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Measurement of the neutrino-oxygen neutral-current interaction cross section by

observing nuclear deexcitation γ rays
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We report the first measurement of the neutrino-oxygen neutral-current quasielastic (NCQE)
cross section. It is obtained by observing nuclear deexcitation γ-rays which follow neutrino-oxygen
interactions at the Super-Kamiokande water Cherenkov detector. We use T2K data corresponding to
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3.01×1020 protons on target. By selecting only events during the T2K beam window and with well-
reconstructed vertices in the fiducial volume, the large background rate from natural radioactivity
is dramatically reduced. We observe 43 events in the 4 − 30 MeV reconstructed energy window,
compared with an expectation of 51.0, which includes an estimated 16.2 background events. The
background is primarily nonquasielastic neutral-current interactions and has only 1.2 events from
natural radioactivity. The flux-averaged NCQE cross section we measure is 1.55 × 10−38 cm2 with
a 68% confidence interval of (1.22, 2.20) × 10−38 cm2 at a median neutrino energy of 630 MeV,
compared with the theoretical prediction of 2.01 × 10−38 cm2.

PACS numbers: 25.30.Pt, 29.40.Ka, 21.10.Pc, 23.20.Lv

I. INTRODUCTION

Nuclear deexcitation γ rays are a useful tool for de-
tecting neutrino-nucleus neutral-current (NC) interac-
tions where the final state neutrino and associated nu-
cleon are not observed in a Cherenkov detector. These
interactions have previously been observed in neutrino-
carbon interactions [1, 2]. The most well known γ
ray production process on oxygen is inelastic scattering,
ν + 16O → ν + 16O∗, where the residual oxygen nucleus
can de-excite by emitting a nucleon or γ rays with en-
ergies between 1 − 10 MeV. This process can be used
to detect supernova neutrinos [3], which have an aver-
age energy of 20 − 30 MeV. Most theoretical work on γ
ray production in NC interactions has been performed in
this low neutrino energy range with the assumption that
it is applicable up to neutrino energies of several hundred
MeV [4–7].
A recent calculation of γ ray production in neutrino

NC interactions shows that quasielastic (QE) nucleon
knockout, ν + 16O → ν + p+ 15N∗ (ν + n+ 15O∗) over-
whelms the inelastic process at Eν & 200 MeV [8]. The
NCQE cross section is calculated to be more than an
order of magnitude larger than the NC inelastic cross
section from [7] at Eν ≈ 500 MeV. We can observe this
interaction in two ways: by observing the ‘primary’ γ
rays produced when the residual nucleus de-excites or by
observing the ‘secondary’ γ rays produced when knocked-
out nucleons interact with other nuclei in the water. The
primary γ rays only occur when the knocked out nucleon
comes from the 1p3/2 or 1s1/2 states while the secondary
γ rays can be produced by nucleons released during de-
excitation or by interactions of the original knocked out
nucleons, and so can occur for all nucleon states. Both
types of γ rays, produced in interactions of atmospheric
neutrinos, are a major background for the study of as-
trophysical neutrinos in the 10 MeV range [9, 10] and
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Tokyo, Japan
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a direct measurement of the rate of this process with
a known neutrino source will be useful for ongoing and
proposed projects [11–14].
This paper reports the first measurement of the

neutrino-oxygen NCQE cross section via the detection of
deexcitation γ rays from both primary and secondary in-
teractions. The neutrinos are produced using the narrow-
band neutrino beam at J-PARC and measured with the
Super-Kamiokande (SK) water Cherenkov detector.

II. THE T2K EXPERIMENT

The Tokai-to-Kamioka (T2K) experiment [15] is a
long-baseline neutrino oscillation experiment consisting
of a neutrino beam, several near detectors, and using
Super Kamiokande as a far detector. It is designed to
search for νµ → νe appearance, which is sensitive to the
neutrino mixing angle θ13, and to precisely measure the
mixing angle θ23 and the mass difference |∆m2

32| by νµ
disappearance.
The accelerator at the Japan Proton Accelerator Re-

search Complex (J-PARC) provides a 30 GeV proton
beam which collides with a graphite target to produce
charged mesons. Positively-charged pions and kaons are
collected and focused by magnetic horns and ultimately
decay in flight to produce primarily muon neutrinos in-
side a 96 m long cavity filled with helium gas. The proton
beam is directed 2.5◦ away from SK. The off-axis neutrino
beam has a narrow peak with median energy 630 MeV
at SK because of the two-body decay kinematics of the
π+ which dominate the focused beam. This peak energy
was chosen because it corresponds to the first maximum
in the neutrino oscillation probability at the location of
the far detector. The narrow energy peak also allows for
the measurement of the NC cross section at a particu-
lar energy. Typically, it is not possible to make energy-
dependent measurements of this cross section because the
invisible outgoing neutrino makes accurate energy recon-
struction impossible.
The T2K experiment has several near detectors located

280 m from the neutrino production target. The on-axis
near detector, INGRID, which consists of 16 modules
made up of alternating layers of iron and plastic scin-
tillator arranged in a cross, monitors the neutrino beam
direction. The off-axis near detectors, ND280, measure
the neutrino beam spectrum and composition for the os-
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cillation analyses. The neutrino measurements at the
INGRID and ND280 detectors are consistent with expec-
tations [16], but this information is not used to constrain
systematic uncertainties in this analysis so that an abso-
lute cross-section measurement can be made.
Super-Kamiokande [11] is a cylindrical water

Cherenkov detector consisting of 50 ktons of ultra-
pure water, located 295 km from the neutrino target at
J-PARC. It was built in the middle of Mt. Ikenoyama,
near the town of Kamioka, 1000 m below the peak.
The tank is optically separated into two regions which
share the same water. The inner detector (ID) is a
cylinder containing the 22.5 kton fiducial volume and is
instrumented with 11,129 inward-facing photomultiplier
tubes (PMTs). The outer detector (OD) extends 2 m
outward from all sides of the ID and is instrumented
with 1,885 outward-facing PMTs. It serves as a veto
counter against cosmic-ray muons as well as a shield
for γ rays and neutrons emitted from radioactive nuclei
in the surrounding rock and stainless steel support
structure.

III. EVENT SIMULATION

T2K events at SK are simulated in three stages. First,
the neutrino beamline is simulated to predict the flux and
energy spectrum of neutrinos arriving at SK. Next, the
interactions of those neutrinos with the nuclei in the SK
detector are simulated, including final-state interactions
within the nucleus. Finally, the SK detector response to
all of the particles leaving the nucleus is simulated.
FLUKA [17] is used to simulate hadron production

in the target based on the measured proton beam pro-
file. Hadron production data from NA61/SHINE at
CERN [18, 19] is used to tune the simulation and evalu-
ate the systematic error. The regions of phase space not
covered by the NA61/SHINE data directly are tuned by
extrapolating the data using the BMPT empirical pa-
rameterization [20]. Once particles leave the produc-
tion target they are transported through the magnetic
horns, target hall, decay volume, and beam dump us-
ing a GEANT3 [21] simulation with GCALOR [22] for
hadronic interactions. The initial composition of the
beam is 93% νµ, 6% ν̄µ, and 1% νe (the 0.1% ν̄e com-
ponent is not considered in this analysis). The νµ (ν̄µ)
flux is 94% (92%) from the decay-in-flight of pions, while
approximately half of the νe flux is from muon decays
and the other half is from the kaon decays. A more de-
tailed description of the neutrino flux prediction and its
uncertainty can be found in Ref. [23].
Neutrino interactions based on the above flux are sim-

ulated using the NEUT event generator [27, 28]. The
NCQE cross section on oxygen is simulated using a spec-
tral function model [29, 30] with the BBBA05 form fac-
tor parameterization [31], which is then reweighted as
a function of neutrino energy to match the recent the-
oretical calculations from [8]. In order to simulate the

1p1/2 1p3/2 1s1/2

Spectroscopic Factors 0.632 0.703 0.422

γ ray Branching Ratios:

> 6 MeV from p-hole 0% 91.8% 14.7%

> 6 MeV from n-hole 0% 86.9% 14.7%

3− 6 MeV from either 0% 0% 27.8%

TABLE I. The spectroscopic factors and branching ratios for
primary γ ray production for the three residual excited nu-
clear states simulated in this analysis. The spectroscopic fac-
tors are calculated in [8], while the branching ratios were mea-
sured with electron and proton scattering [24–26].

deexcitation γ ray emission, it is necessary to identify
which state the remaining nucleus is in after the neu-
trino interaction. In the simple shell model, the nucle-
ons in 16O occupy three states: 1p1/2, 1p3/2 and 1s1/2
with knockout energies of 12.1, 18.4, and 42 MeV (3.54
MeV more for neutrons), though precise electron scatter-
ing measurements have shown significant deviations from
this mean-field scenario [24, 32, 33]. Approximately 20%
of the total spectral strength is pushed by NN corre-
lations out of the Fermi sea into continuum states [34].
The electron scattering results are incorporated into a
realistic spectral function model in [29], which was inte-
grated in momentum and energy in [8] to calculate the
spectroscopic factors for the shell states shown in ??.
Since the 1p1/2 hole is already the ground state, it pro-

duces no primary γ rays. The 1p3/2 proton and neutron
hole states have three possible energy levels, the most
common of which (branching ratio 87%) has the lowest
energy and decays by releasing a 6.32 MeV or 6.18 MeV
photon for a proton or neutron hole, respectively. That is
the only 1p3/2 neutron-hole decay that produces a pho-
ton, but for the proton holes one of the higher energy
levels also releases a 9.93 MeV photon, bringing the total
branching ratio from γ ray production up to 92% [24, 25].
The 1s1/2 hole state can decay via a variety of channels,
usually including additional nucleon emission because of
the large binding energy of the knocked-out nucleon. The
branching ratios of the 1s1/2 proton hole state are esti-

mated using the result of the 16O(p, 2p)15N experiment
(RCNP-E148) [26], with a 3 − 6 MeV γ ray produced
22% of the time and a > 6 MeV γ ray produced 15% of
the time. Only protons were studied in the experiment,
but the proton and neutron energy levels are expected to
be very similar since 16O is an isoscalar nucleus. There
have been no measurements of photon production from
the continuum states so they are assumed to produce no
primary γ rays, though this assumption is taken into ac-
count in the systematic uncertainties in ??.
Non-QE NC interactions make up the largest neutrino-

induced background component and predominantly con-
sist of NC single-pion production where the pion is ab-
sorbed during final state interactions in the nucleus. This
resonant production is simulated using the Rein-Sehgal
model [35], the position dependence within the nucleus
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is calculated with the model from [36], and the scale of
the microscopic pion interaction probabilities in the nu-
clear medium is determined from fits to pion scattering
data [37–39]. The simulation of primary deexcitation γ
rays from this process is based on measurements of π−

absorption-at-rest on H2O at CERN [40]. These pion-
absorption interactions can also release nucleons which
go on to produce secondary γ rays as described below.
More details about NEUT, including the models used to
simulate the smaller charged current backgrounds can be
found in [15, 28].
SK’s GEANT3-based simulation [21] is used to trans-

port all the particles leaving the nucleus through the de-
tector, produce and transport the Cherenkov light, and
to simulate the response of the photodetectors and elec-
tronics. Charged pions with momenta above 500 MeV/c
are simulated with GCALOR [22] while lower momentum
pions are simulated with a custom routine based on the
NEUT cascade model for final state hadrons. GCALOR
also simulates the interactions of nucleons with nuclei in
the water, including the production of secondary γ rays.
In this simulation, secondary γ rays are typically pro-
duced in multiples: 95% of events with secondary γ rays
have at least two, some originating from multiple inter-
actions of neutrons in the water. The total secondary γ
ray energy per event is distributed widely with a peak
around 7 MeV and a long tail towards higher energies.
There is an additional signal-like contribution from the

inelastic process, ν + 16O → ν + 16O∗. However, since
there is no accurate estimation of γ ray production in-
duced by the NC inelastic process in the T2K energy
range, we do not subtract its contribution in the final
result. If we assume that the rate of γ ray production
after a inelastic interaction is similar to that of a nucleon
knockout reaction, and extrapolate the NC inelastic cross
section predicted in [7] to the energy region of this analy-
sis, we expect its contribution to be no larger than a few
percent of our final sample.

IV. ANALYSIS

The results presented in this paper are based on
T2K RUN1-3 data from 3.01 × 1020 protons on target
(POT) [41]. The expected number of beam-related events
after the selections described in the next section are
summarized in Tab. II, which categorizes them by neu-
trino flavor and interaction mode. For the computation
of the CC components, we assume three-flavor oscilla-
tions with |∆m2

32| = 2.44 × 10−3 eV2, sin2 θ23 = 0.50,
sin2 2θ13 = 0.097. The majority of the beam-related
background comes from nonquasielastic NC events, in
particular single-pion production followed by pion ab-
sorption within the nucleus. The CC background comes
from interactions where the outgoing charged lepton
has low momentum and is misidentified as an electron
or where the charged lepton itself is below Cherenkov
threshold but deexcitation γ rays are emitted.

The expected number of beam-unrelated events after
all selections are applied is estimated to be 1.2 by sam-
pling events at least 5 µs before the T2K beam trigger so
that no beam-related activity is included. The measured
event rate is normalized to the total livetime of the ana-
lyzed beam spills. Since the beam-unrelated background
is directly measured with data outside the beam window,
the systematic uncertainty associated with it is small.

A. Event selection

The event trigger for this analysis requires events to be
within the 1 ms T2K beam window and have at least 25
PMT hits within 200 ns. This trigger has an estimated
efficiency or 99.5% for 4 MeV events and is the lowest
threshold trigger used in any T2K or Super-K analysis.
It is only possible because of the sharp reduction in acci-
dental backgrounds due to the beam timing requirement.
The reconstruction of the event vertex, direction, and

energy is the same as that used in the SK solar neutrino
analysis [42]. The event vertex is found by a maximum
likelihood fit to the timing residuals of the Cherenkov
light, accounting for the dark noise rate [43]. The ver-
tex resolution is approximately 125 cm at 4 MeV and
improves to below 50 cm above 12 MeV. The event di-
rection is reconstructed by comparing the observed hit
pattern with the MC expectation for a single electron
ring using a likelihood function. The reconstructed en-
ergy is defined as the total energy of a single electron
that would have produced all Cherenkov photons in the
event. It is calculated using the effective number of hit
PMTs Neff , which corrects for the rate of multiple hits
on a single PMT, scattered and reflected light, the water
quality, the dark noise rate, the photocathode coverage as
a function of time and position, and the PMT quantum
efficiency. The relationship between Neff and energy is
determined using a MC simulation of monoenergetic elec-
trons. We use this definition because it is used by the SK

TABLE II. Observed and expected numbers of events in T2K
Runs 1-3. The CC samples are based on the flux at SK in-
cluding three-flavor oscillations (parameters described in the
text). The NC samples are based on the unoscillated flux.
The νe NCQE events are treated as signal, but the ν̄µ NCQE
are considered background since there is a different predicted
cross-section for antineutrinos.

Beam-related expectation νµ νe ν̄µ

NCQE 34.33 0.46 0.69

NC non-QE 11.59 0.26 0.45

CC 2.01 0.0014 0.025

Signal 34.80

Background (beam) 15.02

Beam-unrelated 1.20

Observed events 43
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FIG. 1. (color online) Distribution of the reconstruction qual-
ity parameter, Qrec, after the beam-unrelated selection cuts
(timing, fiducial volume, Qrec) have been applied. The inset
shows the distribution before the energy-dependent cut on
Qrec, but including the timing and fiducial volume cuts. The
T2K RUN1-3 data are represented by points with statistical
error bars and the expectation is represented by stacked his-
tograms showing the NCQE signal and the NC non-QE, CC,
and beam-unrelated background components.

low-energy reconstruction tools, though we know many
events have multiple particles and a variety of particle
species. The vertex resolution, water quality, and energy
scale are calibrated using a variety of sources, described
in detail in [44].

The first selections applied are a cut on the recon-
structed energy, only allowing events between 4 MeV and
30 MeV, a standard fiducial volume cut of 2 m from the
detector wall, and a tighter event timing cut. The neu-
trino beam spill has a bunch structure, reflecting the un-
derlying proton bunch structure, with 6 or 8 bunches
separated by 581 ns gaps, delivered every 3 s. The
±100 ns timing cut contains the neutrino beam bunch
width which has an observed RMS of 24 ns at SK. The
time is synchronized between the near and far sites us-
ing a common-view GPS system and the bunch timing is
calibrated using the higher energy T2K neutrino events
at SK.

Further selection cuts are applied based on the event
vertex and reconstruction quality to remove beam-
unrelated background, similar to those used in SK so-
lar [42] and supernova relic neutrino analyses [9]. These
cut criteria are simultaneously optimized in an energy-
dependent way to maximize the figure-of-merit defined
as Nbeam/

√
Nbeam +Nunrel, where Nbeam and Nunrel de-

note the number of expected beam-related and beam-
unrelated events, respectively. The cut optimization is
done separately for each of the three T2K run periods
since the beam intensities and beam bunch structures
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FIG. 2. (color online) The Cherenkov angle distribution
in data and MC expectation after the beam-unrelated se-
lections and the pre-activity cut. The expectation has a
three-peak structure corresponding to low-momentum muons
around 28◦, single γ rays around 42◦, and multiple γ rays
around 90◦. A selection cut is applied at 34◦ to remove the
muon events, but no attempt is made to separate single- and
multiple-γ events.

differ.

Most of the beam-unrelated background comes from
radioactive impurities in the PMT glass, cases, and sup-
port structure and so is concentrated near the ID wall.
Cuts on the distance from the nearest wall, D1, and the
distance from the wall along the backward direction of
the reconstructed track, D2, together effectively elimi-
nate background events produced at or near the ID wall.
A minimum cut of 2 m is applied for both, with the cut
on D1 increasing linearly below 4.75 MeV to about 3.2 m
and the cut on D2 increasing linearly below 5.75 MeV to
about 10 m.

Beam-unrelated background events that pass the fidu-
cial cuts typically have reconstruction errors which move
the vertex to the center of the tank. These errors can
be identified based on the distribution of hits in time
and space. The hit time distribution should be a sharp
peak after time-of-flight correction from the correct ver-
tex, which we quantify as the timing goodness, gt. The
hit pattern should also be azimuthally symmetric around
the reconstructed particle direction, which we test using
gp, the Kolmogorov-Smirnov distance between the ob-
served hit distribution and a perfectly symmetric one.
The reconstruction quality cut criterium, Qrec, is defined
as the hyperbolic combination of these two parameters:
Qrec ≡ g2t − g2p and is shown in Fig. 1. The cut on Qrec is
also energy-dependent and varies from about 0.25 at its
tightest at the low end of the energy spectrum to effec-
tively no cut above 11 MeV. More detailed descriptions
of gt and gp are found in Ref. [45].
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Before selection, the beam-unrelated background rate
from natural radioactivity is 284 counts per second, or
1.2 million events expected during the 1 ms beam win-
dows used for other T2K analyses [46]. Applying the
tight timing cut reduces this background to 1,816 events.
The fiducial and reconstruction quality cuts further re-
duce the beam-unrelated background to 1.77 events, a
contamination of 2.4%. These beam-unrelated selection
cuts reduce the estimated NCQE signal efficiency to 74%.
Among the selected signal events, we estimate 97% have
true vertices within the fiducial volume.

Finally, to suppress the beam-related charged-current
(CC) interaction events, two additional cuts are ap-
plied: a pre-activity cut and a Cherenkov opening angle
cut. The pre-activity cut rejects electrons produced in
muon decays with more than 99.9% efficiency by reject-
ing events which occur less than 20 µs after a high-energy
event, defined as a group of 22 or more hits in a 30 ns
window. The likelihood of this selection rejecting a sig-
nal event because of accidental dark noise hits is less than
0.1%.

For this low-energy sample, the Cherenkov angle of
an event is defined as the peak of the distribution of
Cherenkov angles calculated for every combination of
three PMTs with hits, assuming the reconstructed vertex
as the origin, following the technique from [9]. For a sin-
gle particle this peak will be close to the opening angle of
the particle while the more isotropic light distributions
from multiple particles will have peaks close to 90◦. The
Cherenkov angle depends on the velocity of the particle,
approaching 42◦ as the velocity approaches c. The elec-
trons produced by the deexcitation γ rays selected in this
analysis are highly relativistic and so peak at 42◦. The
heavier muons from νµ CC events have smaller opening
angles, peaking around 28◦; the higher momentum muons
with larger opening angles having already been removed
by the energy cut at 30 MeV. These low-momentum
muons are removed by a cut at 34◦. The Cherenkov
angle distribution for events passing all other selection
criteria can be seen in Fig. 2. The data-expectation dis-
agreement in the multi-γ peak is likely due to the approx-
imations made in the model of γ ray emission induced by
secondary neutron interactions used by GEANT3 and
GCALOR, particularly the multiplicity of the secondary
neutrons.

After all selections, 51.0 events are expected, of which
34.8 are expected to be NCQE signal for a purity of
69%. The overall selection efficiency is estimated to be
70% relative to the number of true NCQE events in the
true fiducial volume which produce either primary or
secondary γ-rays (approximately 25% of NCQE events
produce no photons and are consequently unobservable).
The beam-unrelated contamination remains 2.4% after
the final beam-related selections, with the 1.77 events
after only the beam-unrelated selections reduced to 1.2
background events in the final sample.
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FIG. 3. (color online) ∆T0 distribution of the data sample
after all selection cuts except for beam timing, compared to
the bunch center positions determined from high energy T2K
neutrino events, indicated by eight dashed vertical lines. The
on-timing and off-timing events are shown in solid and hashed,
respectively.

B. Observed Events

Figure 3 shows the observed event timing distribution
in a region from −1 µs to 5 µs with respect to the beam
trigger time, before the tight ±100 ns timing cut on each
bunch has been applied. Six events are found outside
the tight bunch time windows, which is consistent with
the 3.6 beam-unrelated events expected for this amount
of integrated livetime. These events are separate from
the 1.2 beam-unrelated events expected to fall within the
200 ns bunch windows.
After all cuts, 43 events remain in the 4− 30 MeV re-

constructed energy range, compared with 51.0 expected.
The vertex distribution of the sample is shown in Fig. 4,
in which no non-uniformity or biases with respect to the
neutrino beam direction are found. The energy distri-
bution of the data after all the selection cuts is shown
in Fig. 5. A peak due to 6 MeV prompt deexcitation γ
rays is clearly seen in data, and the observed distribution
matches well with the expectation. The high energy tail
originates primarily from the contribution of additional
secondary γ rays overlapping the primary γ rays.

C. Systematic uncertainties

The sources of systematic uncertainty on the expected
number of signal and background events and their size
are summarized in Tab. III. The methods for calculating
these uncertainties are described below.
The flux errors, calculated in correlated energy

bins, are determined based on beam monitoring,
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FIG. 4. (color online) Vertex distribution of the final data
sample in Y vs X after all selections have been applied. The
solid and dotted lines indicate the boundaries of the inner
detector and fiducial volume, respectively. The neutrino beam
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FIG. 5. (color online) Comparison of the reconstructed energy
spectrum between the selected data sample and the expecta-
tion after all selection cuts have been applied. The CC com-
ponent is actually about twice as large as the beam-unrelated
background, but it is less apparent since it is spread across
all energies.

constraints from external measurements (particularly
NA61/SHINE [18, 19]), and Monte Carlo studies of fo-
cusing parameters (e.g. horn current, beam alignment,
etc.) [23]. The dominant uncertainty on the flux comes
from the production of hadrons in the target, though the
beam alignment and off-axis angle become significant at
energies beween 700 MeV and 1.2 GeV, the high-energy
side of the focusing peak. The neutrino interaction uncer-

tainties which affect the normalization of the background
are evaluated by comparing NEUT predictions to exter-
nal neutrino-nucleus data sets in an energy region similar
to T2K [16].

The 15% systematic uncertainty on primary γ ray pro-
duction in signal (and the QE component of the CC back-
ground) comes from several sources. The largest contri-
bution comes from the uncertainty on the 1p3/2 spectro-
scopic factor. We take the 34% difference between the
value used in our simulation (from [8]) and the value cal-
culated by Ejiri, 0.940 [47], which gives an 11% change
in the number of selected NCQE events. The second-
largest contribution is from final-state nuclear interac-
tions: NEUT assumes that the deexcitation γ ray pro-
duction is the same whether the final state contains a
single nucleon or multiple nucleons. We estimate the
systematic uncertainty introduced by this assumption by
observing the change in the number of signal events with
the extreme alternate assumption that no deexcitation
γ rays are released from events with multi-nucleon final
states, which gives a 9% change in the number of selected
NCQE. Both of these errors have a diluted effect on the
final sample since NCQE events can be observed via ei-
ther primary or secondary γ rays.

The 1s1/2 spectral function has a 30% uncertainty, also
calculated by model comparisons between [8] and [47],
but only gives a 1% contribution to the final error.
The uncertainty in the 1s1/2 branching ratios is also ac-
counted for based on the measurement from Kobayashi et
al. [26], giving an additional 1% error. The uncertainty
due to not simulating photon production in the NN -
induced continuum states is estimated by assuming these
events emit photons in the same way as the 1s1/2 state,
a reasonable approximation since both have binding en-
ergies well above the particle emission threshold, giving
a 3% error. These systematics have only a small effect
on the final selected sample since only a small fraction of
1s1/2 deexcitations produce photons above 6 MeV.

For the non-QE NC background events, a conservative
uncertainty was calculated by removing all primary γ
rays from the events and evaluating the difference in total
selected events. The effect is relatively small since the
pion-absorption events which make up the bulk of the
NC non-QE background produce many secondary γ rays
and so are still detected thanks to the low threshold of
the analysis.

The uncertainty on secondary γ ray production is dom-
inated by uncertainties on the production of neutrons. It
was evaluated by comparing alternate models of neutron
production and interaction from GCALOR and NEUT
and how they altered the observed Cherenkov light level
for our simulated events, for both signal events and the
pion-absorption background. Even with changes of a fac-
tor of two or more in the average amount of energy de-
posited in the detector between the different neutron in-
teraction models, the change in the number of selected
events is relatively small because we only count events
and do not attempt to distinguish between events with
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TABLE III. Summary of systematic uncertainties on the ex-
pected number of signal and background events. While the
CC component has the largest uncertainty, it has a relatively
small effect on the final result since there are relatively few
CC events in the final sample.

Signal Background

NCQE NC non-QE CC Unrel.

Fraction of Sample 68% 26% 4% 2%

Flux 11% 10% 12% -

Cross sections - 18% 24% -

Primary γ production 15% 3% 9% -

Secondary γ production 13% 13% 7.6% -

Detector response 2.2% 2.2% 2.2% -

Oscillation Parameters - - 10% -

Total Systematic Error 23% 25% 31% 0.8%

one or multiple γ rays. Events with secondary γ rays typ-
ically have multiple γ rays and often have primary γ rays,
as well, so the detection efficiency is kept high even with
a significant change in the secondary γ ray production
probability.
The detector uncertainty includes contributions from

uncertainties in the SK energy scale, vertex resolution,
and selection efficiency. It is estimated by comparing
simulation and data from the linear electron accelerator
(LINAC) installed above SK [48]. The systematic un-
certainty due to the atmospheric oscillation parameters,
θ23 and |∆m2

32|, is estimated by varying the parameters
within their uncertainties from the T2K measurement of
these parameters [41].
There are two final systematic uncertainties that were

evaluated but have a negligible impact on the result. We
evaluated the potential non-uniformity of the selection
efficiency with respect to Q2 by changing the value of
the MC axial mass to distort the differential cross section.
This variation changes the final calculated cross section
by less than a percent. The beam-unrelated background
is estimated from the out-of-time events which have a
statistical error of 0.8%.

V. MEASURED CROSS SECTION

The NCQE cross section is measured by comparing the
NCQE cross section as calculated in recent theoretical
work [8] averaged over the unoscillated T2K flux with the
observed number of events after background subtraction:

〈σobs
ν,NCQE〉 =

Nobs −Nexp
bkg

Nexp −Nexp
bkg

〈σtheory
ν,NCQE〉, (1)

where 〈σobs
ν,NCQE〉 is the observed flux-averaged NCQE

cross section and 〈σtheory
ν,NCQE〉 = 2.01 × 10−38 cm2 is the
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FIG. 6. (color online) The T2K measurement of the flux-
averaged NCQE cross section, represented by a black point,
compared with the calculated cross section from [8]. The
dashed line shows the cross section versus neutrino energy,
the solid horizontal line shows the flux-averaged cross sec-
tion. The vertical error bar on the data represents the 68%
confidence interval on the measured cross section while the
horizontal error bar is placed at the central value from our
data and represents 68% of the flux at each side of the me-
dian energy. The solid gray histogram shows the unoscillated
T2K neutrino flux.

flux-averaged cross section from [8]. The NCQE cross
section includes all spectral states since even states with-
out primary γ ray emission are often observed with sec-
ondary γ rays. The total number of observed events
is Nobs (43), the total number of expected events is
Nexp (51.0), and Nexp

bkg (16.2) denotes the expected num-
ber of background events.
The obtained flux-averaged neutrino-oxygen NCQE

cross section is 1.55 × 10−38 cm2 at a median neutrino
flux energy of 630 MeV. The 68% confidence interval on
the cross section is (1.20, 2.26)× 10−38 cm2 and the 90%
confidence interval is (0.96, 2.78)× 10−38 cm2. They in-
clude both statistical and systematic errors and were cal-
culated using a Monte Carlo method to account for the
systematic errors that are correlated between different
samples. While the underlying systematic uncertainties
are symmetric and gaussian, the confidence interval is
asymmetric around the central value because some of
the uncertainties, primarily the production of secondary
γ-rays and to a lesser extent the neutrino flux, are corre-
lated between the background expectation and the signal
expectation which are found in the numerator and de-
nominator, respectively, of Eq. 1. Figure 6 shows our re-
sult compared with a theoretical calculation of the NCQE
cross section [8]. The vertical error bar for data shows
the 68% confidence interval on the data, and the hori-
zontal error bar represents 68% of the flux at each side of
the median energy. The measurement is consistent with



10

the recent theoretical calculation at the 68% confidence
level. Using the same Monte Carlo method used to cal-
culate the confidence intervals, we reject the background-
only hypothesis (NCQE cross section of 0) with a p-value
of 4 × 10−8, which corresponds to a one-sided z-score of
5.4σ.

VI. CONCLUSION

We have reported the first measurement of the cross
section of neutrino-oxygen NCQE interactions, measured
via the detection of nuclear deexcitation γ rays in the
Super-Kamiokande detector using the T2K narrow-band
neutrino beam. Our measurement is consistent with the
theoretical expectation at the 68% confidence level. Due
to the similar peak energies for T2K neutrinos and atmo-
spheric neutrinos, the present work will shed light on the
study of the atmospheric background events for low en-
ergy astrophysical phenomena in neutrino experiments.
In this paper we assume that oscillations do not modify
the total flux of neutrinos at SK, but oscillations to a
sterile neutrino (such as those considered in [49]) could

lower the overall rate of all NC events, including NCQE
events.
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