-1 with 1434 cm-1, and 999 cm-1 

(phospholipids) with 1000 cm-1 (phenylalanine). In H09-9102-1 three areas were common for 1438 

cm-1 (CH2 deformation) with 1440 cm-1 (lipids), and 1002 cm-1 (phenylalanine). Five areas in sample 

H09-12890-9 were common for 1440 cm-1 (lipids) with 1437 cm-1 (proteins and lipids), 1435 cm-1 and 

1433 cm-1, four areas were common for 1303 cm-1 with 1302 cm-1 (protein, collagen/lipids), 1296 cm-

1 (CH2 deformation) and 1295 cm-1 whilst  781 cm-1 (cytosine/uracil) displayed common occurrence with 

782 cm-1 (cytosine/uracil) in three areas. In sample H09-13558-A5, three areas displayed common for 

1439 cm-1 (CH2 deformation) with 1438 cm-1 (CH2 deformation) and 1435 cm-1, 1294 cm-1 (methylene 

twisting) with 1295 cm-1, 1131 cm-1 (lipids) with 1132 cm-1, and 1061 cm-1 (paraffin). 
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Figure 3.150: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from basal cells, in five glandular areas in individual non-diseased tissue 

sections (H09-9102-6, H09-12890-11, H09-13558-A8, H09-11708-4, H09-12292-1). The red rectangles highlight the wavenumbers 

shared in common among glandular areas. 

 

Figure 3.151: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from basal cells, in five glandular areas in individual diseased tissue sections 

(H09-9102-1, H09-12890-9, H09-13558-A5). The red rectangles highlight the wavenumbers shared in common among glandular areas.  
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Between all normal tissue samples 

 

All the non-diseased tissue samples were compared between them for the spectra interrogated from 

their basal cells. Classes representing tissues were labelled as before. In this section tissues will be 

referred according to their class labels to associate plots with observations.  It was observed that all 

tissues had similar shape in mean Raman spectra with most prominent variations in absorvance 

intensities occuring at ~ 1666 cm-1, ~1295 cm-1, ~1130 cm-1, ~1061 cm-1, ~1002 cm-1, ~936 cm-1 and 

~853 cm-1 whereby highest peaks were mainly exhibited by Normal-Endo. (Fig. 3.152).  

Statistical analysis indicated that Normal and Normal-Endo. were not significantly different from each 

other neither were Normal-C1, Normal-C2 and Normal C3 (Fig. 3.153). 

 

 

 

 

Figure 3.152: Mean RAMAN spectra for comparison of spectra acquired from basal cells in non-diseased tissue samples (H09-11708-4, 

H09-12292-1, H09-12890-11, H09-9102-6, H09-13558-A8) represented by the class labels Normal, Normal-Endo., Normal-C1, Normal-

C2 and Normal-C3 respectively. 
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Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D, 

2D and 3D space (Fig. 3.154). Normal-C1, Normal-C2 and Normal-C3 overlapped mostly between them 

and displayed little overlap with the two classes. Similarly Normal and Normal-Endo. overlapped more 

with each other. Mainly spectral points of Normal-Endo. and Normal-C2 exhibited the most spread 

arrangement relative to the other classes which signified the most intra-class variation. 

   

 

Parameters P value 

  LDA1 vs Normal P < 0.001 

  LDA1 vs Normal-Endo. P < 0.001 

  LDA1 vs Normal-C1 P < 0.001 

  LDA1 vs Normal-C2 P < 0.001 

  LDA1 vs Normal-C3 P < 0.001 

  Normal vs Normal-Endo. P > 0.05 

  Normal vs Normal-C1 P < 0.001 

  Normal vs Normal-C2 P < 0.001 

  Normal vs Normal-C3 P < 0.001 

  Normal-Endo. vs Normal-C1 P < 0.001 

  Normal-Endo. vs Normal-C2 P < 0.001 

  Normal-Endo. vs Normal-C3 P < 0.001 

  Normal-C1 vs Normal-C2 P > 0.05 

  Normal-C1 vs Normal-C3 P > 0.05 

  Normal-C2 vs Normal-C3 P > 0.05 

 

Figure 3.153: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

basal cells in all five glandular elements between 

non-diseased tissue sections H09-11708-4, H09-

9102-1, H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Normal, Normal-

Endo., Normal-C1, Normal-C2 and Normal-C3 

respectively. 

Figure 3.154: Scores plots of segregation of spectra 

acquired from basal cells, in in non-diseased tissue 

samples (H09-11708-4, H09-12292-1, H09-12890-11, 

H09-9102-6, H09-13558-A8) represented by the class 

labels Normal, Normal-Endo., Normal-C1, Normal-C2 and 

Normal-C3 respectively, illustrated in (A) 1D space, (B) 2D 

space and (C) 3D space. In (B) LD1 would discriminate 

spectral points between the different classes of tissues 

whereas as LD2 contributed to intra-class variation. 
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The five major discriminant wavenumbers identified in loading plots accounting for variations 

between tissue samples were 1430 cm-1, 1187 cm-1, 1142 cm-1, 1081 cm-1 (lipids) and 1001 cm-1 

(phenylalanine) (Fig. 3.155).  

 

 

 

 

 

 

 

 

 

 

 

Some of the aforementioned wavenumbers were also observed in cluster vector plots which were 

presented and analysed in the same approach as before in order to identify potential biomarkers for 

basal cells (Fig. 3.156). Without having any class as a reference, 1433 cm-1 (lipids) with 1430 cm-1 were 

commonly shared by three tissues, 1340 cm-1 (nucleic acids/collagen) with 1338 cm-1 (nucleic 

acids/collagen) and 1337 cm-1 (nucleic acids/collagen) were commonly shared by three tissues whilst 

1002 cm-1 (phenylalalnine) with 1001 cm-1 (phenylalanine) were commonly shared by four tissues. 

Using Normal as a reference, three tissues were common for 1339 cm-1 (tryptophan/collagen/nucleic 

acids) with 1338 cm-1 (tryptophan/collagen/nucleic acids) and 1337 cm-1 (tryptophan/collagen/nucleic 

acids) whilst four tissues were common for 1003 cm-1 (phenylalalnine), 1002 cm-1 (phenylalalnine) and 

1001 cm-1 (phenylalanine). Using Normal-Endo. as reference, 1003 cm-1 was commonly shared with 

1001 cm-1 by three tissues, both of which are assinged to phenylalanine. Similarly using Normal-C1 as 

reference, common occurrence of 1003 cm-1 (phenylalalnine) with 1002 cm-1 (phenylalalnine) and 

Figure 3.155:  Loadings plots showing wavenumbers that discriminate basal cells in non-diseased tissue sections (H09-11708-4, H09-

12292-1, H09-12890-11, H09-9102-6, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed 

spectrum used as a reference spectrum. 
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1001 cm-1 (phenylalalnine ). Having Normal-C2 as reference, four tissues were common for 1440 cm-1 

(lipids) with 1439 cm-1 (CH2 deformation), 1278 cm-1 (proteins) with 1277 cm-1, and 563 cm-1 with 562 

cm-1  whilst 1001 cm-1 (phenylalanine) was commonly shared by three tissues. Having Normal-C3 as 

reference, three tissues were common for 1003 cm-1 (phenylalanine) with 1002 cm-1 (phenylalanine) 

and 1001 cm-1 (phenylalanine), and 784 cm-1 (cytosine/uracil, DNA/RNA) with 782 cm-1 

(cytosine/uracil, DNA/RNA). 
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Between non-diseased samples from patients with endometrial cancer 

 

Spectra from basal cells in only non-diseased tissue samples (H09-12890-11, H09-9102-6, H09-13558-

A8) taken from patients with endometrial cancer were compared. Classes were labelled as Patient 1, 

Patient 2 and Patient 3 to represent the samples H09-12890-11, H09-9102-6 and H09-13558-A8 

respectively. In this section classes of tissue samples will be referred according to their labels for the 

purpose of associating data analysis with what is shown on the plots. All classes exhibited a very similar 

mean Raman spectra with only small variations in peak intensities occurring at ~1666 cm-1, ~1447 cm-

1, ~1258 cm-1, ~937 cm-1 and ~853 cm-1 (Fig. 3.157).  

Statistical analysis indicated that Patient 2 was significantly different from Patient 1 and Patient 3 

whereas the two latter classes were not significantly different from each other (Fig. 3.158). 

Figure 3.156: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from basal cells, amongst non-diseased tissue sections. (A) & (B) no sample 

used as a reference, (C) & (D) Normal (H09-11708-4) reference class, (E) & (F) Normal-Endo. (H09-12292-1) reference class, (G) & (H) 

Normal-C1 (H09-12890-11) reference class, (I) & (J) Normal-C2 (H09-9102-6) reference class and (K) & (L) Normal-C3 (H09-13558-A8) 

reference class. The red rectangles in the cluster vector peak location plots highlight the wavenumbers occurring commonly in different 

tissue samples. 

 



210 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D 

and 2D space  (Fig. 3.159). most overlapping occurred between Patient 1 and Patient 3 whilst spectral 

point of Patient 2 exhibited the most spread arrangement within the dimensional space which 

signified the most intra-class variation. 

 

 

 

 

 

 

Figure 3.157: Mean Raman spectra for comparison of spectra acquired from basal cells in non-diseased tissue sections (H09-12890-11, 

H09-9102-6, H09-13558-A8). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-12890-

11, H09-9102-6 and H09-13558-A8 respectively. 

 

Parameters P value 

  LDA1 vs Patient 1 P < 0.001 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P < 0.001 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P > 0.05 

  Patient 2 vs Patient 3 P < 0.001 

 

Figure 3.158: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

basal cells between non-diseased tissue sections 

H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Patient 1, Patient 2 

and Patient 3 respectively. 
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The five major discriminant wavenumbers identified in loading plots (Fig. 3.160) responsible for 

variations between tissue samples were 1454 cm-1 (collagen and phospholipids), 1130 cm-1 (lipids), 

1025 cm-1 (glycogen), 936 cm-1 (valine/proline and protein) and 782 cm-1 (cytosine/uracil, DNA/RNA). 

 

Figure 3.160:  Loadings plots showing wavenumbers that discriminate basal cells in non-diseased tissue sections (H09-9102-6, H09-

12890-11, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 

Figure 3.159: Scores plots for 

segregation of spectra in (A) 1D and (B) 

2D space. Classes of tissues were 

labelled as Patient 1 (red), Patient 2 

(blue) and Patient 3 (green) representing 

the tissues H09-12890-11, H09-9102-6 

and H09-13558-A8 respectively. In (B) 

LD1 would discriminate spectral points 

between the different classes of tissues 

whereas as LD2 contributed to intra-

class variation. 
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Cluster vector plots were presented and analysed like previously as to observe occurrence and 

expression levels of wavenumbers and/or spectral regions in the hope of identifying biomarkers for 

basal cells (Fig. 3.161).  Having no class as a reference origin, common occurrence was displayed by 

1454 cm-1 with 1452 cm-1, 1130 cm-1 (lipids), 1025 cm-1 (glycogen), and 937 cm-1 (proline, protein 

backbone/glycogen) with 936 cm-1 (valine/proline and protein) and 935 cm-1 (proline, valine, protein 

backbone/glycogen). Using Patient 1 as reference the commonly shared wavenumbers were 1295 cm-

1 with 1294 cm-1 (methylene twisting), and 1131 cm-1
 (lipids) with 1130 cm-1 (lipids). Using Patient 2 as 

reference 1130 cm-1 (lipids), 1025 cm-1 (glycogen) and 936 cm-1 (valine/proline and protein) were 

commonly shared. Using Patient 3 as reference 1131 cm-1
 (lipids) was commonly shared with 1130 cm-

1 (lipids) between classes of tissues. 
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Between diseased samples from patients with endometrial cancer 

 

Spectra from basal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-13558-A5) taken 

from cancerous lesions in the endometrium were compared. Classes were labelled as Patient 1, 

Patient 2 and Patient 3 to represent the samples H09-12890-9, H09-9102-1 and H09-13558-A5 

respectively. In this section classes of tissues will be referred according to their labels for the purpose 

of associating data analysis with what is shown on the plots. All classes exhibited a relatively similar 

mean spectra with pronounced variations in peak intensities occurring at 1668 cm-1, 1128 cm-1 

(proteins/carbohydrates), 1061 cm-1 (paraffin), 1002 cm-1 (phenylalanine),  939 cm-1, 853 cm-1 

(tyrosine/proline) and at the spectral region ~1300 cm-1 (Fig. 3.162). Lowest absorbance intensities 

were mainly exhibited by Patient 1. 

Figure 3.161: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from basal cells among non-diseased tissue sections from patients with 

endometrial cancer. (A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-11) reference class, (E) & (F) Patient 2 (H09-

9102-6) reference class and (G) & (H) Patient 3 (H09-13558-A8) reference class. The red rectangles highlight the wavenumbers occurring 

commonly in classes.  
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Statistical analysis indicated that Patient 2 was significantly different from Patient 1 and Patient 3 

whereas the two latter classes were not significantly different from each other (Fig. 3.163). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Segregation of classes resulting from application of PCA-LDA was visualised in scores plots of 1D and 

2D space (Fig. 3.164). Minimal overlap was displayed by Patient 2 whilst more overlapping was 

displayed between Patient 1 and Patient 3. Relative more compact arrangement was exhibited by 

spectral points of Patient 1 which signified less intra-class variation. 

 

 

 

Figure 3.162: Mean Raman spectra for comparison of spectra from basal cells in diseased tissue sections (H09-12890-9, H09-9102-1, 

H09-13558-A5). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-12890-9, H09-9102-

1 and H09-13558-A5 respectively. 

 

Parameters P value 

  LDA1 vs Patient 1 P < 0.001 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P < 0.001 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P > 0.05 

  Patient 2 vs Patient 3 P < 0.001 

 

Figure 3.163: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

basal cells between diseased tissue sections H09-

9102-1, H09-12890-9, H09-13558-A5 represented 

by the class labels Patient 1, Patient 2 and Patient 3 

respectively. 
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The five major discriminant wavenumbers identified in loading plots accounting for variations 

between tissue samples were 1666 cm-1 (collagen), 1437 cm-1 (proteins and lipids), 1303 cm-1 

(collagen), 1079 cm-1 and 939 cm-1 (Fig. 3.165). 

 

 

Figure 3164: Scores plots for segregation of 

spectra acquired from basal cells in (A) 1D and 

(B) 2D space. Classes of tissues were labelled 

as Patient 1 (red), Patient 2 (blue) and Patient 

3 (green) representing the tissues H09-12890-

9, H09-9102-1 and H09-13558-A5 

respectively. In (B) LD1 would discriminate 

spectral points between the different classes 

of cells whereas as LD2 contributed to intra-

class variation. 

 

Figure 3.165:  Loadings plots showing wavenumbers that discriminate basal cells in diseased tissue sections (H09-9102-1, H09-12890-

9, H09-13558-A5). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 
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The same approach as before was applied to present and analyse cluster vector plots for identification 

of biomarkers (Fig. 3.166). Having no class as a reference, the wavenumbers observed to occur 

commonly between classes were 1668 cm-1 with 1666 cm-1 (collagen), 1437 cm-1 (proteins and lipids) 

with 1436 cm-1 (lipids), 1304 cm-1 (lipids, adenine, cytosine) with 1303 cm-1 (collagen) and 1301 cm-1 

(lipids) and 1079 cm-1 with 1078 cm-1 (phospholipids, nucleic acids). Using Patient 1 as reference, only 

1437 cm-1 (proteins and lipids) was commonly shared with 1436 cm-1 (lipids). Using Patient 2 as 

reference, common occurrence was observed for 1437 cm-1 (proteins and lipids) with 1436 cm-1 

(lipids), 1303 cm-1 (collagen) with 1302 cm-1 (protein/collagen/lipids), 1081 cm-1 (lipids) with 1078 cm-

1 (phospholipids/nucleic acids), and 939 cm-1. Using Patient 3 as a reference, 1669cm-1
 (lipids) with 

1668 cm-1, and 1463 cm-1 (lipids) were found to be common between the classes. 
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Diseased tisues Vs Non-Diseased tissues 

 

The spectra of the basal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-13558-A5) 

was compared with the spectra of basal cells in their corresponding non-diseased tissue samples (H09-

12890-11, H09-9102-6, H09-13558-A8) taken from patients with endometrial cancer. The class 

representing the spectra collected from basal cells in diseased tissue sections was labelled as ‘Cancer’ 

whilst the class representing non-diseased tissue sections was labelled as ‘Normal’. In this section 

classes of spectra will be referred according to their labels for the purpose of associating data analysis 

with what is shown on the plots.  

Both classes exhibited relatively the same mean Raman spectra with the Cancer class having slightly 

higher peak intensities at 1664 cm-1 (amide I), 1003 cm-1 (phenylalanine), 936 cm-1 (valine/proline and 

protein) and 854 cm-1 (tyrosine/proline) whilst the Normal class had slighter higher intensities at 1130 

Figure 3.166: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from basal cells among diseased tissue sections from patients with 

endometrial cancer. (A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-9) reference class, (E) & (F) Patient 2 (H09-

9102-1) reference class and (G) & (H) Patient 3 (H09-13558-A5) reference class. The red rectangles highlight the wavenumbers occurring 

commonly in classes. 
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cm-1 (lipids), 1296 cm-1 (CH2 deformation) and 1062 cm-1 (paraffin) (Fig. 3.167 A). Application of PCA-

LDA resulted in segregation of classes which was visualised in scores plot of 1D space whereby about 

half of the spectra of Cancer overlapped with spectra of Normal (Fig. 3.167 B).   

Statistical analysis indicated that classes were significantly different from each other (Fig. 3.168). 

 

 

 

 

 

 

 

Generation of loading plots revealed five major wavenumbers responsible for variations between the 

classes; 1535 cm-1 , 1294 cm-1 (methylene twisting), 1132 cm-1 (proteins and lipids), 1061 cm-1 (residual 

paraffin) and 1003 cm-1 (phenylalanine) (Fig.3.169). 

Parameters P Value 

Cancer Vs Normal P<0.0001 

Figure 3.167: (A) Mean Raman spectra for comparison of spectra from basal cells in all diseased tissue sections (H09-12890-9, H09-

9102-1, H09-13558-A5) and their corresponding non-diseased tissue sections (H09-12890-11, H09-9102-6, H09-13558-A8). (B) Scores 

plots for segregation of spectra in 1D space. Diseased and non-diseased tissue samples are represented by the class labels ‘Cancer’ (red) 

and ‘Normal’ (blue) respectively. 

 

Figure 3.168: Obtained p-value by employment of 

Unpaired t-test to compare spectra acquired from 

basal cells between non diseased (H09-9102-6, 

H09-12890-11, H09-13558-A8) and their 

corresponding diseased (H09-9102-1, H09-12890-

9, H09-13558-A5) tissue sections represented by 

the class labels Normal and Cancer respectively. 
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The five major wavenumbers in loading plots were also observed in cluster vector plots occuring in 

both classes (Fig. 3.170). Also concentrations of biomolecules assigned to these wavenumbers were 

found to be the same between the classes. Lowest expression levels were exhibited by 1535 cm-1. 

Biomarkers that would specify either ‘Normal’ or ‘Cancer’ basal cells could not be identified since the 

identified discriminant wavenumbers displayed common occurrence between the classes. For a 

wavenumber to have a potential as a biomarker for either of the classes, should be observed in only 

one class. 

Figure 3.169:  Loadings plots showing wavenumbers that discriminate spectra from basal cells in all diseased (H09-9102-1, H09-12890-

9, H09-13558-A5) and their corresponding non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8) tissue sections. The red line is a 

pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference spectrum. 
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Figure 3.170: Alternative presentation of 

cluster vector plots, produced after 

application of PCA-LDA, showing 

occurrence and expression levels of 

wavenumbers, from spectra acquired from 

basal cells among all corresponding 

diseased (H09-12890-9, H09-9102-1, H09-

13558-A5) and non-diseased (H09-12890-

11, H09-9102-6, H09-13558-A8) tissue 

sections. The red rectangles highlight the 

wavenumbers occurring commonly in 

classes. 
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3.3.2 Luminal Cells Vs Luminal Cells 

 

In individual tissue samples 

 

Spectra of luminal cells were also analysed in the hope of identifying potential biomarkers. Data was 

analysed in the same approach as applied for basal cells. Tissue samples exhibited a relatively similar 

mean Raman spectra with most evident variations in absorbance intensities occurring at ~1660 cm-1, 

~1295 cm-1, ~1131 cm-1, ~1060 cm-1, 1003 cm-1, 936 cm-1 and ~854 cm-1 (Fig. 3.171). These observations 

were made from both types of tissue samples, either diseased or non-diseased. No significant 

observations were made that would correlate corresponding diseased and non-diseased tissue 

samples. 

Statistical analysis (Fig. 3.172) indicated that in the majority of the tissues at least one area was 

significantly different from the tissue as a whole. Also in the majority of the tissues most areas were 

significantly different from each other. 
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Figure 3.171: Mean Raman spectra for 

comparison of spectra acquired from luminal cells 

between the five glandular areas in non-diseased 

(H09-9102-6, H09-12890-11, H09-13558-A8, H09-

11708-4, H09-12292-1) and diseased (H09-9102-

1, H09-12890-9, H09-13558-A5) tissue sections. 

Spectra of corresponding non-diseased (H09-

9102-6, H09-12890-11, H09-13558-A8) and 

diseased (H09-9102-1, H09-12890-9, H09-13558-

A5) tissue samples are illustrated next to each 

other. 
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H09-9102-6 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-12890-11 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P < 0.001 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P < 0.001 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-13558-A8 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P < 0.001 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.05 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.01 

  Area B vs Area E P < 0.001 

  Area C vs Area D P > 0.05 

  Area C vs Area E P < 0.05 

  Area D vs Area E P > 0.05 

 

H09-11708-4 
 

Parameters P value 

  LDA1 vs Area A P < 0.01 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.001 

  Area A vs Area E P < 0.001 

  Area B vs Area C P < 0.01 

  Area B vs Area D P < 0.01 

  Area B vs Area E P < 0.05 

  Area C vs Area D P > 0.05 

  Area C vs Area E P > 0.05 

  Area D vs Area E P > 0.05 

 

H09-12292-1 
 

Parameters P value 

  LDA1 vs Area A P < 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P < 0.001 

  Area D vs Area E P > 0.05 

 

H09-9102-1 
 

Parameters P value 

  LDA1 vs Area A P < 0.01 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.01 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.05 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P < 0.001 

  Area D vs Area E P > 0.05 

 



224 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Segregation of classes of spectra, resulted from application of PCA-LDA, was visualised in scores plot 

of 1D and 3D space. Figure 3.173 illustrates scores plots of non-diseased tissue samples and figure 

3.174 illustrates scores plots of diseased tissue samples.In all tissue samples a single glandular area 

would overlap with at least three or four other areas, Only in samples H09-9102-6, H09-12292-1 and 

H09-13558-A5 a single area would not overlap with the other areas. In the majority of samples, 

spectral points within individual glandular areas displayed a relatively spread arrangement rather than 

compact. No specific observations were made that could correlate the corresponding non-diseased 

and diseased tissue samples.  

H09-12890-9 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P < 0.001 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P > 0.05 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.01 

  Area B vs Area E P < 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-13558-A5 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.01 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

Figure 3.172: Obtained p-values by employment of One-way ANOVA test coupled with Tukey’s multiple comparison test to compare 

spectra acquired from luminal in five glandular elements in individual non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8, H09-

11708-4, H09-9102-1) and diseased (H09-9102-1, H09-12890-9, H09-13558-A5) tissue sections. 
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Figure 3.173: 1D scores plots and their corresponding 3D scores plots in non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-

13558-A8, H09-11708-4, H09-12292-1) produced after application of PCA-LDA on the spectra acquired from luminal cells from five 

different glandular elements. 

Figure 3.174: 1D scores plots and their corresponding 3D scores plots in diseased tissue sections (H09-9102-1, H09-12890-9, H09-

13558-A5) produced after application of PCA-LDA on the spectra acquired from luminal cells from five different glandular elements. 
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Figure 3.175 illustrates the laoding plot for each tissue sample revealing the discriminant 

wavenumbers responsible for variations between the spectra acquired from luminal cells at glandular 

areas. In tissue sample H09-9102-6 the discriminant wavenumbers and their assignements were as 

follows; 1438 cm-1 (CH2 deformation), 1316 cm-1, 1133 cm-1, 1061 cm-1 (paraffin) and 781 cm-1 

(cytosine/uracil). In sample H09-12890-11 the discriminant wavenumbers were 1294 cm-1 (methylene 

twisting), 1244 cm-1, 1062 cm-1 (paraffin), 1002 cm-1 (phenylalanine) and 829 cm-1. For tissue H09-

13558-A8 the discriminant wavenumbers were 1667 cm-1 (protein, amide I; α-helix), 1335 cm-1 

(collagen/nucleic acids) 1294 cm-1 (methylene twisting), 1131 cm-1 (lipids) and 642 cm-1 (tyrosine). For 

tissue H09-11708-4 the wavenumbers were 1437 cm-1 (proteins and lipids), 1403 cm-1, 1296 cm-1 (CH2 

deformation), 1131 cm-1 (lipids) and 1062 cm-1 (paraffin). For tissue H09-12292-1 the discriminant 

wavenumbers were 1671 cm-1 (amide I), 1663 cm-1 (DNA), 1438 cm-1 (CH2 deformation), 1274 cm-1 and 

1001 cm-1 (phenylalanine). In sample H09-9102-1 the discriminant wavenumbers were 1697 cm-1 

(amide I), 1621 cm-1, 1563 cm-1, 1523 cm-1 and 1436 cm-1 (lipids). In sample H09-12890-9 the identified 

wavenumbers were 1594 cm-1, 1545 cm-1 (C6-H deformation), 1336 cm-1 (collagen/DNA), 1245 cm-1 

(amide III) and 1003 cm-1 (phenylalanine). In sample H09-13558-A5 the discriminant wavenumbers 

were 1405 cm-1, 1295 cm-1, 1131 cm-1 (lipids), 1062 cm-1 (residual paraffin) and 854 cm-1 

(tyrosine/proline).  
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Figure 3.175:  Loadings plots showing wavenumbers 

that discriminate luminal cells between different 

glandular areas in non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-12292-

1) and diseased (H09-9102-1, H09-12890-9, H09-

13558-A5) tissue sections. Loading plots of 

corresponding non-diseased and diseased tissue 

samples are illustrated next to each other. The red 

line is a pseudospectra and the dotted line is the 

actual pre-processed spectrum used as a reference 

spectrum. 
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Cluster vector plots of non-diseased (Fig. 3.176) and diseased (Fig. 3.177) tissue samples were 

presented and analysed in the same approach as before in the hope of identifying possible biomarkers 

for luminal cells, based on the occurrence of wavenumbers and their expression levels in the glandular 

areas. In most plots, the wavenumbers displaying common occurence were the same as the 

discriminant wavenumbers identified in loading plots.  

In sample H09-9102-6 three areas were common for 1295 cm-1, 1063 cm-1 (C-C skeletal stretch) with 

1061 whilst  five areas were common for 1133 cm-1 with 1132 cm-1 (proteins and lipids) and 1130cm-1 

(lipids). In sample H09-12890-11 three areas were common 1295 cm-1 with 1294 cm-1 (methylene 

twisting), and 1245 cm-1 (amide III) with 1244cm-1 whilst four areas were common for 1062 cm-1 

(paraffin) and 1003 cm-1 (phenylalanine) with 1002 cm-1 (phenylalanine). In sample H09-13558-A8 

common occurrence of 1296 cm-1 (CH2 defromation) with 1295 cm-1 and 1294 cm-1 (methylene 

twisting) and 1132 cm-1 (proteins and lipids) with 1131 cm-1 (lipids) was displayed by five areas. In 

sample H09-11708-4 only 1296 cm-1 (CH2 defromation) with 1295 cm-1 were commonly shared 

between four areas. In sample H09-12292-1 three areas were common for 1295 cm-1 whilst four areas 

were common for 1133 cm-1 with 1132 cm-1 (proteins and lipids) and 1129 cm-1 (lipids), and 1002 cm-

1 (phenylalanine) with 1001 cm-1 (phenylalanine). Four areas in sample H09-9102-1 were common for 

1333 cm-1 (guanine) with 1332 cm-1 (phenyl) and 1331 cm-1 whilst three areas were common for 783 

cm-1 and 730 cm-1 with 729 cm-1 (DNA/RNA bases) and 728 cm-1 (proline-collagen). In sample 12890-9 

four areas were common for 1442 cm-1 with 1440 cm-1, 1438 cm-1 and 1436 cm-1, and 1003 cm-1 

(phenylalanine) with 1002 cm-1 (phenylalanine) whislt three areas were common for 1299 cm-1 (CH2 

deformation; lipids) with 1297 cm-1, and 1245 cm-1 (amide III) with 1244 cm-1. In sample H09-13558-

A5, 1296 cm-1 (CH2 defromation) was commonly shared with 1295 cm-1 in three areas whilst four areas 

were common for 1134 cm-1 with 1133 cm-1 and 1131 cm-1 (lipids).  
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Figure 3.176: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from luminal cells, in five glandular areas in individual non-diseased tissue 

sections (H09-9102-6, H09-12890-11, H09-13558-A8, H09-11708-4, H09-12292-1). The red rectangles highlight the wavenumbers 

shared in common among glandular areas. 

 

Figure 3.177: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from luminal cells, in five glandular areas in individual diseased tissue sections 

(H09-9102-1, H09-12890-9, H09-13558-A5). The red rectangles highlight the wavenumbers shared in common among glandular areas.  
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Between all normal tissue samples 

 

All the non-diseased tissue samples were compared between them for the spectra interrogated from 

their luminal cells. Classes representing tissues were labelled as before; Normal (H09-11708-4), 

Normal-Endo. (H09-12292-1), Normal-C1 (H09-12890-11), Normal-C2 (H09-9102-6) and Normal-C3 

(H09-13558-A8).  From the mean Raman spectra it was obsereved that all classes displayed a similar 

shape in spectra with most pronounced variations in absorbance intensities occuring at ~1660 cm-1, 

~1446 cm-1, ~1380 cm-1, ~1297 cm-1, ~1130 cm-1, 1061 cm-1, ~1002 cm-1, ~940 cm-1, 853 cm-1 and 757 

cm-1 (Fig. 3.178). No class was distinguished in terms of maintaining higher or lower intensities 

throughout the interrogated spectra.   

Statistical analysis (Fig. 3.179) indicated that classes were significantly different from each other for 

the spectra acquired from luminal cells but Normal-C1 was not significantly different from Normal 

neither from Normal-C3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.178: Mean Raman spectra for comparison of spectra acquired from luminal cells in non-diseased tissue samples (H09-11708-

4, H09-12292-1, H09-12890-11, H09-9102-6, H09-13558-A8) represented by the class labels Normal, Normal-Endo., Normal-C1, Normal-

C2 and Normal-C3 respectively. 

. 
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Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D, 

2D and 3D space (Fig. 3.180). An individual class would overlap at some point throughout its spectra 

if not with all four other classes then at least with three other classes. Normal class displayed the least 

within class variation since its spectral points had a more compact arrangement relative to the other 

classes. Most evident overlap occurred between classes Normal, Normal-C1 and Normal-C3.  

 

 

Figure 3.180: Scores plots of segregation of spectra 

acquired from luminal cells, in in non-diseased tissue 

samples (H09-11708-4, H09-12292-1, H09-12890-11, 

H09-9102-6, H09-13558-A8) represented by the class 

labels Normal, Normal-Endo., Normal-C1, Normal-C2 

and Normal-C3 respectively, illustrated in (A) 1D 

space, (B) 2D space and (C) 3D space. In (B) LD1 would 

discriminate spectral points between the different 

classes of tissues whereas as LD2 contributed to intra-

class variation. 

 

Parameters P value 

  LDA1 vs Normal P > 0.05 

  LDA1 vs Normal-Endo. P < 0.001 

  LDA1 vs Normal-C1 P < 0.01 

  LDA1 vs Normal-C2 P > 0.05 

  LDA1 vs Normal-C3 P < 0.001 

  Normal vs Normal-Endo. P < 0.001 

  Normal vs Normal-C1 P > 0.05 

  Normal vs Normal-C2 P < 0.01 

  Normal vs Normal-C3 P < 0.01 

  Normal-Endo. vs Normal-C1 P < 0.001 

  Normal-Endo. vs Normal-C2 P < 0.001 

  Normal-Endo. vs Normal-C3 P < 0.001 

  Normal-C1 vs Normal-C2 P < 0.001 

  Normal-C1 vs Normal-C3 P > 0.05 

  Normal-C2 vs Normal-C3 P < 0.001 

 

Figure 3.179: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

luminal cells in all five glandular elements between 

non-diseased tissue sections H09-11708-4, H09-

9102-1, H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Normal, Normal-

Endo., Normal-C1, Normal-C2 and Normal-C3 

respectively. 
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The discriminant wavenumbers identified in loading plots accounting for variations between the 

samples were 1294 cm-1 (methylene twisting), 1433 cm-1 (lipids), 1132 cm-1 (proteins and lipids), 1003 

cm-1 (phenylalanine) and 784 cm-1 (cytosine/uracil) (Fig. 3.181). 

 

 

 

 

 

 

 

 

 

 

Cluster vector plots were presented and analysed in a different way in order to identify potential 

biomarkers for luminal cells by observing the occurrence and expression levels of wavenumbers 

and/or spectral regions between the tissues by having a class as a reference origin or when no class 

was used as a reference origin (Fig. 3.182). Wavenumbers would display common occurrence if they 

were observed in at least three classes representing the tissues as long as they had a smooth vertical 

alignment in the plots. 

Without having any class as a reference origin, 1298 cm-1 (fatty acids) with 1296 cm-1 (residual 

parrafin), 1295 cm-1 and 1294 cm-1 (methylene twisting) were commonly shared by four tissues whilst 

1442 cm-1 (fatty acids, CH2 bending mode) with 1438 cm-1 and 1436 cm-1 (lipids), and 1131 cm-1 (lipids) 

with 1129 cm-1 (lipids) and 1128 cm-1 (proteins/carbohydrates) were commonly shared by three 

tissues. Having class Normal as a reference three tissues were only common for 1002 cm-1 

(phenylalanine). Using class Normal-Endo. as reference, 1295 cm-1 was commonly shared with 1294 

Figure 3.181:  Loadings plots showing wavenumbers that discriminate luminal cells in non-diseased tissue sections (H09-11708-4, H09-

12292-1, H09-12890-11, H09-9102-6, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed 

spectrum used as a reference spectrum. 
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cm-1 (methylene twisting) in four tissues. Having Normal-C1 as refernece,  no wavenumbers showed a 

potetial as biomarkers since they were commonly shared by only two tissues. Using Normal-C2 as 

reference three tissues were common for 1518 cm-1 (porphyrin/carotenoid). Having Normal-C3 as 

reference, 1436 cm-1 (lipids) was commonly shared with 1434 cm-1 and 1433 cm-1 (lipids) by three 

tissues and 1297 cm-1 was commonly shared with 1296 cm-1 (CH2 deformation) and 1294 cm-1 

(methylene twisting) by three tissues. In the majority of the plots some wavenumbers were shared by 

only two classes of tissues and thus displaying minimal potential as biomarkers for luminal cells. 
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Between non-diseased samples from patients with endometrial cancer 

Spectra from luminal cells in only non-diseased tissue samples (H09-12890-11, H09-9102-6, H09-

13558-A8) taken from patients with endometrial cancer were compared. Classes representing the 

samples were labelled as before so they will be referred accordingly to associate data analysis with 

what is shown on the plots.  

All classes exhibited a relatively similar Raman mean spectra whereby most pronounced variations in 

absorbance intensities occurred at ~1663 cm-1, ~1445 cm-1, ~1380 cm-1, ~1338 cm-1, ~1295 cm-1, ~1128 

cm-1, ~1062 cm-1, ~1002 cm-1, ~949 cm-1, ~854 cm-1 and ~757 cm-1 (Fig. 3.183). Patient 2 was found to 

have the highest peak intensities except at ~1445 cm-1 where Patient 3 had the highest peak. Patient 

1 exhibited the lowest peak intensities except at ~1380 cm-1 where the absorbance was the highest. 

Figure 3.182: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from luminal cells, amongst non-diseased tissue sections. (A) & (B) no sample 

used as a reference, (C) & (D) Normal (H09-11708-4) reference class, (E) & (F) Normal-Endo. (H09-12292-1) reference class, (G) & (H) 

Normal-C1 (H09-12890-11) reference class, (I) & (J) Normal-C2 (H09-9102-6) reference class and (K) & (L) Normal-C3 (H09-13558-A8) 

reference class. The red rectangles in the cluster vector peak location plots highlight the wavenumbers occurring commonly in different 

tissue samples. 
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Statistical analysis indicated that Patient 2 was significantly different from Patient 1 and Patient 3 

whereas the two latter classes were not significantly different from each other (Fig. 3.184). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D 

and 2D space  (Fig. 3.185). Patient 2 displayed the least overlap whilst Patient 1 and 3 would overlap 

almost throughout their entire spectra. Spectral points of patient 1 had a more compact arrangement, 

relative to the other classes, which signified the least intra-class variation. 

Figure 3.183: Mean Raman spectra for comparison of spectra acquired from luminal cells in non-diseased tissue sections (H09-12890-

11, H09-9102-6, H09-13558-A8). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-

12890-11, H09-9102-6 and H09-13558-A8 respectively. 

 

Parameters P value 

  LDA1 vs Patient 1 P < 0.01 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P < 0.001 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P > 0.05 

  Patient 2 vs Patient 3 P < 0.001 

 

Figure 3.184: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

luminal cells between non-diseased tissue sections 

H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Patient 1, Patient 2 

and Patient 3 respectively. 
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 The five major discriminant wavenumbers identified in loading plots accounting for variations 

between tissue samples were 1437 cm-1 (proteins and lipids), 1297 cm-1, 941 cm-1 (polysaccharides, 

amylose), 782 cm-1 (cytosine/uracil, DNA/RNA) and 564 cm-1 (Fig. 3.186).  

 

 

 

 

 

 

 

 

 

 

Figure 3.185: Scores plots for 

segregation of spectra in (A) 1D and (B) 

2D space. Classes of tissues were 

labelled as Patient 1 (red), Patient 2 

(blue) and Patient 3 (green) representing 

the tissues H09-12890-11, H09-9102-6 

and H09-13558-A8 respectively. In (B) 

LD1 would discriminate spectral points 

between the different classes of tissues 

whereas as LD2 contributed to intra-

class variation. 

 

Figure 3.186:  Loadings plots showing wavenumbers that discriminate luminal cells in non-diseased tissue sections (H09-9102-6, H09-

12890-11, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 
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Cluster vectors plots were presented and analysed in the same approach as before in an attempt to 

identify potential biomarkers for luminal cells (Fig. 3.187). Having no class as a reference, two tissues 

were common for 1437 cm-1 (proteins and lipids), 1297 cm-1 and 941 cm-1 (polysaccharides, amylose) 

with 937 cm-1 (proline, hydroxyproline, collagen backbone, glycogen) whilst 783 cm-1 was commonly 

shared with 782 cm-1 (cytosine/uracil, DNA/RNA) by all three tissues. Using Patient 1 as reference, 

1437 cm-1 (proteins and lipids) was commonly shared with 1436 cm-1 (lipids) by two tissues. Using 

Patient 2 as reference, two tissues were common for 1437 cm-1 (proteins and lipids) and 782 cm-1 

(cytosine/uracil, DNA/RNA). Having Patient 3 as class reference, the observed wavenumbers which 

showed common occurrence were 1437 cm-1 (proteins and lipids) with 1436 cm-1 (lipids), 1297 cm-1, 

1130 cm-1 (lipids) and 939 cm-1 with 936 cm-1 (valine/proline and protein).  
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Between diseased samples from patients with endometrial cancer 

 

Spectra acquired from luminal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-13558-

A5) taken from cancerous lesions in the endometrium were analysed and compared. Classes were 

labelled as Patient 1, Patient 2 and Patient 3 to represent the samples H09-12890-9, H09-9102-1 and 

H09-13558-A5 respectively. In this section classes of tissues will be referred according to their labels 

for the purpose of associating data analysis with what is shown on the plots. All classes exhibited a 

very similar mean Raman spectra with most pronounced variations in absorbance intensities occurring 

at ~1443 cm-1, ~1380 cm-1, ~1295 cm-1, ~1130 cm-1, ~1061 cm-1, ~1001 cm-1, ~935 cm-1 and 853 cm-1 

(Fig. 3.188). Mainly Patient 3 had the highest peak intensities except at ~1380 cm-1 whereby Patient 1 

had the highest peak.  

Figure 3.187: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from luminal cells among non-diseased tissue sections from patients with 

endometrial cancer. (A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-11) reference class, (E) & (F) Patient 2 (H09-

9102-6) reference class and (G) & (H) Patient 3 (H09-13558-A8) reference class. The red rectangles highlight the wavenumbers occurring 

commonly in classes.  
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Statistical analysis indicated that all tissues were significantly different from each other (Fig. 3.189). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Segregation of classes resulting from application of PCA-LDA was visualised in scores plots of 1D and 

2D space (Fig. 3.190). Patient 2 displayed slight overlap with Patient 1. Almost half of the spectra of 

Patient 3 would overlap with the spectra of Patient 2 whilst the other half would overlap with spectra 

of Patient 1. Spectral points of Patient 1 and 3 had a more compact arrangement relative to the 

spectral points of Patient 2 which signified less intra-class variation for Patient 1 and Patient 3.  

Figure 3.188: Mean Raman spectra for comparison of spectra from luminal cells in diseased tissue sections (H09-12890-9, H09-9102-1, 

H09-13558-A5). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-12890-9, H09-9102-

1 and H09-13558-A5 respectively. 

 

Parameters P value 

  LDA1 vs Patient 1 P < 0.001 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P > 0.05 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P < 0.001 

  Patient 2 vs Patient 3 P < 0.001 

 

Figure 3.189: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

luminal cells between diseased tissue sections H09-

9102-1, H09-12890-9, H09-13558-A5 represented 

by the class labels Patient 1, Patient 2 and Patient 3 

respectively. 
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Generation of loading plots identified five major wavenumbers responsible for variations between the 

interrogated tissue samples (Fig. 3.191). The identified wavenumbers were 1536 cm-1, 1295 cm-1, 1213 

cm-1, 1002 cm-1 (phenylalanine) and 785 cm-1.  

 

 

 

 

 

 

 

 

 

 

Figure 3.190: Scores plots for segregation of 

spectra acquired from luminal cells in (A) 1D 

and (B) 2D space. Classes of tissues were 

labelled as Patient 1 (red), Patient 2 (blue) 

and Patient 3 (green) representing the 

tissues H09-12890-9, H09-9102-1 and H09-

13558-A5 respectively. In (B) LD1 would 

discriminate spectral points between the 

different classes of cells whereas as LD2 

contributed to intra-class variation. 

Figure 3.191:  Loadings plots showing wavenumbers that discriminate luminal cells in diseased tissue sections (H09-9102-1, H09-12890-

9, H09-13558-A5). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 



245 
 

Cluster vector plots were presented and analysed in the same approach as before in order to identify 

biomarkers for luminal cells (Fig. 3.192). Having no class as a refernce origin the wavenumbers 

displaying common occurrence were 1536 cm-1, 1437 cm-1 (proteins and lipids) with 1436 cm-1 (lipids), 

1132 cm-1  (proteins and lipids) with 1131 cm-1  (lipids) and 1129 cm-1 (lipids) and 1062 cm-1 (paraffin). 

Having Patient 1 as reference, common occurrence was displayed by 1536 cm-1 and 1296 cm-1 (CH2 

deformation) with 1295 cm-1. Having Patient 2 as reference, only 1536 cm-1 was commonly shared. 

Having Patient 3 as reference the commonly shared wavenumbers were 1536 cm-1, 1131 cm-1  (lipids) 

and 684 cm-1. 
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Diseased tisues Vs Non-Diseased tissues 

 

The spectra of the luminal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-13558-A5) 

were compared with the spectra of luminal cells in their corresponding non-diseased tissue samples 

(H09-12890-11, H09-9102-6, H09-13558-A8) taken from patients with endometrial cancer. The class 

representing the spectra collected from luminal cells in diseased tissue sections was labelled as 

‘Cancer’ whilst the class representing non-diseased tissue sections was labelled as ‘Normal’. In this 

section classes of spectra will be referred according to their labels for the purpose of associating data 

analysis with what is shown on the plots.  

Both classes exhibited a very similar mean Raman spectra with most pronounced variations in 

absorbance intensities occurring at ~1377 cm-1, ~1295 cm-1, ~1129 cm-1, ~1061 cm-1, ~1002 cm-1, ~949 

cm-1, ~853 cm-1 and ~760 cm-1 (Fig.3.193 A). The Normal class exhibited the highest peak intensities 

throughout the spectra except at ~1377 cm-1 whereby the Cancer class had the highest peak. 

Application of PCA-LDA resulted in segregation of classes which was visualised in scores plot of 1D 

space whereby more than half of the spectra of Cancer would overlap with less than half of the specta 

of Normal (Fig. 3.193 B). Classes were significantly different from each other according to the 

statistical analysis (Fig. 3.194). 

Figure 3.192: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from luminal cells among diseased tissue sections from patients with 

endometrial cancer. (A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-9) reference class, (E) & (F) Patient 2 (H09-

9102-1) reference class and (G) & (H) Patient 3 (H09-13558-A5) reference class. The red rectangles highlight the wavenumbers occurring 

commonly in classes. 
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The discriminant wavenumbers  identified in loading plots responsible for variations between the two 

classes were 1660 cm-1 (amide I), 1537 cm-1, 1434 cm-1, 1213 cm-1 and 1166 cm-1 (Fig. 3.195). 

 

 

 

 

 

 

 

 

 

 

Parameters P Value 

Cancer Vs Normal P<0.0001 

Figure 3.193: (A) Mean Raman spectra for comparison of spectra from luminal cells in all diseased tissue sections (H09-12890-9, H09-

9102-1, H09-13558-A5) and their corresponding non-diseased tissue sections (H09-12890-11, H09-9102-6, H09-13558-A8). (B) Scores 

plots for segregation of spectra in 1D space. Diseased and non-diseased tissue samples are represented by the class labels ‘Cancer’ (red) 

and ‘Normal’ (blue) respectively. 

 

Figure 3.194: Obtained p-value by employment of 

Unpaired t-test to compare spectra acquired from 

luminal cells between non diseased (H09-9102-6, 

H09-12890-11, H09-13558-A8) and their 

corresponding diseased (H09-9102-1, H09-12890-

9, H09-13558-A5) tissue sections represented by 

the class labels Normal and Cancer respectively. 

Figure 3.195:  Loadings plots showing wavenumbers that discriminate spectra from luminal cells in all diseased (H09-9102-1, H09-

12890-9, H09-13558-A5) and their corresponding non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8) tissue sections. The red 

line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference spectrum. 
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The five major wavenumbers in loading plots were also observed in cluster vector plots occuring in 

both classes (Fig. 3.196). Expression levels of the wavenumbers were found to be the same between 

the classes as indicated by the size of the shapes representing the classes. Highest concentration levels 

were observed for 1537 cm-1, 1660 cm-1 (amide I) and 1166 cm-1 showed medium levels whilst 1434 

cm-1 and 1213 cm-1 were displayed at low levels. Biomarkers that would specify either ‘Normal’ or 

‘Cancer’ luminal cells could not be identified since the identified wavenumbers were commonly shared 

by both classes. For a wavenumber to have a potential as a biomarker for either of the classes, should 

have been observed in only one class. 

 

 

 

 

 

 

 

 

 

Figure 3.196: Alternative presentation of 

cluster vector plots, produced after 

application of PCA-LDA, showing 

occurrence and expression levels of 

wavenumbers, from spectra acquired from 

luminal cells among all corresponding 

diseased (H09-12890-9, H09-9102-1, H09-

13558-A5) and non-diseased (H09-12890-

11, H09-9102-6, H09-13558-A8) tissue 

sections. The red rectangles highlight the 

wavenumbers occurring commonly in 

classes. 
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3.3.3 Stromal Cells Vs Stromal Cells 

 

In individual tissue samples 

 

Looking at the mean Raman spectra of stromal cells from the five different glandular elements in each 

tissue sample (Fig. 3.197) it was observed that areas within individual samples exhibited a very similar 

shape of the collected spectra whilst in general the shape of the spectra was relatively similar amongst 

tissue samples with main differences in shape occurring between the spectral region 1244-1380 cm-1. 

Most evident variations in absorbance intensities were observed at ~1666 cm-1, ~1449 cm-1, 1294 cm-

1, ~1130 cm-1, ~1061 cm-1, ~1002 cm-1, 935 cm-1 and ~855. These variations in intensities were 

observed in the mean spectra of both types of tissue samples, either diseased or non-diseased. Not a 

significant similarity in shape of spectra was observed between corresponding diseased and non-

diseased tissue samples.  

Statistical analysis (Fig. 3.198) indicated that in the majority of the tissues, individual glandular areas 

were not significantly different from the spectra collected from the tissue as a whole whereas most of 

the glandular areas within individual tissues were significantly different from each other. 
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Figure 3.197: Mean Raman spectra for comparison 

of spectra acquired from stromal cells between the 

five glandular areas in non-diseased (H09-9102-6, 

H09-12890-11, H09-13558-A8, H09-11708-4, H09-

12292-1) and diseased (H09-9102-1, H09-12890-9, 

H09-13558-A5) tissue sections. Spectra of 

corresponding non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8) and diseased (H09-

9102-1, H09-12890-9, H09-13558-A5) tissue 

samples are illustrated next to each other. 
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H09-9102-6 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.01 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.001 

  Area B vs Area D P < 0.01 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.001 

 

H09-12890-11 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.01 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P > 0.05 

  Area C vs Area E P < 0.05 

  Area D vs Area E P < 0.001 

 

H09-13558-A8 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P < 0.001 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.05 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P > 0.05 

  Area C vs Area E P < 0.001 

  Area D vs Area E P < 0.001 

 

H09-11708-4 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P < 0.01 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.001 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P > 0.05 

  Area C vs Area E P > 0.05 

  Area D vs Area E P < 0.01 

 

H09-12292-1 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P < 0.05 

  LDA1 vs Area C P < 0.05 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P > 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P < 0.05 

  Area B vs Area C P > 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P < 0.001 

  Area C vs Area D P < 0.001 

  Area C vs Area E P < 0.001 

  Area D vs Area E P < 0.05 

 

H09-9102-1 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P < 0.001 

  LDA1 vs Area C P > 0.05 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P > 0.05 

  Area A vs Area E P < 0.05 

  Area B vs Area C P < 0.01 

  Area B vs Area D P < 0.001 

  Area B vs Area E P < 0.001 

  Area C vs Area D P > 0.05 

  Area C vs Area E P > 0.05 

  Area D vs Area E P > 0.05 
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Segregation of classes of spectra, resulted from application of PCA-LDA, was visualised in scores plot 

of 1D and 3D space. Figure 3.199 illustrates scores plots of non-diseased tissue samples and figure 

3.200 illustrates scores plots of diseased tissue samples. Scores plots illustrated a well separation of 

classes representing the areas with mainly at least two or three glandular areas displaying overlap in 

individual tissues. In non-diseased tissue samples, spectral points of individual glandular areas 

exhibited a rather compact arrangement relative to the arrangement dispalyed by spectral point of 

glandular areas in diseased tissus samples. 

H09-12890-9 
 

Parameters P value 

  LDA1 vs Area A P < 0.001 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.01 

  LDA1 vs Area D P > 0.05 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P < 0.001 

  Area A vs Area C P < 0.001 

  Area A vs Area D P < 0.001 

  Area A vs Area E P < 0.001 

  Area B vs Area C P > 0.05 

  Area B vs Area D P > 0.05 

  Area B vs Area E P > 0.05 

  Area C vs Area D P > 0.05 

  Area C vs Area E P > 0.05 

  Area D vs Area E P > 0.05 

 

H09-13558-A5 
 

Parameters P value 

  LDA1 vs Area A P > 0.05 

  LDA1 vs Area B P > 0.05 

  LDA1 vs Area C P < 0.001 

  LDA1 vs Area D P < 0.001 

  LDA1 vs Area E P > 0.05 

  Area A vs Area B P > 0.05 

  Area A vs Area C P < 0.05 

  Area A vs Area D P < 0.001 

  Area A vs Area E P > 0.05 

  Area B vs Area C P < 0.05 

  Area B vs Area D P < 0.001 

  Area B vs Area E P > 0.05 

  Area C vs Area D P < 0.001 

  Area C vs Area E P < 0.001 

  Area D vs Area E P > 0.05 

 

Figure 3.198: Obtained p-values by employment of One-way ANOVA test coupled with Tukey’s multiple comparison test to compare 

spectra acquired from stromal in five glandular elements in individual non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8, H09-

11708-4, H09-9102-1) and diseased (H09-9102-1, H09-12890-9, H09-13558-A5) tissue sections. 
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Figure 3.199: 1D scores plots and their corresponding 3D scores plots in non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-

13558-A8, H09-11708-4, H09-12292-1) produced after application of PCA-LDA on the spectra acquired from stromal cells from five 

different glandular elements. 

 

Figure 3.200: 1D scores plots and their corresponding 3D scores plots in diseased tissue sections (H09-9102-1, H09-12890-9, H09-

13558-A5) produced after application of PCA-LDA on the spectra acquired from stromal cells from five different glandular elements. 
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Figure 3.201 illustrates the laoding plots for each tissue sample revealing the discriminant 

wavenumbers responsible for variations between the spectra acquired from stromal cells at glandular 

areas. In tissue sample H09-9102-6 the discriminant wavenumbers were 1699 cm-1, 1434 cm-1, 1274 

cm-1, 1219 cm-1 and 562 cm-1. In sample H09-12890-11 the discriminant wavenumbers were 1329 cm-

1 (purine bases in nucleic acids), 1294 cm-1 (methylene twisting), 1132 cm-1 (proteins and lipids), 1061 

cm-1 (residual paraffin) and 1002 cm-1 (phenylalanine). For tissue H09-13558-A8 the discriminant 

wavenumbers were 1659 cm-1 (amide I, collagen like proteins), 1444 cm-1 (lipids), 1312 cm-1 

(collagen/lipids), 1133 cm-1 and 970 cm-1 (phosphorylated proteins and cellular nucleic acids). For 

tissue H09-11708-4 the wavenumbers were 1483 cm-1, 1429 cm-1, 1377 cm-1, 1092 cm-1 

(phopshodioxy) and 780 cm-1 (cytosine/uracil, DNA/RNA). For tissue H09-12292-1 the discriminant 

wavenumbers were 1433 cm-1 (lipids), 1394 cm-1, 1294 cm-1 (methylene twisting), 1087 cm-1 (lipids) 

and 521 cm-1. In sample H09-9102-1 the identified wavenumbers were 1535 cm-1, 1294 cm-1 

(methylene twisting), 940 cm-1, 611 cm-1 and 567 cm-1. In saple H09-12890-9, the wavenumbers were 

1698 cm-1, 1295 cm-1, 1220 cm-1 (amide III; β sheet), 1131 cm-1 (lipids) and 1062 cm-1 (paraffin). In 

sample H09-13558-A5 the identifies wavenumbers were 1639 cm-1, 1329 cm-1 (purine bases in nucleic 

acids), 1295 cm-1, 1132 cm-1 (proteins and lipids) and 1061 cm-1 (residual paraffin).  
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Figure 3.201:  Loadings plots showing wavenumbers 

that discriminate stromal cells from different 

glandular areas in non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-

12292-1) and diseased (H09-9102-1, H09-12890-9, 

H09-13558-A5) tissue sections. Loading plots of 

corresponding non-diseased and diseased tissue 

samples are illustrated next to each other. The red 

line is a pseudospectra and the dotted line is the 

actual pre-processed spectrum used as a reference 

spectrum. 



257 
 

Cluster vector plots of non-diseased (Fig. 3.202) and diseased (Fig. 3.203) tissue samples were 

presented and analysed in the same approach as before in the hope of identifying possible biomarkers 

for stromal cells, based on the occurrence of wavenumbers and their expression levels in the glandular 

areas. 

In sample H09-9102-6, 1435 cm-1 was commonly shared with 1434 cm-1 and 1432 cm-1 in four areas 

whilst  1220 cm-1 (amide III, β sheet) was commonly shared with 1218 cm-1 and 1215 cm-1 by three 

areas. In sample H09-12890-11, 1331  cm-1 was commonly shared with 1330 cm-1 (DNA, phospholipids, 

collagen, phosphates) and 1328 cm-1 by three areas, similarly three areas were common for 1294 cm-

1 (methylene twisting), 1132 cm-1 (proteins and lipids) with 1131 cm-1 (lipids) and 1061 cm-1 (paraffin). 

In sample H09-13558-A8 three areas were common for 1005 cm-1 (phenylalanine) with 1004 cm-1 

(phenylalanine) whilst 970 cm-1 (phosphorylated proteins and cellular nucleic acids) was commonly 

shared with 969 cm-1, 968 cm-1 (lipids) and 967 cm-1 in four areas. In sample H09-11708-4 three areas 

were common for 1483 cm-1, 1435 cm-1 with 1434 cm-1, 1432 cm-1 and 1429 cm-1. In sample H09-

12292-1 common occurrence of 1442 cm-1 (fatty acids/collagen) with 1440 cm-1 (lipids), 1435 cm-1 and 

1432 cm-1 was displayed by all five areas, four areas were common for 1295 cm-1 with 1294 cm-1 

(methylene twisting) and 1293 cm-1 whilst three areas were common for 1395 cm-1 with 1394 cm-1 

and 1393 cm-1 (CH rocking), and  1087 cm-1 (acyl backbone in lipids) with 1086 cm-1 (phosphate 

backbone). In sample H09-9102-1, 940 cm-1 was commonly shared with 937 cm-1 (proline, protein 

backbone/glycogen) by three areas whilst four areas were common for 569 cm-1 with 568 cm-1 and 

567 cm-1. In sample H09-12890-9, four areas were common for 1295 cm-1, 1132 cm-1 (proteins and 

lipids) with 1131 cm-1 (lipids) and 1130 cm-1 (lipids) whilst three areas were common for 1062 cm-1 

(paraffin). In sample H09-13558-A5 three areas were only common for 1132 cm-1 (proteins and lipids) 

with 1130 cm-1 (lipids).  
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Figure 3.202: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from stromal cells, in five glandular areas in individual non-diseased tissue 

sections (H09-9102-6, H09-12890-11, H09-13558-A8, H09-11708-4, H09-12292-1). The red rectangles highlight the wavenumbers 

shared in common among glandular areas. 

 

Figure 3.203: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from stromal cells, in five glandular areas in individual diseased tissue sections 

(H09-9102-1, H09-12890-9, H09-13558-A5). The red rectangles highlight the wavenumbers shared in common among glandular areas.  
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Between all normal tissue samples 

 

All the non-diseased tissue samples were compared between them for the spectra interrogated from 

their stromal cells. Classes representing tissues were labelled in the same way as before and will be 

referred according to their class labels to associate plots with observations. All classes of tissues 

exhibited a very similar shape of mean Raman spectra with most evident variations in peak intensities 

occuring at ~1666 cm-1, ~1447 cm-1, ~1341 cm-1, ~1295 cm-1, ~1259 cm-1, ~1131 cm-1, ~1061 cm-1, 

~1003 cm-1, ~937 cm-1, ~854 cm-1 and ~757 cm-1 (Fig. 3.204). Mainly the class Normal-Endo. had the 

highest peaks throughout the spectra. 

Statistical analysis (Fig. 3.205) indicated that classes were significantly different from each other for 

the spectra acquired from stromal cells but Normal was not significantly different from Normal-C2 

neither was Normal-C1 from Normal-C3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.204: Mean Raman spectra for comparison of spectra acquired from stromal cells in non-diseased tissue samples (H09-11708-

4, H09-12292-1, H09-12890-11, H09-9102-6, H09-13558-A8) represented by the class labels Normal, Normal-Endo., Normal-C1, 

Normal-C2 and Normal-C3 respectively. 
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Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D, 

2D and 3D space (Fig. 3.206). It was observed that an individual class would overlap at some point 

throughout its spectra with at least three other classes but class Normal-Endo. overlapped only with 

classes Normal and Normal-C2. Spectral points of Normal-C3 had the most compact arrangement 

relative to the other classes which signified the least intra-calss variation. 

  

 

Figure 3.206: Scores plots of segregation of spectra 

acquired from stromal cells, in in non-diseased 

tissue samples (H09-11708-4, H09-12292-1, H09-

12890-11, H09-9102-6, H09-13558-A8) represented 

by the class labels Normal, Normal-Endo., Normal-

C1, Normal-C2 and Normal-C3 respectively, 

illustrated in (A) 1D space, (B) 2D space and (C) 3D 

space. In (B) LD1 would discriminate spectral points 

between the different classes of tissues whereas as 

LD2 contributed to intra-class variation. 

 

Parameters P value 

  LDA1 vs Normal P > 0.05 

  LDA1 vs Normal-Endo. P < 0.001 

  LDA1 vs Normal-C1 P < 0.001 

  LDA1 vs Normal-C2 P > 0.05 

  LDA1 vs Normal-C3 P < 0.001 

  Normal vs Normal-Endo. P < 0.001 

  Normal vs Normal-C1 P < 0.001 

  Normal vs Normal-C2 P > 0.05 

  Normal vs Normal-C3 P < 0.001 

  Normal-Endo. vs Normal-C1 P < 0.001 

  Normal-Endo. vs Normal-C2 P < 0.001 

  Normal-Endo. vs Normal-C3 P < 0.001 

  Normal-C1 vs Normal-C2 P < 0.001 

  Normal-C1 vs Normal-C3 P > 0.05 

  Normal-C2 vs Normal-C3 P < 0.001 

 

Figure 3.205: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

stromal cells in all five glandular elements between 

non-diseased tissue sections H09-11708-4, H09-

9102-1, H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Normal, Normal-

Endo., Normal-C1, Normal-C2 and Normal-C3 

respectively. 
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The discriminant wavenumbers identified in loading plots accounting for variations between the 

samples were 1452 cm-1, 1293 cm-1, 1107 cm-1, 1060 cm-1 (DNA/RNA, lipids, carbohydrates) and 1001 

cm-1 (phenylalanine) (Fig. 3.207). 

 

 

 

 

 

 

 

 

 

 

 

Cluster vectors plots were presented and analysed in the same approach as before to identify 

potenital biomarkers for stem cells based on the occurrence ans expression level of wavenumbers 

and/or spectral region amongst tissue samples (Fig. 3.208).  

Without having any class as a reference origin, 1454 cm-1 (elastin, collagen, phospholipids) was 

commonly shared with 1453 cm-1 (structural proteins), 1452 cm-1 and 1451 cm-1 (CH2CH3 deformation 

in collagen) in four tissues, 1294 cm-1 (methylene twisting) with 1293 cm-1 were commonly shared in 

three tissues, 1107 cm-1 with 1106 cm-1 (lipids and proteins), 1105 cm-1 (carbohydrates) and 1104 cm-

1 (phenylalanine in proteins) were commonly shared in four tissues, 1061 cm-1 (paraffin) with 1060 cm-

1 (DNA/RNA, lipids, carbohydrates) were commonly shared in three tissues, 1002 cm-1 (phenylalanine) 

was commonly shared with 1001 cm-1 (phenylalanine) in four tissues whilst 783 cm-1 was commonly 

shared with 782 cm-1 (cytosine/uracil, DNA/RNA) in three tissues. Having class Normal (H09-11708-4) 

as reference, the only wavenumbers occuring commonly in three classes were 1001 cm-1 

Figure 3.207:  Loadings plots showing wavenumbers that discriminate stromal cells in non-diseased tissue sections (H09-11708-4, H09-

12292-1, H09-12890-11, H09-9102-6, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed 

spectrum used as a reference spectrum. 
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(phenylalanine) with 1000 cm-1 (phenylalanine). Using Normal-Endo as reference, three tissues were 

common for 1453 cm-1 (structural proteins) with 1452 cm-1 and 1451 cm-1 (CH2CH3 deformation in 

collagen), 1294 cm-1 (methylene twisting) and 1107 cm-1 with 1106 cm-1 (lipids and proteins). Having 

Normal-C1 as reference, 1003 cm-1 (phenylalanine ) was commonly shared with 1002 cm-1 

(phenylalanine ) and 1001 cm-1 (phenylalanine ) in four tissues. Using Normal-C2 as reference, 1295cm-

1 was commonly shared with 1294 cm-1 (methylene twisting) in three tissues, 1062 cm-1 (paraffin) with 

1061 cm-1 (paraffin) dispalyed common occurence in three tissues and 1004 cm-1 (phenylalanine) was 

commonly shared with 1002 cm-1 (phenylalanine) and 1001 cm-1 (phenylalanine) four tissues whilst 

784 cm-1 (cytosine/uracil) was commonly shared with 783 cm-1  in three tissues. Having class Normal-

C3 as reference, 1452 cm-1 was commonly shared with 1451 cm-1 (CH2CH3 deformation in collagen) in 

three tissues, 1295 cm-1 with 1294 cm-1 (methylene twisting) had common occurrence in four tissues, 

1061 cm-1 (residual paraffin) with 1060 cm-1 (DNA/RNA, lipids, carbohydrates) had common 

occurrence in four tissues and 1004 cm-1 (phenylalanine) was commonly shared with 1003 cm-1 

(phenylalanine)  and 1000 cm-1 (phenylalanine) in three tissues.   
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Between non-diseased samples from patients with endometrial cancer 

 

Spectra from stromal cells in only non-diseased tissue samples (H09-12890-11, H09-9102-6, H09-

13558-A8) taken from patients with endometrial cancer were compared. Classes representing the 

samples were labelled as before and will be referred accordingly to associate data analysis with what 

is shown on the plots. All classes exhibited a very similar Raman mean spectra whereby most 

pronounced variations in absorbance intensities would occur at ~1666 cm-1, ~1447 cm-1, ~1340 cm-1, 

~1295 cm-1, ~1258 cm-1, ~1130 cm-1, ~1061 cm-1, ~1002 cm-1, ~937 cm-1, ~857 cm-1 and ~758 cm-1 (Fig. 

3.209). Patient 2 was found to have the highest peak intensities except at ~1447 cm-1 where it 

Figure 3.208: Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from stromal cells, amongst non-diseased tissue sections. (A) & (B) no sample 

used as a reference, (C) & (D) Normal (H09-11708-4) reference class, (E) & (F) Normal-Endo. (H09-12292-1) reference class, (G) & (H) 

Normal-C1 (H09-12890-11) reference class, (I) & (J) Normal-C2 (H09-9102-6) reference class and (K) & (L) Normal-C3 (H09-13558-A8) 

reference class. The red rectangles in the cluster vector peak location plots highlight the wavenumbers occurring commonly in different 

tissue samples. 

. 
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ehxibited the lowest peak while Patient 1 had the highest peak. It was observed that Patient 1 and 

Patient 3 exhibited very similar peak intensities.  

Statisstical analysis indicated that Patient 2 was significantly different from Patient 1 and Patient 3 

whereas the two latter were no significantly different from each other (Fig. 3.210).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application of PCA-LDA resulted in segregation of classes which was visualised in scores plots of 1D 

and 2D space  (Fig. 3.211). Patient 2 would just overlap with Patient 1 only. The whole spectra of 

Patient 3 overlapped with most of the spectra of patient 1. Spectral points in Patient 1 and Patient 3 

appeared to have a more compact arrangement and thus less intra-class variation relative to Patient 

2. Despite the overlapping between classes, the dimensional space occupied by a class as an individual 

could be easily distinguished.  

Figure 3.209: Mean Raman spectra for comparison of spectra acquired from stromal cells in non-diseased tissue sections (H09-12890-

11, H09-9102-6, H09-13558-A8). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-

12890-11, H09-9102-6 and H09-13558-A8 respectively. 

 

Parameters P value 

  LDA1 vs Patient 1 P < 0.001 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P < 0.001 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P > 0.05 

  Patient 2 vs Patient 3 P < 0.001 

 

Figure 3.210: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

stromal cells between non-diseased tissue sections 

H09-9102-6, H09-12890-11, H09-13558-A8 

represented by the class labels Patient 1, Patient 2 

and Patient 3 respectively. 



268 
 

 

 

 

The five major discriminant wavenumbers identified in loading plots (Fig. 3.212) accounting for 

variations between classes and thus tissue samples were 1435 cm-1, 1396 cm-1, 1221cm-1 (amide III; β 

sheet), 1130 cm-1 (lipids) and 783 cm-1. 

 

 

 

 

 

 

 

 

 

 

Figure 3.211: Scores plots for 

segregation of spectra in (A) 1D and (B) 

2D space. Classes of tissues were 

labelled as Patient 1 (red), Patient 2 

(blue) and Patient 3 (green) representing 

the tissues H09-12890-11, H09-9102-6 

and H09-13558-A8 respectively. In (B) 

LD1 would discriminate spectral points 

between the different classes of tissues 

whereas as LD2 contributed to intra-

class variation. 

 

Figure 3.212:  Loadings plots showing wavenumbers that discriminate stromal cells in non-diseased tissue sections (H09-9102-6, H09-

12890-11, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 
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Cluster vector plots were presented and analysed like previsouly to identify potential biomarkers for 

stromal cells based on occurrence and expression levels of wavenumbers and/or spectral regions 

between classes representing the tissues (Fig. 3.213). Having no class as a reference, 1436 cm-1 (lipids) 

was commonly shared with 1435 cm-1 in two tissues, 1221 cm-1 (amide III; β sheet) and 1130 cm-1 were 

common in two tissues as well, whislt all three classes were common for 783 cm-1 with 782 cm-1 

(cytosine/uracil, DNA/RNA). Using Patient 1 as reference, 783 cm-1 was commonly shared with 782 

cm-1 (cytosine/uracil, DNA/RNA). Using Patient 2 as reference, 1435 cm-1, 1221 cm-1 (amide III; β 

sheet), and 783 cm-1  with 782 cm-1 (cytosine/uracil, DNA/RNA) occurred commonly in classes. Using 

Patient 3 as reference only 782 cm-1 (cytosine/uracil, DNA/RNA) showed common occurrence.  
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Between diseased samples from patients with endometrial cancer 

Spectra acquired from stromal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-13558-

A5) taken from cancerous lesions in the endometrium were analysed and compared. Classes were 

labelled as Patient 1, Patient 2 and Patient 3 to represent the samples H09-12890-9, H09-9102-1 and 

H09-13558-A5 respectively. In this section classes of tissues will be referred according to their labels 

for the purpose of associating data analysis with what is shown on the plots. All classes exhibited a 

relatively similar shape in mean Raman spectra with most pronounced variations in absorbance 

intensities occurring at ~1667 cm-1, ~1447 cm-1, ~1341 cm-1, ~1294 cm-1, ~1128 cm-1, ~1062 cm-1, ~1002 

cm-1, ~938 cm-1, 855 cm-1 and 762 cm-1 (Fig. 3.214). Mainly Patient 2 had the highest peak intensities. 

Statistical analysis indicated that all tissues were significantly different from each other (Fig. 3.215). 

Figure 3.213: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from stromal cells among non-diseased tissue sections from patients with 

endometrial cancer. (A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-11) reference class, (E) & (F) Patient 2 (H09-

9102-6) reference class and (G) & (H) Patient 3 (H09-13558-A8) reference class. The red rectangles highlight the wavenumbers occurring 

commonly in classes.  
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Segregation of classes resulting from application of PCA-LDA was visualised in scores plots of 1D and 

2D space (Fig. 3.216). Patient 2 did not overlap with any of the classes whilst little overlap was 

observed between Patient 1 and Patient 3. Spectral points in all classes had a compact arrangement 

rather than spread and the dimensional space occupied by each class was easily distinguished.  

Figure 3.214: Mean Raman spectra for comparison of spectra from stromal cells in diseased tissue sections (H09-12890-9, H09-9102-1, 

H09-13558-A5). Classes of tissues were labelled as Patient 1, Patient 2 and Patient 3 representing the tissues H09-12890-9, H09-9102-

1 and H09-13558-A5 respectively. 

 

Parameters P value 

  LDA1 vs Patient 1 P < 0.01 

  LDA1 vs Patient 2 P < 0.001 

  LDA1 vs Patient 3 P < 0.001 

  Patient 1 vs Patient 2 P < 0.001 

  Patient 1 vs Patient 3 P < 0.05 

  Patient 2 vs Patient 3 P < 0.001 

 

Figure 3.215: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from 

stromal cells between diseased tissue sections H09-

9102-1, H09-12890-9, H09-13558-A5 represented 

by the class labels Patient 1, Patient 2 and Patient 3 

respectively. 
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Generation of loading plots identified five major wavenumbers which would discriminate classes of 

tissues (Fig. 3.217). The identified wavenumbers were 1438 cm-1 (CH2 deformation), 1306 cm-1, 1219 

cm-1, 1002 cm-1 (phenylalanine) and 570 cm-1.  

 

 

 

 

 

 

 

 

 

 

Figure 3.216: Scores plots for segregation 

of spectra acquired from stromal cells in (A) 

1D and (B) 2D space. Classes of tissues were 

labelled as Patient 1 (red), Patient 2 (blue) 

and Patient 3 (green) representing the 

tissues H09-12890-9, H09-9102-1 and H09-

13558-A5 respectively. In (B) LD1 would 

discriminate spectral points between the 

different classes of cells whereas as LD2 

contributed to intra-class variation. 

Figure 3.217:  Loadings plots showing wavenumbers that discriminate stromal cells in diseased tissue sections (H09-9102-1, H09-12890-

9, H09-13558-A5). The red line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference 

spectrum. 



273 
 

Cluster vector plots were presented analysed in the same approach as before in order to identify 

biomarkers for stromal cells (Fig. 3.218). Having no class as a reference origin, two tissues were 

common for 1438 cm-1 (CH2 deformation) with 1437 cm-1 (CH2 deformation in lipids), 1306 cm-1 and 

1002 cm-1 (phenylalanine) whilst 572 cm-1 was commonly shared with 570 cm-1 and 569 cm-1 in all three 

tissues. Having Patient 1 as reference, 1132 cm-1 (proteins and lipids) was commonly shared with 1130 

cm-1 (lipids). Having Patient 2 as reference, common occurrence was observed for 1438 cm-1 (CH2 

deformation) with 1437 cm-1 (CH2 deformation in lipids), 1306 cm-1 and 571 cm-1 with 570 cm-1. Having 

Patient 3 as reference, only 1003 cm-1 (phenylalanine) was commonly shared with 1002 cm-1 

(phenylalanine). 
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Diseased tisues Vs Non-Diseased tissues 

 

The spectra of the stromal cells in diseased tissue samples (H09-12890-9, H09-9102-1, H09-13558-A5) 

were compared with the spectra of stromal cells in their corresponding non-diseased tissue samples 

(H09-12890-11, H09-9102-6, H09-13558-A8) taken from patients with endometrial cancer and tissue 

samples were represented by the classes ‘Cancer’ and ‘Normal’ respectively. Classes of tissues will be 

referred according to their labels to associate data analysis with what is shown on the plots. Both 

classes exhibited a very similar mean Raman spectra with slight variations in absorbance intenstities. 

Cancer had a higher intensity at ~1341 cm-1 only whilst Normal had just higher intensities at ~1295 cm-

1, ~1129 cm-1, ~1062 cm-1 and ~937 cm-1(Fig. 3.219 A). Application of PCA-LDA resulted in segregation 

of classes which was visualised in scores plot of 1D space whereby most of the spectra of Cancer 

overlapped with almost half of the spectra of Normal (Fig. 3.219 B). Statistical analysis indicated that 

classes were not significantly different from each other (Fig. 3.220). 

 

Figure 3.218: Alternative presentation of cluster vector plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers, from spectra acquired from stromal cells among diseased tissue sections from patients with 

endometrial cancer. (A) & (B) no class used as a reference, (C) & (D)  Patient 1 (H09-12890-9) reference class, (E) & (F) Patient 2 (H09-

9102-1) reference class and (G) & (H) Patient 3 (H09-13558-A5) reference class. The red rectangles highlight the wavenumbers occurring 

commonly in classes. 
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The five major wavenumbers identified in loading responsible for discriminating the classes of tissue 

samples were 1465 cm-1 (lipids), 1294 cm-1 (methylene twisting), 1131 cm-1 (lipids), 1061 cm-1 (residual 

paraffin) and 1003 cm-1 (phenylalanine) (Fig. 3.221). 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters P Value 

Cancer Vs Normal P<0.0001 

Figure 3.219: (A) Mean Raman spectra for comparison of spectra from stromal cells in all diseased tissue sections (H09-12890-9, H09-

9102-1, H09-13558-A5) and their corresponding non-diseased tissue sections (H09-12890-11, H09-9102-6, H09-13558-A8). (B) Scores 

plots for segregation of spectra in 1D space. Diseased and non-diseased tissue samples are represented by the class labels ‘Cancer’ (red) 

and ‘Normal’ (blue) respectively. 

 

Figure 3.221:  Loadings plots showing wavenumbers that discriminate spectra from stromal cells in all diseased (H09-9102-1, H09-

12890-9, H09-13558-A5) and their corresponding non-diseased (H09-9102-6, H09-12890-11, H09-13558-A8) tissue sections. The red 

line is a pseudospectra and the dotted line is the actual pre-processed spectrum used as a reference spectrum. 

Figure 3.220: Obtained p-value by employment of 

Unpaired t-test to compare spectra acquired from 

stromal cells between non diseased (H09-9102-6, 

H09-12890-11, H09-13558-A8) and their 

corresponding diseased (H09-9102-1, H09-12890-

9, H09-13558-A5) tissue sections represented by 

the class labels Normal and Cancer respectively. 
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The five major wavenumbers in loading plots were also observed in cluster vector plots occuring in 

both classes (Fig. 3.222). The wavenumbers displayed common occurrence in both classes and 

exhibited same expression levels amongst classes so none of the wavenumbers was identified to have 

a potential as a biomarker to specify either ‘Normal’ or ‘Cancer’ stromal cells though highest 

expression levels were exhibited by 1294 cm-1 (methylene twisting) and 1131 cm-1 (lipids) whereas 

1003 cm-1 (phenylalanine) exhibited the lowest levels. Biomarkers that would specify either ‘Normal’ 

or ‘Cancer’ stromal cells could not be identified since the identified discriminant wavenumbers 

displayed common occurrence between the classes. For a wavenumber to have a potential as a 

biomarker for either of the classes, should have been observed in only one class. 

 

 

 

 

 

 

 

Figure 3.222: Alternative presentation of 

cluster vector plots, produced after 

application of PCA-LDA, showing 

occurrence and expression levels of 

wavenumbers, from spectra acquired from 

stromal cells among all corresponding 

diseased (H09-12890-9, H09-9102-1, H09-

13558-A5) and non-diseased (H09-12890-

11, H09-9102-6, H09-13558-A8) tissue 

sections. The red rectangles highlight the 

wavenumbers occurring commonly in 

classes. 
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3.3.4 Basal Cells Vs Luminal Cells Vs Stromal Cells 

 

In individual tissue samples 

The biochemical composition of basal, luminal and stromal cells from all five glandular elements in 

individual tissue sections was analysed and compared. Figure 3.223 shows the mean Raman spectra 

of all the classes of cells acquired from all five glandular elements in each tissue section. It was 

observed that in each tissue the shape of the mean spectra of all three classes was relatively similar. 

Any variations in shape of the mean spectra would be mainly exhibited by luminal cells especially in 

the spectral region ~1300-1400 cm-1. Basal and stromal cells had almost the same peak intensities 

which were higher than the peak intensities of luminal cells except at the spectral regions at ~1600 

cm-1 and ~1340 cm-1 whereby the peaks of luminal cells were higher and at ~620 cm-1 whereby the 

peak intensities for all classes was relatively the same. Most pronounced variations in absorbance 

intensities were observed at ~1661 cm-1, ~1445 cm-1, ~1297 cm-1, ~1129 cm-1, ~1062 cm-1, ~1003 cm-

1, ~942 cm-1, ~853 cm-1 and ~770 cm-1. Either non-diseased or diseased tissue samples, the same 

observations were made. No specific observations were made that could correlate in any way non-

diseased tissue samples with their corresponding diseased tissue.  

Classes of cells were significantly different from each other except in tissue samples H09-12890-11, 

H09-12292-1, H09-9102-1 and H09-13558-A5 whereby the obtained P value suggested no significant 

difference between basal and stromal cells (Fig. 3.224). 
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Figure 3.223: Mean Raman spectra for comparison of 

spectra acquired from basal (red), luminal (blue) and 

stromal (green) cells from all five glandular areas in 

non-diseased (H09-9102-6, H09-12890-11, H09-13558-

A8, H09-11708-4, H09-12292-1) and diseased (H09-

9102-1, H09-12890-9, H09-13558-A5) tissue sections. 

Spectra of corresponding non-diseased (H09-9102-6, 

H09-12890-11, H09-13558-A8) and diseased (H09-

9102-1, H09-12890-9, H09-13558-A5) tissue samples 

are illustrated next to each other. 
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H09-9102-1 
 

Parameters P value 

  LDA1 vs Basal Cells P < 0.001 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P > 0.05 

  Luminal Cells vs Stromal Cells P < 0.001 

 

H09-12890-9 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

 

H09-13558-A5 
 

Parameters P value 

  LDA1 vs Basal Cells P < 0.01 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.01 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P > 0.05 

  Luminal Cells vs Stromal Cells P < 0.001 

 

H09-12292-1 
 

Parameters P value 

  LDA1 vs Basal Cells P < 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P > 0.05 

  Luminal Cells vs Stromal Cells P < 0.001 

 

H09-9102-6 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

H09-12890-11 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P > 0.05 

  Luminal Cells vs Stromal Cells P < 0.001 

H09-13558-A8 
 

Parameters P value 

  LDA1 vs Basal Cells P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.001 

  Basal Cells vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

H09-11708-4 
 

Parameters P value 

  LDA1 vs Basal Cells P < 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells vs Luminal Cells P < 0.01 

  Basal Cells vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

Figure 3.224: Obtained p-values by employment of One-way ANOVA test coupled with Tukey’s multiple comparison test to compare 

spectra acquired from basal, luminal and stromal cells from five glandular elements in individual non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-9102-1) and diseased (H09-9102-1, H09-12890-9, H09-13558-A5) tissue sections. 
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Figure 3.225 and figure 3.226 illustrate scores plots of non-diseased and diseased tissue sections 

respectively. In sample H09-9102-6, basal cells overlapped with both luminal and stromal cells whilst 

the luminal and stromal cells showed no overlapping. None of the classes displayed to have neither 

more nor less intra-class variation based on arrangement of spectral points within the dimensional 

space. 

In sample H09-12890-11 all classes would overlap with each other. In the 2D scores plot, spectral 

points of basal cells had a more compact arrangement and thus signifying less within class variation 

relative to the other classes of cells.  

In sample H09-13558-A8, basal cells overlapped with luminal and stromal cells whilst slight overlap 

was observed between luminal and stromal cells. Spectra of luminal cells had a more compact 

arrangement signifying less within class variation relative to the other classes.  

In sample H09-11708-4 basal cells overlapped more with luminal cells than with stromal cells but no 

overlapping was observed between luminal and stromal cells. Spectra of stromal cells had a more 

spread arrangement relative to the other classes of cells signifying more intra-class variation.  

In sample H09-12292-1, all classes would overlap with each other and no significant differences were 

observed concerning dimensional arrangement of spectra neither intra-class variation.  

In sample H09-9102-1, all classes of cells displayed overlap with basal and stromal cells just overlap 

with luminal cells whilst they displayed more overlap with each other. Spectra of luminal cells was 

more spread relative to the other classes and thus displaying the most intra-class variation.  

In sample H09-12890-9 basal cells overlapped with both luminal and stromal cells whereas no 

overlapping was observed between the two latter classes. Spectral points of luminal cells had a more 

compact arrangement which signified less intra-class variation. 
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In sample H09-13558-A5 all classes overlapped with each other and spectra of basal cells had a more 

compact arrangement. Luminal cells showed the most segregation from basal and stromal cells so 

overlapping between the two latter cells was more obvious.  

No specific observations were made that would associate the corresponding non-diseased and 

diseased tissue sections. 
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Figure 3.225: 1D and 2D scores plots in non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-13558-A8, H09-11708-4, H09-

12292-1) produced after application of PCA-LDA on the spectra acquired from basal (red), luminal (blue) and stromal (green) cells from 

all glandular elements in individual samples. In 2D plots LD1 would discriminate spectral points between the different classes of cells 

whereas as LD2 contributed to intra-class variation. 
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Generation of loading plots identified five major discriminant wavenumbers responsible for variations 

between classes of basal, luminal and stromal cells from all the interrogated glandular elements in 

individual samples (Fig. 3.227). The identified wavenumbers in sample H09-9102-6 were 1576 cm-1 

(nucleic acids/guanine), 1238 cm-1, 1003 cm-1 (phenylalanine), 812 cm-1 (phosphodiester) and 644 cm-

1. In H09-12890-11 the wavenumbers were 1656 cm-1 (amide I/lipids), 1294 cm-1 (methylene twisting), 

1062 cm-1 (residual paraffin), 1013 cm-1 and 782 cm-1 (cytosine/uracil, DNA/RNA). In sample H09-

Figure 3.226: 1D and 2D scores plots in diseased tissue sections (H09-9102-1, H09-12890-9, H09-13558-A5) produced after application 

of PCA-LDA on the spectra acquired from basal (red), luminal (blue) and stromal (green) cells from all glandular elements in individual 

samples. In 2D plots LD1 would discriminate spectral points between the different classes of cells whereas as LD2 contributed to intra-

class variation. 
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13558-A8 the discriminant wavenumbers were 1407 cm-1, 1295 cm-1, 1132 cm-1 (proteins and lipids), 

1062 cm-1 (residual paraffin) and 781 cm-1 (cytosine/uracil). In H09-11708-4 the major wavenumbers 

were 1242 cm-1 (amide III; β sheet), 1129 cm-1 (lipids), 1003 cm-1 (phenylalanine), 919 cm-1 and 857 

cm-1. In H09-12292-1 the wavenumbers were 1441 cm-1 (lipids), 1295 cm-1, 1132 cm-1 (proteins and 

lipids), 937 cm-1 (proline, protein backbone/glycogen) and 853 cm-1 (tyrosine/proline). In the diseased 

sample H09-9102-1 the wavenumbers were 1296 cm-1 (residual paraffin), 1130 cm-1 (lipids), 1002 cm-

1 (phenylalanine), 919 cm-1 and 856 cm-1 (proline, hydroxyproline, tyrosine, collagen backbone). In 

sample H09-12890-9 the identified wavenumbers were 1687 cm-1, 1242 cm-1 (amide III; β sheet), 1127 

cm-1, 1004 cm-1 (phenylalanine) and 782 cm-1 (cytosine/uracil, DNA/RNA). In sample H09-13558-A5 the 

discriminant wavenumbers were 1295 cm-1, 1131 cm-1 (lipids), 1061 cm-1 (residual paraffin), 856 cm-1 

(proline, hydroxyproline, tyrosine, collagen backbone) and 781 cm-1 (cytosine/uracil).  
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Cluster vector plots were analysed in an alternative way in an attempt to identify potential biomarkers 

for basal, luminal and stromal cells (Fig. 3.228). Observations were based on expression levels of 

wavenumbers in the different classes of cells and which wavenumbers and/or spectral regions were 

commonly shared among classes and which wavenumbers occurred only in one class. The expression 

levels of shared wavenumbers were the same among classes, unless stated differently. 

In sample H09-9102-6, the class of basal cells did not share any wavenumbers with the other classes. 

Wavenumbers unique for basal cells were 1685 cm-1 (amide I), 1440 cm-1 (lipids), 1296 cm-1 (residual 

paraffin), 1131 cm-1 (lipids) and 919 cm-1. The shared wavenumbers between luminal and stromal cells 

were 1576 cm-1 (nucleic acids), 1238 cm-1, 1003 cm-1 (phenylalanine), 812 cm-1 (phosphodiester) and 

644 cm-1. Luminal cells neither stromal cells were not unique for any wavenumbers. The wavenumber 

shared between luminal and stromal cells was only 1013 cm-1. 

In sample H09-12890-11 the shared wavenumbers between basal and stromal cells were 1296 cm-1 

(residual paraffin), 1294 cm-1 (methylene twisting), 1062 cm-1 (residual paraffin), 783 cm-1  and 782 cm-

1 (cytosine/uracil, DNA/RNA). Wavenumbers observed only in basal cells were 1130 cm-1 (lipids) and 

Figure 3.227:  Loadings plots showing wavenumbers that 

discriminate basal, luminal and stromal cells from all 

glandular areas in non-diseased (H09-9102-6, H09-

12890-11, H09-13558-A8, H09-11708-4, H09-12292-1) 

and diseased (H09-9102-1, H09-12890-9, H09-13558-A5) 

tissue sections. Loading plots of corresponding non-

diseased and diseased tissue samples are illustrated next 

to each other. The red line is a pseudospectra and the 

dotted line is the actrual pre-processed spectrum used as 

a reference spectrum. 
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727 cm-1 (proline), in luminal cells was only 16556 cm-1 (amide I/lipids) and in stromal cells were 1663 

cm-1 (DNA), 1420 cm-1 (proteins and lipids) and 938 cm-1 (protein backbone). Basal cells and stromal 

cells were not found to share any wavenumbers. 

In sample H09-11708-4 the wavenumbers commonly shared between basal and stromal cells were 

971 cm-1 (C-C wagging), whose expression levels were higher in basal cells, and 781 cm-1 

(cytosine/uracil), between luminal and stromal cells the shared wavenumbers were 1296 cm-1 

(paraffin), 1295 cm-1, 1132 cm-1 (proteins and lipids), 1131 cm-1 (lipids), 1062 cm-1 (paraffin) and 1061 

cm-1 (paraffin). Wavenumbers occurring only in basal cells were 1608 cm-1 (cytosine), 1257 cm-1 (amide 

III) and 725 cm-1 (DNA/RNA bases), in luminal and stromal cells were 1407 cm-1 (proline and valine) 

and 642 cm-1 (tyrosine) respectively. 

In sample H09-117084-4 the wavenumbers shared commonly between all three classes of cells were 

1243 cm-1 (amide III) and 1242 cm-1 (amide III; β sheet). Basal and stromal cells were common for 1003 

cm-1 (phenylalanine). Luminal and stromal cells were common for 1130 cm-1 (lipids), 1129 cm-1 (lipids), 

919 cm-1, 857 cm-1  and 856 cm-1 (proline, hydroxyproline, tyrosine). Expression levels of 1130 cm-1 

(lipids) and 856 cm-1 (proline, hydroxyproline, tyrosine) were higher in luminal cells. Wavenumbers 

occurring only in basal cells were 1339 cm-1 (tryptophan), 869 cm-1 (proline) and 812 cm-1 

(phosphodiester) and in luminal cells it was only 1296 cm-1 (paraffin). Stromal cells did not present any 

unique wavenumbers. 

In sample H09-12292-1 all three classes of cells were common for 1296 cm-1 (paraffin), 1295 cm-1, 938 

cm-1 (protein backbone), 937 cm-1 (proline, protein backbone/glycogen), 935 cm-1 (proline, valine, 

protein backbone/glycogen) and 853 cm-1( tyrosine/proline). Basal and luminal cells were common for 

1440 cm-1 and 1436 cm-1, both assigned to lipids, but expression levels were higher in basal cells. Basal 

and stromal cells were unique for 1397 cm-1 and 1063 cm-1 (C-C stretch) respectively. Luminal cells did 

not present any unique wavenumbers. 
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In sample H09-9102-1 all classes of cells were common for 1130 cm-1 (lipids) only. Basal and luminal 

cells were common for 856 cm-1 and 855 cm-1, both assigned to proline, hydroxyproline, tyrosine and 

collagen backbone. Luminal and stromal cells were common for 1296 cm-1 (paraffin) and 1002 cm-1 

(phenylalanine). Expression levels of the latter were higher in stromal cell. Wavenumbers occurring 

only in basal cells were 1682 cm-1 (cortisone), 1241 cm-1 (nucleic acids) and 938 cm-1 (protein 

backbone). Wavenumbers occurring only in stromal cells were 1493 cm-1 (CH2 deformation) and 871 

cm-1. Luminal cells were unique only for 919 cm-1.  

In sample H09-12890-9 luminal and stromal cells were common for 1687 cm-1, 1686 cm-1, 1004 cm-1 

and 1003 cm-1, both assigned to phenylalanine and expression levels were higher in stromal cells. Basal 

and luminal cells were common for 1131 cm-1 (lipids), 1130 cm-1 (lipids), 783 cm-1 and 782 cm-1 

(cytosine/uracil, DNA/RNA). No wavenumber was found to be shared in common between basal and 

stromal cells. Wavenumbers occurring only in basal cells were 1437 cm-1 (lipids and proteins), 1295 

cm-1 and 1062 cm-1 (paraffin). Luminal cells were unique only for 727 cm-1 (proline). Stromal cells were 

found unique for 1643 cm-1, 1307 cm-1 (lipids/collagen) and 1144 cm-1. 

In sample H09-13558-A5 the wavenumbers shared in common between all classes of cells were 1295 

cm-1, 1131 cm-1 (lipids), 1062 cm-1 (paraffin), 1061 cm-1 (paraffin), 782 cm-1 (cytosine/uracil, DNA/RNA) 

and 781 cm-1 (cytosine/uracil). Basal and stromal cells were common for 855 cm-1 and 854 cm-1 both 

assigned to tyrosine/proline. Only stromal cells were found unique for 731 cm-1. 
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Figure 3.228:  Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers among basal (red), luminal (blue) and stromal (green) cells from all glandular areas in individual non-

diseased (H09-9102-1, H09-12890-9, H09-13558-A5,H09-11708-4, H09-12292-1) and diseased tissue sections (H09-9102-1, H09-12890-

9, H09-13558-A5). The red rectangles highlight wavenumbers shared in common between classes of cells. 
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In non-diseased tissues 

 

The biochemical composition of all basal, luminal and stromal cells in non-diseased tissue samples 

(H09-9102-6, H09-12890-11, H09-13558-A8) taken from patients with endometrial cancer was 

analysed. All classes of cells exhibited relatively the same shape in mean Raman spectra whereby 

evident variations in absorbance intensities were observed at ~1655 cm-1, ~ 1448 cm-1, ~1342 cm-1, 

~1295 cm-1, ~1128 cm-1, ~1061 cm-1, ~1031 cm-1, ~936 cm-1, ~854 cm-1 and ~758 cm-1 (Fig. 3.229). 

Stromal cells had the highest peak intensities which were slightly higher than intensities of basal cells. 

Luminal cells had the lowest peak intensities except at ~1342 cm-1 whereby the peak was the highest. 

Classes of cells were significantly different from each other as indicated by the P values obtained from 

statistical analysis (Fig. 3.230). 

 

 

 Parameters P value 

  LDA1 vs Basal Cells  P > 0.05 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells  vs Luminal Cells P < 0.001 

  Basal Cells  vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

Figure 3.229: Mean Raman spectra for comparison of spectra acquired from all basal (red), luminal (blue) and stromal (green) cells in 

non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-13558-A8) to analyse their biochemical composition. 

Figure 3.230: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from all 

basal, luminal and stromal cells in non-diseased tissue 

sections (H09-9102-6, H09-12890-11, H09-13558-A8). 



291 
 

Segregation of classes after application of PCA-LDA was visualised in scores plots of 1D and 2D space 

(Fig. 3.231). Basal and stromal cells overlapped with each other throughout most of their spectra. 

Almost more than half of spectra collected from luminal cells overlapped with both other classes. 

Spectral points of all classes had a compact arrangement in the dimensional space where overlapping 

between all three classes occurred. However, no class was identified as having more or less intra-class 

variation since spectral points in individual classes exhibited relatively the same dimensionality. 

A 

B 

Figure 3.231: Scores plots of (A) 1D and (B) 2D space illustrating segregation of spectra acquired from basal (red), luminal (blue) and 

stromal (green) cells in non-diseased tissue sections (H09-9102-6, H09-12890-11, H09-13558-A8) produced after application of PCA-

LDA. In (B) LD1 would discriminate spectral points between the different classes of cells whereas as LD2 contributed to intra-class 

variation. 
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The five major discriminant wavenumbers identified in loading plots (Fig. 3.232) accounting for 

variations between classes of cells were 1448 cm-1 (CH2 deformation, collagen), 1132 cm-1 (proteins 

and lipids), 1062 cm-1 (paraffin), 936 cm-1 (valine/proline and protein) and 855 cm-1 (proline, 

hydroxyproline, tyrosine/collagen backbone).  

 

 

Cluster vector plots were analysed in an alternative way in an attempt to identify potential biomarkers 

for basal, luminal and stromal cells in non-diseased tissue samples (Fig. 3.233). Observations were 

based on expression levels of wavenumbers in the different classes of cells and which wavenumbers 

and/or spectral regions were commonly shared among classes and which wavenumbers occurred only 

in one class. The expression levels of shared wavenumbers were the same among classes. Basal cells 

and luminal cells were found to be common for 1444 cm-1 (cholesterol) and 1448 cm-1 (CH2 

deformation). Luminal and stromal cells were common for 1132 cm-1 (proteins and lipids), 1131 cm-1 

(lipids), 1062 cm-1 (paraffin), 935 cm-1 (proline, valine, protein backbone/glycogen), 936 cm-1 (valine, 

proline, protein), 854 cm-1 and 855 cm-1, both assigned to tyrosine/proline. Wavenumbers occurring 

only in basal cells were 1657 cm-1 (amide I), 1310 cm-1, 1090 cm-1 (symmetric phosphate stretching 

Figure 3.232:  Loadings plots showing five major wavenumbers that discriminate basal, luminal and stromal cells in non-diseased tissue 

sections (H09-9102-6, H09-12890-11, H09-13558-A8). The red line is a pseudospectra and the dotted line is the actual pre-processed 

spectrum used as a reference spectrum. 
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vibrations) and 782 cm-1 (cytosine/uracil, DNA/RNA). Only 1295 cm-1 was found to occur only in 

stromal cells whereas no wavenumber was found to be unique for luminal cells. 

 

 

 

 

 

Figure 3.233:  Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers among basal (red), luminal (blue) and stromal (green) cells in  non-diseased tissue sections (H09-

9102-6, H09-12890-11, H09-13558-A8). The red rectangles highlight wavenumbers shared in common between classes of cells. 
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In diseased tissues 

 

The biochemical composition of all basal, luminal and stromal cells in diseased tissue samples (H09-

9102-1, H09-12890-9, H09-13558-A5) taken from cancerous lesions of the endometrium was 

analysed. All classes of cells exhibited relatively the same shape in mean Raman spectra whereby 

evident variations in absorbance intensities were observed at ~1665 cm-1, ~ 1448 cm-1, ~1342 cm-1, 

~1295 cm-1, ~1128 cm-1, ~1061 cm-1, ~1002 cm-1, ~936 cm-1, ~853 cm-1 and ~767 cm-1 (Fig. 3.234). 

Stromal and basal cells had similar peak intensities which were higher than intensities of luminal cells. 

Luminal cells had the lowest peak intensities except at ~1376 cm-1 whereby the peak was the highest. 

Classes of cells were significantly different from each other as indicated by the P values obtained from 

statistical analysis (Fig. 3.235). 

 

 

Parameters P value 

  LDA1 vs Basal Cells  P < 0.01 

  LDA1 vs Luminal Cells P < 0.001 

  LDA1 vs Stromal Cells P < 0.001 

  Basal Cells  vs Luminal Cells P < 0.001 

  Basal Cells  vs Stromal Cells P < 0.001 

  Luminal Cells vs Stromal Cells P < 0.001 

Figure 3.234: Mean Raman spectra for comparison of spectra acquired from all basal (red), luminal (blue) and stromal (green) cells in 

diseased tissue sections (H09-9102-1, H09-12890-9, H09-13558-A5) to analyse their biochemical composition. 

Figure 3.235: Obtained p-values by employment of 

One-way ANOVA test coupled with Tukey’s multiple 

comparison test to compare spectra acquired from all 

basal, luminal and stromal cells in diseased tissue 

sections (H09-9102-1, H09-12890-9, H09-13558-A5). 
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Segregation of classes after application of PCA-LDA was visualised in scores plots of 1D and 2D space 

(Fig. 3.236). All classes would overlap with each other mainly throughout their whole spectra. Almost 

all spectral points of basal and stromal cells overlapped with each other. Some spectral points of 

luminal cells displayed no overlap. Also spectral points of luminal cells had a relatively more spread 

arrangement signifying more intra-class variation. 

 

 

A 

B 

Figure 3.236: Scores plots of (A) 1D and (B) 2D space illustrating segregation of spectra acquired from basal (red), luminal (blue) and 

stromal (green) cells in diseased tissue sections (H09-9102-1, H09-12890-9, H09-13558-A5) produced after application of PCA-LDA. In 

(B) LD1 would discriminate spectral points between the different classes of cells whereas as LD2 contributed to intra-class variation.  
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The five major discriminant wavenumbers identified in loading plots (Fig. 3.237) accounting for 

variations between classes of cells were 1448 cm-1 (CH2 deformation, collagen), 1304 cm-1 (lipids, 

adenine, cytosine), 1131 cm-1 (lipids), 1087 cm-1 (lipids) and 1003 cm-1 (phenylalanine).  

 

 

Cluster vector plots were analysed in an alternative way in an attempt to identify potential biomarkers 

for basal, luminal and stromal cells in diseased tissue samples (Fig. 3.238). Observations were based 

on expression levels of wavenumbers in the different classes of cells and which wavenumbers and/or 

spectral regions were commonly shared among classes and which wavenumbers occurred only in one 

class. The expression levels of shared wavenumbers were the same among classes. The wavenumbers 

commonly shared between all three classes of cells were 1310 cm-1 , 1305 cm-1 (adenine, cytosine), 

1304 cm-1 (lipids, adenine, cytosine), 1132 cm-1 (lipids and proteins) and 1131 cm-1 (lipids). Luminal and 

stromal cells were common for 1448 cm-1 (CH2 deformation), 1447 cm-1 (proteins and lipids), 1087 cm-

1 (lipids) and 1003 cm-1 (phenylalanine). Wavenumbers occurring only in basal cells were 1668 cm-1, 

1239 cm-1 (amide III) and 781 cm-1 (cytosine/uracil). No wavenumber was found to be unique neither 

for luminal cells nor for stromal cells. 

Figure 3.237:  Loadings plots showing five major wavenumbers that discriminate basal, luminal and stromal cells in diseased tissue 

sections (H09-9102-1, H09-12890-9, H09-13558-A5). The red line is a pseudospectra and the dotted line is the actual pre-processed 

spectrum used as a reference spectrum. 
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Figure 3.238:  Alternative presentation of cluster vectors plots, produced after application of PCA-LDA, showing occurrence and 

expression levels of wavenumbers among basal (red), luminal (blue) and stromal (green) cells in  diseased tissue sections (H09-9102-1, 

H09-12890-9, H09-13558-A5). The red rectangles highlight wavenumbers shared in common between classes of cells. 
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3.4 Light Microscopy 

 

Parallel endometrial tissue sections of 4µm in thickness were cut from the paraffin embedded blocks 

of the samples used in biospectroscopy and were stained with hematoxylin and eosin (H&E). Glandular 

areas of interest were visualised through the x5 objective lens and images were taken using the Live 

video tool on Renishaw Wire 3.1 software of the Raman spectrometer. Representative images of the 

tissue samples are illustrated below (Fig. 3.239-3.246) 
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Figure 3.239 (sample H09-12890-9): Photomicrograph taken from cancerous lesion of post-menopausal 

endometrium. Tall epithelial cells make up the endometrial glands which are hyperplastic and irregular in shape. 

Endometrial hyperplasia resulted in little stroma presentation between glandular elements. Cellular atypia is not 

observed. No further information was given about the health status of the patient so from the observations the 

tissue exhibits characteristics of endometrial tumour or adenocarcinoma. Scale bars are illustrated on the 

micrograph. 
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Figure 3.240 (sample H09-12890-11): Photomicrographs of tissue taken from post-menopausal patient with 

endometrial cancer but at site unaffected by tumour. A: Endometrial cancer causes bleeding resulting in 

appearance of red blood cells (black arrows) in endometrial glands. B: Cystic glands surrounded by dense stroma 

(S); typical feature of atrophic post-menopausal endometrium. Scale bars are illustrated on the micrograph. 
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Figure 3.241 (sample H09-9102-1): Photomicrograph of tissue section at the site of tumour taken from post-

menopausal patient with grade 1 endometrial cancer. Endometrial glands are large and irregular in shape. 

Papillary projections into the lumen of the glands can be noticed. Glandular lumens (black arrows) are filled with 

either red blood cells are found within glands because of bleeding or masses of cells due to loss of contact 

inhibition. Scale bars are illustrated on the micrograph. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.242 (sample H09-9102-6): Photomicrograph of tissue section from post-menopausal patient with grade 

1 endometrial cancer but from and endometrial site is away from tumour progression. The endometrium looks 

normal with no invasion of the myometrium (My). The glands have also a normal shape. Scale bars are illustrated 

on the micrograph. 
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Figure 3.243 (sample H09-13558-A5): (A) and (B) are photomicrographs of post-menopausal endometrial tissue 

section of clear cell carcinoma. Masses of malignant cells fill the stroma surrounding the endometrial glands. 

Scale bars are illustrated on the micrographs. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 



303 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.244 (sample H09-13558-A8): (A) and (B) are photomicrographs of tissue sections of non-diseased 

endometrium from patient with clear cell endometrial carcinoma. Red blood cells (arrow) were observed in 

glandular lumen because of bleeding. Scale bars are illustrated on the micrographs. 
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Figure 3.245 (sample H09-11708-4): Photomicrographs of normal, non-proliferating, post-menopausal 

endometrium. A: glands present cuboidal or low columnar epithelial cells. B: dilated glands due to formation of 

cystic spaces (C). Scale bars are illustrated on the micrographs. 
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Figure 3.246 (sample H09-12292-1): Photomicrograph of tissue section of normal post-menopausal 

endometrium taken from patient diagnosed with endometriosis. Some endometrial glands are dilated forming 

cystic spaces (C) whilst other glands have a regular shape (R). Scale bars are illustrated on the micrograph. 
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CHAPTER 4 
Discussion 
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A variety of techniques were employed in this work including Scanning electron microscopy, 

stereology, FTIR spectroscopy and Raman spectroscopy to investigate the ultrastructure and 

molecular composition of post-menopausal endometrium with the aim of providing new insights on 

the endometrium with special attention to endometrial stem cells. 

 

4.1 Scanning Electron Microscopy 

 

4.1.1 Scanning Electron Photomicrographs 

 

Even though the examined endometrial biopsies were taken from non-diseased endometrial sites of 

postmenopausal patients, there endometrial morphology varied between samples. However the 

observations were similar to results obtained from other studies. Adams and Murphy (2001) assessed 

the epithelial architecture of biopsies taken from the anterior fundus of a 47 year old woman during 

three consecutive cycles under the influence of increasing doses of exogenous oestrogen and 

progesterone in an attempt for embryo transfer which eventually resulted in the birth of healthy 

twins.  Evident changes in the plasma membrane of epithelial cells were observed throughout the 

cycles. Biopsies taken from the first two cycles showed characteristics of atrophic epithelial cells. The 

endometrial surface was inhomogeneous whilst certain areas were not covered by an epithelial lining. 

Epithelial cells exhibited various shapes from distended to flat and dome shaped. Borders of cells could 

not be identified whereas in other areas cell separations was pronounced. Ciliated cells were rare 

whilst the surface membrane of non-ciliated cells was covered by microvilli. However some cells had 

apical defects or wrinkled appearance (pinopods). Secretory droplets were also observed. Biopsies 

taken from the last cycle had a mature secretory epithelium whereby cells were small, uniform in 

shape, not separated by clefts, covered with microvilli, had clearly defined borders and covered the 
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surface area of the examined tissue. Fully developed pinopods were observed as well as an abundance 

in secretory droplets. 

The majority of the images obtained in this project showed a hypotrophic epithelium which was similar 

to what was observed in the first two cycles. Administration of higher doses of oestrogen and 

progesterone resulted in a secretory epithelial response suggesting that even though postmenopausal 

endometrium is inactive it retains its capacity to differentiate in the presence of exogenous steroid 

hormones. It cannot be said with certainty if our observations were or were not influenced by 

administration of any therapy since no information was provided if patients were receiving a medical 

treatment. 

In another study changes in endometrial surface during different phases of menstrual shedding and 

repair were examined in female patients with regular menstrual cycles (Garry et al., 2009). It was 

reported that tall columnar epithelial cells covered with microvilli composed the lining of endometrial 

glands in the late secretory phase of the menstrual cycle. Also ciliated cells were observed within the 

epithelial surface. Endometrial shedding resulted in exposure of glandular and blood vessel openings 

at the level of the basal layer and the tissue that was lost is eventually covered by a fibrinous matrix. 

During re-epithelisation, the new epithelial cells displayed irregularities in shape and size but they 

were smaller than previously observed and had a smooth surface lacking microvilli. Ciliated cells were 

rarely observed during the healing phase. In our results the presence of a fibrin mesh was very evident. 

Even though the cells presented variations in size and shape, they were covered by microvilli so they 

cannot be characterised as newly synthesised epithelial cells. Moreover samples were taken from 

postmenopausal patients whose endometrium is inactive and thus does not undergo cyclical changes.  

Another study, whereby SEM was also employed, focused on structural changes in endometrial glands 

at the basal layer throughout menstrual shedding and regeneration, more specifically during, just 

before and after active bleeding phase (Garry et al., 2010). In this study endometrial biopsies were 

taken from females diagnosed with benign gynaecological conditions but had regular cycles. 
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Immunohistochemical labelling was also employed to assess expression of Ki-67 and CD68, markers 

of proliferation and macrophage activity respectively. It was reported that in the late secretory phase 

the glandular epithelium consisted of tall columnar epithelial cells which were covered by microvilli 

and interspersed with ciliated cells. Whereas during the early proliferative phase the newly 

synthesised epithelial cells were cuboidal, flat and without microvilli. In our findings though, features 

of atrophic endometrium were identified. During menstruation almost all of the functional layer is 

shed off and remnants of endometrial glands, with deficiencies in morphology, were observed at the 

surface of the basal layer. Glandular stumps were also identified in our results since the post-

menopause endometrium is mainly composed of the basal layer which retains its glandular elements 

even though they are inactive.  Macrophages were also reported between epithelial cells of the glands 

or even within the lumen during the late secretory and early menstrual phase. It has been suggested 

that their numbers increase from the proliferative phase until the menstrual phase (Bonatz et al., 

1992) and their function is to remove cells undergoing programmed cell death (Teo and Hughes, 2003) 

during the very early phase of menstruation (day1-2). Our findings have also reported the presence of 

macrophages suggesting that they are responsible in clearing away apoptotic cells of atrophic post-

menopausal endometrium. In menstruating endometrium it was observed that apoptosis was 

followed by cellular renewal however the cessation in production of oestrogen and progesterone in 

post-menopausal endometrium, both of which induce differentiation and proliferation of endometrial 

cells, results in retention of the fibrinous stroma and continuation of cell loss. As mentioned earlier, a 

fibrin mesh was found in the majority of the examined endometrial surfaces. 

Scanning electron microscopy was also employed to examine the effects of high doses of 

levonorgestrel on the uterine lining surface based on comparisons with control specimens (Ugocsai et 

al., 2002). Levonrgestrel is used as an emergency postcoital contraception which, like other 

contraceptive methods, prevents pregnancy by inhibiting fertilisation and providing unfavourable 

conditions for implantation (Nikas et al., 1995; Sphycher and Bigler, 2001). Its mechanism of action at 

molecular level is unclear but it has been previously reported to induce changes in the endometrium 
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(Van Look PFA, 1990; Raymond et al., 2000). However it does not cause any changes in production of 

oestrogen and progesterone since their serum levels in study participants and controls were not 

different for the menstrual phase at which they were compared. Changes in endometrial surface were 

compared during proliferative, luteal and secretory phase of the menstrual cycle. Epithelial cells in 

proliferative phase endometrium of study participants had a cobblestone-like appearance, were 

covered with numerous microvilli and were protruding from the lumen of endometrial glands. 

Pseudosecretory structures and only a few ciliated cells were observed. Whereas, in the control 

endometrial specimens ciliated cells were numerous around glandular openings and epithelial cells 

were large and richly covered by microvilli. Luteal phase endometrium of study participants was 

reported to have an even surface appearance, a few secretory droplets, epithelial cells of various sizes, 

less and shorter microvilli. Whereas control endometrium at the same phase had a cobblestone-

appearance but surface was relatively even, epithelial cells had the same size and maintained their 

rich microvilli but cilia were shorter than in proliferative phase. Pinopodes were also observed. 

Post-menopause results as a consequence of termination of ovulation and eventually steroid 

hormones are no longer produced so the endometrium can no longer support pregnancy. Our results 

were very similar to the observations made from the study participants as the supplementation of 

contraceptive pill induced changes to prevent pregnancy, even though it caused no alterations in 

circulating levels of progesterone and oestrogen. 

Pinopode-like structures were observed in the endometrial specimens of our study, however no 

suggestions have been made so far about their function in post-menopausal endometrium. As 

mentioned earlier, no information was given whether patients were receiving any medication so it 

cannot be stated with certainty if the observed formation of pinopodes in examined biopsies was 

caused by a medical treatment. 

 Scanning electron microscopy in 1972 (Johanisson and Nilsson, 1972) reported for the first time the 

appearance of pinopodes from the apical surface of the luminal epithelium in human endometrium. 
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Earlier though, pinopodes had been found in rodents (Nillson, 1958; Warren and Enders, 1964) arising 

mainly from the cell surface of epithelial stalks with a dependence on progesterone but inhibition by 

oestrogen (Martel et al., 1991) whilst in humans they seem to arise from non-ciliated epithelial cells 

(Murphy, 2000; Nikas et al., 1995) depending only on progesterone (Murphy, 1995). Usually one 

pinopode arises from the surface of the cells and covers most of it (Psychoyos and Mandon, 1971; 

Nikas et al., 2000; Quinn et al., 2007). The term uterodomes has been used to characterise pinopode-

like structures in humans and rodents (Murphy, 2000). 

To achieve a successful pregnancy during in vitro fertilisation, the embryo needs to be transferred 

after endometrial receptivity is established. Several studies in humans and rodents discovered the 

appearance of pinopodes on the endometrial surface during the “nidation window”, that is when the 

endometrium prepares to receive a blastocyst for implantation (Navot and Bergh, 1991). However 

their use as consistent markers for endometrial receptivity in mouse and human remains questionable 

whereas in the rat there is substantial evidence for their role. For pinopodes to be used as markers to 

determine endometrial receptivity, they need to persist for <48 hours (Quinn et al., 2007). 

Pinopode morphology (size, shape, content) differs between rodents and humans. Pinopodes in rats 

have large vacuoles (Lopata et al., 2002), lack organelles (Nilsson, 1966; 1972) and extend on an actin 

stalk (Parr and Parr, 1974) above the microvilli (Warren and Enders, 1964; Enders and Nelson, 1973). 

In huams though, uterodomes extend from the whole cell surface (Murphy, 2000), have organelles 

but lack vacuoles (Friedrich, 1967; Bentin-Ley et al., 2000). Mitochondria and glycogen have been 

found in pinopodes of rodents, humans and other species (Guillmont et al., 1982; Parr and Parr, 1982; 

Dockery et al., 1997) suggesting that their formation requires a certain amount of cellular energy 

(Novonty et al., 1999) and/or they provide energy for growth to the implanted blastocyst.  

In mice pinopodes are balloon-shaped (Quin et al., 2007) whereas in rats they are wrinkled (Enders 

and Nelson, 1973). In humans their shape changes during the luteal phase of the menstrual cycle; 

uterodomes start to develop, reach full maturity and then start to regress (Fig. 4.1). Each developing 
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stage lasts about 24 hours (Nikas et al., 1995; 2000). Several studies debate on the lifespan of 

pinopodes in humans. However they all seem to agree that appearance of pinopodes lasts for about 

five days during the luteal phase; their numbers peak on the first two days and then start to disappear 

(Stavreus-Evers et al., 2001; Stavreus-Evers et al., 2002; Aghajanova et al., 2003). 

 

 

The pinocytotic function of pinopodes has only been demonstrated in mice and rats by the uptake of 

ferritin, an electron dense tracer, from the uterine lumen into the vacuoles (Enders and Nelson, 1973; 

Parr and Parr, 1982). The possible role of uterodomes in humans is to enhance the adherence of the 

embryo on the endometrial surface by preventing cilia from moving the embryo (Stavreus-Evers, 

2005). 

Only a few markers though can correlate appearance of uterodomes and thus their function during 

the period of implantation window. Expression of integrins on the blastocyst and on epithelial cells of 

endometrial glands and lumen enhances the contact between these two surfaces for implantation to 

take place (Lessey et al., 1994). In normally menstruating women it was also observed that expression 

of uterodomes during the period of implantation occurred simultaneously with expression of alpha v 

beta 3 and alpha beta 1 integrins (Nardo et al., 2003).  

Figure 4.1: Schematic drawing of 

pinopode formation in A: human B: 

mouse and C: rat endometrium in 

luminal epithelium. Pinopodes vary 

in morphology (size, shape). ST: cell 

whose microvilli have swollen tips M: 

cell with microvilli DP: developing 

pinopode MP: mature pinopode RP: 

regressing pinopde C: ciliated cell P: 

pinopode extends from the stalk at 

the apical surface of the cell 

(reproduced from Quinn and Casper, 

2009). 
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Kabir-Salmani et al., 2005 demonstrated a secretory function of uterodomes in humans using 

endometrial biopsies throughout the whole period of luteal phase. Transmission electron microscopy 

(TEM), SEM, immunofluorescence and immunogold TEM revealed high expression of leukemia 

inhibitory factor (LIF) in uterodomes which was colocalised with biochemical markers of exocytosis. 

On the other hand, women with fertility problems have lower LIF levels in uterine secretion (Laird et 

al., 1997). In mouse endometrium, presence of LIF is necessary for embryo implantation (Stewart et 

al., 1992). 

Heparin-binding epidermal growth factor (HB-EGF) expression was observed in glandular and luminal 

epithelium of human endometrium during the time of nidation (Leach et al., 1999; Yoo et al., 1997)as 

well as on the surface of uterodomes (Stavreus-Evres et al., 2002). These findings suggested a possible 

role of HB-EGF for facilitating the attachment of the blastocyst on luminal epithelium cells. 

Uterodomes may also provide protection against oxidative stress to the endometrium and pre-

implanted embryo via expression of glutaredoxin (Stavreus-Evers et al., 2002). 

Recently a novel function for uterodomes and how they influence endometrial receptivity was 

proposed. Subcellular localisation of MECA-79, an L-selectin ligand, was demonstrated in uterodomes 

during the midluteal phase of fertile females whereby the endometrium is the most receptive. It was 

concluded that this L-selectin ligand adhesion system facilitates the first attachment of an embryo on 

the luminal epithelium of the endometrium (Nejatbakhsh et al., 2012) in a similar way as it facilitates 

the rolling and adhesion of leukocytes on the endothelium (Barreiro et al., 2002; Barreiro et al., 2004; 

Ley and Kansas, 2004). 

It has been long suggested and is the most accepted theory that proliferation of epithelial cells from 

the remnants of glandular stumps at the basal layer results in the synthesis of new epithelial lining to 

replace the surface that was lost during menstruation (Ferenczy, 1976; Ludwig et al., 1988; 

Salamonsen et al., 2007). Also it has been suggested that the regenerative potential of endometrium 

is due to the presence of populations of stem/progenitor cells at the base of endometrial glands and 
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near the vasculature which give rise to epithelial and stromal cell respectively (Gargett et al., 2007). 

However the work done by Garry et al., (2009) did not support this hypothesis, instead it was 

suggested that new epithelial cells develop on the fibrinous matrix which is formed on the endometrial 

surface during the healing process. These newly synthesised epithelial cells fuse with each other and 

eventually reach the glands to restore the glandular epithelium rather than arising from differentiation 

of already existing glandular epithelial cells.  

Similarly the current theory on endometrial regeneration was again opposed in a further study by 

Garry et al. (2010). During the proliferative phase, stromal and glandular epithelial cells expressed the 

proliferation marker Ki-67 during cycles of mitotic cell division. However in the secretory phase, the 

marker was expressed mainly entirely by the stromal cells and minimal mitotic activity was observed 

in glandular epithelial cells. Also during the first days of menstruation, whereby most of the 

regeneration takes place, little proliferation was reported in the endometrium and none at the 

glandular areas thus suggesting that newly synthesised epithelial and stromal cells do not arise from 

remnants of endometrial glands. 

Our findings are more in agreement with the long accepted theory on endometrial regeneration 

without though rejecting the opposing theories.  From the results, especially at areas of endometrial 

crypts, it was observed that glandular openings were surrounded by fibrinous stroma whereas the 

margins and in some cases the internal of glands was lined by epithelial cells. As deep as it could be 

seen, it has also been observed that epithelial cells reached the depths of the crypts without any 

evidence though on their migration to the endometrial surface. It was rather unlikely to observe signs 

of migration since post-menopausal endometrium does not undergo cyclical changes like menstrual 

endometrium. 
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4.1.2 Image Analysis 

 

Scanning electron photomicrographs of endometrial crypts were used to analyse the morphology of 

cells surrounding the crypts and cells away from the crypts. The obtained results showed that the two 

groups of cells were significantly different for their perimeter, diameter max, diameter mean, 

sphericity and shape factor but they were not significantly different for their area, diameter min and 

shape factor. The mean of diameter max and diameter mean was higher for the cells around from the 

crypts thus it could be suggested that they are rather more elongated than the cells away from the 

crypts. This could also explain the higher mean perimeter for cells around from the crypts. Even though 

the two groups of cells were not significantly different for their areas, the higher mean in diameter 

max for cells around from the crypts comes in agreement with the higher mean in area for cells around 

from the crypts, taking into account that area= (
𝜋

4
) × 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟2 . Sphericity describes the ‘roundness’ 

of the particle being analysed. To this end, the two groups of cells were significantly different whilst 

the mean for cells away from the crypts was higher and thus suggesting that cells away from the crypts 

are rather more spherical which comes in agreement to the more elongated shape of cells around 

from the crypts. This can also be supported by the analysis of shape factor which provides information 

about the ‘roundness’ of the examined particle. Even though the two groups of cells were not 

significantly different in the concept of shape factor, the mean for cells away from the crypts was 

higher which supports the suggested more rounded morphology. The higher mean in aspect ratio for 

cells around from the crypts and obtained significant difference also supports the rather more 

elongated shape for cells around from the crypts and the more spherical shape for cells away from 

the crypts. The more elongated shape of cells around from the crypts can also be supported by 

observations from the photomicrographs whereby epithelial cells making the internal and external 

lining of endometrial glandular stumps were elongated and sometimes adjacent cells fused with each 

other. 
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4.2 FTIR spectroscopy 

 

Employment of biospectroscopy methods has become very popular over the recent years for 

examination of biological samples to investigate progression of cancer in several tissues as well as to 

study the differentiation process of stem cells. Interestingly biospectroscopy was shown to be an 

important tool in discriminating populations of stem cells and differentiated cells in regenerative 

tissues. To this end, biospectroscopy techniques were used in this project to segregate and 

characterise basal, luminal and stromal cells, based on their location at glandular areas, in an attempt 

to identify potential biomarkers for each cell type that would eventually support or provide more 

evidence about the hypothesised location of endometrial stem/progenitor cells. It has been suggested 

and accepted that epithelial stem cells are located at the base of glandular elements whilst stromal 

stem cells are found at vascular areas of the endometrium. In this concept, it was expected that 

luminal cells would display characteristics of a more differentiated state relative to basal and stromal 

cells whilst the two latter would not display significant differences between them. On a first approach, 

the biochemical composition of each cell type was analysed and was later compared with the other 

cells. 
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4.2.1 Basal cells 

 

During analysis of cluster vectors plots derived from application of PCA-LDA on spectra of basal cells 

in individual non-diseased tissue samples, the wavenumbers displaying a potential as biomarkers were 

1456 cm-1 (lipids and proteins) whose common occurrence among glandular areas was observed in all 

five samples, 1558 cm-1 with 1556 cm-1 and 1506 cm-1 with 1504 cm-1 (phenyl rings) whose common 

occurrence was observed in three out of the five samples. None of these wavenumbers though 

maintained constant expression levels among tissues. When all the five non-diseased samples were 

analysed for the spectra acquired from their basal cells the wavenumbers observed to have a potential 

as biomarkers were 1699 cm-1 (guanine/thymine), 1539 cm-1 (amide II) and 1506 cm-1 since their 

common occurrence between tissues was observed in all six plots, either when having a class as 

reference origin or not. Common occurrence of 1504 cm-1 (phenyl rings) with 1506 cm-1 was also 

observed in this section. Common occurrence of 1732 cm-1 (lipids) was observed in five plots so it 

could also be a potential biomarker. The wavenumber 1701 cm-1 displayed similar occurrence with 

1699 cm-1 (guanine/thymine) in four plots so it could equally be considered to have a potential as 

biomarker. Only 1506 cm-1 and 1701 cm-1 maintained constant intermediate expression levels among 

tissues. When comparing the non-diseased tissues from patients with endometrial cancer only, the 

wavenumbers observed to have a potential as biomarkers for basal cells were 1539 cm-1 (amide II), 

1504 cm-1 (phenyl rings) and 1456 cm-1 (lipids and proteins) with the two latter wavenumbers 

maintaining constant expression of low and medium levels respectively. 

Concerning the diseased-tissues, when glandular areas in individual samples were compared, the 

wavenumbers displaying a potential as biomarkers were 1717 cm-1 (amide I, DNA/RNA, purine base), 

1456 cm-1 (lipids and proteins), 1506 cm-1 with 1504 cm-1 (phenyl rings) and 1558 cm-1 with 1556 cm-1 

since their common occurrence in glandular areas was observed in two out of the three tissues but 
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were found at different expression levels among tissues. When the three diseased tissues were 

compared for the spectra acquired from their basal cells, the wavenumbers observed to have the most 

potential as biomarkers were 1771 cm-1 and 1556 cm-1 since they were common among classes of 

tissues either when having a class as reference or not, but their expression levels among tissues varied. 

Since common occurrence of 1558 cm-1, 1556 cm-1, 1506 cm-1, 1504 cm-1 (phenyl rings), 1456 cm-1 

(lipids and proteins) was observed in both, non-diseased and diseased tissue sections, they cannot be 

considered as valid potential biomarkers for basal cells. So up to this point the wavenumbers 

displaying a potential as biomarkers for basal cells in non-diseased tissues were 1732 cm-1 (lipids), 

1701 cm-1, 1699 cm-1 (guanine/thymine) and 1539 cm-1 (amide II) and for basal cells in diseased tissues 

were 1771 cm-1 and 1717 cm-1 (amide I, DNA/RNA, purine base). 

 

4.2.2 Luminal cells 

 

Analysing the spectra of luminal cells between the glandular areas in individual tissues, the 

wavenumbers displaying a potential as biomarkers in non-diseased tissues were 1504 cm-1 (phenyl 

rings), 1506 cm-1  and 1456 cm-1 (lipids and proteins) since they were commonly shared between areas 

of four out of the five tissues with variations though in expression levels. Analysing the spectra of 

luminal cells between all the five non-diseased tissues, the wavenumbers observed to have a potential 

as biomarkers were 1732 cm-1 (lipids), 1699 cm-1 (guanine/thymine), 1651 cm-1, 1558 cm-1 and 1456 

cm-1 (lipids and proteins) since they were commonly shared between tissues when a tissue was used 

as a class reference or not. Similarly none of the wavenumbers maintained constant expression levels 

between tissues. When analysing only the three non-diseased tissues taken from patients with 

endometrial cancer, the wavenumbers displaying a potential as biomarkers were 1699 cm-1 

(guanine/thymine), 1558 cm-1, 1556 cm-1, 1506 cm-1 and 1504 cm-1 (phenyl rings) but only 1558 cm-1 

and 1556 cm-1 maintained high expression levels among tissues. 
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For the diseased tissues, wavenumbers observed to have a potential as biomarkers were 1456 cm-1 

(lipids and proteins) since it was commonly shared between glandular areas of two out of the three 

tissues. Also when only diseased tissues were compared, they were found to be common for 1717 cm-

1 (amide I, DNA/RNA, purine base) and 1651 and thus displaying a potential as biomarkers.  

Common occurrence of 1651 cm-1, 1558 cm-1, 1506 cm-1, 1504 cm-1 (phenyl rings) and 1456 cm-1 (lipids 

and proteins) was observed in both, non-diseased and diseased tissue sections, so they cannot be 

considered as valid potential biomarkers for luminal cells. The wavenumbers found to be unique for 

luminal cells in non-diseased tissues were 1732 cm-1 (lipids) and 1699 cm-1 (guanine/thymine) whilst 

for luminal cells in diseased tissues was only 1717 cm-1 (amide I, DNA/RNA, purine base). 

 

4.2.3 Stromal cells 

 

Analysing the spectra of stromal cells between the glandular areas in individual tissues, the 

wavenumbers displaying the most potential as biomarkers in non-diseased tissues were 1717 cm-1 

(amide I, DNA/RNA, purine base) with 1715 cm-1 and 1456 cm-1 (lipids and proteins) since they were 

commonly shared between glandular areas of three out of the five tissues but neither maintained 

constant expression levels. Analysing the spectra of stromal cells between all the five non-diseased 

tissues, the wavenumbers observed to have a potential as biomarkers were 1699 cm-1 

(guanine/thymine), 1666 cm-1 (amide I), 1558 cm-1 with 1556 cm-1, 1506 cm-1 with 1504 cm-1 (phenyl 

rings) and 1456 cm-1 (lipids and proteins) with 1454 m-1 (asymmetric methyl deformation) since they 

were commonly shared between tissues when a tissue was used as a class reference or not. None of 

the wavenumbers though maintained constant expression levels between tissues. When analysing 

only the three non-diseased tissues taken from patients with endometrial cancer, the wavenumbers 

displaying a potential as biomarkers were 1747 cm-1, 1695 cm-1, 1558 cm-1 and 1456 cm-1 (lipids and 
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proteins). Expression levels of 1695 cm-1 were high but for the other wavenumbers expression levels 

were either intermediate or low.  

For the diseased tissues, wavenumbers observed to have a potential as biomarkers were 1771 cm-1 

and 1558 cm-1 since they were commonly shared between glandular areas of two out of the three 

tissues but at different expression levels. Also when only diseased tissues were compared, they were 

found to be common for 1771 cm-1, 1715 cm-1, 1682 cm-1, 1558 cm-1, and 1456 cm-1 (lipids and 

proteins)  and thus displaying a potential as biomarkers.  

Common occurrence of 1717 cm-1 (amide I, DNA/RNA, purine base), 1715 cm-1, 1558 cm-1, 1556 cm-1, 

1456 cm-1 (lipids and proteins), 1454 m-1 (asymmetric methyl deformation) was observed in both, non-

diseased and diseased tissue sections, so they cannot be considered as valid potential biomarkers for 

stromal cells. The wavenumbers found to be unique for stromal cells in non-diseased tissues were 

1747 cm-1, 1699 cm-1 (guanine/thymine), 1695 cm-1, 1666 cm-1 (amide I), 1506 cm-1 and 1504 cm-1 

(phenyl rings) whilst wavenumbers found to be unique for stromal cells in diseased tissues were 1771 

cm-1 and 1682 cm-1. 

From the previous sections, 1699 cm-1 (guanine/thymine) showed a potential as biomarker for non-

diseased basal, luminal and stromal cells whilst 1732 cm-1 (lipids) was identified in non-diseased basal 

and luminal cells. Even though 1506 cm-1 and 1504 cm-1 (phenyl rings) were suggested to be unique 

for normal stromal cells, our observations cannot support this with certainty since both of these 

wavenumbers were found in spectra of basal and luminal cells in non-diseased and diseased tissue 

sections. At this point the wavenumbers found to be unique for normal basal cells were 1539 cm-1 

(amide II) and 1701 cm-1, for normal stromal cells 1747 cm-1 and 1666 cm-1 (amide I) whilst no 

waveumbers was found to occur only in normal luminal cells. But it could be suggested that 1699 cm-

1 (guanine/thymine) is unique for non-diseaded endometrial tissues. 

Similalrly, 1771 cm-1 displayed a potential as biomarker for basal and stromal cells in the diseased 

tissues whilst 1717 cm-1 (amide I, DNA/RNA, purine base) was identified in diseased basal and stromal 
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cells. It could be suggested that these wavenumbers are unique for diseased endometrial tissues 

whilst 1682 cm-1 remains the only unique wavenumber diseased stromal cells.  

 

4.2.4 Basal cells Vs Luminal cells Vs Stromal cells 

 

According to the hypothesised location of endometrial stem cells, cells at the base of the glands 

differentiate into more functional epithelial cells making up the lumen of the glands. Similarly, 

differentiation of stromal stem cells located at perivascular areas produces more functional stromal 

cells. In the case of post-menopausal endometrium, like the examined samples, the endometrium is 

inactive so proliferation of cells does not take place but cell populations are not lost since the basal 

layer which is comprised of inactive endometrial glands is retained. Thus, even if the selected locations 

for spectral acquisition at the base of the glands and the surrounding tissue of the examined samples 

did not contain stem cells, it could still be implied that the basal cells are the transient amplifying cells 

whilst the luminal cells are the terminally differentiated cells.  

From the scores plots derived after application of PCA-LDA, even though perfect segregation between 

classes of cells was not achieved, it was observed that basal cells overlapped with both luminal and 

stromal cells at relatively the same degree. Luminal and stromal cells overlapped with each other but 

they appeared to be more dissimilar with each other than they were with basal cells. Overlapping 

between basal and luminal cells could be explained by the fact that differentiated cells had not yet 

migrated from the base to the lumen of the gland whilst overlapping between basal and stromal cells 

could be explained by the fact that both populations contained rather undifferentiated cells. 

Population of stromal cells may contain more undifferentiated cells than differentiated cells or 

apoptotic cells which were inactive like the luminal cells which could explain the overlapping between 

basal and luminal cells with stromal cells.  
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Unfortunately the majority of identified discriminant wavenumbers in loading plots accounting for 

variations between cell populations in individual tissues had undefined assignments so to this extend 

not enough suggestions can be made about the different biochemical composition of the cells. 

However a consistency of spectral regions was observed throughout the samples. The discriminant 

wavenumbers identified in loading plots when comparing cell populations in non-diseased tissues and 

in diseased tissues were mainly assigned to lipids and proteins suggesting that cells were different in 

their function, plasma membrane or presence of any secretory droplets at the lumen of the glands 

could account for these variations and that cells were rather in a differentiated state. 

In the cluster vectors plots when comparing the three different cell populations in individual non-

diseased tissues the wavenumbers found to be unique for basal cells from all the tissues were 1541 

cm-1 (amide II), 901 cm-1, 1747 cm-1, 1715 cm-1, 1651 cm-1, 1717 cm-1 (amide I, DNA/RNA), 1682 cm-1, 

1456 cm-1 (lipids and proteins), and 1796 cm-1  but were not consistent between samples. The 

wavenumber 1456 cm-1 (lipids and proteins) was also identified in spectra of luminal and stromal cells 

so its potential as biomarker is not clear which is in agreement to our previous observations. Similarly 

the potential of 1717 cm-1 (amide I, DNA/RNA) and 1715 cm-1 as biomarkers can be argued since they 

were previously observed in spectra of basal and luminal cells in diseased tissues. Also the potential 

of 1682 cm-1 is questionable since it was observed in cluster vectors plots of stromal cells in diseased 

tissues and 1651 cm-1 was observed in luminal cells in both diseased and non-diseased tissues.  

The wavumbers found to be unique for luminal cells in cluster vectors plots of individual non-diseaded 

tissues were 1771 cm-1, 1472 cm-1, 1732 cm-1 (lipids) and 1516 cm-1 (amide II). Based on previous 

observations though the potential of 1771 cm-1 and 1732 cm-1 (lipids) as biomarkers is questionable 

and unclear.  

The wavenumbers found to be unique for stromal cells in individual non-diseased tissues were 1786 

cm-1, 1771 cm-1, 1747 cm-1 and 1553 cm-1 (amide II). The potential though of 1771 cm-1 as biomarker 
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is unclear for the same reasons mentioned earlier as well as the potential of 1747 cm-1 is questionable 

since it was found to be unique for basal cells in another tissue. 

When comparing the three populations of cells for their spectra acquired from all the three non-

diseased tissue sections from patients with endometrial cancer, only basal cells were found to be 

unique for 1699 cm-1 (guanine/thymine) and 1645 cm-1 but based on observations so far the potential 

of 1699 cm-1 as biomarker is not clear.  

In the cluster vectors plots when comparing the three different cell populations in individual diseased 

tissues the wavenumbers found to be unique for basal cells from all the tissues were 1541 cm-1 (amide 

II), 1504 cm-1 (phenyl rings) and 1771 cm-1 but based to our previous observations the potential of the 

two latter wavenumbers as potential biomarkers is of questionable. The wavenumber 1541 cm-1 

(amide II) was also found to be unique for basal cells in non-diseased tissues so it could be suggested 

no be a potential biomarker for basal cells irrespective of the type of tissue. Luminal cells in diseased 

tissues were found to be unique for 1717 cm-1 (amide I, DNA/RNA) and 1715 cm-1 but their potential 

as biomarkers based on our observations so far is not clear. Stromal cells in diseased tissues were 

found to be unique for 1713 cm-1 (C=O thymine), 1520 cm-1 (amide II), 1418 cm-1 (deformation C-H), 

1651 cm-1 and 1456 cm-1 (lipids and proteins) but the potential of the two latter as biomarkers in 

unclear. 

When comparing the three populations of cells for their spectra acquired from all the three diseased 

tissue sections from patients with endometrial cancer, basal cells were found to be unique for 1717 

cm-1 (amide I, DNA/RNA), 1556 cm-1 and 1506 cm-1 but their potential as biomarkers is unclear. Luminal 

cells were found to be unique only for 1732 cm-1 (lipids) but its potential as biomarker is unclear whilst 

stromal cells were unique only for 1418 cm-1 (deformation C-H). 

Table 4.1 summarises the observations as to which wavenumbers were identified to have the most 

potnential as biomarkers for the three types of populations in non-diseased and diseased tissues. 

Unofrtunately, the assignements for most of these spectral regions are undefined so further 
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interpretations about the biochemical composition of the cells is not feasible. Also as mentioned 

earlier the shape of the obtained spectra was different from the usual shape of an FTIR spectra of a 

biological samples so our observations and results may not be valid. 

 

 

 

 

 

Tissue status Cell population Wavenumber/ cm-1 Assignment 

Non-diseased Basal 901 
 

    1539 amide II 

  
 

1541 amide II 

    1645   

  
 

1796 
 

     
 

 Luminal 1516 amide II 

    1472   

        

  Stromal 1786   
 

 1666 amide I 

    1553 amide II 

        

Diseased Basal 1541 amide II 

        

  Stromal 1713 C=O thymine 
 

 1520 amide II 

    1418 deformation C-H 

 

 

 

Table 4.1: A summary of observations based on which wavenumbers displayed the most potential as biomarkers for 

basal, luminal and stromal cells in non-diseased and diseased- tissue sections. 
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4.2.5 Applications of Infrared spectroscopy 

 

FTIR biospectroscopy has been employed in other studies as a non-invasive method to monitor 

differentiation of stem cells. Differentiation of murine embryonic stem cells was studied whereby the 

absorption intensities in spectral region assigned to amide I and nucleic acids increased and decreased 

respectively with the progress of differentiation which suggested that mRNA translation was taking 

place and the α-helix content of proteins increased (Ami et al., 2008). Form our observations, spectral 

regions assigned to amide I and amide II were found in all the cell populations so it can be suggested 

that the cells were rather differentiated. High-intensity synchrotron radiation was used to distinguish 

stem cell, transit amplifying cells and terminal differentiated cells in bovine cornea whereby clear 

segregation was observed between the different cell types however biomarkers for corneal stem cells 

were not identified. In our study, perfect segregation between the interrogated cell populations was 

not observed but a degree of segregation was achieved and cell populations were found to be 

significantly different from each other. Synchroton FTIR was also applied to characterise cells 

according to their position along the intestinal crypts of human tissues (Walsh et al., 2008). This study 

suggested that modifications in symmetric PO2
- stretch observed at 1080 cm-1 can be used as marker 

to identify the location of putative stem cells. Similar results were obtained in another study whereby 

employment of synchrotron radiation-based FTIR microscopy identified PO2
- vibrational modes as 

potential biomarkers for stem cells in the inter-follicular skin epidermis (Patel et al., 2012).  FTIR 

spectroscopy was used to study the differentiation of human mesenchymal stem cells into osteoblasts 

in cell cultures whereby a significant decrease in the mineral-to-matrix ratio in the extracellular matrix 

was observed with the progress of differentiation (Salasznyk et al., 2007). Stem cells and transit 

amplifying cells in human corneal tissues were interrogated by FTIR spectroscopy and it resulted in 

segregation of the cell populations whilst nucleic acids accounted for variations between the cell types 

(Bentley et al., 2007). 
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4.3 Raman spectroscopy 

 

4.3.1 Basal cells 

 

From the analysis of cluster vectors plots derived from interrogation of basal cells in glandular areas 

in individual non-diseased tissues the wavenumbers in the spectral region 1431-1437 cm-1 displayed 

the most potential as biomarkers for basal cells since their common occurrence between glandular 

areas was observed in three out of the five tissues. However they did not display constant expression 

levels between tissues. When comparing all the five non-diseased tissues for the spectra acquired 

from their basal cells, the wavenumbers in the spectral region 1001-1003 cm-1 displayed the most 

potential as biomarkers since they were commonly shared between tissues as illustrated in the cluster 

vectors plots either when a tissue was used as a reference class or not. Their expression levels were 

rather high to intermediate.  When comparing spectra of basal cells in only the three non-diseased 

tissues from patients with endometrial cancer, the wavenumbers that displayed the most potential as 

biomarkers were 1131 cm-1 (lipids), 1130 cm-1 (lipids) and 1025 cm-1 (glycogen) and wavenumbers in 

the spectral region 935-937 cm-1 since they were commonly shared by the tissues according to the 

cluster vectors plots. Their expression levels though between tissue samples were not constant. 

Analysing the spectra acquired from glandular areas in individual diseased tissue samples, the 

wavenumbers in the spectral region 1433-1440 cm-1 and 1294-1303 cm-1 displayed to have the most 

potential as biomarkers since their common occurrence between glandular areas was observed in all 

three and two tissues repsectively.  When diseased tissues were compared with each other for their 
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spectra, the wavenumbers in the spectral regions 1436-1444 cm-1 and 1301-1304 cm-1 displayed to 

have the most potential as biomarkers as illustrated from the cluster vectors plots and maintained 

rather high and intermediate expression levels respectively among tissues. However wavenumbers in 

the spectral regions 1433-1444 cm-1 observed to have a potential as biomarkers in the non-diseased 

tissues so they can not be used to distinguish non-diseased basal cells from diseased cells but they 

may be used to discriminate basal cells from populations of luminal and stromal cells. 

 

4.3.2 Luminal cells 

 

From the analysis of cluster vectors plots derived from interrogation of luminal cells in glandular areas 

in individual non-diseased tissues the wavenumbers in the spectral regions 1294-1296 cm-1 and 1129-

1133 cm-1 displayed the most potential as biomarkers for luminal cells since their common occurrence 

between glandular areas was observed in all five and three out of the five tissues respectively. Their 

expression levels though were not constant. Also wavenumbers in both of these regions displayed a 

potential as biomarkers for basal cells so to this point their potential can be argued. When comparing 

all the five non-diseased tissues for the spectra acquired from their luminal cells, the wavenumbers in 

the spectral regions 1294-1298 cm-1, 1128-1131 cm-1, 1405-1407 cm-1 and 1002 cm-1 (phenylalanine) 

displayed the most potential as biomarkers since they were commonly shared between tissues as 

illustrated in the cluster vectors plots either when a tissue was used as a reference class or not. Only 

the wavenumbers in the region 1405-1407 cm-1 maintained constant low expression levels. But the 

potential of 1002 cm-1 (phenylalanine) as well as the potential of 1294-1298 cm-1 and 1128-1131 cm-1 

can be argued since they were identified in analysis of basal cells. When comparing spectra of luminal 

cells in only the three non-diseased tissues from patients with endometrial cancer, the wavenumbers 

that displayed the most potential as biomarkers were 1436 cm-1 (lipids) and 1437 cm-1 (proteins and 

lipids) and displayed high and intermediate expression levels but these wavenumbers were also 

observed in analysis of basal cells so their potential as biomarkers is questionable.  
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Analysing the spectra acquired from glandular areas in individual diseased tissue samples, the 

wavenumbers in the spectral region 1295-1299 cm-1 displayed to have the most potential as 

biomarkers since their common occurrence between glandular areas was observed in two out of the 

three tissues at high and intermediate expression levels however their potential can be argued since 

they were observed in analysis of basal cells.  When diseased tissues were compared with each other 

for their spectra, the wavenumber 1536 cm-1 displayed to have the most potential as biomarker as 

illustrated from the cluster vectors plots and maintained rather high and intermediate expression 

levels among tissues.  

 

4.3.3 Stromal cells 

 

From the analysis of cluster vectors plots derived from interrogation of stromal cells in glandular areas 

in individual non-diseased tissues the wavenumbers in the spectral regions 1131-1137 cm-1 and 1432-

1435 cm-1 displayed the most potential as biomarkers for stromal cells since their common occurrence 

between glandular areas was observed in three out of the five tissues respectively. Their expression 

levels though were not constant. Also wavenumbers in both of these regions were identified in 

analysis of both basal and luminal cells so to this point their potential can be argued. When comparing 

all the five non-diseased tissues for the spectra acquired from their stromal cells, the wavenumbers in 

the spectral regions 1451-1453 cm-1, 1294-1295 cm-1, 1104-1107 cm-1 and 1001-1004 cm-1 displayed 

the most potential as biomarkers since they were commonly shared between tissues as illustrated in 

the cluster vectors plots. Wavenumbers in the regions 1451-1453 cm-1 and 1104-1107 cm-1 maintained 

intermediate and low expression levels. The potential though of 1294-1295 cm-1 and 1104-1107 cm-1 

can be argued since they were identified in analysis of basal and luminal cells. When comparing 

spectra of luminal cells in only the three non-diseased tissues from patients with endometrial cancer, 

the wavenumbers that displayed the most potential as biomarkers were 783 cm-1 and 782 cm-1 

(cytosine/uracil, DNA/RNA) but their expression levels varied among tissues.  



329 
 

Analysing the spectra acquired from glandular areas in individual diseased tissue samples, the 

wavenumbers in the spectral region 1295-1296 cm-1, 1130-1132 cm-1 and 1076-1081 cm-1 displayed to 

have the most potential as biomarkers since their common occurrence between glandular areas was 

observed in two out of the three tissues but at various expression levels. However the potential of the 

two fist regions can be argued since they were observed in analysis of basal and luminal cells.  When 

diseased tissues were compared with each other for their spectra, the wavenumbers in the region 

569-572 cm-1 displayed to have the most potential as biomarkers as illustrated from the cluster vectors 

plots and maintained rather intermediate and low expression levels among tissues.  

 

 

4.3.4 Basal cells Vs Luminal cells Vs Stromal cells 

 

From the mean Raman spectra in all sections of data analysis it was observed that basal and stromal 

cells had similar peak intensities througout most of the spectral region whereas absorbance intensities 

for luminal cells were lower thus suggesting that biochemical composition of basal and stromal cells 

is very similar. Also from the scores plots, even perfect segregation between the different populations 

of cells was not achieved it was observed that luminal and stromal cells were very dissimilar whilst 

basal cells were positioned rather in the middle. A possible explanation for this is the same as the one 

mentioned in the FTIR section.  

According to the loading plots, generated when cell populations in individual tissues were compared, 

as well as when they were compared in all non-diseased and diseased tissues, the identified 

discriminant wavenumbers were not consistent however most of them were assigned to lipids, 

proteins and nucleic acids, similar to what was observed analysis of results derived from FTIR 

spectroscopy, which could be mainly attributed to epithelial cells thus suggesting that cell populations 

were different for their function and that cells were rather in a differentiated state. Wavenumbers 
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assigned to collagen were also identified and this could be explained by the composition of the 

fibrinous stroma.  

From all the analysis in cluster vectors plots the wavenumbers found to be unique for basal cells in 

non-diseased tissues, excluding those whose potential as biomarkers is questionable were 1685 cm-1 

(amide I), 919 cm-1, 1608 cm-1 (cytosine), 1257 cm-1 (amide III), 725 cm-1 (DNA/RNA bases), 1339 cm-1 

(tryptophan/collagen/nucleic acids), 869 cm-1 (proline), 812 cm-1 (phosphodiester) and 1397 cm-1. For 

basal cells in diseased tissues only 1682 cm-1 (cortisone) was found to be unique. As it can be observed 

these wavenumbers are not consistent for their assignments so the exact biochemical composition of 

basal cells cannot be interpreted. 

Luminal cells in diseased tissues did not have any unique wavenumbers but the only wavenumber 

observed to be unique and thus have a potential as a biomarker was 1407 cm-1 (proline, valine). This 

observation is in agreement to what was observed in the analysis of spectra of luminal cells in all the 

five non-diseased tissues whereby wavenumbers in the spectral region 1405-1407 cm-1 displayed a 

potential as biomarkers. However not enough information is available to derive the biochemical 

composition of luminal cells.  

Wavenumbers found to be unique for stromal cells in non-diseased tissues were 1663 cm-1 (DNA), 

1420 cm-1 (proteins and lipids), 642 cm-1 (tyrosine) and 1063 cm-1 (C-C skeletal stretch). In diseased 

tissues, the wavenumbers found to be unique were 871 cm-1, 1643 cm-1, 1307 cm-1 (lipids/collagen), 

1144 cm-1  and 731 cm-1. As it can be observed these wavenumbers are not consistent for their 

assignments so the exact biochemical composition of stromal cells cannot be interpreted. 

Table 4.2 summarises the observations as to which wavenumbers were identified to have the most 

potnential as biomarkers for the three types of populations in non-diseased and diseased tissues.  
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4.3.5 Applications of Raman spectroscopy 

 

Raman spectroscopy was used to study the differentiation process of live murine embryonic stem cells 

whereby a decrease in both RNA and DNA peaks were observed with the progress of differentiation 

(Notingher et al., 2004). Similarly, a decrease in peak intensities of RNA and DNA was observed during 

Tissue type Cell population Wavenumber/ cm-1  Assignement 

Non-diseased Basal 1685 amide I 

    1608 cytosine 

  
 

1397 
 

    1339 tryptophan/collagen/nucleic acids 

    1257 amide III 

    919   

  
 

869 proline 

    812 phosphodiester 

  
 

725 DNA/RNA bases 
 

    
 

 Luminal 1407 proline, valine 

        

  Stromal 1663 DNA 

    1420 proteins and lipids 

    1063 C-C skeletal stretch  

    642 tyrosine 

        

Diseased Basal 1682 cortisone 

        

  Stromal 1643   
 

 1307 lipids/collagen 

    1144   

    731   

Table 4.2: A summary of observations based on which wavenumbers displayed the most potential as biomarkers for 

basal, luminal and stromal cells in non-diseased and diseased- tissue sections. 
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differentiation of live human embryonic stem cells into cardiomyocytes (Chan et al., 2009). 

Mineralisation process during differentiation of mesenchymal cells into osteoblasts was monitored by 

employment of Raman spectroscopy (Crane, 2009). In a similar study Raman spectroscopy was used 

to monitor production of minerals from mesenchymal cells under the influence of osteogenic agents 

(Azrad et al., 2006).  Even though our results require further work and are unclear, Raman 

spectroscopy has been a promising and important tool in biomedical research since it has been able 

to give results of good quality in several studies. Raman spectroscopy was coupled with FTIR 

spectroscopy to differentiate pluripotent human embryonic stem cells from multipotent adult 

mesenchymal stem cells at different O2 concentrations and results showed that population of cells 

were mainly different for their lipid composition (Pijanka et al., 2010).  

Raman spectroscopy has been a useful tool in cancer research. It was able to identify biochemical 

markers that distinguish the transition zone, peripheral zone and central zone in normal human 

prostate tissues which could explain the susceptibility of these zones to development of malignancies 

and other pathological conditions (Patel and Martin, 2010).  Near-infrared Raman spectroscopy was 

used as a diagnostic tool to study the biochemical changes in cervical tissues associated with dysplastic 

malignancies (Duraipandian et al., 2011). Raman spectroscopy and FTIR spectroscopy were used in the 

same study to examine the susceptibility of different populations (India Vs UK) in to development of 

prostate cancer (Patel et al., 2011). 
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4.4 Conclusion 

The dynamic regenerative capacity of the endometrium during the reproductive years of a female and 

its ability to respond to exogenous stimulus during post-menopause period is attributed to the 

existence of populations of stem/progenitor cells. Over the years biomedical research has focused on 

the identification of endometrial stem cells in order to provide potential for development of therapies 

to treat gynaecological diseases and infertility. Achievements so far provided evidence for the 

existence of stem cells throughout functional studies however markers of endometrial 

stem/progenitor cells are yet to be identified. Based on the structure and function of the human 

endometrium as well as on observations from studies in mouse endometrium a hypothetical location 

of endometrial stem cells has been proposed and accepted. It is believed that epithelial stem cells are 

found at the base of the endometrial glands in the basal layer from where they proliferate and migrate 

to reach the functional layer in order to replace the tissue which is sloughed off during menstruation, 

whilst stromal cells are located in perivascular regions of the endometrium and are responsible for 

regeneration of the lost stroma.  

Post-menopausal endometrium has not been investigated a lot by means of Scanning electron 

microscopy. Rather of more interest were the changes occurring in endometrial morphology during 

the menstrual cycle so not much information was available from previous literature to support or 

correlate our findings. Similarly, biospectroscopic techniques were applied to characterise 

biochemical changes occurring in endometrial pathologies and to characterise populations of stem 

cells other tissues such as the skin, cornea and intestines whereby their location is known. 

Employment of biospectroscopic methods in our project was aiming to identify potential biomarkers 

for cells at the base and lumen of the glands and the surrounding stroma based on the hypothesised 

location of endometrial stem cells. To this end our attempt has rather failed however even though a 

perfect segregation between the different populations of cells was not achieved, a certain degree of 

separation was achieved. Luminal cells were found to be more dissimilar from basal and stromal cells, 
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and always significantly different, relative to the degree of difference observed between basal and 

stromal cells which signified that basal and stromal cells had a more similar biochemical composition 

even though they were mainly found to be significantly different for their spectra. 

There is space for improvement in our approaches as well as potential for further work. A significant 

limitation in the section of FTIR spectroscopy was the fact that the shape of the obtained spectra was 

not that of a usual biological sample which could be attributed to experimental settings such as the 

mode for spectra acquisition. Prior to spectra collection, the paraffin embedded sections were de-

waxed but it is quite possible that tissue sections still had residual paraffin so it would have been 

better if spectral regions accounting to residual paraffin were removed before data analysis so that 

the spectra would be more representative of the biochemical composition of the cells. In FTIR 

spectroscopy the band region assigned to residual paraffin in 1420-1480 cm-1 and in Raman 

spectroscopy is at 1061 cm-1, which was indeed observed during data analysis. Also during data 

analysis we could have compared the spectra of two populations of cells individually i.e. basal cells Vs 

stromal cells, basal cells Vs luminal cells and luminal cells Vs stromal cells, instead of just comparing 

all three populations at the same time. This would have provided more information about differences 

and/or similarities in biochemical composition. Also the fact that samples were taken from post-

menopausal endometrium which is inactive, atrophic and does not regenerate could have affected 

our observations. 

Further work that can be done, is the application of other methods of computational analysis to assess 

the degree of segregation. Also it would be a good idea to assess if segregation was due to a particular 

spectral region, such as proteins or nucleic acids or lipids, in both FTIR and Raman spectroscopy. Other 

biospectroscopy methods can be employed in a similar concept like ATR-FTIR spectroscopy, or use 

spectral image mapping for both FTIR and Raman spectroscopy which can monitor distribution of 

chemical entities within the endometrial glands whereby absorbance intensities are illustrated by 

thermal colour changes from blue to green to yellow to red with blue and red signifying lowest and 
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highest intensity respectively. Transmission electron microscopy can also be used to examine 

endometrial tissues.  
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