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Reconstructing Time-Dependent Dynamics
Philip Clemson, Gemma Lancaster and Aneta Stefanovska

Abstract—The usefulness of the information contained in
biomedical data relies heavily on the reliability and accuracy of
the methods used for its extraction. The conventional assumptions
of stationarity and autonomicity break down in the case of living
systems because they are thermodynamically open, and thus
constantly interacting with their environments. This leads to an
inherent time-variability and results in highly nonlinear, time-
dependent dynamics. The aim of signal analysis usually is to gain
insight into the behaviour of the system from which the signal
originated. Here, a range of signal analysis methods is presented
and applied to extract information about time-varying oscillatory
modes and their interactions. Methods are discussed for the
characterization of signals and their underlying non-autonomous
dynamics, including time-frequency analysis, decomposition, co-
herence analysis and dynamical Bayesian inference to study
interactions and coupling functions. They are illustrated by being
applied to cardiovascular and EEG data. The recent introduction
of chronotaxic systems provides a theoretical framework within
which dynamical systems can have amplitudes and frequencies
which are time-varying, yet remain stable, matching well the
characteristics of life. We demonstrate that, when applied in the
context of chronotaxic systems, the methods presented facilitate
the accurate extraction of the system dynamics over many scales
of time and space.

Index Terms—Biomedical signal analysis, time-frequency anal-
ysis, dynamical Bayesian inference, time-dependent dynamics,
wavelet bispectrum, coupling function, phase coherence, cardio-
vascular system, brain dynamics.

I. INTRODUCTION

Continuous technological advances allow the acquisition
of an increasing number of biomedical signal types. These
signals may arise from simple mechanical effects, such as the
movement of the thorax during breathing, electrical effects,
such as the synchronization of firing neurons in the brain,
as measured during an electroencephalogram (EEG), optical
effects, as utilised in near infra-red spectroscopy (NIRS) and
laser Doppler flowmetry (LDF), or from any other measurable
biological process. Improvements in the temporal resolution
of these techniques allows accurate recording of the time-
dependent dynamics inherent to all biomedical signals. Al-
though systems on a microscopic scale may initially appear to
be very complicated, there are cases when simple macroscopic
behaviour may still arise from these systems [1], [2]. Decom-
position of these macroscopic effects recorded by experimental
signals can now be considered within already well established
theoretical frameworks, based on dynamical systems which
are nonlinear, non-autonomous, and far from equilibrium, as
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has repeatedly been shown to be the case in living systems.
Information obtained from the analysis of these signals has
led to a greater understanding of fundamental physiology and
is also contributing to important advances in medicine. More
specifically, biological oscillations exhibiting a wide range of
characteristic frequencies have been observed in biomedical
data [3], spanning from very high frequencies, e.g. in EEG data
[4], to very low frequencies, e.g. in cerebral hemodynamics
[5], [6], microvascular blood flow [7], intracellular calcium
levels [8], and individual mitochondria [9].

Although observed in many living systems [10], the im-
portance of biological oscillators, and their interactions, is
often overlooked, despite the fact that the extraction of their
dynamics at different time scales could bring new insights and
understanding of the function of living systems. In fact, these
oscillations have been shown to be of great importance in
many systems, such as cellular signalling [11], [12], cellular
energy metabolism [13] and neural networks [14].

The coupled nonlinear oscillators approach is marked by
two major milestones: the introduction of the entrainment of
collective oscillators by Winfree [15] and its analysis using
the phase dynamics approach of Kuramoto [16], [17]. The
identification of the underlying mechanisms of some of these
oscillations allows their use in the characterization of different
physiological states. Observing changes in these oscillations
and their interactions then yields valuable information about
the underlying system, for example during epileptic seizures
[18], or in skin microvascular blood flow, where changes in
oscillatory behaviour have been demonstrated in pathological
states with impaired microvasculature, such as hypertension
[19], diabetes [20] and skin melanoma [21]. Not only do these
changes in the dynamics of biological oscillators provide im-
portant physiological insights, they can also be directly utilised
in medicine. Potential applications include the identification of
the depth of anaesthesia [22], [23], monitoring of intracranial
pressure [24], and detection of impaired cerebrovascular reac-
tivity after acute traumatic brain injury [25].

Frequency analysis of biomedical signals first became feasi-
ble with the widespread availability of computational resources
combined with fast Fourier transforms (FFTs). In this way, bi-
ological oscillations were observed on many scales. However,
whilst very useful in the first instance, assumptions made in
the application of frequency domain analysis techniques are
often not applicable when considering signals arising from
living systems. The Fourier transform assumes stationarity of
the signal, i.e. that the frequency content does not change
over time. In living systems this is never the case due to the
openness of the system, resulting in time-varying amplitudes
and frequencies of oscillations. The introduction of time-
frequency analysis techniques provided an optimal solution to
this problem, allowing full characterisation of the underlying
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dynamics of an oscillatory biological system in time, with
no prior assumptions. Now established as almost mandatory
in biomedical signal analysis [26], time-frequency analysis
methods are continually being developed for the investigation
of biological systems in terms of their oscillatory components
and the nature of their interactions.

Analysis based on time-frequency methods is often like
peeling an onion. Fig. 1 shows how different classes of
methods can be used at each level of analysis to bring new in-
formation. The initial time-frequency representation of a signal
is ideal for decoding the complexity caused by combinations of
nonstationary oscillations at different frequencies. These can
be extracted by decomposition, which form the next class of
methods. After the individual components of the signal have
been separated they can be characterised by another set of
methods, giving general information about the underlying sys-
tem (e.g. the frequency range of the components, whether the
components exchange information or are coherent). Another
set of methods allow the direct physical interpretation of a
modelled system from the data observed, such as whether its
oscillations and interactions are stable or unstable.

Ti
m

e-
fre

qu
en

cy
 an

alysis

D
ec

om
po

sit
ion

Ch
ar

ac
te

ris
ationIn

te
rp

re
ta

tio
n

pretation
Inter-

M
et

ho
ds

Complexity

Phase and amplitude

and interactions
extraction

Dynamics

Challenges

Fig. 1. An illustration showing the challenges related to each level of analysis
and the corresponding methods used to tackle them. For biomedical time
series, the challenge of the signal’s complexity must first be overcome with
time-frequency analysis. This allows the identification and extraction of the
phase and amplitude of individual oscillatory components using decompo-
sition methods. Information from these modes can be used to characterise
the dynamics of the modes and detect how they interact with each other.
Finally, the properties of an explicit physical model of the dynamics provide
an interpretation of the system that generated the signal.

Depending on the nature of the signal, not all of these levels
of analysis may be available. For example, if the system has
dominant stochastic properties, with a homogeneous ampli-
tude distribution in the time-frequency representation, then it
cannot be decomposed into separate oscillatory components,
excluding most of the methods that would be used for the
characterisation or interpretation as well. Similarly, if the
system is strongly deterministic and its components could be
extracted from a signal, but the signal was perhaps too short
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Fig. 2. A workflow chart of the methods discussed in this paper, organised
into the levels of analysis illustrated in Fig. 1. Some methods are able to
extract information directly from the original time series data. However, the
methods further down the chart which are used to characterise or interpret the
underlying system often depend on the outcome of time-frequency analysis
and decomposition.

relative to the inherent time scales, then there is no way any
meaningful interpretation can be made either.

Fig. 2 provides an overview of the methods discussed in this
paper within the context of this framework. It can be seen that
while some methods can be applied to the time series directly,
others rely on either one or two additional steps. However,
even for those that do not depend on prior analysis, there
still exists a great deal of overlap between the information
provided by each method. For example, if the initial time-
frequency analysis shows only random noise fluctuations then
the corresponding power spectrum should have a smooth
continuous distribution. Similarly, the characterisation of the
dynamics and interactions should match the information from
the methods used to determine the actual functional relations
(such as the direction of coupling between two modes).

II. RELATION TO DYNAMICAL SYSTEMS THEORY

Living systems require special treatment when their dynam-
ics is analysed. This comes from the features discussed in the
following sections.

A. Nonlinearity

If one is given all of the information about a linear system at
one point in time it is trivial to find its state at any other point
in time, thus making analytical solutions possible. Essentially,
this means that in a linear model it is possible to understand
all of the properties of the system without actually observing
its dynamics. In contrast, nonlinear systems such as living
systems cannot be analysed in this way. While some of their
properties can still be derived analytically, it is not possible to
know what trajectory a nonlinear system will take without the
aid of computer simulations or by observing the dynamics
of real systems. It is also worth noting that this is not a



3

question of the complexity of the system; a linear system
can be incredibly complex or a nonlinear system can be very
simple, but these fundamental rules still apply to their analysis.

The effects of nonlinearity can be quite profound. Not
only does it cause mathematical headaches, but it results in
phenomena such as hysteresis. This describes the effect where
the trajectory that a system takes from one state to another is
different from the trajectory it takes in the reverse direction
between the same two states, making the arrow of time
important in the analysis of nonlinear systems. Nonlinearity
also causes the effect of harmonics which are modes that can
be detected when nonlinear oscillations are analysed using
methods based on linear systems.

B. Openness

The properties described above can in fact be thought of
as manifestations of a single feature of living systems: the
fact that they are open and exchange energy and matter with
their environment. The main theories of dynamical systems
typically assume that the system is closed, meaning that it is
autonomous and completely described by its state in space. In
contrast, living systems are open and non-autonomous, which
means they are described by both their state in space and
time. Consequently, the inclusion of time-dependent variables
is vitally important in the analysis of living systems.

Note that the statistical properties of closed systems can still
vary with time and the dynamics of such systems is said to
be nonstationary. Complex nonstationary dynamics in closed
systems is usually modelled by chaotic behaviour, where small
perturbations in a system’s trajectory grow exponentially over
time [27]. Complex dynamics that do not conform to the
chaotic approach are often instead modelled by stochastic
systems, where the nonstationarity arises from the influence
of external random variables. Both of these approaches still
fit into the framework of autonomous systems and as such
time-dependent variables are traditionally not included in the
analysis. However, due to the fact that living systems are
not only nonstationary but non-autonomous, neither of these
approaches can be applied [28].

C. Chronotaxic systems

Recently, a new class of systems has been developed which
more closely captures the properties of living systems. The
new model follows from the theory of self-sustained limit
cycle oscillators, which have been used to describe oscillations
with stable amplitude dynamics [29]. Named chronotaxic
systems, they now add to this theory by combining it with the
theory of non-autonomous systems [30] to provide a mecha-
nism for stable oscillations with time-varying frequencies [31],
[32]. A new framework of analysis has since been developed
to detect such chronotaxic behaviour [33], [34].

To demonstrate the analytical framework discussed in this
paper and its application to signals from living systems the
following time series from a chronotaxic phase oscillator
system are used,

x(t) = cos(αx,1t) + cos(αx,2t) + cos(αx,3t) + η1(t), (1)

where αx,i are the phases of three chronotaxic modes and
η1(t) is a 1/f noise signal. In addition, a second time series
p(t) containing the external modes which drive the x modes
is defined as,

p(t) = cos(αp,1t) + cos(αp,2t) + cos(αp,3t) + η2(t), (2)

where αp,i are the phases of the modes driving the system and
η2(t) is a separate 1/f noise signal. The chronotaxic modes
were generated using the equations,{

α̇p = ω0(t) ,
α̇x = εω0(t) sin(αx − αp) + ξ(t) ,

(3)

where ε is the coupling strength from the external variable p
to the observed variable x. The function ξ(t) is white Gaussian
noise with standard deviation η =

√
2E, where ⟨ξ(t)⟩ = 0,

⟨ξ(t)ξ(τ)⟩ = δ(t− τ)E. The frequency of αp is given as

ω0(t) = ω1 [1 +A sin(ω2t)] . (4)

The modes were given the parameters [ω1 = 2π, ω2 = 0.016π,
A = 1] for mode 1, [ω1 = 0.3π, ω2 = 0.005π, A = 0.15] for
mode 2 and [ω1 = 0.05π, ω2 = 0.001π, A = 0.025] for mode
3. In each case the mode was made chronotaxic by setting the
coupling strength |ε| = 1.5.

III. TIME-FREQUENCY ANALYSIS

Complexity is the first challenge that is encountered when
dealing with biomedical signals. Not only do these signals
often comprise of a mixture of oscillations at different frequen-
cies, but these oscillations each have their own time-dependent
dynamics. In the time domain, these oscillations cannot be
easily separated. We must therefore transform the signal to
the time-frequency domain.

A. Continuous transforms

The Short-time Fourier transform (STFT) (also known as
the windowed Fourier transform), was developed as a solution
to the shortcomings of the Fourier transform when dealing
with nonstationary signals [35]. While the Fourier transform
provides a representation of a signal in the frequency domain,
the STFT transforms the data to the time-frequency domain.

The STFT is computed by calculating the Fourier transform
of a sliding window which moves over the signal. The Fourier
spectrum of the window is assigned to the central point. This
process is defined mathematically as

STFT (ω̃, t) =

∫ L/2

−L/2

g(u− t)f(u)e−
2πiω̃u

l du, (5)

where f(u) is a signal of length L and g(u) is a rectangular
function of length l that is zero outside u, −l/2 ≤ u ≤ l/2.
The variable ω̃ is directly related to the frequency ω by ω =
ω̃
l∆t , while t is the time.

One immediate problem with this form of the STFT is
time-localisation. By using a rectangular window function
this means that data at the edges of the window carries the
same weight as the data at the centre. Ideally only the data
at the centre of the window would contribute to the Fourier
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Fig. 3. Time-frequency analysis of the time series (1). STFTs of this time series are shown in (a) and (b) for a 25 s and 250 s window respectively. Continuous
Morlet wavelet transforms of the same time series are shown in (c) and (d) where the central frequencies f0 = 1 and f0 = 5 were used respectively. White
spaces indicate the limit of the cone of influence where the transform is not defined.

transform. However, in Fourier transforms the frequency res-
olution is proportional to the length of the data. Therefore,
reducing the window size to improve time-localisation also
reduces the frequency resolution and makes it more difficult
to separate oscillations of different frequencies in the time-
frequency domain. This limitation comes from the uncertainty
principle: one cannot determine the exact frequency of an
oscillation at an exact time. The window size also determines
the lowest possible frequency that can be detected, so that
the amplitude of oscillations that have frequencies below this
value are merged together into the same Fourier coefficient
at ω = 0. A quick fix for this problem is to use a Gaus-
sian window, which provides optimal time resolution [35].
However, this still only provides the optimal resolution for
the lowest observable frequencies. Higher frequencies can still
be observed in smaller windows and the frequency resolution
relative to the frequency of these oscillations is much better.
Other solutions therefore tried to make an adaptive transform
that took the frequency of the oscillation into account [36].
One such idea was to use windows of different sizes to
compute each frequency in the Fourier spectrum, resulting in
the wavelet transform [37], [38].

The wavelets that form the basis of the wavelet transform
are distinct from the Fourier transform in that they are defined
in time as well as frequency. The continuous wavelet transform
(CWT) given by

WT (s, t) =

∫ L/2

−L/2

Ψ(s, u− t)f(u)du, (6)

where Ψ(s, t) is the mother wavelet, which defines all wavelets

by being scaled according to the scale s to change its frequency
distribution and time-shifted according to t. Instead of com-
puting a “stand-alone transform” for each time window, the
wavelet transform performs a different calculation depending
on both time and frequency (or more specifically, s). This
makes it possible to define an adaptive window size that
is small for high frequencies and large for low frequencies.
The time resolution at high frequencies is therefore no longer
limited by the condition of needing a large window to detect
low frequencies.

The Morlet wavelet provides a basis which is closest to the
Fourier basis and is defined as [39],

Ψ(s, t) =
1
4
√
π

(
e

2πiωot
s − e−

2πω2
c

2

)
e−

t2

2s2 , (7)

where s = 1/ω. The parameter ωc is the central frequency,
which determines the time-frequency resolution of the wavelet;
high values (ωc > 2) give good frequency but poor time
resolution while low values (ωc < 1) give good time but
poor frequency resolution. At very small values (ωc < 0.2)
the wavelet transform becomes meaningless as the wavelets
become smooth functions with no defined cycles, while at very
high values relative to the length of the time series the wavelet
transform has a distribution similar to the Fourier transform.
A more in depth review on the technical aspects of the wavelet
transform can be found in Ref. [40].

Fig. 3 shows a comparison of the STFT with the CWT
for the time series (1). Neither transform is defined for all
times and frequencies due to either not being able to observe
a full cycle in a given window (resulting in the white space
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Fig. 4. Decomposition of the time series defined in (1). The signal reconstructed from the first 19 IMFs from EEMD is shown by the red line in (a),
while the reconstruction from NMD is shown by the red line in (b). In both plots the black line corresponds to the original signal. Plots (c) and (d) show
the amplitude of the modes transformed to the time-frequency domain using the Hilbert transform for EEMD and NMD respectively. The Hilbert transform
generates the analytic signal of a sinusoidal oscillation, which can then be used to calculate its instantaneous frequency. This offers a direct comparison with
the time-frequency analysis shown in Fig. 3.

below 0.04 Hz in (a)) or the window running over the edge
of the time series. This region defines the cone of influence
for the times where oscillations of certain frequencies can
be observed. However, the limitations of the time-frequency
resolution are much more apparent in the STFT. In (a) the short
windows allow the highest-frequency mode to be distinguished
but the second mode is blurred and the third is not visible
due to the low-frequency limit. In (b) the two lower-frequency
modes are resolved but the highest-frequency mode fades into
the background as its frequency variability cannot be tracked
by the large window. In contrast, the adaptive resolution of
the CWT in (c) makes it possible to resolve all 3 components
simultaneously. In (d) the use of a higher central frequency
improves the frequency resolution of each of the components
while still allowing the variation in these frequencies to be
tracked.

IV. DECOMPOSITION

The Morlet wavelet transform provides the best compromise
when dealing with signals in the time-frequency domain and
can be used to track time-varying oscillations. It can be
interpreted in the same way as the STFT, but while this
compatibility is an advantage it also means that the wavelet
transform inherits the same problem of generating harmonics
for nonlinear oscillations since it is still a linear method.

Further work is therefore needed to deal with the problem of
decomposing and extracting individual nonlinear modes. One
way to do this is by using Empirical Mode Decomposition
(EMD) [41]. In this method the components are extracted by
marking all of the peaks and troughs in a time series and
interpolating between these two sets of points using splines.
The average of these two ‘margins’ is used to define the
trend of the time series, which contains dynamics relating to
all but the highest-frequency component in the time series.

Subtracting this trend leaves the highest-frequency component.
If there are still trends the process is repeated until

Np +Nt −Nz = 0 or ± 1, (8)

where Np, Nt and Nz are the number of peaks, troughs and
zero-crossings respectively. Once this condition is met the
extracted component is subtracted from the original time series
and the method continues by attempting to extract the next
highest-frequency component.

One of the problems with EMD is mode mixing, which
happens when the amplitude of a mode falls to zero. The result
is that the next mode replaces the one being extracted, which
can result in errors if the difference in amplitudes is large.
This problem has been tackled by repeating the procedure on
the same time series with different iterations of additive noise
and taking the average of the result, a technique known as
ensemble EMD (EEMD) [42]. However, the iterative nature of
EMD is still susceptible to error propagation, causing small
errors in the extraction of high-frequency components to affect
the extraction of the lower-frequency components.

An alternative to EMD is to use information from the time-
frequency domain to decompose the time series. Specifically,
identifying all of the harmonics of a nonlinear mode in the
time-frequency domain makes it possible to separate and re-
construct this mode in the time domain. This can be done in the
wavelet transform by making use of the time-dependent phase
information of the oscillations, which is given by ϕ(s, t) =
arg[Wt(s, t)]. Assuming the waveform of the oscillation keeps
the same shape, the phases of harmonics will share the same
dynamics. This means that two harmonics at scales s1 and s2
will have the relation ϕ(s1, t) = (s1/s2)ϕ(s2, t).

Therefore, despite the fact that the wavelet transform is a
linear transformation, methods have now been developed that
use it to find and extract nonlinear oscillations [43]. Given that
the noise fluctuations for the harmonics are different from the
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noise fluctuations in the fundamental mode, the real dynamics
of the mode can be more easily separated from the noise this
way. The most recent method, Nonlinear Mode Decomposition
(NMD), uses information from the harmonics to improve the
extraction of the mode as a whole [44]. Specifically, the
method is based on ridge extraction where the highest peak
over a defined frequency range in the wavelet transform is
traced over time. This line can then be used to extract the
oscillation at the defined times and frequencies. The algorithm
then looks at the phase and amplitude variations of several
oscillations together in order to distinguish harmonics (which
share the same variations) from genuine independent modes.

Fig. 4 compares EEMD with NMD in the analysis of the
example time series x(t). While the oscillatory modes are
observable in both decompositions, NMD is more selective and
does not extract modes relating to the 1/f noise. The continuous
noise distribution means that the modes calculated using EMD
suffer from mixing, which means it is not possible to isolate
the three main oscillatory modes. Instead, most of the EMD
modes are associated with high-frequency components which
try to fit the original time series as closely as possible and as
such do not have much physical meaning.

V. CHARACTERISATION

After transforming a signal to the time-frequency domain
and/or extracting its oscillatory modes, the next step is to
use this representation to characterise the dynamics of the
system. This means connecting what is seen in the signal with
properties that can be related to a physical system.

A. Power

The power spectrum of a time series is defined in the fre-
quency domain as the integral of the square of the amplitude.
For the Fourier transform this is a straightforward process
since the frequency scale is linear, causing the square of the
Fourier transform to be directly proportional to the power
spectrum. Similarly, the wavelet power spectrum can be found
using

PW (ω′, t) =

∫ ω′+ dω
2

ω′− dω
2

|WT (ω, t)|2 dω. (9)

However, in the case of the wavelet transform the frequency
scale is logarithmic, which means that the components at
higher frequencies correspond to larger frequency intervals.
Obtaining the power spectrum from the Morlet wavelet trans-
form is also not as simple because the transform is continuous.
This means that although the wavelet amplitude is analogous
to the Fourier amplitude, for finite data the integration of the
squared amplitude to find the power is always an estimate (a
continuous curve cannot be integrated discretely).

Taking the average of PW in time provides a good starting
point in the analysis of any time series data. Specifically, it is
used to identify the frequency range of the main oscillatory
components. Once this is known, the variation in the power
of each individual component over time can be found using
one of the two methods shown in Fig. 5(b). The first method
involves summing over the wavelet transform in the frequency

intervals defined in the time-averaged power spectrum for
each point in time (black line). The second method is to
instead follow the peak in the power spectrum for the given
frequency interval in time (grey line), which is known as ridge
extraction [45]. As can be seen, the two methods show similar
fluctuations caused by the noise in the system although the
second method is less susceptible to these variations.

B. Bispectrum

The bispectrum is a frequency-frequency domain method
that arises from high-order statistics [46]. Specifically, the
bispectrum is a third order statistic, in the same sense that the
skewness of a data series is of the third order, which comes
after the mean (first order) and variance (second order) [47].
In this case the bispectrum is the next order measure after the
frequency domain spectrum of a time series.

The bispectrum provides information about the quadratic
properties of the time series, which makes it ideal for in-
vestigating nonlinear couplings between oscillations. However,
the frequency-frequency domain is still unable to track time-
variability. Therefore, similar to the need for time-frequency
analysis, a need for time-frequency-frequency analysis lead
to a proposal of wavelet-based bispectral analysis [48]. The
wavelet bispectrum is given by,

BW (s1, s2) =

∫
L

WT (s1, t)WT (s2, t)W
∗
T (s3, t)dt, (10)

where s3 = 1/( 1
s1

+ 1
s2
). It is also possible to define

an instantaneous bispectrum with amplitude A(s1, s2, t) =
|WT (s1, t)WT (s2, t)W

∗
T (s3, t)| and phase ϕ(s1, s2, t) =

ϕ(s1, t) + ϕ(s2, t)− ϕ(s3, t).
Couplings between two oscillations at s1 and s2 can be

identified by peaks in the amplitude of the bispectrum or by
observing the dynamics of the phase ϕ(s1, s2, t), where if the
phase is constant a coupling exists [48]. In the case of the
amplitude though, the value is also dependent on the amplitude
of the oscillations in the wavelet transform. To remove this
effect a normalised version can be defined as

b(s1, s2) =
|BW (s1, s2)|√∫

L
|WT (s1, t)WT (s2, t)|2dt

∫
L
|WT (s3, t)|2dt

,

(11)
where b(s1, s2) is known as the bicoherence and takes values
between 0 and 1. However, even with this normalisation it
is important to note that the bispectrum / bicoherence will
still be non-zero for Gaussian white noise. These random
peaks are biased towards lower frequencies, with a chi-squared
distribution [49], [50], [51].

An additional complication comes from dealing with the
scale s3, which causes the bispectrum to become meaningless
as both f1 = 1/s1 and f2 = 1/s2 approach the Nyquist
frequency fs/2. This is because f3 starts to take amplitude and
phase information at frequencies which are outside the observ-
able range. Couplings at the highest frequencies are therefore
not detectable, meaning an ‘effective’ Nyquist frequency for
the bispectrum is defined as the line from f1 = fs/4,
f2 = fs/4 to f1 = fs/2, f2 = 0 (and vice versa for when f1
and f2 are switched).
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not grow over time.

One other disadvantage is that wherever the difference in
the frequencies of a pair of oscillations is large, the adaptive
frequency resolution of the wavelet transform means that the
combined frequency fHIGH + fLOW ≈ fHIGH, making these
couplings undetectable. On the other hand, the logarithmic
frequency scale of the wavelet transform means that couplings
between pairs of low frequencies can be identified.

The same method can also be used to detect couplings
between components from different time series. The cross-
bispectrum can be defined in several ways [48], [52], [53]
using different combinations of the three wavelet components
in (10), i.e.

BW
122(s1, s2) =

∫
L

W1(s1, n)W2(s2, n)W
∗
2 (s3, n)dn, (12)

where W1 and W2 are the wavelet transforms of the cor-
responding time series. The wavelet cross-bicoherence can
similarly be defined as [54]:

bW122(s1, s2) =
|BW

122(s1, s2)|√∫
L
|W2(s1, t)W2(s2, t)|2dt

∫
L
|W1(s3, t)|2dt

.

(13)
By comparing the cross-bispectra from different combinations
it is also possible to deduce some information about the
direction of coupling between the oscillations in two separate
time series.

Fig. 6 shows the bispectral analysis of the time series x(t)
and p(t). The time-averaged bicoherence shows interactions
between the modes but also across a much wider range of
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Fig. 7. Wavelet phase coherence between the time series x(t) and p(t). In (a)
significant phase coherence is shown when the coherence (black line) is greater
than the 95th percentile of 100 pairs of IAAFT surrogates (grey line). The
windowed phase coherence is shown in (b), which reveals the time-variability
of the modes but at the cost of losing information about lower frequencies.

frequencies. These interactions appear due to the 1/f noise
present in the time series, which makes the time-averaged
bispectrum difficult to interpret. However, when the phase of
a coupled frequency pair is compared in time with that of two
unrelated frequencies it is clear that the phase corresponding
to the coupled frequencies is locked and stays close to its
original value.

C. Coherence

Waves can be coherent in space and oscillations can be
coherent in time. Generally, coherence in time describes all
properties of correlation between physical quantities of a
single oscillation, or between several oscillations. Like power,
bispectral amplitude and phase, coherence is defined for
specific frequencies. If at a certain frequency the changes
in amplitude and phase of an oscillatory component are the
same for the same oscillation observed in different time series,
then they are said to be coherent at that frequency. While
this is the general definition of coherence, it is also possible
to define separately amplitude and phase coherence, which
consider only matching amplitude or phase dynamics of the
components respectively.

A phenomenon related to coherence is synchronization.
However, while oscillations can be coherent without direct
coupling, synchronization is a property of the underlying
system which results from a coupling between two oscillations.
This phenomena is not as trivial as one might expect, with
multiple ways to both define and detect synchronization [55].
Specifically, oscillators can be phase synchronized, phase
and amplitude synchronized or Lyapunov synchronized (also
known as generalised synchronization) and also have n : m
relations where there are n cycles of one oscillator in m cycles
of the other. Phase coherent oscillations can result in 1:1 phase
synchronization.

In the case of biomedical signals, measures of phase
synchronization are often used as a simple way to observe
interactions between two oscillations. Methods such as the

phase synchronization index typically rely on the detection of
phase locking, where the phase shift between two oscillations
remains constant [56]. However, if only 1:1 synchronization
between two signals is of interest then it is more straightfor-
ward to consider the phase coherence instead, which is defined
as [57],

Π(s) =
1

N

∣∣∣∣∣
N∑

n=1

ei(ϕ1(s,tn)−ϕ2(s,tn))

∣∣∣∣∣ , (14)

where ϕ1(s, tn)−ϕ2(s, tn) is the phase difference between the
oscillatory components of the same frequency from two signals
at time tn. If the oscillations remain phase locked for all time
(i.e. the oscillations are coherent) then Π(s) = 1, whereas if
Π(s) = 0 there is no tendency to preserve a particular phase
difference. A more general definition is also given by [58],

Π =

{[
1

2

N∑
n=1

w1(tn)w2 ∗ (tn)

][
1

2

N∑
n=1

w1(tn) ∗ w2(tn)

]}1/2

(15)
where wi(t) represents any time-frequency representation with
complex values corresponding to the analytic signals of the
oscillations. In this paper Π will represent the phase coherence
of the power-normalised wavelet transform, which is identical
to the first definition shown above.

The phase coherence can be calculated systematically for all
wavelet scales s to provide a graph of coherence vs. frequency
[59], [60], [61]. However, even in the phase coherence of two
noise signals there is some level of coherence. This means that
the coherence rarely approaches 0 and significant coherence
is usually close to 1. Additionally, this baseline coherence is
not constant for all scales but increases when moving lower
in frequency to the point where at the lowest observable
frequencies Π(s) ≈ 1 even if the dynamics is unrelated.

This bias towards lower frequencies can be accounted for by
using surrogates of the signals [62], [63]. These are designed
to preserve all of the properties of the original signals apart
from the property relating to the hypothesis that is being tested.
In the case of phase coherence, the null hypothesis is that the
phases in the signals are independent for all frequencies, which
means that it is the time-phase information that needs to be
randomised in the surrogates. In this case, iterative amplitude
adjusted Fourier transform (IAAFT) surrogates fit this null
hypothesis [64]. The phase coherence between these surrogates
at each frequency can then be used as a baseline above which
the coherence is said to be significant.

In order to track time-variations in the phase coherence,
the calculation can be performed over time by using a sliding
window along each scale. The time-localized phase coherence
is able to avoid the issue of frequency bias since the windows
can be scaled appropriately with frequency so that the window
will always contain the same number of cycles [58]. However,
this successive windowing of the signals can result in a loss
of low-frequency information. Firstly, preprocessing is often
required to detrend the data and remove the effect of high
harmonics of oscillations that are too slow to be observed,
usually resulting in the loss of data at the edges. The cone of
influence from the continuous wavelet transform also causes
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a significant reduction in the part of the time series that is
observable at low frequencies. Finally, to observe significant
coherence at least 5 cycles need to be observed [36], which
further raises the low-frequency limit of the analysis.

Fig. 7 shows the phase coherence of the example time series
x(t) and p(t). It can be seen that the coherence is only greater
than the surrogate level at the frequencies corresponding to the
common oscillatory modes. Note however that the surrogate
level is inversely proportional to the frequency, which means
it is more difficult to detect significant coherence in low-
frequency oscillations. The windowed wavelet phase coher-
ence also reveals the shared time-variability of these modes.

D. Information and entropy

Wavelets are not the only available tool for the analysis
of interactions in complex systems. Another way to detect
couplings is by using statistics based on information theory,
such as transfer entropy [65] and Granger causality [66], [67].
In the latter case, a coupling is said to exist if one system gives
information about the state of the other system at some point
in the future [48], [62], [68], [69]. Starting with the probability
distributions of the two time series, p(x1(t)) and p(x2(t)), the
Shannon entropy for each can be defined as

H(xi) = −
∑

p(xi) log p(xi), (16)

which gives a measure of the uncertainty or ‘randomness’ in
xi. The joint entropy can also be defined as

H(xi, xj) = −
∑∑

p(xi, xj) log p(xi, xj), (17)

where p(xi, xj) is the 2-dimensional joint probability distri-
bution. The amount of common information contained in xi

and xj , which is analogous to the inverse of the joint entropy,
is given by the mutual information:

I(xi;xj) = H(xi) +H(xj)−H(xi, xj). (18)

Finally, the conditional entropy is defined as

H(xi|xj) = −
∑∑

p(xi, xj) log p(xj |xi), (19)

where p(xj |xi) is the probability distribution for xj if the
value for xi is given. The dependence between xi and xj

without the possible influence of another variable x3 can then
be defined using the conditional mutual information (CMI),

I(x1;x2|x3) = H(x1|x3) +H(x2|x3)−H(x1, x2|x3). (20)

Consider now two time series x(t) and y(t). The information
flow from x to y is given by I(x; yd|y), where yd is the
delayed time series y(t + τ) with l∆t = τ . This quantity
excludes information from both the history of y(t) on itself
and the common history of x(t) and y(t) [48]. Similarly,
the information flow from y to x is given by I(x; yd|y).
Therefore, the strength of coupling from one time series to
another should be indicated in the amount of information flow
in the corresponding direction.

In reality, there is always going to be some baseline mutual
information contained within even two completely unrelated
time series. This is why the method requires the use of
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Fig. 8. Information analysis of the time series x(t) and p(t). The solid black
lines show the average CMI calculated for delays ranging from 0.05 s to 5 s.
The grey lines show the 75th percentiles of the CMI calculated between 100
pairs of IAAFT surrogates. The information transfer in the direction p → x is
shown in (a), while (b) shows the information transfer in the direction x → p.

surrogate data to determine whether there is a significant
amount of information being transferred either from x1 → x2

or x2 → x1. It is also dependent on estimates of the probability
distributions of the time series, which require careful consid-
eration. However, the main advantage of this approach is that
it is not restricted by frequencies; the CMI gives a measure
of the information transfer between two arbitrary sets of data,
rather than being localised in any one domain. It is also worth
noting that Granger causality can be calculated using other
methods that do not rely on CMI [70].

An advantage of information and entropy based measures
is that they are dimensionless, meaning that they can be
applied to any type of signal. In particular, they can be applied
both to the raw signal but also to the extracted phases of
the oscillations in order to determine specific phase-phase
interactions [48], [68].

Fig. 8 shows the CMI of the time series defined in (1)
and (2). It can be seen that there is much more significant
information transfer above the surrogate level for I(x; pd|p)
as opposed to I(p;xd|x), which suggests a coupling from
the modes in p(t) to the modes in x(t). However, it is also
worth noting the times when there appears to be no transer
of information. This can be explained by the fact that the
chronotaxic modes are very close to being phase synchronized
with the driving modes in p. When they do become fully
synchronized there is no transfer of information, which means
that even if there is a coupling it is not possible to detect one.

VI. INTERPRETATION

The information learned from the characterisation of the
signals can only go so far. For example, chaotic, stochastic and
non-autonomous systems can all generate similar continuous
power spectra [28]. The bispectral couplings also provide basic
information about the direction and strength of the coupling
but little information about the form of the function, while
phase coherence does not provide any information about the
means by which the signals become coherent. To obtain more
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Fig. 9. Dynamical Bayesian inference analysis of the phases extracted using NMD from the time series x(t) and p(t). Plots (a), (b) and (c) show the coupling
functions for the pairs of phases extracted from each mode. The inferred value of ω0(t) is shown in (d), (f) and (h) by the solid black line, while the dotted
line is the actual value. Plots (e), (g) and (i) show the direction of coupling calculated by taking the ratio of the amplitudes for the terms dependent on the
other phase for each coupling function. D > 0 for a coupling in the direction x → p and D < 0 for a coupling in the direction p → x. The model parameters
were inferred using a 20 s moving window with 50% overlap for mode 1, a 150 s window with 75% overlap for mode 2 and a 500 s window with 90%
overlap for mode 3. In each case the propagation constant had the value p = 0.2

information it is necessary to infer the properties of a physical
model of the system based on the observed dynamics.

A. Phase oscillator model

Living systems are characterised by a multitude of oscilla-
tions over a broad range of timescales. However, the real com-
plexity arises from the interactions between these oscillations,
and there have been many attempts to model this accurately
[3]. The simplest models of coupled oscillators focus purely
on the changes that occur in an oscillator’s phase over time
and neglect any amplitude variations. This simplification is
justified in models of the heart (or similar oscillators with all-
or-nothing responses), because it is only changes in the timing
of the periodic features that carry significance. Even when
a system does vary in amplitude, many oscillators can still
remain close to an attracting limit cycle, which again causes
these variations to be negligible.

An example of a phase oscillator model is given by dϕ/dt =
ω, which describes a phase increasing at a rate of ω, which
is the natural frequency of the oscillator. A model of two
interacting oscillators is given by

dϕ1

dt
= ω1 + F1(ϕ1, ϕ2), (21)

dϕ2

dt
= ω2 + F2(ϕ1, ϕ2),

where F1(ϕ1, ϕ2) and F2(ϕ1, ϕ2) are coupling functions which
allow the dynamics of one oscillator to be dependent on the
other. Such coupling functions are expected to be periodic on

the phases ϕ1 and ϕ2, which means that they can be modelled
by a Fourier series [71],

F1,2(ϕ1, ϕ2) =
∑
l,m

[
a1,2(l,m) cos(mϕ1 + lϕ2) (22)

+b1,2(l,m) sin(lϕ1 +mϕ2)
]
, (23)

where a1,2(l,m) and b1,2(l,m) are the parameters which describe
the function. By inferring these parameters from the observed
dynamics of the system it is possible to gain an in-depth
understanding of the oscillations, such as whether they exhibit
synchronization, or how they respond to perturbations.

B. Dynamical Bayesian inference

A problem with the model shown above is that the pa-
rameters are stationary. This makes it more difficult for this
model to reveal information about the coupling functions in
non-autonomous systems, which are expected to be time-
dependent. However, there is no straightforward way to apply a
moving time window because windowing means that a smaller
data series goes into the algorithm used to estimate of the
couplings, increasing the uncertainty.

The Bayesian theorem offers a solution to this windowing
problem. When applied to inverse problems where one would
like to infer parameters related to the generation of a data set
[72], [73], [74], [75], [76] it is known as dynamical Bayesian
inference. The theorem is summarised in

P (M|X ) =
P (X|M)Ppr(M)

P (X )
, (24)
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where P (X|M) is the conditional probability of observing the
data X given the hypothesised parameters M. Ppr(M) is the
probability of M before observing the data X and

P (X ) =

∫
P (X|M)Ppr(M)dM (25)

is the marginal probability of X . P (M|X ) is known as the
posterior probability – the probability that the hypothesised
parameters are correct given X and the prior probability
Ppr(M).

The most likely combination of values for the parameters
for a single window of data is inferred by locating the
stationary point in the negative-log likelihood function, known
as maximum likelihood estimation. In this case the likelihood
function is specified for the phases of two systems [75] defined
by the following stochastic differential equations,

dϕ1,2

dt
= ω1,2 + F1,2(ϕ1,2) +G1,2(ϕ1, ϕ2) + ξ1,2(t), (26)

where F1,2(ϕ1,2) and G1,2(ϕ1, ϕ2) are coupling functions
which, as in the previous methods, are modelled using a
Fourier basis. The parameters ck for this basis are eventually
inferred in a covariance matrix denoted Ξ. By making use of
Bayes’ theorem, the posterior covariance matrix for the previ-
ous window can exploit information from the prior covariance
matrix Ξprior for the current window. Hence, information is
allowed to propagate between windows, enabling the inferred
parameters to become more accurate with time [75].

However, the inference only improves if the parameters do
not vary in time. To account for changes in the values of
the parameters, the prior can take the form of a convolution
between the posterior of the previous window and a diffusion
matrix which describes the change in ck [75]. The standard
deviation corresponding to the diffusion of the parameters is
assumed to be a known fraction of the parameters themselves,
σk = pck, where p is known as the propagation constant.
This modification allows the method to track the change in
the couplings over time.

A tutorial for the implementation of this Bayesian-based
approach is provided in [77], which includes a Matlab toolbox.

Fig. 9 shows the method applied to the extracted phases of
the example time series x(t) and p(t). The coupling functions
for the modes in x(t) have a much higher amplitude than the
modes in p(t), which suggests a strong coupling term such
as the one present in the chronotaxic modes. The method
also reconstructs the time-variability of ω0 for the first mode.
However, for the other modes the frequency variation is not
traced as well because the window sizes are much larger in
order to cover enough cycles of the low-frequency oscillations.
Despite this, in all cases the method correctly identifies a
coupling in the direction from the modes in p(t) to those in
x(t).

C. Phase fluctuation analysis

Let us now return to chronotaxic systems, which were
introduced in Sec. II-C. They are non-autonomous systems
and have stable dynamics relative to a time-dependent point

−2

−1

0

1

2

∆αx

 

 

1

2

3

4

5

6

log(F )

 

 

−1

−0.5

0

0.5

1

∆αx

 

 

2

3

4

5

log(F )

 

 

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

Time (s)

∆αx

 

 

5 6 7 8 9

2

3

4

5

6

log(n)

log(F )

 

 (c)

(b)

(a)

α = 0.97

α = 0.90

α = 1.57

(e)

(d)

(f)

Mode 1

Mode 3

Mode 2

Fig. 10. Phase fluctuation analysis analysis of the modes in the time series
x(t). Estimates of the phase αx for mode were obtained from the wavelet
transform using ridge extraction and ωc = 0.5. Estimates of the phase αu

were found in the same way but using ωc = 2 and integrating over the
smoothed instantaneous frequency. Plots (a), (b) and (c) show the detrended
difference between the two phases for each mode. Plots (d), (e) and (f) show
the detrended fluctuation analysis of ∆αx (solid black lines). Linear least
squares fits (red lines) were used to estimate the values of α in each case.

attractor [31]. This property determines how the system re-
sponds to perturbations, whether resisting them or allowing
them to dictate their dynamics. However, despite this strong
dichotomy, the actual effects are not obvious and hidden even
in the time-frequency domain. Another approach is therefore
needed.

The easiest way to determine whether a system is chrono-
taxic or not is to observe its fluctuations relative to its
unperturbed trajectory. If the original distribution of the per-
turbations is known, then the stability of the system relative
to the unperturbed trajectory (which by definition follows the
time-dependent point attractor in a chronotaxic system) can be
determined from how these fluctuations grow or decay over
time. For example, take the non-chronotaxic phase oscillator

dαx

dt
= ω0(t) + η(t), (27)

where ω0(t) is the time-dependent natural frequency and the
observed phase αx is perturbed by noise fluctuations η(t).
Integrating we find

αx =

∫
ω0(t)dt+

∫
η(t)dt. (28)

Assuming that ω0(t) > 0 and η(t) is an uncorrelated Gaussian
process, this means that the dynamics of αx will consist of a
monotonically increasing phase perturbed by a random walk
noise (Brownian motion). However, the situation is different
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for a chronotaxic phase oscillator, e.g.

dαp

dt
= ω0(t), (29)

dαx

dt
= εω0(t) sin(αp − αx) + η(t),

where αp is an external phase and |ε| > 0. Here the stability
provided by the point attractor causes each noise perturbation
to decay over time, preventing η(t) from being integrated
over to the same extent. The perturbations still do not decay
instantly as the system takes time to return to the point
attractor, meaning that some integration of the noise still takes
place. However, the size of the observed perturbations over
longer timescales is greatly reduced, causing a change in the
overall distribution from that expected for Brownian motion.2

The phase αx of the observed system can be estimated using
the decomposition methods mentioned in the previous section.
However, further work is needed to obtain the unperturbed
phase αu

x. In particular, it is difficult to separate the dynamics
corresponding to αu

x from the effect of the noise perturbations
η(t). This task is simplified by assuming that the dynamics
of αu

x is confined to timescales larger than a single cycle and
that the noise is either weak or comparable in magnitude.

With these assumptions, an estimate of αu
x can be found

by filtering out high-frequency components of αx. However,
such a filter should not smooth over the dynamics of αu

x.
An optimal way of removing these high-frequency noise
fluctuations without affecting the unperturbed dynamics is to
instead smooth over the frequency extracted from the wavelet
transform [33]. This provides the estimated angular velocity
α̇u
x, which can in turn be integrated over time to give αu

x.
Given the estimates of αx and αu

x, the next step is to analyse
∆αx = αx − αu

x to find the distribution of fluctuations in the
system relative to the unperturbed trajectory.

In order to quantify the distribution of fluctuations, de-
trended fluctuation analysis (DFA) can be performed on ∆αx

[78], [79]. This method provides an estimate of the fractal self-
similarity of fluctuations at different timescales. The scaling of
these fluctuations is determined by the self-similarity param-
eter α, where fluctuations at timescales equal to t/a can be
made similar to those at the larger timescale t by multiplying
with the factor aα.

In order to calculate α the time series ∆αx is integrated in
time and divided into non-overlapping sections of length n.
For each section the local trend is removed by subtracting a
fitted polynomial – usually a first order linear fit [78], [79].
The root mean square fluctuation for the scale equal to n is
then given by

F (n) =

√√√√ 1

N

N∑
i=1

Yn(ti)2, (30)

where Y (t) is the integrated and detrended time series and
N is its length. The fluctuation amplitude F (n) follows a

2Note that this assumes the noise does not cause phase slips in αx. This
would cause perturbations over large timescales (i.e. greater than one cycle) to
not decay even if the system was chronotaxic. In these cases another approach
should be used instead [33].

scaling law if the time series is fractal. By plotting logF (n)
against log n, the value of α is simply the gradient of the line.
For completely uncorrelated white Gaussian noise (the noise
assumed to perturb the system) the parameter for α has a
value of 0.5, while integrated white Gaussian noise (expected
in non-chronotaxic systems) returns a value of 1.5.

When α < 1.5 this therefore suggests that there is some
resistance to perturbations (chronotaxicity) which prevents
their integration over larger timescales. The actual value is
typically dependent on the gradient of the coupling function
relative to αp −αx. If the gradient close to the point attractor
is very steep then the system returns to the attractor more
quickly after being perturbed and less integration of the noise
occurs, resulting in smaller values of α.

Fig. 10 shows the phase fluctuation analysis for the extracted
phases of the modes in the time series x(t). The method finds
α < 1 for the first two modes, which suggests that they are
chronotaxic. However, the method identifies the third mode
as being non-chronotaxic since α ≈ 1.5. This is due to the
fact that not enough cycles of the oscillation are observed to
reliably determine whether the mode is chronotaxic or not.

VII. APPLICATIONS

To demonstrate how the described analytical framework can
be used in practice, the methods from the previous sections
are now applied to real biomedical signals.

A. Skin microvascular flow evaluated by Laser Doppler
flowmetry (LDF)

LDF is a technique applied to measure blood flow in the
microvasculature. It involves shining laser light into the mi-
crovascular bed, that includes capillaries and small arterioles,
and measuring the Doppler shift in the light caused by the
movement of the blood. This movement is influenced by a
wide range of oscillations of different frequencies ranging
from 0.005 Hz to 2 Hz, originating from both systemic and
local processes [7], [3], [79]. As each of these oscillations is
also time-varying, the result is a very complex signal.

Fig. 11 shows the time-frequency analysis of an LDF
signal. The strong cardiac oscillation is easily recognised in
the Fourier transform. However, there is also power at low
frequencies which appear as a continuous noise-like distri-
bution. The wavelet transform reveals these low-frequency
fluctuations to be highly nonstationary oscillations, relating
to myogenic, neurogenic and endothelial activity [7]. Without
time-frequency techniques, such oscillations can often elude
discovery or be discounted as noise [26].

There are limitations in the analysis of such signals, how-
ever. While the power spectrum can almost always be used
to characterise the dynamics of the underlying processes,
attempting to decompose and analyse the low-frequency oscil-
lations in an LDF signal is a very difficult task. The oscillations
are simply too nonstationary, and the available part of the time
series is too short, due to the cone of influence. If an LDF
signal was several hours long then the low-frequency dynamics
could be analysed using the other decomposition, characterisa-
tion and interpretation methods discussed. However, the length
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Fig. 11. Analysis of an LDF signal measured from the left arm for 40 minutes.
In the time domain (top) the cardiac oscillation is clearly seen, with ∼ 1 s
pulses. A Fourier transform (bottom left) provides a representation of the
signal in the frequency domain, which also shows the mode with the largest
power to be at the cardiac frequency ∼ 1 Hz with its harmonics at ∼ 2 Hz
and ∼ 3 Hz. There is also power at lower frequencies but this appears only as
a continuous, noise-like spectrum with no identifiable modes. In the wavelet
transform (bottom right) the power at low-frequencies is revealed to be due
to nonstationary oscillations whose frequencies and amplitudes vary in time.

of recordings is limited by the fact that subjects must remain
motionless throughout as movement artefacts strongly affect
the low-frequency components of the signal [80]. But even
when only the power of the oscillations is considered, without
attempting to consider their coupling, the insights obtained
can be of diagnostic and prognostic use, as shown in a recent
study of blood flow in melanoma [21].

On larger scales, the dynamics of the cardiovascular sys-
tem is no less complex. In particular, the cardiorespiratory
interaction has been shown to exhibit time-dependent coupling
functions which cause changes in the synchronization between
the heart and lungs [75]. This interaction is primarily defined
by the phase relationship between the two systems, which
means that it is maintained even when the variations in the
heart rate or respiration amplitude are small. Using bispectral
analysis this coupling has been shown to propagate to the
microcirculation [81].

B. Dynamics of brain waves and their interaction in anesthe-
sia and awake states

The neuronal activity in the brain has long been charac-
terised by existence of brain waves [4] and we will briefly
illustrate how interactions between brain waves can be ex-
tracted from an EEG signal. The signal was recorded in the
BRACCIA project with electrodes attached to the forehead
of a patient under anaesthesia [23]. The traditional waves, δ
(0.8–4 Hz), θ (4–7.5 Hz), α (7.5–14 Hz), β (14–22 Hz) and γ
(22–100 Hz) were studied. Lower frequency oscillations have
also been identified [4], [3], but will not be discussed here. The
results of bispectral analysis and dynamical Bayesian inference
are summarised in Fig. 12.

When analysed using the wavelet bispectrum, the noise in
the signal makes it difficult to interpret the interactions from
its amplitude alone. However, the phase of the bispectrum
for each frequency coupling shows different rates of change,
related to the coupling strength between the brain waves. After
extracting the phases for each brain wave, Bayesian inference
reveals the coupling functions between the oscillations, as well
as the magnitude of these couplings. By observing the ratios
between the grey and black lines it is possible to infer the
direction of coupling between the brain waves. It can be seen
that the other waves drive the γ wave, which is also observed
in the form of the Fγ coupling functions. While this provides
clear evidence of functional interactions between pairs of brain
waves, the same techniques have also been used to show the
existence of triplet interactions [82].

VIII. DISCUSSION

Biomedical signals, arising from nonlinear, time-dependent
living systems, provide an opportunity to monitor the underly-
ing dynamics of the observed system. The time-variability of
biomedical data necessitates the application of time-frequency
analysis methods in the first instance. If identified as a
stochastic process, the signal may be further characterised
using statistical methods. If the signal is found to contain
distinct oscillatory modes, these may then be extracted and
separated using the techniques presented here. The interactions
between these modes can be then investigated to provide yet
another layer of information about the dynamics of the system.

Living systems appear to possess underlying preferred
amplitudes and frequencies to which the system will return
when external influences are removed. To bridge the gap
between dynamical systems theory and this apparent stabil-
ity, a new class of nonautonomous system was introduced,
known as chronotaxic systems [31], [32]. This led to the
development of methods for the detection of chronotaxicity
and their application to real data [33], [34]. This provides
a framework in which experimentally observed fluctuations,
which may previously have been regarded as noise, or arising
from chaotic dynamics, may actually be considered as systems
with underlying elements of determinism.

Although techniques for the analysis of biomedical time
series have greatly improved, there are still some limitations
to overcome. One requirement of methods based on the
interpretation of oscillatory activity is a sufficient number
of periods of oscillation, especially if the frequency is time-
varying, usually set at 5 periods of oscillation. For very low
frequencies this may necessitate a time series longer than it is
possible to record. For short time series, the presented methods
will become less reliable, or even impossible to implement.
If the time series is long enough, the analysis approach
used strongly depends on the characteristics of the data. For
example, in chronotaxic systems, time-frequency analysis will
highlight any oscillatory components, but will not provide any
information about interactions in that system, thus leading to
the need for further extraction to identify chronotaxicity. Sim-
ilarly, wavelet phase coherence may reveal phase relationships
between two signals, but cannot provide any information on
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Fig. 12. (a-c) Bispectral and (d,e) dynamical Bayesian inference analysis of an EEG signal. The signal was measured for 20 minutes from the forehead of a
subject in anæsthesia. The phases for the δ, θ, α, β and γ waves were extracted using NMD. The plot in (a) shows the bicoherence of the raw EEG signal,
while (b) and (c) show the instantaneous bicoherence and phase of the bispectrum respectively for the pairs of brain waves. In (d) the coupling functions for
the different pairs of extracted phases are shown (couplings between adjacent bands are not shown due to frequency spillage from imperfect filtering). On the
right in (e) are the magnitude of the coupling functions for each point in time, providing an indication of the direction of coupling between the phases. The
model parameters were inferred using a 20 s moving window with no overlap and with the propagation constant p = 0.2.

their origins. Also important when extracting modes from a
time-frequency representation is the frequency variation. If this
variation is too fast, or more than one mode is present, it may
be difficult to reliably extract a single mode. The frequency
resolution in the wavelet transform may be changed to better
resolve frequency components, but this comes at the expense
of time resolution and may still be insufficient.

In some living systems, only the phase dynamics is consid-
ered. For example, in the heart only the changes in beat rate
can be directly measured with ease, while the cardiac output
(the “amplitude” of the heart) is very difficult to quantify by
noninvasive techniques. Whilst some of the presented methods
rely on the fact that amplitude variations may be negligible,
this is not always a valid assumption. Again using chronotaxic
systems as an example, the current inverse approach methods
for the detection of chronotaxicity only take into account
phase dynamics. However, it is known that in many living
systems, both phase and amplitude dynamics are important, as
are the interactions between them. In particular, the brain is
characterised by both spatial and temporal dynamics [83], [84].
Thus, further work is required to develop methods which are

applicable in all these scenarios, although some have already
been proposed [85]. It is clear that to gain as much information
as possible from biomedical signals, the optimal solution is
to combine different methods according to the information
required, as demonstrated here.

IX. CONCLUSION

We have presented the latest techniques for the analysis
of signals originating from time-dependent dynamics, with
suggestions for their optimal implementation. Using these
guidelines, it was shown how these signals can be decom-
posed, characterised and interpreted to reveal a wealth of
information about the underlying system. This is of particular
significance in the analysis of biomedical data due to the open
nature of living systems. We also discuss that one should
not arbitrarily apply these time-dependent methods to any
signal and how signals should be analysed in several stages
starting with time-frequency analysis. It is often the case
that accurate information extracted from the previous level
of analysis is necessary to proceed to the next level, such
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as the ability to resolve modes in the time-frequency domain
before decomposing them, or the determination of the phase
and frequency of the modes through decomposition before
extracting the coupling functions and chronotaxicity of the
underlying dynamics.

Using the numerically-generated time series of a chrono-
taxic system we have illustrated how to reconstruct the dynam-
ics of noisy, time-dependent systems. We have also shown how
these same methods can be applied to real biomedical data
where the information obtained has physiological relevance,
revealing a wealth of information about the underlying living
system.
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