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1 Introduction

Final states of proton-proton (pp) collisions at the Large Hadron Collider (LHC) [1] often

include jets arising from QCD bremsstrahlung due to the strongly interacting partons in

the initial state and the high centre-of-mass energy of the scattering process that allows for

radiation in a large kinematic phase space. In this paper, an inclusive measurement of jets

in top-antitop (tt̄) final states is presented, which is sensitive to the production mechanism
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of additional jets in these events. The events studied have a high partonic-system centre-

of-mass energy and are complex final states consisting of several coloured partons, with

sensitivity to various hard scales.

The production of additional jets in tt̄ events is sensitive to higher-order perturbative

QCD effects. The uncertainties associated with these processes are a significant source of

uncertainty in precision measurements, such as the measurement of the top-quark mass [2]

or the inclusive tt̄ production cross-section at the LHC [18]. Several theoretical approaches

are available to model tt̄ processes, including NLO QCD calculations, parton-shower models

and methods matching fixed-order QCD with the parton shower. The aim of this paper

is to test these theoretical approaches by making a direct measurement of jet activity in

tt̄ events. Furthermore, tt̄ production with additional jets is a dominant background in

certain Higgs boson production processes and decay modes and to many searches for new

physics phenomena [3, 4].

Tests similar to those presented in this paper have been performed at lower energies,

using measurements of jets associated with colour-singlet vector-boson production at the

LHC [5, 6] and at the Tevatron [7–10]. The CMS collaboration recently measured the

cross-section of additional jets normalised to the inclusive tt̄ production cross-section [11].

The present measurement is complementary to the measurement of tt̄ production with

a veto on additional jet activity [12], which is mostly sensitive to the first perturbative

QCD emission.

In the Standard Model (SM), a top-quark1 decays almost exclusively to a W boson

and a b quark. The W boson decays into a pair of leptons (eνe, µνµ, τντ ) or into a pair

of quark-jets. τ leptons produced by W boson decays can also decay into leptons (eνeντ ,

µνµντ ). Selected events are classified by the decay of one or both of the W bosons into

leptons, as either single-lepton or dilepton channel, respectively.

In this paper, the tt̄ production cross-section is measured differentially in jet multi-

plicity and in jet transverse momentum (pT) in the single-lepton channel, without explicit

separation between jets related to tt̄ decays and additional jets. The jet multiplicity is

measured for several different jet pT thresholds in order to probe the pT dependence of

the hard emission. The jet multiplicity, especially for values greater than four, is closely

related to the number of hard emissions in QCD bremsstrahlung processes.

In addition, the differential cross-section with respect to the jet pT is presented sepa-

rately for the five highest pT jets. These differential cross-sections are particularly sensi-

tive to the modelling of higher-order QCD effects in Monte Carlo (MC) generators [13, 14].

Therefore, a precise measurement can be used to discriminate between different models and

to determine their free parameters. Furthermore, a precise measurement of the leading jet

pT could be used to determine the pT of the tt̄ system above approximately2 130 GeV,

since for large transverse momenta the leading jet pT is correlated with the pT of the tt̄

system as illustrated in figure 1. Therefore, measurements of the leading jet pT provide

complementary information with respect to existing differential production cross-section

measurements of the top-quark [15, 16].

1Charge conjugate states are equally considered unless noted otherwise.
2Units in the paper are reported with c = 1.
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Figure 1. The relationship between the pT of the tt̄ system in the single-lepton channel and the

pT of the highest pT jet in tt̄ events generated with ALPGEN+HERWIG. The pT of the tt̄ system

is taken at parton level and the leading jet is constructed at particle level.

The present analysis uses pp data collected during 2011 corresponding to an integrated

luminosity of 4.59 ± 0.08 fb−1 [17]. The measurements are corrected for all known detec-

tor effects and are presented in the form of differential cross-sections, defined within the

detector acceptance (“fiducial” cross-sections) in order to avoid model-dependent extrap-

olations and to facilitate comparisons with theoretical predictions. The fiducial volume

definition follows previous kinematic definitions of cross-section measurements involving

top quarks [18]. In addition, the objects used to define the fiducial volume at particle level

were reconstructed such that they closely match the reconstructed objects in data.

2 The ATLAS detector

The ATLAS detector [19] covers nearly the entire solid angle around the LHC-beam collision

point. Due to the complexity of the final state in the selected events, the present analysis

relies on all main ATLAS detector subsystems.

The ATLAS reference system is a Cartesian right-handed coordinate system, where

the nominal collision point is at the origin. The anti-clockwise beam direction defines the

positive z-axis, while the positive x-axis is defined as pointing from the collision point to

the centre of the LHC ring and the positive y-axis points upwards. The azimuthal angle φ

is measured around the beam axis, and the polar angle θ is measured with respect to the

z-axis. The pseudorapidity is defined as η = − ln tan(θ/2).

The ATLAS detector consists of an inner tracking detector (ID), comprising a sili-

con pixel detector, a silicon microstrip detector (SCT), and a transition radiation tracker

(TRT). The ID is surrounded by a superconducting solenoid that provides a 2 T magnetic

field. The ID is used for reconstruction of tracks and primary vertices and plays a crucial

role in b-quark jet identification. It is surrounded by high-granularity liquid-argon (LAr)

electromagnetic (EM) sampling calorimeters with lead absorbers. An iron absorber and
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scintillating tile calorimeter provides hadronic energy measurements in the central pseudo-

rapidity range of |η| < 1.7. The end-cap and forward regions are instrumented with LAr

calorimeters for both electromagnetic and hadronic energy measurements up to |η| = 4.9.

The calorimeter system is surrounded by a muon spectrometer (MS) that incorporates a

system of air-core superconducting toroid magnets arranged with an eight-fold azimuthal

coil symmetry around the calorimeters, and a system of three stations of chambers for

triggering and for precise track measurements.

The online event selection relies on a three-level trigger system. A hardware-based

first-level trigger is used to initially reduce the event rate by O(300). The detector readout

is available for two stages of software-based (higher-level) triggers. In the second level,

partial object reconstruction is carried out to improve the selection and reduce the rate

of soft pp interactions recorded. At the last level, the event filter, the full online event

reconstruction is used, which reduced the rate to approximately 300 Hz during the 2011

run period.

3 Data sample and event selection

Data were selected from the full 2011 data-taking period using the pp LHC running pe-

riods during which all ATLAS sub-detectors were fully operational, corresponding to an

integrated luminosity of 4.59± 0.08 fb−1.

During this data-taking period, the peak luminosity delivered by the LHC was high

enough to produce multiple pp collisions from one pp bunch crossing. The LHC bunch

structure and high luminosity also produced pp collisions in immediately adjacent pp bunch

crossings. The average number of pp collisions, over all bunch crossings and all data

analysed, was measured and is referred to as 〈µ〉. At the beginning of the data-taking

period 〈µ〉 was around five, whereas by the end of period it was approximately eighteen.

The effects of particles created in additional collisions are mitigated by the object and

event selections used in this analysis.

3.1 Object reconstruction

Primary vertices were reconstructed from tracks within the ID. The selected primary vertex

was required to have at least five tracks and to be consistent with the beam-collision region

in the x - y plane. If more than one primary vertex candidate was found, then the vertex

with the highest
∑

p2T of associated tracks was chosen to be associated with the hard

scattering process.

Electron candidates were identified [20] as energy deposits (clusters) in the electromag-

netic calorimeters, with a matching reconstructed track in the ID. These electrons were

selected within the pseudorapidity range |η| < 2.47, excluding the barrel/end-cap transi-

tion region of 1.37 < |η| < 1.52. The energy cluster in the calorimeter was required to be

isolated. The isolation requirement was formed by calculating the total transverse energy

within a cone of size ∆R = 0.2 around the electron direction, where ∆R =
√

(∆φ)2 + (∆η)2

and ∆φ and ∆η are the difference of azimuthal angle and pseudorapidity, respectively. This
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calculation was performed after the exclusion of calorimeter cells associated with the elec-

tron cluster. The electron was considered isolated if this energy sum was below 10% of

the electron energy. Similarly, the summed pT of additional tracks within a cone of size

∆R = 0.3 around the electron direction was required to be below 10% of the electron

candidate track pT. The electron was required to have a longitudinal impact parameter

with respect to the selected primary vertex of less than 2 mm. The reconstructed pT of

electrons used in the event selection was required to be greater than 25 GeV, but electrons

with pT > 15 GeV were considered when removing jets that overlap with electrons and

when applying a veto on events with additional leptons.

Muon candidates were required to have a reconstructed track in the MS matched with

a track reconstructed in the ID, a reconstructed pT > 25 GeV and |η| < 2.5 [21]. The

selected muons were required to be isolated in the calorimeter and tracking volume. The

calorimeter isolation was constructed from the sum of transverse energy components within

a cone of ∆R = 0.2 around the direction of the muon and was required to be less than

4 GeV. The isolation within the ID was formed using a pT sum of additional tracks within

a cone of ∆R = 0.3 around the direction of the muon and was required to be less than

2.5 GeV. To reduce the effects of additional primary vertices, the muon was required to

have a longitudinal impact parameter with respect to the selected primary vertex of less

than 2 mm. In the same manner as the electron selection, muons with pT as low as 15 GeV

were used to veto events with additional leptons.

Topological clusters [22] were formed from calorimeter energy deposits. These clusters

were used as input to the anti-kt [23] jet algorithm, which was run with a radius parameter

of 0.4. The jets were calibrated using the EM+JES scheme described in [24, 25] to cor-

rect the jet energy, which was calibrated for electromagnetic particles to the response for

hadrons, based on the jet energy and η. In a first step, the calibration procedure corrected

the jet energy relative to jets built from stable particles in MC simulations (see section 7.1

for details). In a second step, differences between data and MC simulation were evaluated

using in situ techniques exploiting the pT balance between high-pT jets and well measured

physics objects. The calibrated jets are required to have pT > 25 GeV and |η| < 2.5. To

suppress jets from additional pp interactions, the sum of the pT of the tracks originating

from the selected primary vertex and associated with the jet was required to be at least

75% of the pT sum of all tracks associated with the jet. This quantity is referred to as the

jet vertex fraction (JVF). Jets with no associated tracks were also accepted.

The identification of the electron, muon and jet objects was performed independently

of other object identifications, using clusters and tracks. In particular, no distinction was

made between clusters arising from electron energy deposits or from hadrons within a jet.

In order to optimise the object identification for the event selection of this analysis and to

avoid double counting of energy deposits, the overlap between these identified objects was

resolved as described below.

In order to remove jets that were reconstructed from energy deposits associated with

prompt electrons, jets were removed from an event if they were within ∆R = 0.2 of an

electron with pT > 15 GeV. To remove residual muons from heavy-flavour decays, muons

that were within ∆R = 0.4 of any jet were removed. To apply a similar constraint on the
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electrons, electrons that were within ∆R = 0.4 of any jet were removed from the events.

For this condition, the only jets considered were those remaining after the removal of jets

associated with electrons as previously described.

The missing transverse momentum azimuthal angle and magnitude (Emiss
T ) were re-

constructed from the vector sum of the transverse momenta of the reconstructed objects

(electrons, muons, jets) as well as the transverse-energy deposited in calorimeter cells not

associated with these objects, within the range |η| < 4.9. The object classification scheme

for the electrons, muons and jets used to calculate Emiss
T was chosen to be the same as the

definitions given above. Calorimeter cells not associated with an object were calibrated at

the electromagnetic (EM) scale before being added to Emiss
T . This calibration scheme is

similar to the one described in [26].

Jets were identified as “b-jets” by detecting b-hadron decays within the jet. These

b-jets were identified using the MV1 algorithm [27], which combines several tagging al-

gorithms into a single neural-network-based discriminant, taking into account jet pT and

η distributions. The selection efficiency is approximately 70% for pT > 20 GeV in sim-

ulated tt̄ events. The rejection factor for jets initiated by light quarks was found to be

approximately 130.

3.2 Event selection

Data used in this measurement were collected by triggering on either a high-pT electron,

based on calorimeter energy deposits, shower shape and track quality constraints; or a high-

pT muon, comprising a reconstructed track in the MS matched with a reconstructed track

in the ID. The pT threshold for the muon trigger was 18 GeV, whereas the electron trigger

threshold was 20 GeV or 22 GeV according to the data-taking period. The reconstructed

lepton object was required to be within ∆R < 0.15 of the lepton reconstructed by the

high-level trigger.

The selected events were required to contain at least one reconstructed primary ver-

tex. To avoid events with bad detector components or reconstruction performance, events

were rejected that contained any jet with pT > 20 GeV that was identified as arising

from calorimeter noise or out-of-time activity with respect to the primary pp collision [24].

Furthermore, events in which an electron and a muon shared the same track were removed.

Events were selected if they contain exactly one reconstructed electron (e) or muon

(µ) and at least three jets with pT > 25 GeV and |η| < 2.5. One of the jets was required

to be b-tagged. In addition, Emiss
T > 30 GeV and a transverse W mass3 mT(W ) > 35 GeV

were required. To reduce the contribution of dilepton tt̄ final states, events with additional

leptons (electrons or muons) with pT > 15 GeV were excluded. Events with jet-jet pairs

with ∆R < 0.5 were excluded to reduce jet pT migrations between particle and recon-

structed jets.

In addition to this event selection, events for the jet pT measurement were required to

have a leading jet with pT > 50 GeV and a 2nd-leading jet pT> 35 GeV. Measurements of

3The variable mT(W ) is defined as
√

2pℓTp
ν
T(1− cos(φℓ

− φν)), where ℓ and ν refer to the charged lepton

(e or µ) and Emiss
T respectively.
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the jet multiplicity were also performed by selecting events with the jet pT threshold raised

from 25 GeV to 40 GeV, 60 GeV and 80 GeV in both channels, where the rest of the event

selection was as described before.

The numbers of selected events are shown in tables 1 and 2 for the electron and muon

channel, respectively.

3.3 Estimation of backgrounds

The dominant background in this measurement is the associated production of W bosons

with jets (including those arising from charm and bottom quarks), followed by single-top-

quark production and multijet production. Smaller backgrounds arise from Z/γ∗+jets and

diboson production (WW , WZ, ZZ).

The normalisation of the W +jets contribution was extracted from a lepton charge

asymmetry measurement from data. The method uses the fact that the production of

W bosons at the LHC is charge asymmetric, and the theoretical prediction of the ratio

rMC ≡ σ(pp→W+)
σ(pp→W−)

has an uncertainty of only a few percent. Most processes other than W

production are either mostly or completely charge symmetric. The number of events in

data with a positively (negatively) charged-lepton was measured and is referred to as D+

(D−). Therefore, NW+ − NW− ≈ D+ − D−, where NW+ (NW−) is the number of W+

(W−) events. The W+jets estimate then comes from:

NW+ +NW− =
rMC + 1

rMC − 1
(D+ −D−) (3.1)

The normalisation was determined in W +jets events before any b-tagging requirement,

separately for the W+3 jet, W+4 jet and W+≥ 5 jet events.

The flavour composition was derived from a W+2 jets measurement from data. The

number of W +2 jet events before and after b-tagging was measured using the charge-

asymmetry technique. The number of W +2 jet events after b-tagging can be expressed

in terms of the number of W +2 jet events before b-tagging, the flavour fractions and

b-tagging probabilities. The flavour fractions were adjusted to ensure that the derived

number ofW+2 jet events after b-tagging matched the data. The overall charge-asymmetry

normalisation was fixed, and a fit procedure was used to extract the normalisation of the

bottom and charm-quark fractions (Wbb̄+jets,Wcc̄+jets, andWc+jets). The heavy-flavour

components were then extrapolated to events with higher jet multiplicities.

In the e + jets channel, either jets or electrons originating from photon conversions

can mimic an isolated electron from a W boson decay and are referred to as the multijet

background. In the µ + jets channel, the multijet background arises mostly from leptonic

decays of heavy-flavour quarks. The shape and normalisation of the multijet background

in the e + jets channel was obtained using a matrix method [28] with looser electron

identification cuts and no isolation requirement. The Emiss
T < 20 GeV region was used as

the control region for this method. The multijet background in the µ + jets channel was

determined using the mean of two matrix method estimates, which differ in their choice

of normalisation region. The first method uses a low-mT(W ) region, whereas the second

method uses a region where the selected muon has a large impact parameter with respect to

– 7 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
0

Reconstructed jet multiplicity

Source Yield 3 4 5 6 7 ≥8

tt̄ 25660 10060 9068 4335 1567 472 158

W+jets 7238 5257 1525 367 70 13 6

Multijet 2150 1409 498 166 58 12 7

Single-top-quark 2935 1904 760 215 45 9 1

Z/γ∗+jets 925 578 239 85 18 5 1

Diboson 180 140 32 6 1 0 0

Expectation 39087 19347 12123 5174 1759 512 172

Data (4.59± 0.08 fb−1) 38318 19471 11791 4964 1544 424 124

Table 1. The numbers of selected data, MC simulation and background events in the electron

channel, for the 25 GeV jet pT threshold. The yield column shows the total number of events passing

the full event selection, which requires three or more selected jets. The POWHEG+PYTHIA MC

simulation sample was used for the tt̄ prediction. The numbers of tt̄, single-top-quark, Z/γ∗+jets

and diboson events were normalised to the integrated luminosity of the data. The other yields were

determined from fits to data distributions.

Reconstructed jet multiplicity

Source Yield 3 4 5 6 7 ≥8

tt̄ 30741 11953 10884 5220 1903 580 200

W+jets 10424 7514 2261 510 104 28 7

Multijet 1063 737 227 68 23 7 3

Single-top-quark 3498 2274 901 252 57 11 3

Z/γ∗+jets 546 368 126 40 10 1 0

Diboson 211 166 38 7 1 0 0

Expectation 46482 23013 14436 6096 2098 627 213

Data (4.59± 0.08 fb−1) 46192 23447 14170 5851 1977 568 179

Table 2. The numbers of selected data, MC simulation and background events in the muon channel,

for the 25 GeV jet pT threshold. The yield column shows the total number of events passing the

full event selection, which requires three or more selected jets. The POWHEG+PYTHIA MC

simulation sample was used for the tt̄ prediction. The numbers of tt̄, single-top-quark, Z/γ∗+jets

and diboson events were normalised to the integrated luminosity of the data. The other yields were

determined from fits to data distributions.

the primary vertex. The low-mT(W ) region includes events that do not contain W bosons,

whereas the high impact parameter region includes muons from heavy-flavour decays.

Contributions from single-top-quark, Z/γ∗+jets, and diboson production were evalu-

ated using the corresponding MC samples and theoretical cross-sections for these processes.

4 Monte Carlo simulation

MC simulations were used to correct the measurement for detector effects and to estimate

some of the background contributions.
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To derive corrections for detector effects, a good description of the tt̄ signal process

is important. Signal predictions rely on matrix-element calculations for short distance

physics processes and on parton shower, fragmentation and proton remnant modelling for

long-range effects. The potential bias of the final result due to a particular model chosen was

estimated by generating MC samples using alternative models for each of these components.

In modern MC generators, there are mainly two different approaches used to provide

predictions of tt̄ final states and their multijet topology. The first approach focuses on a

precise prediction using merged leading-order (LO) matrix elements for a given number

of hard partons supplemented with parton-shower emissions in the soft-collinear region.

The second approach focuses on the most accurate prediction of the inclusive rates of tt̄

production by calculating the matrix elements at next-to-leading order (NLO). Programs

implementing this approach also provide an accurate description at leading order of the

tt̄+1 jet final state, and leading-logarithmic accuracy for additional jet production. In this

analysis, the first approach was used in the form of the ALPGEN [29] MC generator. This

sample was compared with the alternative approach implemented in the MC@NLO [30]

and POWHEG [31] MC generators. In both cases, the matrix-element calculation was

matched to separate programs for the simulation of the long-range effects.

The ALPGEN sample was generated using version 2.13, with the CTEQ6L1 parton

distribution functions (PDFs) and the associated value of the strong coupling constant

αS(mZ) = 0.129 [32]. The factorisation and renormalisation scales were set to the default

values of the program, i.e. µ2F = µ2R =
∑

(

m2 + p2T
)

, where the sum was calculated over

top, heavy quarks and light quarks with mass m and transverse momentum pT. ALPGEN

was used to calculate LO matrix elements for up to five hard partons. Parton showering

and fragmentation were performed using HERWIG [33] v6.520 together with JIMMY [34]

for the multiple-parton interaction model using the AUET1 tune [35]. The MLM parton-jet

matching scheme [29] was applied,4 to avoid double counting configurations generated by

both the parton shower and the matrix-element calculation. This resulted in samples with

up to four hard partons exclusively and five hard partons inclusively, where the inclusive

five parton sample includes jets produced by the parton shower. The processes tt̄+ bb̄ and

tt̄+cc̄ were generated separately using the same programs and algorithm as described above.

The exclusive heavy-flavour samples were combined with the tt̄ inclusive samples, after the

removal of overlapping events. The overlapping events were rejected if the pT of the b or

c-quarks was above 25 GeV and they were matched to jets within a cone of ∆R = 0.4.

This sample is referred to as “ALPGEN+HERWIG” in the following discussion.

Further tt̄ samples were generated following the alternative approach with NLO per-

turbative QCD calculations. A MC@NLO sample was produced with the CT10 [36] PDF

set and using the default values of the program for renormalisation and factorisation scales,

i.e. µ2F = µ2R = (p2T,t + p2T,̄t)/2 +m2
t , where pT,t (pT,̄t) refers to the pT of the top (antitop)

quark and mt is the top mass. MC@NLO was also interfaced to HERWIG/JIMMY with

the AUET1 tune. POWHEG (POWHEG-hvq, patch4) samples were produced with the

CT10 PDF set, using the default setting of the hard-process scales µ2F = µ2R = p2T +m2
t ,

4using matching scale ETCLUS of 20 GeV and a matching radius of 0.7.
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where pT corresponds to the parton-level top-quark transverse momentum. POWHEG was

used to produce the matrix-element calculation and top-quark decay. To assess the effect

of different fragmentation, multi-parton interaction and parton-shower models, the same

POWHEG sample was matched to two different multi-purpose generators. One sample

was produced by matching with PYTHIA6 [37], using the “C” variant of the Perugia

2011 tune family [38] that uses the CTEQ6L1 PDF. Another sample was produced by

matching to HERWIG+JIMMY with the AUET1 tune. These samples are referred to

as “POWHEG+PYTHIA” and “POWHEG+HERWIG”, respectively, in the follow-

ing text. The POWHEG+PYTHIA sample was used as the nominal tt̄ sample for the

correction of detector effects.

The uncertainty on the predictions due to modelling of initial-state radiation (ISR)

and final-state radiation (FSR) was estimated using ALPGEN v2.14 with the PYTHIA6

parton-shower, the CTEQ5L PDF [39], and the Perugia 2011 family of tunes. For these

variations, the same αS(mZ) value was used for the calculation of the matrix elements and

for the parton shower as suggested in ref. [40]. For the ALPGEN+PYTHIA central sam-

ple, the Perugia 2011 central tune which employs λQCD = 0.26 was used. Uncertainties due

to ISR/FSR-modelling choices were estimated by varying the ALPGEN renormalisation

scale associated with αS up and down at each local vertex in the matrix element relative to

the original scale. A factor of 2.0 (0.5) was applied, resulting in lower (higher) αS values,

respectively. The effective αS value in the parton shower was varied by the same factors

as the matrix-element calculation and the corresponding PYTHIA6 tunes “Perugia 2011

radHi” and “Perugia 2011 radLo” [38] were used. In this paper, these samples are referred

to as “αS down” and “αS up”. These settings were shown to produce variations that are

similar to the uncertainty bands on the distributions of the additional jet-veto variables

f(Q0) and f(Qsum) that are described in ref. [41].

To estimate radiation uncertainties in the POWHEG predictions, the model pa-

rameter hdamp, which effectively regulates the high-pT radiation in POWHEG, was

set to 172.5 GeV (value used for mt) following a similar strategy as in ref. [42] while

all other POWHEG samples used the default value hdamp ∼ ∞. This sample was

generated using POWHEG-BOX (revision 2330, version 1.0) and is referred to as

“POWHEG(hdamp)+PYTHIA” in the following discussion.

The effect of colour reconnection was estimated by generating a

POWHEG+PYTHIA6 sample in which no colour reconnection was allowed within

PYTHIA6, using the “noCR” Perugia 2011 tune [38].

The tt̄ cross-section for pp collisions at a centre-of-mass energy of
√
s = 7 TeV was

calculated to be σtt̄ = 177+10
−11 pb for mt = 172.5 GeV. This calculation was carried out at

next-to-next-to-leading order (NNLO) in QCD including resummation of next-to-next-to-

leading logarithmic (NNLL) soft gluon terms [43–47] with Top++2.0 [48]. The PDF and αS

uncertainties were calculated using the PDF4LHC prescription [49] with the MSTW2008

68CL NNLO [50, 51], CT10 NNLO [36, 52] and NNPDF2.3 5f FFN [53] PDF sets, and

added in quadrature to the scale uncertainty. The NNLO+NNLL value is about 3% larger

than the exact NNLO prediction, as implemented in HATHOR 1.5 [54]. All tt̄-MC samples

were generated withmt = 172.5 GeV and were normalised to the NNLO+NNLL theoretical

cross-section.
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For the simulation of the background processes, samples of W and Z bosons with ad-

ditional jets were generated using ALPGEN v2.13, with the CTEQ6L1 PDF, HERWIG

and JIMMY with the AUET1 tune. Separate configurations were used for each partonic

final-state with one to four associated partons. Parton multiplicities of five or more were

generated inclusively. Since this analysis selects events based on identified b-jets, specific

predictions of Wbb̄+jets, Wcc̄+jets, Wc+jets and Zbb̄+jets events are necessary. There-

fore, these processes were generated using LO matrix-element calculations and the overlap

between these samples and the respective inclusive jet-flavour samples was removed us-

ing the same method as previously described for the tt̄ samples. In the case of W+jets,

the normalisation was determined from data as described in section 3.3, whereas the MC

simulation was used to provide the information on the shape of the multiplicity spectrum.

The t-channel single-top-quark sample was generated with theAcerMC generator [55],

whereas MC@NLO was used to generate the Wt and s-channel single-top-quark produc-

tion processes. The single-top-quark samples were each normalised according to a calcu-

lation of the inclusive production cross-section at NLO accuracy complemented with an

approximate NNLO calculation for the t-channel [56], s-channel [57] and Wt-channel [58].

Diboson events (WW , WZ, ZZ) were produced using HERWIG normalised to the cross-

section obtained from a NLO calculation with MCFM [59] using the MSTW2008NLO PDF.

To properly simulate the LHC environment, additional inelastic pp interactions were

generated with PYTHIA6 using the AMBT1 tune and then overlaid on top of the hard-

processes. The MC events were re-weighted such that the predicted 〈µ〉 distribution

matched that of the data run period. The particles from additional interactions were

added before the detector simulation, but were not used within the particle-level definition

described in section 7.1.

The POWHEG+PYTHIA, ALPGEN+HERWIG, MC@NLO+HERWIG and the

central ALPGEN+PYTHIA MC samples were passed through a full Geant4 [60] sim-

ulation of the ATLAS detector [61]. The ISR/FSR variations, colour reconnection and

POWHEG+HERWIG MC samples were passed through a parameterised simulation of

the detector response [61].

5 Systematic uncertainties

This section describes the sources of systematic uncertainties and how they were estimated

for the signal and background yields. The sources of these uncertainties include the ob-

ject reconstruction and identification, the jet energy scale (JES) calibration, the jet energy

resolution (JER), the b-tagging calibration, the multijet-background normalisation, and

MC generator modelling. Uncertainties relating to MC simulation modelling were evalu-

ated for both signal and background MC samples. The resulting uncertainty on the final

measurement is reported separately for each source in appendix C.

Jet energy scale. The JES uncertainty was evaluated using 21 effective nuisance pa-

rameters, which describe the pT and η dependence of the JES uncertainty. The effective

nuisance parameters were derived for inclusive jet samples. They include eleven parame-

ters for the effective uncertainties of in situ measurements covering detector and modelling
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related uncertainties and uncertainties where the two components can not be separated

(”mixed”). In addition, there are statistical uncertainties, two parameters to model 〈µ〉
and NPV dependence, one parameter for close-by jets, i.e. jet-jet pairs with a separa-

tion of ∆R < 1.0, one parameter for the calibration of b-jets and two parameters for

η-intercalibration, i.e. the uncertainty of the η dependence of the calibration. Uncertain-

ties due to different detector-simulation configurations used in the analysis and in the

calibration were added as one additional uncertainty parameter (”relative non-closure”).

Since details of the fragmentation differ between jets initiated by quarks and those

initiated by gluons [24], the respective jet energy scale also differs slightly. However, the in

situ techniques mainly rely on processes that produce jets initiated by quarks. Therefore,

an additional uncertainty was assigned to cover potential differences resulting from the

different quark/gluon flavour composition of the analysed sample (”flavour composition”)

and the jet response dependence on the jet flavour (”flavour response”). The quark and

gluon fractions in the analysed sample were evaluated as a function of jet multiplicity, jet

pT and jet η, using the ALPGEN+HERWIG and MC@NLO tt̄ signal samples. Depending

on the jet multiplicity, gluon fractions between 10% and 60% were predicted within the

acceptance of this measurement. The predictions of the two MC models were found to

agree within 10% over the majority of the acceptance range. The uncertainty on the

predicted gluon-fractions was taken as the difference between the two MC models, where

10% was assigned as a conservative estimate when the difference between the two models

was less than this. For events with more than seven jets, the uncertainty estimate for

seven jet events was used. The gluon-fraction and its associated uncertainty, together

with the quark and gluon-response uncertainties, were used to determine the resulting JES

uncertainty, which was found to vary in the range 1.5–8% depending on jet pT, η, and

the jet multiplicity in the event. An additional pT-dependent uncertainty of up to 2.5%

was applied to jets matched to b-hadrons, to account for neutrino and muon energy losses.

This was added in quadrature to the inclusive JES uncertainty resulting in a total JES

uncertainty in the analysed sample between about 5% at low pT and about 1% at high pT
in the central region.

Jet energy resolution. The measurements of the jet energy resolution from MC simula-

tion and data were found to agree within their uncertainties [25]. The resulting uncertain-

ties on the measurement were evaluated by additionally smearing the jet energies by the

systematic uncertainties on the jet energy measurement. This resulted in an uncertainty

of 2–20%, depending on pT and η.

Jet reconstruction efficiency. The jet reconstruction efficiency was derived from MC

simulation and the uncertainty on the efficiency was estimated in situ with jets recon-

structed from tracks in the ID that were matched to a jet reconstructed using calorimeter

information. Data and MC simulation were found to agree within the uncertainties of

the in situ method. For pT < 30 GeV the in situ measurement suffers from relatively

large uncertainties. Therefore a 2% uncertainty corresponding to the shift between data

and the MC simulation [25] was assigned in this range. The uncertainty at higher jet pT
is negligible.
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b-tagging. The efficiency of the b-tagging algorithm was evaluated using MC samples.

The differences between the efficiency in data and MC simulation were evaluated using

jets containing a muon within a multijet sample. The pT of the muon relative to the jet

axis, prelT , is in general harder for muons originating from b-hadron decays than from muons

in c-jets and light-flavour jets. The b-tagging efficiency was extracted using template fits

to the prelT spectrum. The difference between data and MC simulation efficiencies was

expressed as a function of pT and η and was applied to the MC simulation events used

in this analysis. The uncertainties on this difference were derived from the statistical and

systematic uncertainties on the efficiency measurements and ranges from 5% at low pT to

19% at pT > 140GeV [62].

The mis-tag scale factors for light-flavour jets were measured using a vertex-mass

method [63]. The vertex-mass was defined as the invariant mass of the charged particles

associated with the secondary vertex. Templates were derived from simulations and fitted

to the vertex-mass distribution obtained from data to determine the number of light and

c-jets. The fits were performed on samples before and after applying b-tagging and the

ratio of the results is taken as the mistag rate which is between 1 and 3%. A pT dependent

scale factor corrects for the different mistag rate in data and simulation. The uncertainty

on the scale factor ranges from 18% in the intermediate pT range for central jets to as much

as 49% in the high pT region for forward jets. This uncertainty is caused dominantly by

the efficiency to reconstruct the secondary vertex.

Jet vertex fraction. The efficiency to separate hard scatter jets from pile-up jets with

the JVF > 0.75 requirement was measured using Z → ℓ+ℓ− events, with exactly one

additional jet after the suppression of jets from additional primary interactions. This

suppression was achieved by selecting events where the jet was produced with pT balancing

the Z boson and an azimuthal opening angle close to π. The efficiency to identify a hard

scatter jet is about 90% for jets with pT of 25GeV and close to 100% for jets with pT >

100GeV. Up to 10% of the pile-up jets are misidentified as hard scatter jets in particular

at low pT . The ratio between the efficiencies derived in data and in MC is used as a

scale factor. The systematic uncertainty on the scale factor was estimated by varying the

selection parameters used to define the Z+1 jet region and by applying the results from

Z → ℓ+ℓ− events on events with tt̄-decay topology. The uncertainty is about 1% for the

efficiency to select hard scatter jets and about 10% for the mis-identification of pile-up jets.

Leptons. The mis-modelling of lepton trigger, reconstruction and selection efficiencies

in the simulation were corrected for by calculating data/MC correction factors derived

from measurements of these efficiencies in data. Z boson and W boson decays (Z → µµ,

Z → ee, and W → eν) were used to obtain data/MC correction factors as functions of the

lepton kinematic distributions. The uncertainties were evaluated by varying each of the

lepton trigger, reconstruction and selection efficiencies within their associated one standard

deviation errors, where each contribution was evaluated separately. The uncertainty is

within 2.5-3.2%.

The energy scale and resolution of reconstructed electromagnetic energy clusters were

calibrated from resonance decays such as Z → ee, J/ψ → ee, or from studies of the en-
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ergy/momentum ratio using isolated electrons from W → eν. Uncertainties on the scale

and resolution were independently evaluated by fluctuating the scale or resolution correc-

tion applied to the MC events by the associated calibration factor uncertainty. In a similar

manner, the scale and resolution of the reconstructed pT of muons were calibrated from

Z → µµ and J/ψ → µµ decays. The uncertainties on these calibrations were independently

evaluated by smearing the correction applied to MC events by the associated calibration

factor uncertainty.

The systematic uncertainties related to the lepton energy scale and resolution are

within 1–1.5%.

Missing transverse momentum. Energy scale and pT resolution corrections for e, µ

and jets were included in the Emiss
T calculation. For the calorimeter cells not associated

with a reconstructed electron or jet with pT greater than 20 GeV, an uncertainty dependent

on the total transverse energy in the calorimeter (ΣET) was assigned to their energy. This

is approximately 13% and is referred to as the “Cell Out uncertainty”. The uncertainty

on Emiss
T due to additional pp interactions is about 10% and was estimated by varying the

contributions from the cells associated with soft jets (with 7 < pT < 20 GeV) and Cell

Out components of Emiss
T within their calibration uncertainty. This procedure was chosen

following studies of the dependence of energy resolution on the number of additional inter-

actions.

PDF uncertainties. The uncertainty from using the selected PDF for MC event produc-

tion was evaluated by re-weighting the tt̄ ALPGEN+HERWIG MC sample generated with

the CTEQ6L1 PDF to the nominal and eigenvector sets of the MSTW2008lo68cl PDF [50].

The CTEQ6L1 PDF does not provide associated eigenvector sets that can be used for this

purpose. Therefore, the systematic uncertainty was determined from the differences ob-

tained using the MSTW2008lo68cl PDF eigenvector sets, as well as the difference between

the results based on the best-fit PDF sets of MSTW2008lo68cl and CTEQ6L1. The total

PDF uncertainty was then evaluated by summing each of these orthogonal components

in quadrature.

Generator model dependencies. Systematic uncertainties associated with generator

modelling were evaluated from the bias observed after corrections for all known detector

effects, where the nominal POWHEG+PYTHIA correction factors were used to correct

the reconstructed spectra of the different MC samples to particle-level distributions.

The uncertainty due to fragmentation modelling was estimated by comparing ALP-

GEN+PYTHIA and ALPGEN+HERWIG tt̄ samples. The difference between the biases

on the fully corrected spectra was taken as the uncertainty on the final spectra. The

ISR/FSR-modelling uncertainty was evaluated using the ALPGEN+PYTHIA tt̄ sample

and the corresponding ISR/FSR MC samples αS-up and αS-down. The maximum differ-

ence between the bias for the fully corrected spectra of ALPGEN+PYTHIA and the bias

for the ISR/FSR samples was taken as the uncertainty.

The difference between fixed-order matrix-element calculations and associated match-

ing schemes (“MC generator”) was estimated by comparing the POWHEG+PYTHIA and
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ALPGEN+PYTHIA tt̄ samples. This combination was chosen in preference to a combi-

nation with MC@NLO+HERWIG, since MC@NLO+HERWIG was found not to describe

the reconstructed jet multiplicity observed in data for events with ≥ 6 jets.

W + jets background modelling. The reconstruction, charge-misidentification rate,

backgrounds, MC generator uncertainties and PDF eigenvector sets were all varied to

provide uncertainties on the W+jets normalisation scale factors derived from the charge-

asymmetry technique. In total, these uncertainties were found to vary from 7% in 3-jet

events up to 15% in ≥ 5-jet events. The uncertainty on each of the heavy-flavour fractions

was determined by reconstruction, background and MC generator variations within their

uncertainties and an additional uncertainty of 25% for scaling from the 2-jet bin to any

higher jet multiplicity. The additional 25% uncertainty was chosen to cover the variations of

different MC predictions. The uncertainty on the modelling of the kinematic distributions

of the W+jets MC samples was estimated by varying the factorisation and renormalisation

scales and the generator cuts in ALPGEN.5

Multijet background modelling. The shape uncertainty on the multijet background

in the electron channel was estimated by varying the maximum Emiss
T requirement for the

background selection region between 15 and 25 GeV. The shape uncertainty in the muon

channel was taken from the difference between the mean and individual shapes of the two

different matrix methods. A 20% normalisation uncertainty was derived for the muon

channel from the comparison of the two background selection regions. For the electron

channel an uncertainty of 50% was chosen to cover the difference between MC predictions

and data in the relevant control distributions.

Other theoretical uncertainties. The theoretical uncertainty on the single-top-quark

cross-section was taken from the approximate NNLO cross-section uncertainties to be 4%

for the t-channel, 4% for the s-channel and 8% for the Wt-channel. The theoretical uncer-

tainty on the diboson cross-section was estimated to be 5% by varying PDFs and comparing

NLO calculations of MCFM [59] and MC@NLO. For Z/γ∗+jets a normalisation uncertainty

of 4% was used for samples with no additional jet and 24% for each additional jet was added

in quadrature to cover the model uncertainties of this prediction.

Luminosity. The integrated luminosity was measured from interaction rates in sym-

metric forward and backward facing detectors that were calibrated using van der Meer

scans [17]. The systematic uncertainty on this measurement was estimated to be 1.8%.

The integrated luminosity of the data and its uncertainty were used to normalise all MC

simulation signal and background samples, with the exception of the W+jets and multijet-

background estimates that were extracted from fits to the data.

6 Reconstructed yields and distributions

The predicted and observed reconstructed jet multiplicity yields for the jet pT threshold

of 25 GeV are presented in figure 2. The uncertainty bands shown correspond to the

5using the ALPGEN parameters iqopt3 and ptjmin.
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Figure 2. The reconstructed jet multiplicities for the jet pT threshold of 25 GeV, in the (a)

electron (e + jets) and (b) muon (µ + jets) channel. The data are compared to the sum of the tt̄

POWHEG+PYTHIA MC signal prediction and the background models. The shaded bands show

the total systematic and statistical uncertainties on the combined signal and background estimate.

The errors bar on the black points and the hatched area in the ratio, show the statistical uncertainty

on the data measurements.

combination of the uncertainty sources listed in section 5. The jet multiplicity distributions

with jet pT thresholds of 40, 60 and 80 GeV are shown in appendix A. The comparison

of predicted and observed jet pT spectra for the leading and 5th jet is shown in figure 3

for events with three or more selected jets. The bin sizes of the jet pT spectra correspond

to approximately one standard deviation of the jet energy resolution at low jet pT. At

high jet pT, the highest-pT bin is larger to limit the effect of statistical fluctuations. In

a similar manner, the inclusive bin of the jet multiplicity spectra limits the effects of

statistical fluctuations. The predictions from the POWHEG+PYTHIA tt̄ simulation and

background estimates agree with the observed jet multiplicity and jet pT spectra within

the total uncertainty on the prediction and the statistical uncertainties on the observed

data. The jet pT spectra of the 2nd, 3rd and 4th leading jet are shown in appendix A.

7 Corrections for detector effects and channel combinations

Each reconstructed spectrum was corrected to the corresponding spectrum at particle level,

within the selected kinematic range, by accounting for detector efficiencies and resolution

effects. To minimise the corrections of the measured data to particle level, the particles and

particle jets were defined in a similar manner as the observable experimental objects and

in a kinematic phase-space close to the experimental selection, as described in section 7.1.
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Figure 3. The reconstructed jet pT for the electron (e+ jets) channel (a) leading and (b) fifth jet

and muon channel (µ+jets) (c) leading and (d) fifth jet. The data are compared to the sum of the tt̄

POWHEG+PYTHIA MC signal prediction and the background models. The shaded bands show

the total systematic and statistical uncertainties on the combined signal and background estimate.

The error bars on the black points and the hatched area in the ratio, show the statistical uncertainty

on the data measurements.
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The details of the correction procedure are described in section 7.2. The propagation of

measurement uncertainties through the correction procedure and additional uncertainties

from the correction terms are discussed in section 7.3. Finally, the combination of the

results of the electron and muon channels is described in section 7.4.

7.1 Definition of the fiducial cross-section measurement

The data were corrected by comparing to leptons and jets from MC generators that were

defined using particles with a mean lifetime greater than 0.3×10−10 s, directly produced in

pp interactions or from subsequent decays of particles with a shorter lifetime. To select the

leptons from W boson decay, all leptons (e, µ, νe, νµ, ντ ) for the cross-section definition

were required not to be hadron decay products. Electron and muon four-vectors were

calculated after the addition of photon four-vectors within a cone of ∆R = 0.1 around

their original directions. The Emiss
T was calculated from the four-vector sum of neutrinos

fromW boson decays. Jets were defined using the anti-kt algorithm with a radius parameter

of 0.4. All particles were considered for jet clustering, except for leptons as defined above

(i.e. neutrinos from hadron decays are included in jets) and any photons associated with

the selected electrons or muons. Jets initiated by b-quarks were identified as such i.e.

“b-tagged” if one or more b-hadrons was clustered within the given jet.

The cross-section was defined using events with exactly one electron or muon and at

least three jets, each with pT > 25 GeV and |η| < 2.5. One of the jets was required to be

b-tagged. In addition, Emiss
T > 30 GeV and mT(W ) > 35 GeV were required.

To reduce the contribution from dilepton tt̄ final states, events with additional leptons

(electrons or muons) with pT > 15 GeV were excluded. Following the reconstructed object

selection, events with jet-electron pairs or jet-muon pairs with ∆R < 0.4 or jet-jet pairs

with ∆R < 0.5 were excluded.

The differential production cross-section in jet pT was defined using the basic selection

with three or more jets with pT > 25 GeV and the additional requirement of pT> 50 GeV

and pT> 35 GeV on the leading and 2nd-leading jet, respectively. This additional selection

was applied to reduce uncertainties that can arise due to a different ordering of the mea-

sured jets with respect to the reference jets used in the correction procedure discussed in

section 7.2. The two phase-space definitions are summarised in tables 3 and 4.

Additional cross-sections as a function of jet multiplicity were defined by increasing

the jet pT thresholds from 25 GeV to 40 GeV, 60 GeV and 80 GeV in both channels, where

the rest of the fiducial-volume definition is as described before.

7.2 Correction procedure

The reconstructed jet multiplicity and momentum spectra were corrected to particle-level

spectra, within the selected kinematic range defined in tables 3 and 4. The kinematic

range of the measurement was chosen to be the same for particle-level and reconstruction-

level objects. However, due to limited efficiencies and detector resolutions, differences

between reconstructed and particle-level distributions exist and were corrected for. Jet

related resolutions and efficiencies that potentially lead to migration effects and bin-to-bin

correlations were taken into account within an iterative Bayesian unfolding [64].
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Emiss
T > 30 GeV & mT(W ) > 35 GeV

One or more b-jets

Three or more jets with pT >25 GeV & |η| < 2.5

e (µ) with pT > 25 GeV & |η| < 2.5

No additional e (µ) with pT > 15 GeV & |η| < 2.5

No µ (e) with pT > 15 GeV & |η| < 2.5

No jet-jet pair with ∆R < 0.5

No jet-electron or jet-muon pair with ∆R < 0.4

Table 3. Fiducial-volume definition for the electron (muon) channel of the tt̄+jets cross-section

measurement with the jet pT threshold of 25 GeV. These conditions were applied on reconstruction-

level and particle-level objects, with the exception of the electron where a veto on the η-region

corresponding to the barrel-endcap transition region was applied on the reconstruction level (as

described in section 3.1), but not included in the fiducial-volume definition. The jet pT threshold

in the jet multiplicity distributions was increased to 40, 60 and 80 GeV, for the corresponding

cross-section measurements.

Leading jet with pT > 50 GeV & |η| < 2.5

2nd leading jet with pT > 35 GeV & |η| < 2.5

Table 4. Additional fiducial-volume requirements implemented for the tt̄ cross-section with respect

to the jet pT. These requirements were made in addition to those given in table 3 and were applied

to the electron and the muon channel.

The reconstructed jet multiplicity measurements were corrected according to

N i
part = f ipart!reco ·

∑

j

Mpart,i
reco,j · f

j
reco!part · f

j
accpt · (N j

reco −N j
bgnd) (7.1)

where N i
part is the total number of fully corrected events, i indicates the particle-jet multi-

plicity and f ipart!reco is an efficiency factor to correct for events that fulfil the jet multiplicity

requirement at particle-level but not at reconstruction level.

N j
reco is the total number of reconstructed events in data, N j

bgnd is the background

contribution discussed in section 3.3 and j indicates the reconstructed jet multiplicity. The

factor f jaccpt corrects for all non-jet related efficiencies, such as those stemming from b-

tagging, trigger and lepton-reconstruction efficiencies. It is defined as the ratio of the

number of reconstructed jets, where the denominator includes the complete reconstruction-

level event selection and the numerator is defined with particle-level objects for all terms

other than the jet multiplicity. The reconstructed jet multiplicity of the numerator of f jaccpt
is defined using the same jet-electron overlap removal algorithm as described in section 3.1,

with the exception of the electron object where the particle-level electron from theW boson

decay was used instead.

The factor f jreco!part is a correction for events passing the jet multiplicity requirement at

the reconstruction level, but not at the particle level. Mpart,i
reco,j is a response matrix applied

iteratively as part of Bayesian unfolding. The correction factor f jreco!part and the matrix

Mpart,i
reco,j are defined for the reconstructed jet multiplicity after the correction for all non-jet
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acceptance effects. They were calculated using the reconstructed jet multiplicity, within

the particle-level acceptance as defined in table 3.

The corrected spectra were found to converge after four iterations of the Bayesian

unfolding algorithm. The resulting jet multiplicity for all events that passed particle-level

lepton and b-tagging requirements was used for one axis ofMpart,i
reco,j , and the f jaccpt numerator.

The f ipart!reco factor was derived from the tt̄ MC sample, in a similar fashion as f jreco!part.

The correction factors are shown as a function of jet multiplicity (for pT > 25GeV) in

figure 4. In the electron (muon) channel, f jaccpt is around 1.9 (1.6) and rises with increasing

jet multiplicity by about 40% (20%) in the eight-jet inclusive bin. Higher values of f jaccpt in

the electron channel arise from the electron identification efficiency being lower than that

of the muon identification. The electron channel f jaccpt also includes an interpolation across

the η regions of the calorimeter barrel-endcap transition. These η regions were excluded in

the reconstructed electron selection, but not from the definition of the fiducial cross-section.

The factors f jaccpt for the pT thresholds of 40–80 GeV are significantly less dependent on

the number of jets, as shown in appendix B.

All other correction factors are approximately the same for the electron and muon

channel and close to unity for jet multiplicities larger than four. Events with three or four

jets are affected by migrations into or out of the fiducial volume, which is visible in the

distributions of f jreco!part and f
i
part!reco.

The transverse momentum distribution of each of the pT-ordered jets was corrected

in a similar manner as the jet multiplicity measurements. Jet pT migrations were sepa-

rated into migrations between jet pT-ordering and migrations for the same pT-ordering.

Reconstructed jets were matched with jets of stable particles within ∆R < 0.35. Then

a bin-by-bin correction (f jmisassign) was defined as the ratio of the number of events with

matching pT-ordering over all matched jets. The pT distribution for each jet was then

corrected according to

N i
part = f ipart!reco ·

∑

j

Mpart,i
reco,j · f

j
misassign · f

j
reco!part · f

j
accpt · (N j

reco −N j
bgnd) (7.2)

where the correction terms Mpart,i
reco,j , f

j
misassign, f

j
reco!part, f

j
accpt and N

j
bgnd are functions of the

reconstructed jet pT, f
i
part!reco and Mpart,i

reco,j are functions of the particle-jet pT, and j (i)

indicates the bin of reconstructed (particle) jet pT distribution. Correction factors were

derived and applied individually to the pT distributions of the leading, 2nd, 3rd and 4th

jets. As demonstrated in figure 5, for jet pT above 100 GeV no correction for missing

jets on particle or reconstruction level is needed. Softer jets are more likely to fail the

reconstruction-level requirements and hence the larger associated correction factor of up

to 1.5. However, this is compensated by a factor up to 0.7 for soft reconstructed jets

that do not have a matching jet at particle level. The acceptance factor (f jaccpt) is almost

independent of jet pT; only at low pT can a slight rise be observed as pT decreases. The

factor f jmisassign rises with jet number and with pT, which follows from the number of

jets that can potentially be wrongly assigned and the possible pT difference between the

misassigned and the correct matching jet. The f jmisassign correction is very close to unity

for the leading jet and within 10% for the 2nd jet.
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Figure 4. Global correction factors for the acceptance (faccpt) and particle-level and reconstruction-

level inefficiencies (fpart!reco, freco!part) to correct the jet multiplicity distribution with pT > 25 GeV

to particle level (a) in the electron and (b) in the muon channel as described in the text and in

eq. (7.1). The symbol njet refers to the number of particle-level jets for fpart!reco and to the number

of reconstructed jets in case of freco!part and faccpt. The distributions are shown with statistical

uncertainties only, which are too small to be visible.

7.3 Propagation of uncertainties

This section describes how the uncertainties listed in section 5 were taken into account in

the unfolding and which additional uncertainties appear due to the unfolding procedure.

The response matrix (Mpart,i
reco,j ) and the correction factors (f ipart!reco, f

j
misassign, f

j
reco!part

and f jaccpt) were determined using the nominal POWHEG+PYTHIA tt̄ MC sample. The

statistical uncertainty on the size of the MC sample used to derive these factors was esti-

mated by smearing the response matrix according to a Poisson distribution and the cor-

rection factors according to a normal distribution. A Poisson probability density function

was chosen for the response matrix, since the matrix contains a number of events in each

bin. The response matrix is also sparsely populated in bins that are far from the diagonal.

Therefore, using a normal distribution is not a valid approximation. For the correction

factor ratios (f ipart!reco, f
j
misassign, f

j
reco!part and f jaccpt), the statistical uncertainty for the

ratio does not correspond to an integer number of events and the number of events in

each bin of the ratio is large. Therefore, a normal probability distribution was used as an

approximation for the ratio of the two Poisson distributions. The statistical uncertainties

were propagated by performing 1000 pseudo-experiments, smearing all terms simultane-

ously. The difference between the mean of all 1000 unfolded distributions and the true

POWHEG+PYTHIA tt̄ distribution was taken to be the systematic deviation or bias,

whereas the standard deviation was taken to be the statistical uncertainty on the response

matrix and the correction factors.

The statistical uncertainty on the reconstructed spectra (N j
reco) was propagated by

performing 1000 pseudo-experiments, following a Poisson distribution corresponding to

the number of events in each bin (j), where the number of events in each bin of the

reconstructed spectra was independently varied.
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Figure 5. Global correction factors for the acceptance (faccpt), particle-level and reconstruction-

level inefficiencies (fpart!reco, freco!part) and misassignment in the pT ordering of the jets (fmisassign),

used to correct the jet pT distributions to the particle level as described in the text and in eq. (7.2).

The muon-channel correction factors are shown as an example. However, the corresponding distri-

butions of the electron channel (not shown) are similar. The distributions are shown with statistical

uncertainties only, which are too small to be visible.

The uncertainty on N j
bgnd was determined at the reconstruction level. The uncertain-

ties related to the W +jets and multijet shapes and normalisations were propagated by

forming background subtracted spectra for each of the background-uncertainty terms. The

resulting difference between the nominal and shifted unfolded distributions was taken as

the uncertainty. The statistical significance of this systematic uncertainty was evaluated by

performing 1000 pseudo-experiments, following a normal distribution with a width match-

ing the statistical uncertainty on the shifted input spectrum. If the root mean square of

the variance of the pseudo-experiments was greater than 10% of the measured value then

the systematic uncertainty estimate from the neighbouring measurement point was used.

The value of 10% was established by studying all the systematic uncertainty variations as

a function of the statistical uncertainty on the unfolded spectra. Above a statistical un-

certainty of 10%, discontinuous predictions were observed for some systematic uncertainty
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variations. This procedure has a minimal effect on the highest jet-multiplicity bins of a

subset of the corrected spectra.

To avoid enlarged uncertainties due to statistical fluctuations of the small background

components, all other background uncertainty terms were combined according to their cor-

relations and then propagated through the corrections by smearing the background sub-

tracted spectra. The systematic uncertainty on the unfolded spectra from the background

was evaluated by performing 1000 pseudo-experiments, following a normal distribution

with a width matching the total uncertainty band. The square root of the variance of

the unfolded spectra of the pseudo-experiments was taken as the uncertainty on the small

background terms.

Systematic uncertainties affecting the tt̄ sample used to unfold the jet multiplicity spec-

trum were each evaluated as a relative bias, i.e. deviations were determined from differences

between the bias of the nominal sample and the systematically varied sample. For each vari-

ation, a pair of particle and reconstruction-level spectra was generated. The bias was evalu-

ated by performing 1000 pseudo-experiments, fluctuating the reconstructed input-spectrum

within its statistical uncertainty. Each pseudo-experiment was unfolded (using the re-

sponse matrix derived from the nominal POWHEG+PYTHIA tt̄ sample) and the bias

was calculated from the difference between the mean corrected distribution and the true

distribution. The systematic uncertainty estimation was taken from the relative bias, the

difference between the bias evaluated with the nominal POWHEG+PYTHIA tt̄ sample

and the bias evaluated using each reconstructed and true systematic uncertainty variation

sample. This applies to all cases except the ALPGEN+PYTHIA αS variations, where the

relative bias between the ALPGEN+PYTHIA central and shifted samples was used. The

uncertainty on the fixed-order matrix-element calculation and matching scheme (the gener-

ator uncertainty) was estimated from the relative bias of unfolding ALPGEN+HERWIG

with respect to the POWHEG+PYTHIA nominal tt̄ sample. The MC@NLO sample

was not used for this uncertainty, since it does not describe reconstructed data well at

higher jet multiplicities. Each of the tt̄ model uncertainties was propagated individually

and symmetrised before being combined.

The effect on the measured multiplicity spectra due to the JES uncertainty rises with

the jet multiplicity from 3% to 40% for the 25 GeV jet pT threshold. This uncertainty

decreases in the higher jet multiplicity bins for the higher jet pT thresholds, to values of

around 15%. For the 25 GeV jet pT threshold, the background uncertainty is 18%(3%) for

events with low (high) jet multiplicities. The effect of the ISR/FSR-modelling uncertainty

varies from 1–6%. The next most significant uncertainties are the matrix-element generator

and b-tagging uncertainties. These are of a similar magnitude as the ISR/FSR uncertainty.

The systematic uncertainty from the MC statistical uncertainties of each of the correction

fractions is within the range 1–11% (25 GeV pT threshold) and becomes significant (40%)

in events with 7(6) jets for the 60 (80) GeV pT thresholds. Statistical uncertainties from

the data are not dominant in any region.

The systematic uncertainties on the jet pT spectra are 10–16% and increase with pT
except for the lowest jet pT bin. There are many sources of uncertainties of approximately

2–7% depending on jet pT. For example, there are uncertainties from the b-jet related
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systematic uncertainties, i.e. uncertainty on the b-jet energy scale (2–5%) and the b-tagging

efficiency (4–7%), the uncertainty on theW+jets background (2–8% each for normalisation

and flavour composition), and the uncertainty components of the jet energy calibration

related to the detector, the close-by jet correction and the intercalibration (each 1–3%).

The statistical error rises with jet pT and with the order of the jet for a given jet pT bin.

The lowest values are 1.5% and the highest are 14%, which is only slightly smaller than

the systematic uncertainty.

7.4 Combination of lepton channels

The particle-level jet multiplicity and jet pT spectra were combined by using the Best Lin-

ear Unbiased Estimate (BLUE) method [65, 66] to build the average cross section of the

two channels. The BLUE method determines the coefficients (weights) to be used in a

linear combination of the input measurements by minimising the total uncertainty of the

combined result. All uncertainties were assumed to be distributed according to a Gaussian

probability density function. The algorithm takes both statistical and systematic uncer-

tainties and their correlations into account. The BLUE combination was cross-checked

against an average performed using the algorithm discussed in [67]. The two methods were

found to agree within their uncertainties. The averaging procedure was also used to probe

the compatibility of the electron and the muon channel, resulting in a χ2/dof ≈ 1.

The systematic uncertainties related to the measurements of the leptons, the multijet-

background normalisation and the overallW+jets background normalisation were treated as

uncorrelated between the two channels, but bin-to-bin correlated within one channel. The

data selected with the two different lepton event selections constitute independent samples,

for which the multijet and overall W+jets normalisation were determined separately. The

MC statistical uncertainties on the correction factors for the two samples were also assumed

to be uncorrelated. All other systematic uncertainties were treated as fully correlated.

The uncertainty of the combined jet multiplicity measurement at low values is domi-

nated by the uncorrelated background sources that are smaller in the muon channel than

in the electron channel, due to the smaller multijet background in the muon channel (see

section 7.3). The uncertainty of the combined result is therefore similar to the uncertainty

of the muon channel result itself. At high multiplicity, the uncertainty is dominated by

correlated sources, such as the uncertainty on the jet energy scale and model uncertainties

of fragmentation and colour reconnection. The combined cross-section measurement has a

3% uncertainty improvement with respect to the muon channel result and approximately

a 20% improvement with respect to the electron channel result.

The uncertainty of the cross-section measurements as a function of jet pT are about

20% smaller in the muon channel measurement than in the electron-channel measurement,

because of the significantly smaller uncertainty on the muon identification and energy

scale compared to electrons. Therefore, the data selected in the muon channel have a

statistically higher impact on the combined results. The uncertainty on the combined jet

pT measurements is 7–14% for the leading jet and up to 17% for the highest pT region of the

other jets. This corresponds to an uncertainty improvement of 15–30%, compared to the
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uncertainty on the electron channel measurement and 4–7% compared to the uncertainty

on the muon-channel measurement.

A summary of systematic uncertainty components, statistical uncertainty and the total

uncertainty after the channel combination is given in appendix C.

8 Results

The result of the combinations of the fully-corrected distributions for jet multiplicity and pT
were converted into fiducial cross-section measurements using σfid (njet) =

N(njet,part)∫
Ldt

and

σfid (pT) =
N(pT,part)∫

Ldt
, where

∫

Ldt is the integrated luminosity, N(njet,part) represents the

fully-corrected distributions for the number of particle jets, N(pT,part) is the fully-corrected

distribution of the number of jets as a function of pT for each pT-ordered distribution, and

σfid (njet) and σ
fid (pT) are the differential fiducial cross-sections.

The fully corrected fiducial tt̄ production cross-section is shown as a function of jet

multiplicity for the jet pT thresholds of 25, 40, 60, and 80 GeV in figures 6 and 7 and

as a function of the jet pT in figures 8–10. Tabulated results with systematic uncer-

tainties are given in appendix C. In these figures, the data are compared to predictions

from POWHEG+PYTHIA, POWHEG(hdamp)+PYTHIA with varied amount of hard

radiation, ALPGEN+HERWIG and ALPGEN+PYTHIA with αS variations, MC@NLO

+HERWIG and the POWHEG+PYTHIA MC models.

The MC@NLO+HERWIG model is seen to be disfavoured by the jet-multiplicity spec-

tra, since it predicts too few events with six or more pT > 25 GeV jets. This disagreement

is visible for the higher jet pT thresholds for events with five or more jets, although with less

significance due to the larger uncertainty in these measurements. The ALPGEN+PYTHIA

αS-down variation is seen to best describe the data. The ALPGEN+HERWIG curve pro-

duces up to 20% more jets than the observed jet multiplicity which is slightly above the

experimental uncertainty band.

The ALPGEN+PYTHIA αS-up variation and the central tune are found to be dis-

favoured by the jet-multiplicity measurements. The ALPGEN+PYTHIA αS-up variation

deviates from data with five or more jets with pT > 25 GeV in the final state, whereas

the ALPGEN+PYTHIA central sample deviates in the case of events with six or more

jets with pT > 25 GeV. Similar disagreements are seen at higher jet pT thresholds. The

MC@NLO+HERWIG predictions underestimate the cross-section for six jets in the tt̄ fi-

nal state. The underestimate of the higher jet multiplicity bins for MC@NLO compared

to ALPGEN is also observed in [13], where the difference is explained by a significantly

smaller contribution of the tt̄+ q(g) hard matrix-element calculation to the multijet final-

states and a higher fraction of additional jets from the parton shower [13].

In contrast to MC@NLO, the prediction from POWHEG+PYTHIA is in reasonable

agreement with the data for all jet pT thresholds and jet multiplicities. POWHEG(hdamp)

+PYTHIA provides the best description of the leading-jet pT and the higher jet multiplici-

ties. However, due to the damping of the hardest emissions, POWHEG(hdamp)+PYTHIA

predicts a softer 5th jet pT spectrum and a correspondingly slightly lower jet multiplicity

spectrum for the 80 GeV threshold.
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As shown in figures 8 to 10, all models predict a similar cross-section as a function

of jet pT below approximately 100GeV for the four leading jets. However, the ISR/FSR

model variations differ significantly for higher jet pT and for the full pT spectrum of the 5th

leading jet. The conclusions drawn from the 5th jet comparisons of data versus predictions

are similar to the ones from the jet multiplicity measurements: the MC@NLO+HERWIG

MC program generates a pT spectrum that is softer than the observed data. The detailed

study of POWHEG+PYTHIA in [14] shows that the probability of the emission at high pT
largely depends on the modelling of the ISR evolution and its upper limit of the virtuality

on the ISR parton. The setting used in this analysis yields slightly higher predictions than

the observed data, which could potentially be improved by tuning the free parameters of

the ISR model. The ALPGEN+PYTHIA αS variations demonstrate the sensitivity of the

predictions to the value of αS used in the calculation of the hard matrix element and the

parton shower. All ISR variations are higher than the data, where αS-down provides the

best description.

9 Conclusions

The fiducial tt̄ production cross-section in pp collisions at 7 TeV is presented as a function

of the jet multiplicity for up to eight jets with jet pT thresholds of 25, 40, 60, and 80 GeV

using 4.6 fb−1 of data. The precision of the measurement is between approximately 10%

and 30%, with the largest uncertainty at highest jet multiplicity. The fiducial tt̄ production

cross-section is shown as a function of the jet pT separately for each jet up to the fifth jet.

The measured jet pT spectra have a precision between approximately 10% and 16%. The

measurement precision is limited in most kinematic regions by systematic uncertainties,

from background modelling (at lower jet multiplicities) to jet energy scale (at higher jet

multiplicities).

The conclusions drawn from the comparisons of data versus theory predictions are

similar at high jet multiplicity, high leading jet pT and in the full spectrum of the 5th

jet. The presented measurements have discriminating power for MC model predictions.

At high jet multiplicities, which are dominated by parton-shower emissions, MC@NLO is

disfavoured by the data. A similar finding applies to the additional jet pT distributions,

which are too soft at high pT. In contrast, predictions from POWHEG showered with

PYTHIA are consistent with the data within the total uncertainties of the measurements.

This agreement can be further improved by limiting the hard radiations in POWHEG

using free model parameters.

The comparison to different αS settings using the ALPGEN+PYTHIA sample indi-

cates that the data prefer a softer parton-shower, i.e. a smaller value of αS. The prediction

of ALPGEN+HERWIG that uses a similar αS in the matrix-element calculation as the

lower αS ALPGEN+PYTHIA configuration also yields a similar good agreement with

the data. For the lowest jet pT threshold the multiplicity distribution of the lower αS

ALPGEN+PYTHIA configuration is closest to the data. However, at high leading jet pT
the model predictions that describe the higher jet multiplicities well are at the upper limit
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Figure 6. The tt̄ cross-section as a function of the jet multiplicity for the average of the elec-

tron and muon channels for the jet pT thresholds (a) 25, (b) 40, (c) 60, and (d) 80 GeV.

The data are shown in comparison to different NLO ME generators POWHEG+PYTHIA,

POWHEG(hdamp)+PYTHIA, MC@NLO+HERWIG and to the best predictions of the LO multi-

leg generators, ALPGEN+PYTHIA (αS down). The data points and their corresponding total

statistical and systematic uncertainties added in quadrature is shown as a shaded band. The MC

predictions are shown with their statistical uncertainty.
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Figure 7. The tt̄ cross-section as a function of the jet multiplicity for the average of the electron

and muon channels for the jet pT thresholds (a) 25, (b) 40, (c) 60, and (d) 80 GeV. The data are

shown in comparison to the ALPGEN+PYTHIA, ALPGEN+PYTHIA ISR/FSR scale variations

and ALPGEN+HERWIG. The data points and their corresponding total statistical and systematic

uncertainties added in quadrature is shown as a shaded band. The MC predictions are shown with

their statistical uncertainty.
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Figure 8. The tt̄ cross-section as a function of the jet pT for the average of the electron and

muon channels for the (a) leading, (b) 2nd, (c) 3rd, and (d) 4th jet. The data are shown in

comparison to different NLO ME generators POWHEG+PYTHIA, POWHEG(hdamp)+PYTHIA,

MC@NLO+HERWIG and to the best predictions of the LO multi-leg generators, ALP-

GEN+PYTHIA (αS down). The data points and their corresponding total statistical and sys-

tematic uncertainties added in quadrature is shown as a shaded band. The MC predictions are

shown with their statistical uncertainty.
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Figure 9. The tt̄ cross-section as a function of the jet pT for the average of the electron and

muon channels for the (a) leading, (b) 2nd, (c) 3rd, and (d) 4th jet. The data are shown in

comparison to the ALPGEN+PYTHIA, ALPGEN+PYTHIA ISR/FSR scale variations and ALP-

GEN+HERWIG. The data points and their corresponding total statistical and systematic uncer-

tainties added in quadrature is shown as a shaded band. The MC predictions are shown with their

statistical uncertainty.
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Figure 10. The tt̄ cross-section as a function of the jet pT for the average of the electron and

muon channels for the 5th jet. The data are shown in comparison to (a) POWHEG+PYTHIA,

POWHEG(hdamp)+PYTHIA, MC@NLO+HERWIG and ALPGEN+PYTHIA (αS down) predic-

tions and in comparison to (b) the ALPGEN+PYTHIA, ALPGEN+PYTHIA ISR/FSR variations

and ALPGEN+HERWIG. The data points and their corresponding total statistical and systematic

uncertainties added in quadrature is shown as a shaded band. The MC predictions are shown with

their statistical uncertainty.

of the uncertainty band or above the data. Only POWHEG with reduced hard radiation

is able to describe both observables consistently with high accuracy.

The present measurements provide important tests of higher-order QCD effects in tt̄

production at the LHC. They provide important inputs for MC developments, in particular

for the recent developments of NLO QCD calculations of tt̄+jets matched to parton-shower

algorithms as discussed in [68]. An improved understanding in this area is highly important

for searches for new particles or new interactions.
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Figure 11. The reconstructed jet multiplicities in the electron (e + jets) channel for the jet

pT thresholds (a) 40, (b) 60, and (c) 80 GeV. The data are compared to the sum of the tt̄

POWHEG+PYTHIA MC signal prediction and the background models. The shaded bands show

the total systematic and statistical uncertainties on the combined signal and background estimate.

The errors bar on the black points and the hatched area in the ratio, show the statistical uncertainty

on the data measurements.
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Figure 12. The reconstructed jet multiplicities in the muon (µ + jets) channel for the jet

pT thresholds (a) 40, (b) 60, and (c) 80GeV. The data are compared to the sum of the tt̄

POWHEG+PYTHIA MC signal prediction and the background models. The shaded bands show

the total systematic and statistical uncertainties on the combined signal and background estimate.

The errors bar on the black points and the hatched area in the ratio, show the statistical uncertainty

on the data measurements.
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Figure 13. The reconstructed jet pT for the 2nd (a), 3th (b) and 4th (c) jets in the electron

(e+ jets) channel. The data are compared to the sum of the tt̄ POWHEG+PYTHIA MC signal

prediction and the background models. The shaded bands show the total systematic and statistical

uncertainties on the combined signal and background estimate. The errors bar on the black points

and the hatched area in the ratio, show the statistical uncertainty on the data measurements.
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Figure 14. The reconstructed jet pT for the 2nd (a), 3th (b) and 4th (c) jets in the muon (µ +

jets) channel. The data are compared to the sum of the tt̄ POWHEG+PYTHIA MC signal

prediction and the background models. The shaded bands show the total systematic and statistical

uncertainties on the combined signal and background estimate. The errors bar on the black points

and the hatched area in the ratio, show the statistical uncertainty on the data measurements.
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Figure 15. Global correction factors used in the unfolding of jets with pT > 40 GeV to particle

level in the electron (a) and muon (b) channel as described in the text and in eq. (7.1). The axis

label njets refers to the number of particle-level jets for fpart!reco and to the number of reconstructed

jets in the case of faccpt and freco!part.
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Figure 16. Global correction factors used in the unfolding of jets with pT > 60 GeV to particle

level in the electron (a) and muon (b) channel as described in the text and in eq. (7.1). The axis

label njets refers to the number of particle-level jets for fpart!reco and to the number of reconstructed

jets in the case of faccpt and freco!part.
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Figure 17. Global correction factors used in the unfolding of jets with pT > 80 GeV to particle

level in the electron (a) and muon (b) channel as described in the text and in eq. (7.1). The axis

label njets refers to the number of particle-level jets for fpart!reco and to the number of reconstructed

jets in the case of faccpt and freco!part.

– 37 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
0

C Tables of results with systematic uncertainties

dσ
dnjets

[%] / njets 3 4 5 6 7 ≥ 8
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Colour reconnection 1.4 0.2 0.2 3.5 4.0 4.4

ℓ resolution & efficiency 0.3 0.3 0.4 0.4 0.3 0.7
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b-quark tagging efficiency 4.3 3.8 3.5 3.6 3.4 3.6
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Jet energy resolution 1.2 0.7 1.2 2.9 4.0 8.8

b-quark jets (JES) 0.1 1.0 1.3 1.4 1.4 1.7

Close by jets (JES) 2.4 1.2 3.9 5.9 9.6 14.5

Effective detector NP set 1 (JES) 0.6 0.5 1.3 1.7 2.3 3.2

Effective detector NP set 2 (JES) 0.0 0.0 0.1 0.2 0.2 0.5

Effective mixed NP set 1 (JES) 0.0 0.0 0.1 0.2 0.2 0.4

Effective mixed NP set 2 (JES) 0.3 0.2 0.5 0.8 0.8 1.7

Effective model NP set 1 (JES) 1.7 1.1 3.2 4.3 5.9 9.4

Effective model NP set 2 (JES) 0.1 0.0 0.1 0.2 0.2 0.5

Effective model NP set 3 (JES) 0.1 0.0 0.1 0.1 0.0 0.3

Effective model NP set 4 (JES) 0.0 0.0 0.1 0.1 0.1 0.4

Effective stat. NP set 1 (JES) 1.0 0.6 1.8 2.4 3.3 5.7

Effective stat. NP set 2 (JES) 0.0 0.0 0.0 0.0 0.0 0.0

Effective stat. NP set 3 (JES) 0.1 0.1 0.2 0.3 0.3 1.0

η-intercalibration (JES) 1.2 0.8 2.2 3.1 4.3 6.4

η-intercalibration statistics (JES) 0.4 0.3 0.7 1.1 1.4 2.3

Flavour composition (JES) 0.6 0.8 1.0 1.8 2.9 2.2

Flavour response (JES) 1.9 0.3 2.0 5.7 10.3 7.2

Additional interactions µ (JES) 0.1 0.3 0.3 0.3 0.4 1.4

Additional interactions NPV (JES) 0.2 0.1 0.2 0.5 0.8 2.4

Relative non-closure (JES) 0.3 0.2 0.6 0.8 0.9 1.6

Single particle high-pT (JES) 0.0 0.0 0.0 0.0 0.0 0.0

Jet vertex fraction efficiency 0.4 0.3 0.3 0.4 0.7 1.5

W+jets normalisation 5.2 1.9 1.6 0.9 0.6 0.9

W+jets heavy/light flavour 9.7 2.5 0.5 0.2 0.6 0.7

Multijet normalisation 1.4 0.4 0.3 0.6 0.5 2.3

Multijet shape 0.2 0.3 0.3 0.3 0.2 0.4

Small backgrounds 6.0 3.0 3.1 1.5 2.3 4.3

Luminosity 1.8 1.8 1.8 1.8 1.8 1.8

Total systematic uncertainty 14.7 7.3 9.0 13.6 20.5 25.3

Statistical uncertainty 1.4 1.3 2.2 4.0 4.4 10.2

Cross-section [pb] 4.34e+00 3.76e+00 1.72e+00 6.11e-01 1.61e-01 4.25e-02

Table 5. Relative uncertainties on the final differential cross-section after the e/µ channel com-

bination, for the jet multiplicity using a 25 GeV jet pT threshold. The uncertainties are shown

as a percentage of the expected tt̄ signal. The energy scale uncertainty (JES) is shown for each

JES nuisance parameter (NP). The effective NP are obtained by combining a total of 54 detector,

detector and model (“mixed”), modelling and statistical NPs. An uncertainty value of 0.0 implies

that the uncertainty is below 0.05.
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J
H
E
P
0
1
(
2
0
1
5
)
0
2
0

dσ
dnjets

[%] / njets 3 4 5 6 ≥ 7

MC statistics 0.5 0.9 2.0 2.2 4.8

PDF 0.2 1.9 1.6 3.1 2.0

MC generator 1.1 0.7 0.2 0.9 5.6

Fragmentation 1.3 0.9 0.2 2.2 2.8

ISR/FSR 2.9 4.1 0.3 6.3 6.0

Colour reconnection 0.6 0.5 1.1 1.5 2.0

ℓ resolution & efficiency 0.3 0.4 0.5 0.5 0.9

Emiss
T cell-out 0.2 0.2 0.4 0.1 0.9

b-quark tagging efficiency 3.9 3.7 3.8 3.1 4.2

Additional interactions 0.1 0.1 0.2 0.1 0.6

Jet reconstruction efficiency 0.0 0.0 0.0 0.0 0.1

Jet energy resolution 0.7 0.1 1.1 3.4 2.8

b-quark jets (JES) 1.4 2.5 2.5 2.9 3.0

Close by jets (JES) 0.7 4.6 7.0 10.8 14.8

Effective detector NP set 1 (JES) 0.4 1.7 2.3 3.1 3.5

Effective detector NP set 2 (JES) 0.1 0.1 0.1 0.3 0.7

Effective mixed NP set 1 (JES) 0.1 0.1 0.1 0.3 0.7

Effective mixed NP set 2 (JES) 0.1 0.3 0.4 0.7 0.7

Effective model NP set 1 (JES) 0.4 1.9 2.7 3.6 4.8

Effective model NP set 2 (JES) 0.1 0.3 0.5 0.7 1.0

Effective model NP set 3 (JES) 0.2 0.5 0.7 1.0 1.2

Effective model NP set 4 (JES) 0.1 0.1 0.2 0.4 0.7

Effective stat. NP set 1 (JES) 0.2 0.7 1.1 1.8 2.1

Effective stat. NP set 2 (JES) 0.1 0.1 0.2 0.3 0.8

Effective stat. NP set 3 (JES) 0.1 0.4 0.6 0.9 1.0

η-intercalibration (JES) 0.5 2.1 3.4 5.1 4.5

η-intercalibration statistics (JES) 0.1 0.5 0.8 1.1 1.4

Flavour composition (JES) 0.2 1.0 1.6 2.0 1.0

Flavour response (JES) 0.5 1.2 3.9 5.5 2.7

Additional interactions µ (JES) 0.1 0.1 0.3 0.3 1.0

Additional interactions NPV (JES) 0.0 0.2 0.5 0.8 0.8

Relative non-closure (JES) 0.1 0.2 0.6 0.7 1.2

Single particle high-pT (JES) 0.0 0.0 0.0 0.0 0.0

Jet vertex fraction efficiency 0.2 0.3 0.5 1.3 1.8

W+jets normalisation 2.4 1.5 1.1 0.4 1.1

W+jets heavy/light flavour 4.0 1.2 0.6 0.4 0.6

Multijet normalisation 0.5 0.4 0.6 0.3 1.0

Multijet shape 0.1 0.3 0.4 0.4 0.9

Small backgrounds 3.2 2.2 2.1 2.2 5.2

Luminosity 1.8 1.8 1.8 1.8 1.8

Total systematic uncertainty 8.2 9.5 11.5 17.6 21.9

Statistical uncertainty 1.2 2.2 4.5 5.1 13.1

Cross-section [pb] 4.31e+00 2.00e+00 5.29e-01 1.26e-01 2.36e-02

Table 6. Relative uncertainties on the final differential cross-section after the e/µ channel com-

bination, for the jet multiplicity using a 40 GeV jet pT threshold. The uncertainties are shown

as a percentage of the expected tt̄ signal. The energy scale uncertainty (JES) is shown for each

JES nuisance parameter (NP). The effective NP are obtained by combining a total of 54 detector,

detector and model (“mixed”), modelling and statistical NPs. An uncertainty value of 0.0 implies

that the uncertainty is below 0.05.

– 39 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
0

dσ
dnjets

[%] / njets 3 4 5 ≥ 6

MC statistics 0.8 1.2 2.8 5.9

PDF 0.6 2.1 0.8 0.8

MC generator 1.1 0.7 0.5 4.4

Fragmentation 1.2 1.1 0.4 4.1

ISR/FSR 4.9 5.3 7.4 14.6

Colour reconnection 0.4 1.4 4.2 3.1

ℓ resolution & efficiency 0.3 0.4 0.3 0.5

Emiss
T cell-out 0.1 0.3 0.3 0.4

b-quark tagging efficiency 4.3 4.3 4.3 5.1

Additional interactions 0.1 0.2 0.3 0.6

Jet reconstruction efficiency 0.0 0.0 0.0 0.2

Jet energy resolution 0.1 0.9 3.0 0.8

b-quark jets (JES) 2.9 3.5 3.0 4.5

Close by jets (JES) 3.0 6.0 7.4 10.5

Effective detector NP set 1 (JES) 1.9 3.1 3.5 5.1

Effective detector NP set 2 (JES) 0.1 0.2 0.3 0.4

Effective mixed NP set 1 (JES) 0.1 0.2 0.4 0.4

Effective mixed NP set 2 (JES) 0.2 0.3 0.4 0.7

Effective model NP set 1 (JES) 1.2 1.8 2.0 4.0

Effective model NP set 2 (JES) 0.5 0.8 1.0 1.5

Effective model NP set 3 (JES) 0.7 1.0 1.3 1.8

Effective model NP set 4 (JES) 0.1 0.2 0.3 0.4

Effective stat. NP set 1 (JES) 0.2 0.4 0.4 1.1

Effective stat. NP set 2 (JES) 0.2 0.2 0.4 0.7

Effective stat. NP set 3 (JES) 0.5 0.7 0.9 1.5

η-intercalibration (JES) 2.0 3.2 4.4 5.9

η-intercalibration statistics (JES) 0.4 0.6 0.7 1.3

Flavour composition (JES) 0.8 1.4 1.8 1.7

Flavour response (JES) 0.4 2.4 3.7 2.7

Additional interactions µ (JES) 0.1 0.3 0.4 1.8

Additional interactions NPV (JES) 0.2 0.3 0.7 1.0

Relative non-closure (JES) 0.3 0.5 0.8 1.1

Single particle high-pT (JES) 0.0 0.0 0.0 0.0

Jet vertex fraction efficiency 0.1 0.7 0.6 1.0

W+jets normalisation 2.3 1.2 0.3 0.3

W+jets heavy/light flavour 3.0 1.3 0.0 0.0

Multijet normalisation 0.4 0.6 0.4 0.1

Multijet shape 0.2 0.3 0.2 0.4

Small backgrounds 3.0 3.4 2.6 4.0

Luminosity 1.8 1.8 1.8 1.8

Total systematic uncertainty 10.0 12.6 15.6 24.0

Statistical uncertainty 1.8 2.8 6.3 14.5

Cross-section [pb] 1.99e+00 4.95e-01 1.04e-01 1.72e-02

Table 7. Relative uncertainties on the final differential cross-section after the e/µ channel com-

bination, for the jet multiplicity using a 60 GeV jet pT threshold. The uncertainties are shown

as a percentage of the expected tt̄ signal. The energy scale uncertainty (JES) is shown for each

JES nuisance parameter (NP). The effective NP are obtained by combining a total of 54 detector,

detector and model (“mixed”), modelling and statistical NPs. An uncertainty value of 0.0 implies

that the uncertainty is below 0.05.
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J
H
E
P
0
1
(
2
0
1
5
)
0
2
0

dσ
dnjets

[%] / njets 3 4 ≥ 5

MC statistics 0.9 2.3 4.7

PDF 0.7 2.4 2.2

MC generator 1.3 1.2 8.7

Fragmentation 2.2 2.7 7.8

ISR/FSR 6.5 7.1 16.3

Colour reconnection 1.0 2.5 3.4

ℓ resolution & efficiency 0.3 0.3 0.8

Emiss
T cell-out 0.1 0.3 0.6

b-quark tagging efficiency 5.2 4.9 6.2

Additional interactions 0.1 0.2 0.4

Jet reconstruction efficiency 0.0 0.0 0.1

Jet energy resolution 1.3 0.6 1.6

b-quark jets (JES) 3.8 4.2 3.8

Close by jets (JES) 2.8 4.3 6.5

Effective detector NP set 1 (JES) 2.5 3.5 4.8

Effective detector NP set 2 (JES) 0.2 0.4 0.4

Effective mixed NP set 1 (JES) 0.2 0.4 0.7

Effective mixed NP set 2 (JES) 0.2 0.5 0.6

Effective model NP set 1 (JES) 1.1 1.8 2.4

Effective model NP set 2 (JES) 0.8 1.4 1.7

Effective model NP set 3 (JES) 0.9 1.5 1.8

Effective model NP set 4 (JES) 0.1 0.2 0.2

Effective stat. NP set 1 (JES) 0.1 0.3 0.3

Effective stat. NP set 2 (JES) 0.2 0.4 0.6

Effective stat. NP set 3 (JES) 0.6 1.1 1.4

η-intercalibration (JES) 2.4 3.1 4.2

η-intercalibration statistics (JES) 0.4 0.8 1.0

Flavour composition (JES) 1.0 1.4 1.6

Flavour response (JES) 1.0 2.1 3.1

Additional interactions µ (JES) 0.3 0.2 1.2

Additional interactions NPV (JES) 0.3 0.4 0.4

Relative non-closure (JES) 0.2 0.6 0.6

Single particle high-pT (JES) 0.0 0.0 0.0

Jet vertex fraction efficiency 0.5 0.6 1.7

W+jets normalisation 2.1 1.0 0.4

W+jets heavy/light flavour 3.4 1.1 0.6

Multijet normalisation 0.6 0.6 0.1

Multijet shape 0.2 0.2 0.7

Small backgrounds 4.4 4.2 4.7

Luminosity 1.8 1.8 1.8

Total systematic uncertainty 12.6 14.1 25.3

Statistical uncertainty 2.2 5.3 12.4

Cross-section [pb] 7.55e-01 1.49e-01 2.46e-02

Table 8. Relative uncertainties on the final differential cross-section after the e/µ channel com-

bination, for the jet multiplicity using a 80 GeV jet pT threshold. The uncertainties are shown

as a percentage of the expected tt̄ signal. The energy scale uncertainty (JES) is shown for each

JES nuisance parameter (NP). The effective NP are obtained by combining a total of 54 detector,

detector and model (“mixed”), modelling and statistical NPs. An uncertainty value of 0.0 implies

that the uncertainty is below 0.05.
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J
H
E
P
0
1
(
2
0
1
5
)
0
2
0

dσ
dpT,jet

[%] / pT,jet [GeV] [50-70] [70-90] [90-120] [120-155] [155-195] [195-235] [235-280] [280-1030]

MC statistics 0.9 0.6 0.6 0.7 1.0 1.6 2.1 2.7

PDF 0.3 0.1 0.1 0.1 0.1 0.3 0.1 0.5

MC generator 1.4 0.5 0.3 1.3 0.5 0.6 1.0 0.8

Fragmentation 0.9 0.8 0.7 1.0 0.7 0.3 0.8 1.2

ISR/FSR 1.2 1.5 3.0 3.6 5.4 2.3 3.4 3.1

Colour reconnection 0.8 0.1 0.1 0.3 0.6 1.1 0.9 1.6

ℓ resolution & efficiency 1.3 1.4 1.4 1.3 1.3 1.3 1.3 1.3

Emiss
T cell-out 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.2

b-quark tagging efficiency 3.7 3.7 4.4 5.6 7.4 7.1 6.2 5.6

Additional interactions 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Jet reconstruction efficiency 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

Jet energy resolution 2.3 1.6 0.6 1.2 1.9 1.3 2.7 1.3

b-quark jets (JES) 4.6 0.7 2.1 3.5 3.8 3.2 3.1 2.0

Close by jets (JES) 2.9 1.7 2.0 1.4 1.4 1.6 1.7 1.5

Effective detector NP set 1 (JES) 3.0 0.6 0.9 1.7 2.2 2.9 3.3 2.9

Effective detector NP set 2 (JES) 0.2 0.0 0.2 0.1 0.1 0.1 0.3 0.1

Effective mixed NP set 1 (JES) 0.2 0.1 0.1 0.1 0.2 0.3 0.8 1.1

Effective mixed NP set 2 (JES) 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2

Effective model NP set 1 (JES) 0.7 0.7 1.2 1.1 0.9 0.7 0.6 0.2

Effective model NP set 2 (JES) 1.1 0.3 0.2 0.4 0.6 0.8 1.1 0.8

Effective model NP set 3 (JES) 1.2 0.3 0.3 0.6 0.8 0.6 0.4 0.1

Effective model NP set 4 (JES) 0.0 0.0 0.1 0.0 0.3 0.4 0.5 0.2

Effective stat. NP set 1 (JES) 0.7 0.6 0.4 0.3 0.1 0.1 0.1 0.2

Effective stat. NP set 2 (JES) 0.3 0.0 0.1 0.1 0.2 0.2 0.4 0.3

Effective stat. NP set 3 (JES) 0.8 0.1 0.2 0.3 0.6 0.6 0.8 0.4

η-intercalibration (JES) 2.4 0.2 1.1 1.4 1.9 2.4 2.5 1.5

η-intercalibration statistics (JES) 0.4 0.1 0.3 0.3 0.4 0.3 0.4 0.2

Flavour composition (JES) 0.7 0.3 0.6 0.7 0.6 0.9 1.1 1.2

Flavour response (JES) 0.5 0.0 0.3 0.4 0.5 0.9 1.0 1.3

Additional interactions µ (JES) 0.4 0.1 0.1 0.1 0.2 0.3 0.5 0.2

Additional interactions NPV (JES) 0.3 0.0 0.2 0.1 0.2 0.4 0.2 0.1

Relative non-closure (JES) 0.2 0.1 0.1 0.2 0.5 0.7 0.5 0.2

Single particle high-pT (JES) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Jet vertex fraction efficiency 1.4 1.5 1.5 1.6 1.7 1.8 2.0 2.2

W+jets normalisation 3.2 2.1 1.8 1.9 2.6 3.3 3.8 4.7

W+jets heavy/light flavour 6.1 3.6 3.1 3.7 5.1 5.9 6.9 7.0

Multijet normalisation 1.5 0.6 0.4 0.8 1.1 1.0 1.7 1.6

Multijet shape 0.5 0.1 0.1 0.1 0.1 0.1 0.3 0.4

Small backgrounds 2.0 1.3 1.1 1.4 1.7 2.2 3.0 2.6

Luminosity 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8

Total systematic uncertainty 11.7 7.2 8.1 10.0 12.8 12.4 13.6 13.0

Statistical uncertainty 2.2 1.4 1.4 1.5 2.4 3.7 5.6 5.9

Cross-section [pb/GeV] 7.86e-02 1.28e-01 1.00e-01 5.12e-02 1.96e-02 8.72e-03 3.63e-03 2.02e-04

Table 9. Relative uncertainties on the final differential cross-section after the e/µ channel combi-

nation, for the leading jet. The uncertainties are shown as a percentage of the expected tt̄ signal.

The energy scale uncertainty (JES) is shown for each JES nuisance parameter (NP). The effective

NP are obtained by combining a total of 54 detector, detector and model (“mixed”), modelling and

statistical NPs. An uncertainty value of 0.0 implies that the uncertainty is below 0.05.
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J
H
E
P
0
1
(
2
0
1
5
)
0
2
0

dσ
dpT,jet

[%] / pT,jet [GeV] [35-50] [50-70] [70-90] [90-120] [120-155] [155-195] [195-830]

MC statistics 0.9 0.5 0.8 0.8 1.1 2.0 2.7

PDF 0.4 0.0 0.2 0.3 0.3 0.5 0.3

MC generator 1.1 0.1 0.7 0.5 1.0 0.6 1.4

Fragmentation 0.9 1.0 0.7 0.0 1.5 1.7 1.0

ISR/FSR 0.9 2.9 2.8 3.8 4.4 2.5 2.3

Colour reconnection 0.5 0.2 0.4 0.3 0.4 0.4 0.9

ℓ resolution & efficiency 1.3 1.4 1.5 1.3 1.3 1.3 1.3

Emiss
T cell-out 0.2 0.2 0.2 0.1 0.2 0.1 0.4

b-quark tagging efficiency 4.4 4.1 4.3 5.4 7.5 9.3 6.9

Additional interactions 0.1 0.1 0.1 0.0 0.1 0.1 0.3

Jet reconstruction efficiency 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Jet energy resolution 1.2 1.0 0.1 0.7 0.4 2.5 1.4

b-quark jets (JES) 3.3 0.2 2.6 3.3 4.2 4.9 5.0

Close by jets (JES) 5.1 1.6 3.6 2.2 1.2 1.9 2.0

Effective detector NP set 1 (JES) 2.3 0.4 1.5 2.0 2.4 3.4 3.8

Effective detector NP set 2 (JES) 0.2 0.0 0.1 0.2 0.1 0.1 0.2

Effective mixed NP set 1 (JES) 0.1 0.0 0.1 0.1 0.1 0.4 0.8

Effective mixed NP set 2 (JES) 0.1 0.1 0.2 0.2 0.2 0.1 0.1

Effective model NP set 1 (JES) 0.6 0.8 1.2 1.2 0.9 1.0 0.2

Effective model NP set 2 (JES) 0.9 0.3 0.4 0.6 0.7 1.1 1.0

Effective model NP set 3 (JES) 1.1 0.3 0.5 0.7 0.9 1.2 0.4

Effective model NP set 4 (JES) 0.2 0.1 0.1 0.0 0.1 0.5 0.4

Effective stat. NP set 1 (JES) 0.5 0.6 0.3 0.2 0.1 0.2 0.3

Effective stat. NP set 2 (JES) 0.3 0.0 0.1 0.2 0.2 0.4 0.3

Effective stat. NP set 3 (JES) 0.7 0.1 0.4 0.5 0.5 1.1 0.6

η-intercalibration (JES) 2.4 0.4 1.8 1.8 2.1 2.6 2.3

η-intercalibration statistics (JES) 0.3 0.2 0.3 0.4 0.4 0.5 0.2

Flavour composition (JES) 0.7 0.3 0.7 0.7 0.7 0.9 0.8

Flavour response (JES) 0.8 0.1 0.4 0.6 0.7 1.1 1.1

Additional interactions µ (JES) 0.2 0.2 0.1 0.1 0.2 0.4 0.1

Additional interactions NPV (JES) 0.1 0.0 0.1 0.2 0.3 0.5 0.1

Relative non-closure (JES) 0.3 0.1 0.3 0.2 0.4 0.7 0.4

Single particle high-pT (JES) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Jet vertex fraction efficiency 1.6 1.4 1.6 1.7 1.7 2.0 2.3

W+jets normalisation 4.3 2.0 1.7 1.9 2.4 3.3 6.2

W+jets heavy/light flavour 8.1 3.7 2.6 3.2 4.3 6.3 8.3

Multijet normalisation 1.6 0.6 0.3 0.5 1.0 1.3 1.7

Multijet shape 0.6 0.0 0.2 0.1 0.1 0.2 0.4

Small backgrounds 2.5 1.3 1.1 1.4 1.9 2.7 3.8

Luminosity 1.8 1.8 1.8 1.8 1.8 1.8 1.8

Total systematic uncertainty 13.4 7.7 8.7 9.7 12.3 15.2 15.9

Statistical uncertainty 2.2 1.1 1.6 1.8 2.8 5.0 7.0

Cross-section [pb/GeV] 1.14e-01 1.89e-01 1.23e-01 5.14e-02 1.72e-02 5.32e-03 2.01e-04

Table 10. Relative uncertainties on the final differential cross-section after the e/µ channel com-

bination, for the 2nd jet. The uncertainties are shown as a percentage of the expected tt̄ signal.

The energy scale uncertainty (JES) is shown for each JES nuisance parameter (NP). The effective

NP are obtained by combining a total of 54 detector, detector and model (“mixed”), modelling and

statistical NPs. An uncertainty value of 0.0 implies that the uncertainty is below 0.05.
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J
H
E
P
0
1
(
2
0
1
5
)
0
2
0

dσ
dpT,jet

[%] / pT,jet [GeV] [25-35] [35-50] [50-70] [70-90] [90-120] [120-530]

MC statistics 0.8 0.4 0.8 1.0 1.6 2.2

PDF 0.4 0.1 0.3 0.5 0.2 0.4

MC generator 1.2 0.5 0.2 0.6 0.3 1.0

Fragmentation 1.3 0.8 0.6 0.1 0.1 0.4

ISR/FSR 2.5 3.1 3.2 2.1 4.8 4.8

Colour reconnection 0.5 0.6 0.0 0.5 0.8 0.9

ℓ resolution & efficiency 1.3 1.3 1.7 1.4 1.4 1.4

Emiss
T cell-out 0.2 0.2 0.1 0.2 0.1 0.3

b-quark tagging efficiency 5.0 4.4 4.6 5.3 6.5 8.3

Additional interactions 0.1 0.1 0.1 0.1 0.1 0.2

Jet reconstruction efficiency 0.1 0.0 0.0 0.0 0.0 0.1

Jet energy resolution 0.2 0.9 0.4 0.7 1.5 0.8

b-quark jets (JES) 1.6 0.2 2.5 3.3 3.8 4.9

Close by jets (JES) 4.5 0.4 4.5 4.6 2.2 2.0

Effective detector NP set 1 (JES) 1.3 0.4 1.3 2.6 2.7 4.3

Effective detector NP set 2 (JES) 0.1 0.0 0.1 0.2 0.2 0.1

Effective mixed NP set 1 (JES) 0.1 0.0 0.1 0.2 0.2 0.5

Effective mixed NP set 2 (JES) 0.1 0.1 0.2 0.3 0.2 0.2

Effective model NP set 1 (JES) 0.8 0.7 1.4 1.4 1.2 1.1

Effective model NP set 2 (JES) 0.5 0.3 0.3 0.8 0.9 1.3

Effective model NP set 3 (JES) 0.6 0.3 0.5 1.0 1.0 1.3

Effective model NP set 4 (JES) 0.2 0.0 0.2 0.1 0.0 0.5

Effective stat. NP set 1 (JES) 0.1 0.6 0.5 0.2 0.1 0.1

Effective stat. NP set 2 (JES) 0.2 0.1 0.2 0.3 0.2 0.4

Effective stat. NP set 3 (JES) 0.3 0.2 0.4 0.6 0.7 1.0

η-intercalibration (JES) 1.8 0.1 2.0 2.7 2.4 2.9

η-intercalibration statistics (JES) 0.3 0.1 0.4 0.5 0.5 0.7

Flavour composition (JES) 0.6 0.1 0.7 1.2 1.1 1.4

Flavour response (JES) 1.5 0.1 0.7 1.0 1.1 1.7

Additional interactions µ (JES) 0.1 0.2 0.0 0.0 0.2 0.3

Additional interactions NPV (JES) 0.1 0.1 0.2 0.4 0.2 0.4

Relative non-closure (JES) 0.0 0.1 0.3 0.4 0.2 0.6

Single particle high-pT (JES) 0.0 0.0 0.0 0.0 0.0 0.0

Jet vertex fraction efficiency 1.7 1.4 1.6 1.8 1.8 2.2

W+jets normalisation 5.3 2.1 1.4 1.4 2.1 2.4

W+jets heavy/light flavour 10.2 3.9 1.7 2.1 3.1 3.8

Multijet normalisation 1.7 0.8 0.3 0.4 0.4 1.4

Multijet shape 0.7 0.0 0.3 0.2 0.2 0.2

Small backgrounds 2.9 1.4 0.9 1.1 1.4 2.7

Luminosity 1.8 1.8 1.8 1.8 1.8 1.8

Total systematic uncertainty 14.9 7.9 9.2 10.2 11.7 14.5

Statistical uncertainty 2.0 1.0 1.5 2.2 3.6 5.3

Cross-section [pb/GeV] 1.92e-01 2.60e-01 1.50e-01 4.94e-02 1.47e-02 3.58e-04

Table 11. Relative uncertainties on the final differential cross-section after the e/µ channel com-

bination, for the 3rd jet. The uncertainties are shown as a percentage of the expected tt̄ signal.

The energy scale uncertainty (JES) is shown for each JES nuisance parameter (NP). The effective

NP are obtained by combining a total of 54 detector, detector and model (“mixed”), modelling and

statistical NPs. An uncertainty value of 0.0 implies that the uncertainty is below 0.05.
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dσ
dpT,jet

[%] / pT,jet [GeV] [25-35] [35-50] [50-70] [70-90] [90-280]

MC statistics 0.6 0.7 1.0 1.8 3.7

PDF 0.1 0.1 0.5 0.7 0.4

MC generator 1.0 0.3 0.8 1.5 0.8

Fragmentation 0.5 0.2 0.2 0.4 1.8

ISR/FSR 1.6 3.7 2.0 6.3 5.7

Colour reconnection 0.2 0.7 0.3 1.2 2.0

ℓ resolution & efficiency 1.3 1.5 1.3 1.4 1.5

Emiss
T cell-out 0.2 0.2 0.1 0.3 0.1

b-quark tagging efficiency 4.6 4.4 4.8 5.4 7.0

Additional interactions 0.1 0.1 0.0 0.2 0.1

Jet reconstruction efficiency 0.1 0.0 0.0 0.0 0.0

Jet energy resolution 0.2 0.0 0.5 1.4 0.6

b-quark jets (JES) 0.1 1.6 3.2 3.8 4.5

Close by jets (JES) 0.9 4.2 7.5 5.5 2.9

Effective detector NP set 1 (JES) 0.2 1.0 2.5 3.6 3.7

Effective detector NP set 2 (JES) 0.0 0.1 0.3 0.3 0.4

Effective mixed NP set 1 (JES) 0.0 0.1 0.2 0.3 0.5

Effective mixed NP set 2 (JES) 0.3 0.4 0.3 0.3 0.3

Effective model NP set 1 (JES) 1.5 2.2 2.1 1.7 1.5

Effective model NP set 2 (JES) 0.4 0.1 0.7 1.2 1.3

Effective model NP set 3 (JES) 0.5 0.2 0.9 1.4 1.5

Effective model NP set 4 (JES) 0.1 0.1 0.3 0.1 0.2

Effective stat. NP set 1 (JES) 1.1 1.2 0.6 0.1 0.2

Effective stat. NP set 2 (JES) 0.2 0.1 0.3 0.3 0.5

Effective stat. NP set 3 (JES) 0.2 0.2 0.7 1.0 1.0

η-intercalibration (JES) 0.3 1.8 3.2 3.6 3.0

η-intercalibration statistics (JES) 0.3 0.5 0.7 0.7 0.7

Flavour composition (JES) 0.7 0.8 1.4 1.4 1.6

Flavour response (JES) 0.7 1.8 2.4 2.1 2.5

Additional interactions µ (JES) 0.3 0.0 0.1 0.5 0.2

Additional interactions NPV (JES) 0.1 0.3 0.3 0.5 0.7

Relative non-closure (JES) 0.4 0.2 0.6 0.5 0.5

Single particle high-pT (JES) 0.0 0.0 0.0 0.0 0.0

Jet vertex fraction efficiency 1.6 1.6 1.9 2.1 2.2

W+jets normalisation 2.1 1.3 0.8 1.1 1.0

W+jets heavy/light flavour 3.2 1.4 1.0 1.2 1.2

Multijet normalisation 0.7 0.2 0.3 0.6 1.2

Multijet shape 0.2 0.3 0.3 0.3 0.5

Small backgrounds 1.4 0.8 1.0 1.3 2.4

Luminosity 1.8 1.8 1.8 1.8 1.8

Total systematic uncertainty 7.7 9.1 11.9 13.5 14.0

Statistical uncertainty 1.3 1.4 2.2 4.2 6.5

Cross-section [pb/GeV] 2.62e-01 1.65e-01 4.92e-02 1.10e-02 5.27e-04

Table 12. Relative uncertainties on the final differential cross-section after the e/µ channel com-

bination, for the 4th jet. The uncertainties are shown as a percentage of the expected tt̄ signal.

The energy scale uncertainty (JES) is shown for each JES nuisance parameter (NP). The effective

NP are obtained by combining a total of 54 detector, detector and model (“mixed”), modelling and

statistical NPs. An uncertainty value of 0.0 implies that the uncertainty is below 0.05.
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dσ
dpT,jet

[%] / pT,jet [GeV] [25-35] [35-50] [50-70] [70-195]

MC statistics 1.0 1.0 2.1 3.8

PDF 0.1 0.4 0.6 0.4

MC generator 0.4 0.3 1.1 1.8

Fragmentation 0.1 2.1 0.2 0.7

ISR/FSR 2.9 3.9 1.6 6.5

Colour reconnection 0.7 1.4 1.5 4.0

ℓ resolution & efficiency 1.6 1.3 1.3 1.4

Emiss
T cell-out 0.1 0.2 0.4 0.4

b-quark tagging efficiency 4.5 4.5 4.4 6.2

Additional interactions 0.1 0.1 0.2 0.2

Jet reconstruction efficiency 0.1 0.0 0.0 0.1

Jet energy resolution 1.8 0.6 1.8 1.4

b-quark jets (JES) 0.6 2.2 3.3 3.8

Close by jets (JES) 2.3 7.2 9.7 5.1

Effective detector NP set 1 (JES) 0.7 2.0 3.6 4.1

Effective detector NP set 2 (JES) 0.1 0.2 0.3 0.3

Effective mixed NP set 1 (JES) 0.1 0.2 0.2 0.3

Effective mixed NP set 2 (JES) 0.5 0.6 0.4 0.3

Effective model NP set 1 (JES) 3.5 3.0 2.6 1.9

Effective model NP set 2 (JES) 0.5 0.3 1.0 1.4

Effective model NP set 3 (JES) 0.5 0.5 1.2 1.7

Effective model NP set 4 (JES) 0.0 0.3 0.3 0.1

Effective stat. NP set 1 (JES) 2.2 1.5 0.6 0.5

Effective stat. NP set 2 (JES) 0.1 0.2 0.3 0.4

Effective stat. NP set 3 (JES) 0.1 0.5 1.0 0.9

η-intercalibration (JES) 1.5 3.2 4.2 4.1

η-intercalibration statistics (JES) 0.7 0.8 0.8 0.5

Flavour composition (JES) 0.9 1.5 1.6 1.6

Flavour response (JES) 2.5 4.3 3.7 2.9

Additional interactions µ (JES) 0.3 0.1 0.5 0.5

Additional interactions NPV (JES) 0.3 0.3 0.5 0.9

Relative non-closure (JES) 0.6 0.3 0.8 0.4

Single particle high-pT (JES) 0.0 0.0 0.0 0.0

Jet vertex fraction efficiency 1.8 1.9 2.2 2.4

W+jets normalisation 1.9 0.7 0.4 0.5

W+jets heavy/light flavour 1.5 0.9 0.3 0.4

Multijet normalisation 0.3 0.3 0.4 0.3

Multijet shape 0.3 0.3 0.3 0.5

Small backgrounds 0.8 0.9 1.1 1.7

Luminosity 1.8 1.8 1.8 1.8

Total systematic uncertainty 9.1 12.9 14.6 15.2

Statistical uncertainty 1.8 2.1 4.3 9.5

Cross-section [pb/GeV] 1.51e-01 5.38e-02 1.22e-02 4.00e-04

Table 13. Relative uncertainties on the final differential cross-section after the e/µ channel com-

bination, for the 5th jet. The uncertainties are shown as a percentage of the expected tt̄ signal.

The energy scale uncertainty (JES) is shown for each JES nuisance parameter (NP). The effective

NP are obtained by combining a total of 54 detector, detector and model (“mixed”), modelling and

statistical NPs. An uncertainty value of 0.0 implies that the uncertainty is below 0.05.
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M. Morgenstern44, M. Morii57, S. Moritz82, A.K. Morley148, G. Mornacchi30, J.D. Morris75,
L. Morvaj102, H.G. Moser100, M. Mosidze51b, J. Moss110, K. Motohashi158, R. Mount144,
E. Mountricha25, S.V. Mouraviev95,∗, E.J.W. Moyse85, S. Muanza84, R.D. Mudd18, F. Mueller58a,
J. Mueller124, K. Mueller21, T. Mueller28, T. Mueller82, D. Muenstermann49, Y. Munwes154,
J.A. Murillo Quijada18, W.J. Murray171,130, H. Musheghyan54, E. Musto153, A.G. Myagkov129,aa,
M. Myska127, O. Nackenhorst54, J. Nadal54, K. Nagai61, R. Nagai158, Y. Nagai84, K. Nagano65,
A. Nagarkar110, Y. Nagasaka59, M. Nagel100, A.M. Nairz30, Y. Nakahama30, K. Nakamura65,
T. Nakamura156, I. Nakano111, H. Namasivayam41, G. Nanava21, R. Narayan58b,
T. Nattermann21, T. Naumann42, G. Navarro163, R. Nayyar7, H.A. Neal88, P.Yu. Nechaeva95,

– 56 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
0

T.J. Neep83, P.D. Nef144, A. Negri120a,120b, G. Negri30, M. Negrini20a, S. Nektarijevic49,
A. Nelson164, T.K. Nelson144, S. Nemecek126, P. Nemethy109, A.A. Nepomuceno24a, M. Nessi30,ab,
M.S. Neubauer166, M. Neumann176, R.M. Neves109, P. Nevski25, P.R. Newman18, D.H. Nguyen6,
R.B. Nickerson119, R. Nicolaidou137, B. Nicquevert30, J. Nielsen138, N. Nikiforou35,
A. Nikiforov16, V. Nikolaenko129,aa, I. Nikolic-Audit79, K. Nikolics49, K. Nikolopoulos18,
P. Nilsson8, Y. Ninomiya156, A. Nisati133a, R. Nisius100, T. Nobe158, L. Nodulman6,
M. Nomachi117, I. Nomidis155, S. Norberg112, M. Nordberg30, S. Nowak100, M. Nozaki65,
L. Nozka114, K. Ntekas10, G. Nunes Hanninger87, T. Nunnemann99, E. Nurse77, F. Nuti87,
B.J. O’Brien46, F. O’grady7, D.C. O’Neil143, V. O’Shea53, F.G. Oakham29,d, H. Oberlack100,
T. Obermann21, J. Ocariz79, A. Ochi66, M.I. Ochoa77, S. Oda69, S. Odaka65, H. Ogren60, A. Oh83,
S.H. Oh45, C.C. Ohm30, H. Ohman167, T. Ohshima102, W. Okamura117, H. Okawa25,
Y. Okumura31, T. Okuyama156, A. Olariu26a, A.G. Olchevski64, S.A. Olivares Pino46,
D. Oliveira Damazio25, E. Oliver Garcia168, A. Olszewski39, J. Olszowska39, A. Onofre125a,125e,
P.U.E. Onyisi31,o, C.J. Oram160a, M.J. Oreglia31, Y. Oren154, D. Orestano135a,135b,
N. Orlando72a,72b, C. Oropeza Barrera53, R.S. Orr159, B. Osculati50a,50b, R. Ospanov121,
G. Otero y Garzon27, H. Otono69, M. Ouchrif136d, E.A. Ouellette170, F. Ould-Saada118,
A. Ouraou137, K.P. Oussoren106, Q. Ouyang33a, A. Ovcharova15, M. Owen83, V.E. Ozcan19a,
N. Ozturk8, K. Pachal119, A. Pacheco Pages12, C. Padilla Aranda12, M. Pagáčová48,
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Barcelona, Barcelona, Spain
13 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences,

University of Belgrade, Belgrade, Serbia

– 60 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
0

14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley

CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics,

University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus

University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep,

Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna,
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Roma, Italy
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