
MAXIMAL SUBALGEBRAS AND CHIEF FACTORS OF LIE
ALGEBRAS

DAVID A. TOWERS

Department of Mathematics and Statistics
Lancaster University
Lancaster LA1 4YF

England
d.towers@lancaster.ac.uk

Abstract

This paper is a continued investigation of the structure of Lie alge-
bras in relation to their chief factors, using concepts that are analogous
to corresponding ones in group theory. The first section investigates
the structure of Lie algebras with a core-free maximal subalgebra. The
results obtained are then used in section two to consider the relation-
ship of two chief factors of L being L-connected, a weaker equivalence
relation on the set of chief factors than that of being isomorphic as
L-modules. A strengthened form of the Jordan-Hölder Theorem in
which Frattini chief factors correspond is also established for every Lie
algebra. The final section introduces the concept of a crown, a notion
introduced in group theory by Gaschütz, and shows that it gives much
information about the chief factors
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1 Primitive algebras

Throughout L will denote a finite-dimensional Lie algebra over a field F . The
symbol ‘⊕’ will denote an algebra direct sum, whilst ‘+̇’ will denote a direct
sum of the underlying vector space structure alone. If U is a subalgebra of
L we define UL, the core (with respect to L) of U to be the largest ideal
of L contained in U . We say that U is core-free in L if UL = 0. We shall
call L primitive if it has a core-free maximal subalgebra. The centraliser
of U in L is CL(U) = {x ∈ L : [x, U ] = 0}. Then we have the following
characterisation of primitive Lie algebras.

Theorem 1.1 1. A Lie algebra L is primitive if and only if there exists
a subalgebra M of L such that L = M +A for all minimal ideals A of
L.

2. Let L be a primitive Lie algebra. Assume that U is a core-free maximal
subalgebra of L and that A is a non-trivial ideal of L. Write C =
CL(A). Then C ∩ U = 0. Moreover, either C = 0 or C is a minimal
ideal of L.

3. If L is a primitive Lie algebra and U is a core-free maximal subalgebra
of L, then exactly one of the following statements holds:

(a) Soc(L) = A is a self-centralising abelian minimal ideal of L which
is complemented by U ; that is, L = U+̇A.

(b) Soc(L) = A is a non-abelian minimal ideal of L which is supple-
mented by U ; that is, L = U +A. In this case CL(A) = 0.

(c) Soc(L) = A ⊕ B, where A and B are the two unique minimal
ideals of L and both are complemented by U ; that is, L = A+̇U =
B+̇U . In this case A = CL(B), B = CL(A), and A, B and
(A+B) ∩ U are non-abelian isomorphic Lie algebras.

Proof.

1. If L is primitive and U is a core-free maximal subalgebra then it is
clear that L = U + A for every minimal ideal A of L. Conversely,
if there exists a subalgebra M of L such that L = M + A for every
minimal ideal A of L and U is a maximal subalgebra of L such that
M ⊆ U , then U cannot contain any minimal ideal of L, and therefore
U is a core-free maximal subalgebra of L.
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2. Since U is core-free in L, we have that L = U + A. Since A is an
ideal of L, then C is an ideal of L and then C ∩ U is an ideal of U .
Since [C ∩ U,A] = 0, we have that C ∩ U is an ideal of L. Therefore
C ∩ U = 0.

If C 6= 0, consider a minimal ideal X of L such that X ⊆ C. Since
X 6⊆ U , then L = X+U . But now C = C∩(X+U) = X+(C∩U) = X.

3. Let us assume that A1, A2, A3 are three pairwise distinct minimal ide-
als of L. Since A1 ∩ A2 = A1 ∩ A3 = A2 ∩ A3 = 0, we have that
A2 ⊕ A3 ⊆ CL(A1). But then CL(A1) is not a minimal ideal of L,
and this contradicts 2. Hence, in a primitive Lie algebra there exist at
most two distinct minimal ideals.

Suppose that A is a non-trivial abelian ideal of L. Then A ⊆ CL(A).
Since by 2, CL(A) is a minimal ideal of L, we have that A is self-
centralising. Thus, in a primitive Lie algebra there exists at most
one abelian minimal ideal of L. Moreover, L = A + U and A is self-
centralising. Then A ∩ U = CL(A) ∩ U = 0.

If there exists a unique minimal non-abelian ideal A of L, then L =
A+ U and CL(A) = 0.

If there exist two minimal ideals A and B, then A ∩ B = 0 and then
B ⊆ CL(A) and A ⊆ CL(B). Since CL(A) and CL(B) are minimal
ideals of L, we have that B = CL(A) and A = CL(B). Now A ∩ U =
CL(B)∩U = 0 and B∩U = CL(A)∩U = 0. Hence L = A+̇U = B+̇U .
Since A = CL(B), it follows that B is non-abelian. Analogously we
have that A is non-abelian. Furthermore, we have A+((A+B)∩U) =
A+B = B + ((A+B) ∩ U). Hence

A ∼=
A

A ∩B
∼=
A+B

B
∼=
B + ((A+B) ∩ U)

B
∼= (A+B) ∩ U.

Analogously B ∼= (A+B) ∩ U .

�

As in the group-theoretic case this leads to three types. A primitive Lie
algebra is said to be

1. primitive of type 1 if it has a unique minimal ideal that is abelian;

2. primitive of type 2 if it has a unique minimal ideal that is non-abelian;
and
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3. primitive of type 3 if it has precisely two distinct minimal ideals each
of which is non-abelian.

Of course, primitive Lie algebras of types 2 and 3 are semisimple, and
those of types 1 and 2 are monolithic. (A Lie algebra L is called monolithic
if it has a unique minimal ideal W , the monolith of L.) Examples of each
type are easy to find.

Example 1.1 1. Clearly every primitive solvable Lie algebra is of type
1.

2. Every simple Lie algebra is primitive of type 2.

3. If S is a simple Lie algebra then L = S ⊕ S is primitive of type 3
with core-free maximal subalgebra D = {s + s : s ∈ S}, the diagonal
subalgebra of L.

LetM be a maximal subalgebra of L. ThenM/ML is a core-free maximal
subalgebra of L/ML. We say that M is

1. a maximal subalgebra of type 1 if L/ML is primitive of type 1;

2. a maximal subalgebra of type 2 if L/ML is primitive of type 2; and

3. a maximal subalgebra of type 3 if L/ML is primitive of type 3.

Lemma 1.2 Let L be a non-trivial Lie algebra.

(i) If M is a maximal subalgebra of L, then L/ML is primitive.

(ii) If B is an ideal of L and L/B is primitive, then L has a maximal
subalgebra M such that B = ML.

Proof.

(i) This is easy.

(ii) Let M/B be a core-free maximal subalgebra of L/B. Then M is a
maximal subalgebra of L and ML = B.

�

We say that an ideal A is complemented in L if there is a subalgebra U
of L such that L = A+U and A∩U = 0. For primitive solvable Lie algebras
we have the following analogue of Galois’ Theorem for groups.
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Theorem 1.3 1. If L is a solvable primitive Lie algebra then all core-free
maximal subalgebras are conjugate.

2. If A is a self-centralising minimal ideal of a solvable Lie algebra L,
then L is primitive, A is complemented in L, and all complements are
conjugate.

Proof.

1. This is [8, Lemma 3].

2. This follows easily from [6, Lemma 1.5] and the part 1.

�

The Frattini ideal of L, φ(L), is the core of intersection of the maximal
subalgebras of L. We say that L is φ-free if φ(L) = 0. Then we have the
following characterisation of primitive Lie algebras of type 1.

Theorem 1.4 Let L be a Lie algebra over a field F .

1. L is primitive of type 1 if and only if L is monolithic, with abelian
monolith W , and φ-free.

2. If F has characteristic zero, then L is primitive of type 1 if and only
if L = W n (C ⊕ S), where W is the abelian monolith of L, C is an
abelian subalgebra of L, every element of which acts semisimply on W ,
and S is a Levi subalgebra of L.

3. If L is solvable, then L is primitive if and only if it has a self-centralising
minimal ideal A.

Proof.

1. If L is primitive of type 1 then it has the stated properties, by Theorem
1.1. So suppose that L is monolithic with abelian monolith W and φ-
free. Then there is a maximal subalgebraM of L such that L = W +̇M .
If ML 6= 0 there is a minimal ideal of L contained in ML and distinct
from W , a contradiction. Hence ML = 0 and L is primitive of type 1.

2. This follows from 1 and [5, Theorem 7.5].

3. If L is primitive then it has the stated property, by Theorem 1.1. The
converse follows from [6, Lemma 1.5].
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�

Theorem 1.5 For a Lie algebra L the following are pairwise equivalent:

1. L is primitive of type 1 or 3;

2. there is a minimal ideal B of L complemented by a subalgebra U which
also complements CL(B);

3. there is a minimal ideal B of L such that L is isomorphic to the semi-
direct sum X = B n L/CL(B).

Proof.

1⇒ 2 : This is clear from Theorem 1.1.

2⇒ 1 : Since UL ∩ B = 0 we have UL ⊆ CL(B). But now UL ∩ CL(B) = 0
implies that UL = 0. Suppose that M is a proper subalgebra of L
containing U . Then M ∩ B is an ideal of M and is centralised by
CL(B), so M ∩ B is an ideal of M + CL(B) = L. By the minimality
of B we have that M ∩ B = 0 and U = M . It follows that U is a
core-free maximal subalgebra of L and L is primitive. Finally note
that the minimal ideal of a primitive Lie algebra of type 2 has trivial
centraliser.

2⇒ 3 : Simply note that L = B+̇U and U ∼= L/CL(B), whence the map
θ : B n L/CL(B) → L defined by θ(b + u) = b + (u + CL(B)) is the
required isomorphism.

3⇒ 2 : Put C = CL(B) and assume there is an isomorphism θ : L →
BnL/C. Consider the following subalgebras: B∗ = θ({b+C : b ∈ B}),
U∗ = θ({(0 + (x+C) : x ∈ L}) and C∗ = θ({b+ (x+C) : b+x ∈ C}).
For each b ∈ B, we have that θ(−b+ (b+ C)) is a non-trivial element
of C∗, and so C∗ 6= 0. It is easy to check that B∗ is a minimal ideal of
L, that C∗ = CL(B∗) and that U∗ complements B∗ and C∗.

�

As usual, O(m; 1) denotes the truncated polynomial ring in n indeter-
minates defined over a field of characteristic p > 0. Then the above yields
the following characterisation of primitive Lie algebras of type 3.

Corollary 1.6 1. L is primitive of type 3 if and only if L has two distinct
minimal ideals B1 and B2 with a common complement and such that
the factor algebras L/Bi are primitive of type 2 for i = 1, 2.
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2. If F is algebraically closed, then, in addition to 1, B1 and B2 are both
isomorphic to S ⊗O(m; 1), where S is simple. In this case

L ⊆
2⊕

i=1

(Der Si ⊗O(m; 1))⊕ (IdSi ⊗W (m; 1)),

where S1 ∼= S2 ∼= S.

3. If F has characteristic zero, then L is primitive of type 3 if and only
if L = S ⊕ S, where S is simple.

Proof.

1. Suppose first that L is primitive of type 3. Then L has two distinct
minimal ideals B1 and B2 which have a common complement U in L,
by Theorem 1.1. Also, U ∼= L/B1 and (B2+B1)/B1 is a minimal ideal
of L/B1. If x + B1 ∈ CL/B1

((B2 + B1)/B1) then [b, x] ∈ B1 for all
b ∈ B2, which yields that [x, b] ∈ B1∩B2 = 0 and so x ∈ CL(B2) = B1.
Hence CL/B1

((B2 + B1)/B1) = 0, implying that L/B1 is primitive of
type 2, and therefore so are U and L/B2.

Conversely, suppose that L has two distinct minimal ideals B1 and B2

with a common complement U and such that the factor algebras L/Bi

are primitive of type 2 for i = 1, 2. Then U ∼= L/Bi is primitive of type
2 such that Soc(L/Bi) = (B1 + B2)/Bi and CL((B1 + B2)/Bi) = Bi.
It follows that CL(B2) = B1 and CL(B1) = B2. By Theorem 1.5 this
implies that L is primitive of type 3.

2. This follows from Block’s Theorem in [1].

3. If L is primitive of type 3 it must be semisimple with precisely two
ideals which are isomorphic to each other, and thus is as described.

�

This leaves primitive Lie algebras of type 2, which can be characterised
as follows.

Theorem 1.7 1. If F is algebraically closed, then L is primitive of type
2 if and only if

L ∼= U + (S ⊗O(m; 1)) ⊆ (Der S ⊗O(m; 1))⊕ (IdS ⊗W (m; 1)),

where S ⊗O(m; 1) is an ideal of L and S is simple.
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2. If F has characteristic zero, then L is primitive of type 2 if and only
if L is simple.

3. L is primitive of type 2 if and only if there is a primitive Lie algebra
X of type 3 such that L ∼= X/B for a minimal ideal B of L.

Proof.

1 and 2 are clear from Theorem 1.1.

3. Suppose that L is primitive of type 2, and let D be the unique minimal
ideal of L. Then D is non-abelian and CL(D) = 0, so the semi-direct
sum X = D n L is primitive of type 3, by Theorem 1.5. Clearly, if
B = {b+ 0 : b ∈ D}, then X/B ∼= L. The converse follows easily from
Corollary 1.6 and Theorem 1.1.

�

A special case of the above occurs as follows. We will call a Lie algebra
L almost simple if it is a subalgebra of DerS for some simple subalgebra S
of L. Over a field of characteristic zero such an algebra has to be simple,
as L would be sandwiched between InnS(∼= S) and DerS, and simple Lie
algebras over such fields have no outer derivations. However, that is not the
case for a field of positive characteristic p, even if it is algebraically closed and
S is restricted (see [3]). It is straightforward to check that CDer (S)(S) = 0
and thus that an almost simple Lie algebra is primitive of type 2.

2 Chief factors

We say that two chief factors are L-isomorphic, denoted by ‘∼=L’, if they
are isomorphic as L-modules. The centraliser of a chief factor A/B is
CL(A/B) = {x ∈ L : [x,A] ⊆ B}.

Theorem 2.1 Let L be a Lie algebra and let A1/B1, A2/B2 be two chief
factors of L. Then

(i) if A1/B1 and A2/B2 are L-isomorphic, CL(A1/B1) = CL(A2/B2);

(ii) if A1/B1 and A2/B2 are non-abelian, they are L-isomorphic if and
only if CL(A1/B1) = CL(A2/B2).
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Proof. (i) is clear, so suppose that C = CL(A1/B1) = CL(A2/B2). Then
Bi ⊆ C ∩Ai for i = 1, 2. Since Ai/Bi is non-abelian we have Ai 6⊆ C, which
yields that Bi = C∩Ai and Ai/Bi is L-isomorphic to (Ai+C)/C for i = 1, 2.
Now (A1 +C)/C is a minimal ideal of L/C and CL/C((A1 +C)/C) = C, so
L/C is primitive of type 2. But (A2 +C)/C is also a minimal ideal of L/C,
so we have that A1 + C = A2 + C. It follows that A1/B1 and A2/B2 are
L-isomorphic. �

It is easy see that 2.1(ii) does not hold for abelian chief factors, as the
following example shows.

Example 2.1 Let L = Ra + Rb + Rc + Rx with multiplication [x, a] = a,
[x, b] = c, [x, c] = −b. Then A1 = Ra and A2 = Rb + Rc are minimal ideal
of L and CL(A1) = Ra+ Rb+ Rc = CL(A2), but A1 and A2 are clearly not
L-isomorphic.

Recall that the Frattini subalgebra, F (L), of L is the intersection of the
maximal proper subalgebras of L; the Frattini ideal, φ(L), is the largest ideal
of L contained in F (L). Let A/B be a chief factor of L. We say that A/B
is a Frattini chief factor if A/B ⊆ φ(L/B). In [7] a strengthened form of
the Jordan-Hölder Theorem in which Frattini chief factors correspond was
established for solvable Lie algebras. However, the assumption of solvability
is not needed as we shall show below. This assumption is used only to
establish [7, Lemma 2.1], so we simply need a slightly modified version of
that Lemma.

Lemma 2.2 Let A1, A2 be distinct minimal ideals of the Lie algebra L.
Then there is a bijection

θ : {A1, (A1 +A2)/A1} → {A2, (A1 +A2)/A2}

such that corresponding chief factors are isomorphic as L-modules and Frat-
tini chief factors correspond to one another.

Proof. Put A = A1 ⊕ A2. Suppose first that A1 is a Frattini chief factor.
Then A1 ⊆ φ(L). Thus A/A2 ⊆ φ(L/A2) and A/A2 is a Frattini chief factor.
If A/A1 is also a Frattini chief factor, then A/A1 ⊆ φ(L/A1), which yields
that A ⊆ φ(L), and all four factors are Frattini. In this case we can choose
θ so that θ(A1) = A/A2 and θ(A/A1) = A2. If A/A1 is not a Frattini chief
factor, then nor is A2, by the same argument as above, and so the same
choice of θ suffices; likewise if none of the factors are Frattini chief factors.
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The remaining case is where A1 and A2 are not Frattini chief factors
but A/A2 is. The fact that A/A2 is a Frattini chief factor means that every
maximal subalgebra containing A2 also contains A, and so contains A1.
But, since A1 is not a Frattini chief factor, there is a maximal subalgebra
M not containing A1. It follows that A2 6⊆ M . Thus L = M + A1 =
M + A2. Also, [L,M ∩ A1] = [M + A2,M ∩ A1] ⊆ M ∩ A1. It follows that
M ∩ A1 = 0. Similarly M ∩ A2 = 0. Put C = A ∩M . Then L/Ai

∼= M
and this isomorphism maps the set of of maximal subalgebras of L/Ai onto
the set of maximal subalgebras of M . Since A/A2 is a Frattini chief factor,
every maximal subalgebra of L containing A2 contains A, so every maximal
subalgebra of M contains C. It follows that every maximal subalgebra of
L which contains A1 also contains C + A1; that is, A/A1 is a Frattini chief
factor of L. So we can choose θ so that θ(A1) = A2 and θ(A/A1) = A/A2.
�

Then the following result follows exactly as does [7, Theorem 2.2].

Theorem 2.3 Let

0 < A1 < . . . < An = L (1)

0 < B1 < . . . < Bn = L (2)

be chief series for the Lie algebra L. Then there is a bijection between the
chief factors of these two series such that corresponding factors are isomor-
phic as L-modules and such that the Frattini chief factors in the two series
correspond.

Let A/B be a chief factor of L. If there is a subalgebra M such that
L = A+M and B ⊆ A∩M , we say that A/B is a supplemented chief factor
of L, and that M is a supplement of A/B in L. If A/B is a non-Frattini
chief factor of L then A/B is supplemented by a maximal subalgebra M of
L.

If A/B is a chief factor of L supplemented by a subalgebra M of L and
A ∩M = B then we say that A/B is a complemented chief factor of L, and
M is a complement of A/B in L. When L is solvable it is easy to see that
a chief factor is Frattini if and only if it is not complemented.

Note that if L is a primitive Lie algebra of type 3, its two minimal ideals
are not L-isomorphic, so we introduce the following concept. We say that
two chief factors of L are L-connected if either they are L-isomorphic, or
there exists an epimorphic image L of L which is primitive of type 3 and
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whose minimal ideals are L-isomorphic, respectively, to the given factors.
(It is clear that, if two chief factors of L are L-connected and are not L-
isomorphic, then they are nonabelian and there is a single epimorphic image
of L which is primitive of type 3 and which connects them.)

Theorem 2.4 The relation ‘is L-connected to’ is an equivalence relation on
the set of chief factors.

Proof. The relation is clearly reflexive and symmetric, so we simply have to
establish transitivity. Suppose that Ai/Bi are chief factors of L for i = 1, 2, 3,
for which A1/B1 is L-connected to A2/B2 and A2/B2 is L-connected to
A3/B3. If any two are L-isomorphic the result is clear. So suppose that
there are primitive epimorphic images images L/K (with minimal ideals
H/K and J/K) and L/T (with minimal ideals P/T and Q/T ) such that

A1/B1
∼=L H/K, J/K ∼=L A2/B2

∼=L P/T, A3/B3
∼=L Q/T.

Then H = CL(J/K) = CL(P/T ) = Q. Now L/H ∼= (L/K)/(H/K), which
is primitive of type 2 by Corollary 1.6. But

P +H

H
∼=

P

P ∩H
=

P

P ∩Q
=
P

T
∼=
A2

B2

∼=
J

K
=

J

H ∩ J
∼=
J +H

H
,

so (P + H)/H and (J + H)/H are minimal ideals of L/H. It follows that
P +H = J +H. Similarly, L/J is primitive of type 2 with unique minimal
ideal (H+J)/J . As (P +J)/J is an ideal of L/J we have H+J ⊆ P +J ⊆
P +H + J = H + J , so P +H = J +H = P + J .

If P = J then T = P ∩ Q = J ∩ H = K and A1/B1
∼=L A3/B3, a

contradiction. It follows that P 6= J . Let M,N be maximal subalgebras
of L such that K ⊆ M , T ⊆ N , M is a common complement of H/K and
J/K, and N is a common complement of P/T and Q/T , so ML = K and
NL = T . Put W = P ∩ J and X = M ∩ N + W . Then L = M + H =
M + K = N + P = N + Q from which it follows that M ∩W is an ideal
of L and M ∩ W = K ∩ T . Now X = L implies that M = M ∩ X =
M ∩ (M ∩ N + W ) = M ∩ N + M ∩W = M ∩ N + K ∩ T = M ∩ N , a
contradiction, as M 6= N . Thus X 6= L and

P +X = P +M ∩N +W = P +M ∩N = P + T +M ∩N
= P + (T +M) ∩N = P +N = L.

Similarly, J +X = L.
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But P ∩X is an ideal of X and (P ∩X)/W ⊆ CL/W (J), so P ∩X is an
ideal of J +X = L. Since P/W ∼= (P + J)/J = (H + J)/J is a chief factor
of L and W ⊆ P ∩X ⊆ P , we have P ∩X = P or P ∩X = W . The former
implies that P ⊆ X, which in turn yields that X = L, a contradiction. Thus
we have P ∩ X = W . Similarly J ∩ X = W . Finally, P/W is a minimal
ideal of L/W and CL/W (P/W ) = J/W , and so L/W is primitive of type 3
and L-connects A1/B1 and A3/B3. �

We now seek more detailed information about supplemented chief fac-
tors.

Proposition 2.5 Let A/B be a chief factor of the Lie algebra L supple-
mented by the maximal subalgebra M , and let C = CL(A/B). Then

(i) (A+ML)/ML is a minimal ideal of the primitive Lie algebra L/ML;

(ii) if M is of type 1 or 3 then each chief factor of L supplemented by M
is complemented by M ;

(iii) if A/B is abelian then L/ML is of type 1 and is isomorphic to the
semidirect sum A/B o L/C; and

(iv) if A/B is non-abelian then L/C is primitive of type 2, Soc(L/C) ∼=L

A/B, and, if K is a maximal subalgebra supplementing (A+C)/C in
L, then K is also a supplement to A/B in L and KL = C.

Proof.

(i) It is clear that L/ML is primitive and B = A ∩ML. Suppose that S
is an ideal of L with ML ⊆ S ⊆ A+ML. Then S = (A+ML) ∩ S =
A ∩ S + ML and B ⊆ A ∩ S ⊆ A. Then either A ∩ S = B, in which
case S = ML, or A ∩ S = A, in which case S = A + ML. Hence
(A+ML)/ML is a minimal ideal of L/ML.

(ii) If M is of type 1 or 3 then (A+ML)/ML is a minimal ideal of L/ML,
which is primitive of type 1 or 3 and so M ∩ (A + ML) = ML. But
then M ∩A = ML ∩A = B.

(iii) If A/B is abelian then L/ML is primitive of type 1, in which case
C = A+ML and M/ML

∼= L/C. It follows that L/ML is isomorphic
to the semidirect sum A/B o L/C.
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(iv) If A/B is non-abelian then two possibilities arise. If C = ML then
L/ML is primitive of type 2 and Soc(L/C) = (A + C)/C ∼=L A/B.
If ML ⊂ C, then L/ML is primitive of type 3 with minimal ideals
(A+ML)/ML and C/ML. In this case L/C is primitive of type 2 and
Soc(L/C) = (A+ C)/C ∼=L A/B.

In either case, let K be a maximal subalgebra supplementing (A +
C)/C in L. Then L = A+K and B = A ∩B = A ∩KL. Hence K is
also a supplement of A/B in L and KL = C.

�

In view of the above result, for any chief factor A/B of L we define the
primitive algebra associated with A/B in L to be

(i) the semidirect sum A/B o (L/CL(A/B)) if A/B is abelian, or

(ii) the factor algebra L/CL(A/B) if A/B is non-abelian.

Let A/B be a supplemented chief factor of L for which M is a maximal
subalgebra of L supplementing A/B in L such that L/ML is monolithic and
primitive. Note that Proposition 2.5 (iii) and (iv) show that such an M
exists; we call M a monolithic maximal subalgebra supplementing A/B in L.
We say that the chief factor Soc(L/ML) = (A+ML)/ML is the precrown of
L associated with M and A/B, or simply, a precrown of L associated with
A/B.

If A/B is a non-abelian chief factor of L, then for each maximal subal-
gebra M of L supplementing A/B in L such that L/ML is a monolithic and
primitive, we have that ML = CL(A/B). Therefore the unique precrown of
L associated with A/B is

Soc(L/ML) =
A+ML

ML
=
A+ CL(A/B)

CL(A/B)
.

However, if A/B is a complemented abelian chief factor of L and M is a
complement of A/B in L, then the precrown of L associated with M and
A/B is

Soc(L/ML) =
A+ML

ML
= CL/ML

(
A+ML

ML

)
=
CL(A/B)

ML
.

This raises the question of how many different precrowns are associated with
a particular abelian chief factor. For solvable algebras the answer is given
by the following result.
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Proposition 2.6 Let A/B be a complemented chief factor of a solvable Lie
algebra L over a field F of positive characteristic p, and suppose further
that L2 has nilpotency class less than p. Then the map which assigns to
each conjugacy class of complements of A/B in L, {exp(ad a)(M) : a ∈ L}
say, the common core ML of its elements, induces a bijection between the
set of all conjugacy classes of complements of A/B in L and the set of all
ideals of L which complement A/B in CL(A/B).

Hence there is a bijection between the set of precrowns of L associated
with A/B and the set of all conjugacy classes of complements of A/B in L.

Proof. Put C = CL(A/B), and let M be a maximal subalgebra of L such
that L = A+M and A ∩M = B. Put N = C ∩M . Then N is an ideal of
L such that C = A + N and A ∩ N = B. Then (A + N)/N ∼=L A/B and
(A + N)/N is a self-centralising minimal ideal of L/N . By Theorem 1.3,
(A + N)/N is complemented in L/N and all complements are conjugate.
If M/N is one of these complements, then N = ML. Hence the map is
surjective.

Let M and S be two complements of A/B in L such that N = ML =
SL. Then L/N is solvable and primitive such that and S/N , M/N are
complements of Soc(L/N) = (A + N)/N . By [8, Theorem 5], there exists
an element a ∈ A such that exp(ad a)(S) = M . Hence the correspondence
is injective.

The maximal subalgebras in a conjugacy class have a common core, by
[8, Theorem 4]. Finally observe that, since A/B is abelian, the precrowns of
L associated with A/B have a common numerator CL(A/B) and different
denominators ML, one for each conjugacy class of complements of A/B in
L. �

Proposition 2.7 Let Ai/Bi, i = 1, 2, be two supplemented chief factors of
L that are L-connected, and let Ci/Ri be a precrown associated with Ai/Bi

for i = 1, 2. Then C1 = C2.

Proof. If Ai/Bi is abelian, then C1 = CL(A1/B1) = CL(A2/B2) = C2.
If A1/B1 and A2/B2 are nonabelian but L-isomorphic, they have the

same precrown, by Proposition 2.5 (iv).
So suppose that there is an ideal N of L such that L/N is primitive of

type 3 with minimal ideals E1/N , E2/N such that E1/N ∼=L A1/B1 and
E2/N ∼=L A2/B2. Then CL(E1/N) = E2 and CL(E2/N) = E1. Hence
the precrown associated with E1/N and A1/B1 is (E1 + E2)/E2, and the
precrown associated with E2/N and A2/B2 is (E1 + E2)/E1. �
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3 Crowns

Let A/B be a supplemented chief factor of L and put J = {ML : M is
a monolithic maximal subalgebra of L which supplements a chief factor of
L which is L-connected to A/B}. Let R = ∩{N : N ∈ J } and C =
A+ CL(A/B). Then we call C/R the crown of L associated with A/B.

Lemma 3.1 Let J1 = {N : D/N is a precrown associated with a chief
factor L-connected to A/B}, J2 = {ML : M is a maximal subalgebra of
L supplementing a chief factor L-connected to A/B}, and J3 = {ML : M
is a maximal subalgebra of L supplementing a chief factor L-isomorphic to
A/B}. Then⋂
{N : N ∈ J } =

⋂
{N : N ∈ J1} =

⋂
{N : N ∈ J2} =

⋂
{N : N ∈ J3}.

Proof. This follows straightforwardly from Proposition 2.5. �

Theorem 3.2 Let C/R be the crown associated with the supplemented chief
factor A/B of L. Then C/R = Soc(L/R). Furthermore

(i) every minimal ideal of L/R is a supplemented chief factor of L which
is L-connected to A/B, and

(ii) no supplemented chief factor of L above C or below R is L-connected
to A/B.

In other words, there are r ideals A1, . . . , Ar of L such that

C/R = A1/R⊕ . . .⊕Ar/R

where Ai/R is a supplemented chief factor of L which is L-connected to A/B
for i = 1, . . . , r and r is the number of supplemented chief factors of L which
are L-connected to A/B in each chief series for L. Moreover, φ(L/R) = 0.

Proof. Let R = N1∩ . . .∩Nr where C/Ni are the precrowns associated with
chief factors that are L-connected to A/B and r is minimal with respect to
this property. Then

θ :
C

R
=

C

N1 ∩ . . . ∩Nr
→ C

N1
⊕ . . .⊕ C

Nr

given by θ(c+(N1∩ . . .∩Nr)) = (c+N1, . . . , c+Nr) is an L-monomorphism.
Moreover, C = Ni + (N1 ∩ . . . ∩ Ni−1) for i ≤ r, from the minimality of r,
and so

N1 ∩ . . . ∩Ni−1
N1 ∩ . . . ∩Ni

∼=L
C

Ni
.
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It follows that the chain

R = N1 ∩ . . . ∩Nr ⊆ N1 ∩ . . . ∩Nr−1 ⊆ . . . ⊆ N1 ⊆ C

is part of a chief series for L in which each chief factor is L-connected to
A/B. Hence dim(C/R) = r dim(A/B) and θ is an isomorphism.

Suppose that E/F is a supplemented chief factor of L which is L-
connected to A/B and let M be a maximal subalgebra of L that is a sup-
plement of E/F in L. Then E ⊆ C, by Proposition 2.7. However, E 6⊆ R,
since R ⊆ ML. It follows that no supplemented chief factor of L over C or
below R is L-connected to A/B.

By Theorem 2.3 the number of supplemented chief factors L-connected
to A/B in each chief series of L is an invariant of L and coincides with the
length of any section of chief series between R and C.

Next suppose that D/R is a minimal ideal of L/R and that D 6⊆ C.
Then D ∩ C = R and D ⊆ CL(A1/R). But A1/R is L-connected to A/B,
so D ⊆ CL(A1/R) ⊆ C, by Proposition 2.7.

Finally, φ(L/R) = 0 since every minimal ideal of L/R is supplemented.
�

Corollary 3.3 Two supplemented chief factors of L define the same crown
if and only if they are L-connected.

Proof. This is clear, since the crown associated with a supplemented chief
factor is a direct sum of supplemented components. �

Proposition 3.4 For any Lie algebra L we have

∩ {S : there is a non-abelian crown R/S of L}
= ∩ {ML : M is maximal in L and L/ML is primitive of type 2}
= ∩ {ML : M is maximal in L and L/ML is primitive of type 2 or 3}
= ∩ {C : C = CL(A/B), A/B a non-abelian chief factor of L}
=Γ, the solvable radical of L.

Proof. It follows from Lemma 3.1 and Theorem 3.2 that the given intersec-
tions all yield the same ideal, J say. Let A/B be a chief factor of L below
J . If A/B is non-abelian we have A ⊆ J ⊆ CL(A/B), a contradiction, so
J ⊆ Γ. Moreover, if R/S is a non-abelian crown of L, then (S + Γ)/S is a
solvable ideal of L/S and so is trivial, since R/S = Soc(L/S), by Theorem
3.2. It follows that Γ ⊆ S , whence Γ ⊆ J . �
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Theorem 3.5 Let L be a solvable Lie algebra, and let C/R = C̄ be the
crown associated with a supplemented chief factor of L. Then C̄ is comple-
mented in L̄, and any two complements are conjugate by an automorphism
of the form 1 + ad a for some a ∈ C̄.

Proof. For simplicity we will assume that R has been factored out and
write the crown simply as C. Then C = AsocL and φ(L) = 0, so L = C+̇U
for some subalgebra U of L, by [5, Theorem 7.3].

Let AsocL = A1 ⊕ . . . ⊕ An in L, where Ai is a minimal ideal of L
for i = 1, . . . , n. Then AsocL = N , where N is the nilradical of L, by [5,
Theorem 7.4], and CL(N) = N . Now Ai

∼=L Aj for each 1 ≤ i, j ≤ n,
and so CL(Ai) = N for i = 1, . . . , n. Let D/N be a minimal ideal of
L/N . Then there exists d ∈ D which does not act nilpotently on N . Let
L = EL(d)+̇L1 be the Fitting decomposition of L relative to ad d. Clearly
L1 ⊆ N , and L1 is an ideal of L. Without loss of generality we can assume
that L1 = A1 ⊕ . . . ⊕ Ar, where r ≤ n. Since [L1, d] = L1 it follows that
[Ai, d] = Ai for each i = 1, . . . , r, whence [N, d] = N , since the A′is are L-
isomorphic to each other. Thus L1 = N and we can assume that U = EL(d).

Let V be another complement of C in L. Then there exists v ∈ V such
that v = d + n for some n ∈ N . Now N = [N, d], so n = [a, d] for some
a ∈ N . Thus v = d+ [a, d] = d(1+ad a). But 1+ad a is an automorphism of
L, and so

U(1 + ad a) = EL(d)(1 + ad a) = EL(v) ⊇ V,

since v corresponds to d in the isomorphism V → L/N → U . But EL(v)
and V are both complements to N in L, and so EL(v) = V , and the result
follows. �

Let
0 = L0 ⊂ L1 ⊂ . . . ⊂ Ln = L

be a chief series for L. We define the set I by i ∈ I if and only if Li/Li−1
is not a Frattini chief factor of L. For each i ∈ I put

Mi = {M is a maximal subalgebra of L : Li−1 ⊆M but Li 6⊆M}.

Then B is a prefrattini subalgebra of L if

B =
⋂
i∈I

Mi for some Mi ∈Mi.

It was shown in [7] that the definition of prefrattini subalgebras does not
depend on the choice of chief series.
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Theorem 3.6 Let L be a solvable Lie algebra. Then the prefrattini subal-
gebras of L are precisely the intersections of the complements of the crowns,
one complement being taken from each crown.

Proof. Let Li/Li−1 be a non-Frattini, and hence supplemented, chief factor
of L, and let its crown C/R = A1/R⊕ . . .⊕Ar/R be complemented by K/R.
Then Mi = A1⊕ . . .⊕Âi⊕ . . .⊕Ar+̇K (where the ‘hat’ is over a term that is
omitted from the sum) is a maximal subalgebra of L such that R ⊆Mi but
Ai 6⊆Mi. It is clear that if we intersect all such subalgebras over each of the
crowns then we get a prefrattini subalgebra of L, and that this intersection
is equal to the intersection of the complements K, one for each crown.

Moreover, if M is a maximal subalgebra with R ⊆M but Ai 6⊆M , then
L = Ai+̇M and M ∼= L/Ai

∼= A1 ⊕ . . . ⊕ Âi ⊕ . . . ⊕ Ar+̇K. It follows that
we get all prefrattini subalgebras this way. �

Theorem 3.7 Let L be a solvable Lie algebra, A/B a supplemented chief
factor of L, C/R the crown associated with A/B and K/R a complement
for C/R. Then K avoids every chief factor that is L-connected to A/B and
covers the rest.

Proof. We have L = C + K, C ∩K = R and C2 ⊆ R ⊂ K. Let E/F be
a supplemented chief factor of L. Then F + [C,E] = F or E. Suppose first
that F + [C,E] = F . Then [C,E] ⊆ F . Note that this case must occur if
E/F is L-connected to A/B, since then C = CL(A/B) = CL(E/F ). But
now F + K ∩ E is an ideal of L and so F + K ∩ E = F or E. The former
implies that K ∩ E ⊆ K ∩ F , whence K ∩ E = K ∩ F and K avoids E/F .

The latter yields that F +K = E +K and K covers E/F . In this case,
if E/F is L-connected to A/B we have R ⊆ F and E = F + K ∩ E. But
K ∩ E ⊆ K ∩ C = R, from which E ⊆ F +R = F , a contradiction. So this
case only occurs when E/F is not L-connected to A/B.

The remaining possibility (which also only occurs when E/F is not L-
connected to A/B) is that F + [C,E] = E. Then [C,E] ⊆ F + [C, [C,E]] ⊆
F + C2 ⊆ F + R ⊆ F +K, giving E ⊆ F +K. Thus E +K = F +K and
K covers E/F . �
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