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We investigate the effects of a Stern–Gerlach-type addition to the Lorentz force on electrons in a 
laser wakefield accelerator. The Stern–Gerlach-type terms are found to generate a family of trajectories 
describing electrons that ‘surf’ along the plasma density wave driven by a laser pulse. Such trajectories 
could lead to an increase in the size of an electron bunch, which may have implications for attempts to 
exploit such bunches in future free electron lasers.
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1. Introduction

The modelling of charged particles in electromagnetic fields has 
been an area of great interest to accelerator physicists for decades, 
using a number of simplifications for computational ease. Increas-
ingly large fields such as those that will be produced at ELI [1] and 
HiPER [2] now mean that the validity of these simplifications must 
be considered more closely.

The classical radiation reaction force has long been considered 
as an averaged effect for sufficiently low electromagnetic fields in 
accelerator physics and more recently the Landau–Lifshitz equa-
tion has been used to model the motion of such particles in de-
tail [3–5]. The Landau–Lifshitz equation is however only valid for 
sufficiently weak and slowly varying background fields [6]. The in-
creasingly large electromagnetic fields expected to be deployed at 
experiments such as ELI and HiPER may be strong enough to ren-
der the Landau–Lifshitz equation invalid and this has led to recent 
interest in alternative models [7], computational simplifications [8]
and extensive consideration of quantum effects (for a recent re-
view, see [6]). Thus, calculation of the effective trajectories from 
first principles proves problematic, due to the various candidate 
effective theories. Recently [8], various radiation reaction models 
have been included in PIC codes via the Osiris framework, which 
is commonly used in the laser wakefield context.

While the effects of the increasingly large electromagnetic field 
strengths have been studied, the effects of large field gradients, 
created in laser wakefield accelerators, have received very little at-
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tention. In contexts where the field gradient is considered to be 
non-trivial the radiation reaction contributions are included via the 
Landau–Lifshitz equation, though the effects of spin are often ne-
glected despite being of comparable size [9]. The Stern–Gerlach 
force, caused by the coupling of the spin of a charged particle 
with the background electromagnetic field, was first observed in 
the splitting of a beam of silver atoms by an inhomogeneous mag-
netic field. In high field-gradient systems, such as those created in 
ultra-intense laser-driven plasma density waves, we suggest that 
the Stern–Gerlach force is not only non-trivial but in some circum-
stances may be more important than the radiation reaction force. 
These Stern–Gerlach effects may lead to behaviour that does not 
appear to have been adequately addressed in the context of laser 
wakefield accelerators: the purpose of this article is to illustrate 
the significance of the Stern–Gerlach forces in a simple model of 
such an accelerator.

Modelling quantum mechanical electrons as covariant classical 
spinning particles has been well-studied. There have been vari-
ous approaches from the work of Frenkel [10] and Thomas [11]
in the 1920s through the work of Nakano [12], Tulczyjew [13], 
Dixon [14–16], Corben [17,18], Suttorp and de Groot [19,20] and 
Ellis [21] in the 1950–1970s. The equations of motion and the va-
lidity of the auxiliary condition on the spin and the momentum 
necessary to close the system have still received discussion in re-
cent years [22]. The approaches used to derive these equations are 
varied, and for completeness we include a new method using de 
Rham currents and distributional methods in Appendix A.

The systems in which the Stern–Gerlach force is most promi-
nent are those with a high electromagnetic field gradient. Sec-
tion 2 considers the implications of the coupling between the 
spin of a classical electron and the rapidly varying electromagnetic 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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field produced by a laser-driven plasma wave. Sufficiently short, 
high-intensity laser pulses can form longitudinal waves within the 
electron density of a plasma. These density waves propagate with 
speed comparable to the group speed of the laser pulse. Not all 
plasma electrons form this wave, however; some of the electrons 
are caught up in the wave and accelerated by its high fields. 
The wave eventually collapses as these electrons damp the wave 
(the wave ‘breaks’). The extremely high electric field gradient of a 
plasma wave near wavebreaking provides an excellent theoretical 
testing ground for the effects of Stern–Gerlach-type contributions 
to the trajectory of a test electron.

In what follows, the equations of motion for a spinning elec-
tron in such a density wave are found to have a particular solution 
which does not exist for a particle without spin – trajectories cor-
responding to electrons ‘surfing’ orthogonal to the wave vector in 
the frame of the wave. The perturbations around a ‘surfing’ trajec-
tory are found to be linearly unstable for the vast majority of the 
parameter space. Since the family of new trajectories found in Sec-
tion 2 correspond to electrons travelling orthogonal to the motion 
of the plasma electrons and are unstable, the electrons following 
such trajectories could cause undesirable properties for effective 
bunching of electrons in laser wakefield accelerators.

These ‘surfing’ trajectories exist only for a particle with non-
zero spin in a background field with non-zero gradient. Further-
more, the electrons are non-accelerating and therefore the radi-
ation reaction forces are expected to be negligible. Clearly, the 
spin-field coupling is much more significant than radiation reac-
tion in the present context.

We use Heaviside–Lorentz units with the speed of light c = 1
(except at the end of Section 2.3 for the sake of clarity) and we 
assume that the effects of spacetime curvature are negligible so 
that the spacetime metric is simply the Minkowski metric gab =
diag{−1, 1, 1, 1}. Lower case Latin indices run over 0, 1, 2, 3.

2. Effects of Stern–Gerlach-type forces on a classical charged 
particle

2.1. Preliminaries

The equations of motion that govern a classical particle with 
worldline C : τ �→ xa = Ca(τ ), charge q, momentum P a and spin 
Sab in a background electromagnetic field described by the tensor 
components Fab are

d

dτ

(
P a + F ab�bc P c

Ċd Pd

)
= −qF abĊb − 1

2
�bc∂a Fbc, (1)

d

dτ
Sab = −Ċa

(
P b + F bc�cd P d

Ċe Pe

)
+ Ċb

(
P a + F ac�cd P d

Ċe Pe

)
+ F bc�c

a − F ac�c
b, (2)

where τ is the proper time of the particle, Ċa = d
dτ Ca(τ ) is the 

4-velocity of the particle and �ab is the electromagnetic dipole 
tensor (see [19], or for a new derivation of these equations, see 
Appendix A). However, this is not a complete system; an additional 
condition is required. There are a number of possible conditions, 
though two of the most commonly used are the Frenkel condition 
[10]

Ċa Sab = 0 (3)

and the Nakano–Tulczyjew [12,13] condition

P a Sab = 0. (4)

The Frenkel condition, whilst being simple and intuitive, is con-
sidered by some to be unphysical since it yields helical solutions 
in field-free systems (sometimes called Zittebewegung) [17,18], 
though others argue against this unphysicality [22]. We initially 
adopt the Nakano–Tulczyjew condition (4), which has already been 
abundantly studied [14–16,19] though we subsequently show that 
in fact the conditions (3) and (4) are equivalent to first order in Sab .

A particle with spin has a magnetic dipole moment related to 
the spin by the gyromagnetic ratio gq

2M0
, where M0 is the parti-

cle’s rest mass and g is the g-factor of the particle. Furthermore, a 
particle with a zero electric dipole moment and a non-zero mag-
netic dipole moment is characterised by �ab = gq

2M0
Sab . Thus the 

equations of motion, together with the condition (4), are

d

dτ
P a = −qF abĊb − gq

4M0
Sbc∂a Fbc, (5)

d

dτ
Sab = −Ċa P b + Ċb P a + gq

2M0
F bc Sc

a − gq

2M0
F ac Sc

b, (6)

where the 4-momentum P a satisfies the condition

Pb = −P aĊaĊb −
(

Sab + SadĊdĊb
)

P eĊe

(
qF ac Ċc + gq

4M0
∂a Fcd Scd

+ gq

2M0
P c Fc

a
)

, (7)

found by differentiation of the Nakano–Tulczyjew condition (4)
with respect to τ . Note that the first term on the right-hand side 
of (5) is the standard Lorentz force on a charged particle and the 
second term, the coupling of the spin and the gradient of the elec-
tromagnetic field, is a Stern–Gerlach-type contribution.

A classical electron has g-factor equal to 2, charge q = qe = −e
(where e is the elementary charge) and rest mass M0 = me giving 
the system of equations

d

dτ
P a = −qe F abĊb − qe

2me
Sbc∂a Fbc, (8)

d

dτ
Sab = −Ċa P b + Ċb P a + qe

me
F bc Sc

a − qe

me
F ac Sc

b, (9)

P a Sab = 0, (10)

P a = −P bĊbĊa −
(

Sb
a + SbdĊdĊa

)
P eĊe

(
qe F bc Ċc + qe

me
∂b Fcd Scd

+ qe

me
P c Fc

b
)

. (11)

Integration of (8)–(11) is far from straightforward due to con-
straints (10), (11) and it is useful to reduce (8)–(11) to a model 
that captures the essential physics that we wish to explore. In or-
der to simplify the system, we choose to linearise (8)–(11) in the 
spin1 Sab . Firstly, note that linearising the momentum condition 
(11) results in the straightforward expression

P a =
(

me + qe

2me
Sbc Fbc

)
Ċa, (12)

for the 4-momentum and hence the Frenkel condition (3) and the 
Nakano–Tulczyjew condition (4) are equivalent to first order in Sab . 
The linearised system of equations is

d

dτ
Ċa = −

(
1 − qe

2m2
e

Sbc Fbc

)
qe

me
F abĊb

− qe

2m2
e

Sbc
(
�⊥̇

C

)ad
∂d Fbc, (13)

1 For a system of equations linearised in Fab , see [19].
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d

dτ
Sab = qe

me

(
F bc Sc

a − F ac Sc
b
)

, (14)

Ċa Sab = 0, (15)

along with (12), where (�⊥̇
C
)ab = gab + ĊaĊb . Notably, the effects 

of the third term (the Stern–Gerlach-type term) on the right-hand 
side of (13) are most apparent in a system with a high field gradi-
ent. Although we can demand that (15) is satisfied at a partic-
ular instant in proper time τ , it is only satisfied to second or-
der in Sab at other times. Henceforth we adopt (13), (14) as the 
system of equations for a classical electron with spin subject to 
Ċa Sab|τ=0 = 0 in order to readily demonstrate the effects of the 
Stern–Gerlach term (the final term on the right-hand side) of (13).

2.2. Effects of the Stern–Gerlach force on the motion of an electron in 
a plasma wave

For clarity we use the simplified notation t = C0, x = C1, 
y = C2, z = C3 for the components of the worldline C . Consider 
a system with the electromagnetic field 2-form F associated with 
an electrostatic wave

Fab =
{

E(ξ) for a = 0, b = 3
−E(ξ) for a = 3, b = 0
0 otherwise,

(16)

where ξ = z − vt is the phase of the wave. The evolution equations 
(13) are simply

ẗ =
(

1 + qe

m2
e

S03 E

)
qe

me
E ż + qe

m2
e

(
v + ṫ

(
ż − vṫ

))
E ′S03, (17)

ẍ = qe

m2
e

ẋ
(
ż − vṫ

)
E ′S03, (18)

ÿ = qe

m2
e

ẏ
(
ż − vṫ

)
E ′S03, (19)

z̈ =
(

1 + qe

m2
e

S03 E

)
qe

me
Eṫ + qe

m2
e

(
1 + ż

(
ż − vṫ

))
E ′S03, (20)

since d
dτ Ċ = C̈ and F03 = −F 03. Note that dots denote derivatives 

with respect to the proper time τ and primes denote derivatives 
with respect to the phase ξ . Similarly from (14) the spin evolution 
equations are

Ṡ01 = qe

me
ES13, Ṡ13 = qe

me
ES01, (21)

Ṡ02 = qe

me
ES23, Ṡ23 = qe

me
ES02, (22)

Ṡ03 = 0, Ṡ12 = 0. (23)

Notably, the only component of the spin in (17)–(20) i.e. the only 
component that affects the trajectory of the particle is S03, which 
according to (23) is constant. We hence neglect the remaining spin 
equations of motion when solving for the worldline of the electron. 
Writing the remaining equations of the system, (17)–(20), in the 
coordinate system {γ ζ, x, y, γ ξ}, adapted to an observer travelling 
with the plasma wave at speed v , where γ = 1√

1−v2
is the Lorentz 

factor of the wave and ζ = −t + vz, we find

ζ̈ = qe

m2
e

S03 E ′ζ̇ ξ̇ −
(

1 + qe

m2
e

S03 E

)
qe

me
E ξ̇ , (24)

ξ̈ = qe

m2
e

S03 E ′ξ̇ ξ̇ −
(

1 + qe

m2
e

S03 E

)
qe

me
E ζ̇ + qe

m2
eγ 2

S03 E ′, (25)

ẍ = qe

m2
e

S03 E ′ẋξ̇ , (26)

ÿ = qe
2

S03 E ′ ẏξ̇ . (27)

me
A particular solution to (24)–(27) includes a constant value for 
phase ξ and has the form

ζsol(τ ) = 1(
1 + qe

m2
e

S03 EC

) S03

meγ 2

E ′
C

EC
τ + ζ0, (28)

xsol(τ ) = ẋ0τ + x0, (29)

ysol(τ ) = ẏ0τ + y0, (30)

ξsol = ξC, (31)

and where EC denotes the value of the electric field at ξ = ξC. Here 
x0, y0, ζ0 are arbitrary constants and ẋ0, ẏ0 are arbitrary constants 
up to fulfilment of the normalisation condition gab ĊaĊb = −1 on 
the worldline of the electron, i.e.

− 1(
1 + qe

m2
e

S03 EC

)2

(
S03

meγ 2

E ′
C

EC

)2

+ ẋ2
0 + ẏ2

0 = −1. (32)

Note that condition (32) places restrictions on the system parame-
ters, for instance S03, EC, E ′

C �= 0. Consequently, the solution family 
(28)–(31) does not exist for a spinless particle, nor a constant elec-
tromagnetic background. Also note that since we wish to consider 
a system with a large field gradient, we consider E ′

C
EC

to be of order 
(S03)

−1.
A sufficiently short and intense laser pulse propagating through 

a plasma may create a travelling longitudinal plasma wave whose 
velocity is approximately the same as the laser pulse’s group ve-
locity. The electric field produced by such a plasma wave provides 
an excellent example of an electric field of the form (16):

E = meν
′

qeγ 2
, (33)

where ν must satisfy

m2
e

2q2
eγ 4

ν ′ 2 − meZnion

(
v
√

ν2 − γ 2 − ν + γ

)
= 0 (34)

in order to satisfy the Maxwell equations and the Lorentz force 
equation (see Appendix B for details). Here Z is the degree of ioni-
sation, nion is the proper number density of the (background) ions. 
In laser wakefield acceleration, the “target” is the dephasing point, 
where accelerated electrons begin to overtake the plasma wave. At 
this point the field gradient is much larger than the electric field, 
hence E ′

C
EC

can be said to be large (of order (S03)−1).
The family of trajectories given by (28)–(31) with the electric 

field (33) is illustrated in Fig. 1. Despite the propagation of the 
plasma electrons in the ξ direction, the electrons described by the 
solution family (28)–(31) travel transversely, along lines of con-
stant E (they ‘surf’ along the wave).

2.3. Stability of the ‘surfing’ solutions in a plasma wave

It is natural now to consider the linear stability of the family 
of ‘surfing’ solutions described by (28)–(31) for the plasma wave 
electric field (33). In order to investigate this, consider the follow-
ing:

ζ(τ ) = ζsol(τ ) + ε�ζ(τ ), (35)

x(τ ) = xsol(τ ) + ε�x(τ ), (36)

y(τ ) = ysol(τ ) + ε�y(τ ), (37)

ξ(τ ) = ξsol + ε�ξ(τ ), (38)
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Fig. 1. Illustration of several example trajectories C1, C2, C3, C4 given by different 
choices of ξC. Whilst the plasma electrons travel along ξ , test electrons described 
by (28)–(31) travel transversely to the wave’s velocity, ‘surfing’ along the wave.

where ε is a small constant and the � terms correspond to per-
turbations. Substituting (38) into ν and taking Taylor series in ε
gives:

ν(ξC + ε�ξ) = νC + εν ′
C�ξ +O(ε2), (39)

where νC = ν(ξC ), ν ′
C = dν(ξ)

dξ

∣∣∣
ξ=ξC

and so on for the higher deriva-

tives. Substituting (39), its derivatives and (35)–(38) into the equa-
tions of motion (24)–(27) gives, to first order in the perturbations,

�̈ζ =
[
− (

1 − Sν ′
C

) ν ′
C

γ 2
+ S2

1 − Sν ′
C

(ν ′′
C )2

ν ′
C

]
�̇ξ = A1�̇ξ, (40)

�̈x = [−S ẋ0ν
′′
C

]
�̇ξ = A2�̇ξ, (41)

�̈y = [−S ẏ0ν
′′
C

]
�̇ξ = A3�̇ξ, (42)

�̈ξ =
[
(1 − Sν ′

C)2 (ν ′
C)2

γ 4

+
(

1 − Sν ′
C

ν ′
C

− S
1 − Sν ′

C

) S(ν ′′
C )2

γ 2
− S

ν ′′′
C

γ 2

]
�ξ = A4�ξ,

(43)

where S = − S03
meγ 2 and the constants An depend on the spin, elec-

tric field and the plasma wave speed. A solution to (40)–(43) is

�ζ = A1√
A4

(
C1e

√
A4τ + C2e−√

A4τ
)

, (44)

�x = A2√
A4

(
C1e

√
A4τ + C2e−√

A4τ
)

, (45)

�y = A3√
A4

(
C1e

√
A4τ + C2e−√

A4τ
)

, (46)

�ξ = C1e
√
A4τ + C2e−√

A4τ , (47)

where C1, C2 are integration constants. The stability of the system 
hence depends solely on the sign of the quantity A4, defined in 
(43). Written as a Taylor series in S , A4 can be expressed as

A4 =
(

ν ′
C

γ 2

)2

+
((

ν ′′
C

ν ′
C

)2

− 2

(
ν ′

C

γ

)2

− ν ′′′
C

ν ′
C

)
Sν ′

C

γ 2
+O(S2).

(48)
Assuming that the zeroth and first order terms are dominant we 
neglect the higher order terms.2 Consequently, the exponential 
terms in the perturbations (44)–(47) become

e
√
A4τ ≈ (1 + NCSτ ) e

∣∣∣ν′
C

∣∣∣
γ 2 τ

, (49)

to first order in S , where

NC = 1

2

ν ′
C

|ν ′
C|

((
ν ′′

C

ν ′
C

)2

− 2

(
ν ′

C

γ

)2

− ν ′′′
C

ν ′
C

)
. (50)

Hence the ξ perturbation (38) to first order in S is

�ξ = C1 (1 + NCSτ ) e

∣∣qe EC
∣∣

me
τ + C2 (1 − NCSτ ) e−

∣∣qe EC
∣∣

me
τ
, (51)

that is the perturbation �ξ is unstable (to first order in S) as the 
first exponential will diverge as τ increases, unless C1 = 0. Since 
the other three perturbations are closely linked to �ξ , the com-
plete perturbation is also divergent (unless the integration constant 
C1 = 0).

2.4. The range of validity of (49)

In order to confirm that the zeroth and first order terms of S
in A4 are dominant, consider the ratio R of the sum of the zeroth 
and first order terms to the full expression for A4 (43). The ratio 
R can be written as

R = ν̂ ′

(1 − ν̂ ′)

⎡⎣ (ν̂ ′)4 − 2γ 2(ν̂ ′′)2 + ν̂ ′
(
γ 2(ν̂ ′′)2 − (ν̂ ′)4

)
(ν̂ ′)3 + γ 2(ν̂ ′′)2 − 2(ν̂ ′)4 − γ 2 ˆν ′′′ν̂ ′

⎤⎦ , (52)

where ν̂ ′ = d
d(S−1ξ)

ν(ξ).

Returning to SI units for clarity, introducing the Schwinger limit 
ES = m2

e c3

qeh̄ and the maximum electric field (the wave breaking 

limit) for a cold plasma, Emax = c
√

2(γ −1)meZnion
ε0

, allows the con-

venient re-parameterisation of the system in terms of the free 
parameters {v, ν̂ ′, k} where

ν̂ ′ = − E

ES

S03

h̄
, (53)

k =
(

Emax

ES

)2 ( S03

h̄

)2

. (54)

The Schwinger limit characterises the electric field strength at 
which quantum vacuum effects are expected to be significant [9]. 
The present analysis does not take such phenomena into account 
and therefore the conditions E < ES, Emax < ES are required. Thus, 
in addition to 0 < v < 1, it follows that −1 < ν̂ ′ < 1 and 0 < k < 1. 
We also have the restriction

(ν̂ ′)2

k
=
(

E

Emax

)2

< 1, (55)

to ensure that E < Emax. The combination of these conditions also 
guarantees that ν > γ , ensuring that the square root in (34) re-
mains real. The maximum amplitude plasma equation (34) and its 
derivatives relate ν̂ ′ and its derivatives:

2 The range of validity of this assumption is ascertained in the subsequent sec-
tion.
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Fig. 2. The relative size of terms R in the parameter space (ν̂ ′ , k) for four values of plasma wave speed v . For each speed there are two plots, the upper using ν̂ (56) with 
the positive sign and the lower using the negative sign. The regions in which the trajectories of ‘surfing’ particles (28)–(31) are linearly unstable (i.e. the assumptions made 
in Section 2.3 are valid) are the regions where |R| 
 1.

Fig. 3. The relative size of terms R in the parameter space (ν̂ ′ , k) for four values of plasma wave speed v . For each speed there are two plots, the upper using ν̂ (56) with 
the positive sign and the lower using the negative sign. The regions in which the trajectories (28)–(31) of ‘surfing’ particles are linearly unstable (i.e. the assumptions made 
in Section 2.3 are valid) are the regions where |R| 
 1.
ν̂± = −γ 2

(
(γ − 1)

(ν̂ ′)2

k
− γ

)

± γ 2 v

√√√√(
(γ − 1)

(ν̂ ′)2

k
− γ

)2

− 1, (56)

ν̂ ′′ = 1

2

k

γ − 1

⎛⎜⎝v
ν̂±√

ν̂2± − γ 2
− 1

⎞⎟⎠ , (57)

ˆν ′′′ = −1

2

k

γ − 1
vγ 2 ν̂ ′

(ν̂2 − γ 2)3/2
. (58)
±

Fig. 2 illustrates the size of (52) across the parameter space 
(ν̂ ′ , k) – it is clear that |R| 
 1 for the majority of the parameter 
space. Several things should be made clear, however. Firstly, the 
black region in each plot is excluded by the condition (55) – these 
dark regions correspond to electric fields E > Emax. The central line 
present in some plots indicates that the electric field must be non-
zero, as is already stipulated by the normalisation condition (32). 
Secondly, the result of the numerical analysis is unreliable in cer-
tain regions of the plots, for example near the edge of the parabola 
or along the line ν̂ ′ = 0.

For values of the electric field E of the plasma wave (and the 
maximum electric field of the cold plasma Emax) that are much 
less than the Schwinger limit ES, both |ν̂ ′| and k are much less 
than 1 – hence the crucial regions of the parameter space to con-
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sider are relatively close to the origin. Fig. 3 illustrates the size of 
(52) across a smaller range of electric fields. Here in almost every 
plot the relative size of terms (52) is typically much less than 1, 
and hence the assumption (49) is generally valid. Hence it is safe to 
conclude that the trajectories described by (28)–(31) correspond-
ing to the ‘surfing’ particles are linearly unstable across the vast 
majority of the parameter space for E 
 ES.

3. Conclusion

A new family of trajectories for a classical charged particle with 
spin in an electrostatic plasma wave has been presented – no-
tably these trajectories do not exist for a non-spinning particle, nor 
for a non-varying electric field. These trajectories represent par-
ticles moving transverse to the wave propagation, ‘surfing’ along 
the wave. The linear stability of these trajectories depends on the 
values of the plasma wave speed, the electric field and the spin 
component S03. As shown in Section 2.3, these trajectories are 
linearly unstable for the majority of the parameter space, though 
there are some small regions in the parameter space where this 
may not be the case, where the assumptions of (49) are invalid. 
For lower electric field, as in Fig. 3, these regions are even less 
prominent.

The existence of transverse trajectories has adverse conse-
quences for the size of electron bunches in laser wakefield accel-
erators; electrons may slip into and out of these transverse tra-
jectories once they catch up with the wave, spreading out into a 
disc oriented with normal parallel to the wave propagation direc-
tion. The linear instability of these solutions, however, implies that 
any electron that enters a transverse trajectory would likely leave 
it soon afterwards.

It is important to note, however, that this is an instance in 
which the spin of a particle affects its trajectory more than radi-
ation reaction effects – indeed in this instance, since the particles 
in the new trajectories are travelling at constant speed, the radi-
ation reaction effects are negligible. Hence we recommend that 
researchers aiming to model such systems consider including spin 
effects in their PIC codes.
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Appendix A. Derivation of the equations of motion

This appendix makes use of Euclidean 3-vectors, 4-vectors on Min-
kowski spacetime and de Rham currents (Schwarz distributions on dif-
ferential forms). For clarity, a different notation will be used for each of 
those objects. Use of an arrow �V indicates a Euclidean 3-vector, V is a 
4-vector with the appropriate metric dual Ṽ , and a subscript D such as 
V D indicates a de Rham current.

This appendix shows a new derivation of the relativistic Stern–
Gerlach force and TBMT equations for a charged particle, using 
exterior calculus and Schwarz distributions.3 The aim of this sec-
tion is to reduce the local balance laws [24]

dT a = i Xa F ∧ jfree + i Xa F ∧ jbound, (A.1)

dσ ab = 1

2

(
dxa ∧ T b − dxb ∧ T a

)
, (A.2)

3 For a summary of the conventions used in this appendix, see Ref. [23]
for a charged continuum, with stress 3-forms T a and spin 3-forms 
σ ab , to a particle model using de Rham currents. The vector ba-
sis {Xa} is a Killing frame, and the electromagnetic 2-form F and 
current 3-forms jfree, jbound satisfy the Maxwell equations

dF = 0, (A.3)

d � F = jfree + jbound. (A.4)

Given a charged fluid, the magnetisation and polarisation vec-
tors are given by

�P(�r, t) = n(�r, t) �μe(�r, t), (A.5)

�M(�r, t) = n(�r, t) �μm(�r, t), (A.6)

where n is the particle number density and �μe and �μm are the 
electric and magnetic dipole moments respectively.

In order to efficiently move from the continuum model to 
a single-particle model, de Rham currents [25] are introduced. 
Firstly, in order to establish the notation in a simple setting, it is 
assumed that the fluid is at rest and hence described by a 4-vector 
field given by V = ∂t . Then the distributional current associated 
with the worldline of a particle is introduced via∫
M

f̂ n � 1 →
∫
C

f̂ dt, (A.7)

analogous identifying the particle density as a Dirac delta func-
tion in order to reduce the domain of the integral to the particle’s 
worldline C . The orientation is chosen so that the spacetime vol-
ume is �1 = dt ∧ dx ∧ dy ∧ dz. In (A.7), the curve C has constant 
x, y, z (due to the temporary choice of V ) and f̂ is a test function. 
Since the aim of this method is to induce the equation of motion 
of a particle from a fluid description, C is assumed to be an inte-
gral curve of V .

In order to find the appropriate distributions for the particle 
versions of the magnetisation and polarisation, consider the fol-
lowing. Given a Killing 3-vector �K ∈ {�i, �j, �k}, where �i ·�i = 1, �j ·�j = 1, 
�k · �k = 1 and �i · �j =�i · �k = �j · �k = 0, it is natural to introduce the de 
Rham current 

(�P · �K
)

D
as( �P · �K

)
D

[ f̂ � 1] =
∫
C

�μe · �K f̂ dt, (A.8)

where · represents the usual scalar product on 3-vectors and the 
subscript 

( �P · �K
)

D
represents the distribution associated with the 

scalar �P · �K (likewise for other quantities). Expanding on the first 
of these equations:( �P · �K

)
D

� 1[ f̂ ] =
∫
C

�μe · �K f̂ dt

= C D [ �μe · �K f̂ dt] (A.9)

and since C D [α f̂ ] = (C D ∧ α) [ f̂ ] for any 3-form α. Since the form 
degree of C D is 3, C D ∧ dt = −dt ∧ C D and hence( �P · �K

)
D

� 1[ f̂ ] = −
(

�μe · �K
)

(dt ∧ C D) [ f̂ ]. (A.10)

Stripping off the test function and noting that in this case Ċ = ∂t
and ��1 = −1:( �P · �K

)
D

= −
(

�μe · �K
)

�
(˜̇C ∧ C D

)
. (A.11)

Introducing the 4-vector μe = μex∂x + μey∂y + μez∂z , where μex
is the x-component of the vector �μe etc., it follows that the polar-

isation of the particle given as PD =
( �P · �K A

)
dxA is
D
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PD = (
iĊ � C D

)
μ̃e, (A.12)

for A ∈ {1, 2, 3} and similarly the magnetisation MD of the parti-
cle is

MD = (
iĊ � C D

)
μ̃m. (A.13)

From now on, the worldline C of the particle is taken to be arbi-
trary and μe and μm are 4-vectors orthogonal to the 4-velocity Ċ
of the particle. Furthermore, the timelike unit normalised 4-vector 
field V is Ċ when evaluated over the image of C .

The polarisation and magnetisation can be incorporated into a 
single 2-form, the polarisation 2-form � = G − F , where G is the 
excitation 2-form, given by:

� = −Ṽ ∧ P̃ + �(Ṽ ∧ M̃), (A.14)

where V is the 4-vector describing the motion of the fluid. Using 
(A.12) and (A.13), the distributional analogue of the polarisation 
2-form can be written

�D = �C D ∧ μ̃e − �(�C D ∧ μ̃m) (A.15)

= �C D ∧ μ̃e − iμm C D . (A.16)

In order to establish a distributional analogue of the balance 
law (A.1), the distributional forms of the currents jfree and jbound

must be formulated. The free current is found by noting that

jfree = −qn � Ṽ , (A.17)

where q is the electron’s charge, and therefore via (A.7) we identify

jfree
D = qC D . (A.18)

Since the excitation form G satisfies d � G = jfree, the field equation 
(A.4) shows that the bound current must satisfy jbound = −d � �. 
Hence jbound

D = −d � �D and the balance law (A.1) can be written

dT a
D =

τmax∫
τmin

{
−qiĊ i Xa F f̂ + �

(
d f̂ ∧ i Xa F ∧ ��

)
+ � (LXa F ∧ ��) f̂

}
dτ , (A.19)

where {Xa} is a basis of translational Killing vectors and the 
2-form � is defined as

� = −˜̇C ∧ μ̃e + �(̃Ċ ∧ μ̃m). (A.20)

Further simplification occurs if we split d f̂ into its Ċ-parallel and 
Ċ-orthogonal pieces, leaving

dT a
D [ f̂ ] =

τmax∫
τmin

{[−qiĊ i Xa F − � · (LXa F ) − ∇Ċ ((i Xa F ) · iĊ �)
]

f̂

+ �
(
�⊥̇

C
d f̂ ∧ i Xa F ∧ ��

)}
dτ . (A.21)

We now choose the stress distribution ansatz in order to satisfy 
this expression. Allowing T a

D to be of the form

T a
D = −g(π, Xa)C D + iĊ (i Xa F ∧ ��) ∧ �C D , (A.22)

where π is a 4-momentum vector, with the second term designed 
to absorb the worldline-orthogonal pieces of (A.21), the stress bal-
ance law can be written in the simple form

∇Ċ

(
i Xa π̃ + (i Xa F ) · iĊ �

)= −qiĊ i Xa F − � · (LXa F ) , (A.23)

where ∇ is the Levi-Civita connection. Similarly, the spin balance 
equation (A.2), upon substitution of (A.22) becomes
dσ ab
D [ f̂ ] =

τmax∫
τmin

1

2

[
Ċa

(
πb + (i Xb F ) · iĊ �

)
+ (i Xb F ) · i Xa�

− Ċb (πa + (i Xa F ) · iĊ �
)− (i Xa F ) · i Xb �

]
f̂ dτ ,

(A.24)

and choosing the ansatz σ ab
D = 1

2 SabC D for the spin de Rham cur-
rent σ ab

D gives

∇Ċ Sab = −Ċa
(
πb + (i Xb F ) · iĊ �

)
− (i Xb F ) · i Xa�

+ Ċb (πa + (i Xa F ) · iĊ �
)+ (i Xa F ) · i Xb �. (A.25)

A.1. Substituting the Nakano–Tulczyjew momentum into the equations 
of motion

Since the spin matching condition commonly used is the 
Nakano–Tulczyjew condition (4), it is logical to write the equa-
tions of motion (A.23) and (A.25) in terms of the 4-momentum P a

of the particle. This momentum may be expressed as

P a(λ) = −
∫
�λ

T ab Nb � Ñ, (A.26)

where T ab is the stress–energy–momentum tensor and the 1-para-
meter family �λ of spacelike hypersurfaces is the set of leaves of 
a local foliation of spacetime with timelike unit normal N = P

|P | . 
Since the stress–energy–momentum tensor T ab is related to the 
stress–energy–momentum forms T a via T a = � 

(
T (Xa,−)

)
, note 

that for test 0-form f̂ ,∫
M

T a ∧ Ñ f̂ =
∫
M

�
(
T (Xa,−)

)∧ Ñ f̂ . (A.27)

Utilising the identity �α ∧ Ñ = �Ñ ∧ α where α is a 1-form and 
noting that the vector N is normalised as g(N, N) = −1, so that 
the volume form can be written �1 = −Ñ ∧ �Ñ , this can be simpli-
fied to∫
M

T a ∧ Ñ f̂ =
∫
M

(
T (Xa, N)

)
Ñ ∧ �Ñ f̂ . (A.28)

Since Ñ = − dλ
|dλ| , the integral can be split into a piece along the 

worldline C and another over the hyperplane �λ via∫
M

T a ∧ Ñ f̂ = −
∫
C

dλ

|dλ|
∫
�λ

T ab Nb � Ñ f̂

= −
∫
C

P a dλ

|dλ| f̂ , (A.29)

and stripping off the test forms yields the relation

T a
D ∧ Ñ = −P aC D ∧ Ñ, (A.30)

with Na = Pa

|P | . Using the stress forms T a
D given by (A.22) yields(−g(π, Xa)C D + iĊ (i Xa F ∧ ��) ∧ �C D
)∧ P̃ = −P aC D ∧ P̃ ,

(A.31)

which upon manipulation yields the relationship

πa = P a − F ab�cb

(
P c(

P · Ċ
) + Ċ c

)
, (A.32)
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between the momenta πa and P a . Substitution of (A.32) into the 
equations of motion (A.23) and (A.25) yields the familiar equations

d

dτ

(
P a + F ab�bc P c

Ċd Pd

)
= −qF abĊb − 1

2
�bc∂a Fbc, (A.33)

d

dτ
Sab = −Ċa

(
P b + F bc�cd P d

Ċe Pe

)
+ Ċb

(
P a + F ac�cd P d

Ċe Pe

)
+ F bc�c

a − F ac�c
b (A.34)

found in the literature [19].

Appendix B. Plasma wave electric field

A sufficiently short and intense laser pulse propagating through 
a plasma drives a non-linear wave in the electron number density. 
For present purposes, the ions are essentially stationary over the 
timescales of interest because their charge to mass ratio is about 
three orders of magnitude lower than that of the electrons.

Despite the recent focus on the three dimensional ‘bubble 
regime’ [26,27], one-dimensional models remain useful for provid-
ing estimates, particularly in contexts such as the Stern–Gerlach 
force in the main body of the paper, where additional complex-
ity leads to dramatically more difficult analysis. Some preliminary 
work on the subject of electrons in a one-dimensional maximum 
amplitude plasma wave has already been done in the context of 
non-linear electrodynamics [28], and we use the same expressions 
for the plasma electron worldlines and overall electric field; a brief 
summary follows.

Assuming the electric field is due only to the electron fluid and 
the ion background, the magnetic field vanishes, leaving only the 
electric field component in the direction of the propagation of the 
wave. The Faraday 2-form of such a wave driven by a laser pulse 
in the z-direction is thus simply

F = E(ξ)dt ∧ dz, (B.1)

where ξ = z − vt is the phase of the wave. The electric field E
is governed by the field and Lorentz force equations for a cold 
plasma:

dF = 0, (B.2)

d � F = −qene � Ṽ e − qionnion � Ṽ ion, (B.3)

∇V e Ṽ e = qe

me
iV e F , (B.4)

where qion is the ion charge, ne and nion are the proper number 
densities of the electrons and ions, V e and V ion are the 4-vectors 
whose trajectories are the worldlines of the electrons and ions, re-
spectively. For simplicity, the plasma electrons are assumed to be 
unpolarised and so the motion of the electrons is governed purely 
by the usual Lorentz force.

For a plasma wave whose electron motion is much greater than 
the motion of the ions, it is reasonable to assume that the plasma 
ions are at rest, i.e. V ion = ∂t with constant number density nion. 
A simple example is laser-plasma wakefield acceleration, where the 
plasma wave electrons oscillate far faster than the motion of the 
plasma ions. Seeking a 4-vector describing the motion of the elec-
trons of the form

Ṽ e = ν(ξ)dζ − ψ(ξ)dξ, (B.5)

the normalisation condition g(V e, V e) = −1 restricts ψ , giving

Ṽ e = ν(ξ)dζ −
√

ν(ξ)2 − γ 2dξ, (B.6)
where the negative sign is chosen so that the electrons move at 
speed less than the wave (for more details, see [28]). In order to 
satisfy the Lorentz force (B.4), the electric field must be of the form

E = meν
′

qeγ 2
, (B.7)

so that the function ν is similar to the electric potential. Similarly 
in order to satisfy the field equations (B.2) and (B.3) the electron 
number density can be written in terms of the ion density:

ne = − vγ 2qionnion

qe
√

ν2 − γ 2
= vγ 2Znion√

ν2 − γ 2
, (B.8)

where Z is the degree of ionisation, Z = − qion
qe

, and ν must satisfy

d

dξ

[
m2

e

2q2
eγ 4

ν ′ 2 − meZnion

(
v
√

ν2 − γ 2 − ν

)]
= 0. (B.9)

The square root in (B.9) imposes a lower bound on ν . This re-
sults in a maximum amplitude oscillation for the plasma wave, 
and the maximum amplitude is known as the wave-breaking limit 
[29]. The wave-breaking limit may be obtained from (B.9) by inte-
grating from ξI , the minimum of ν and hence a zero of E , to ξII , 
the maximum of E and turning point of ν ′ . Since νI = ν(ξI) = γ
and νII = γ 2 (from (B.9)), it follows that

Emax =√
2(γ − 1)meZnion. (B.10)

Given that the plasma wave attains its lowest possible value at ξI , 
integrating (B.9) between two subsequent zeros of the electric field 
ξI and ξIII where ν(ξIII) = γ 3(1 + v2) gives

m2
e

2q2
eγ 4

ν ′ 2 − meZnion

(
v
√

ν2 − γ 2 − ν + γ

)
= 0, (B.11)

governing the electric field in the case of a maximum amplitude 
oscillation.
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