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Abstract

We study continuous-time birth-death type processes, where individuals have

independent and identically distributed lifetimes, according to a random

variable Q, with E[Q] = 1, and where the birth rate if the population is

currently in state (has size) n is α(n). We focus on two important examples,

namely α(n) = λn being a branching process, and α(n) = λn(N −n)/N which

corresponds to an SIS (susceptible → infective → susceptible) epidemic model

in a homogeneously mixing community of fixed size N . The processes are

assumed to start with a single individual, i.e. in state 1. Let T , An, C and

S denote the (random) time to extinction, the total time spent in state n,

the total number of individuals ever alive and the sum of the lifetimes of all

individuals in the birth-death process, respectively. We give expressions for

the expectation of all these quantities and show that these expectations are

insensitive to the distribution of Q. We also derive an asymptotic expression

for the expected time to extinction of the SIS epidemic, but now starting at the

endemic state, which is not independent of the distribution of Q. The results

are also applied to the household SIS epidemic, showing that, in contrast to the

household SIR (susceptible → infective → recovered) epidemic, its threshold

parameter R∗ is insensitive to the distribution of Q.

Keywords: Birth-death process; branching processes; SIS epidemics; insensitiv-

ity results.
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1. Introduction

A key question for population processes of a birth-death type, for example, branching

processes and epidemic processes (with infection and recovery corresponding to birth

and death, respectively), is what effect does the lifetime distribution have on key

quantities of scientific interest? For example, consider a single-type branching process,

where individuals have independent and identically distributed (iid) lifetimes according

to a random variableQ having an arbitrary, but specified, distribution and, whilst alive,

give birth at the points of a homogeneous Poisson point process with rate λ. The basic

reproduction number, R0 = λE[Q], the mean number of offspring produced by an

individual during its lifetime, depends upon Q only through its mean E[Q]. The mean
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total size of a subcritical branching process (R0 < 1) with one ancestor is 1/(1−R0),

which is again independent of the distribution of Q. However, other quantities of

interest, such as the probability of extinction and the Malthusian parameter of the

branching process, depend upon the distributional form of Q. Thus, in the language

of stochastic networks, R0 can be viewed as an insensitivity result in that it depends

on Q only through its mean, see, for example, Zachary (2007).

Insensitivity results for stochastic networks are well known, see for example, Sev-

ast’yanov (1957), Whittle (1985) and Zachary (2007). In particular, in Zachary (2007),

Theorem 1, it is shown that for a wide class of queueing networks, where arrivals

(births) into the system are Poissonian with rate depending upon the total number

of individuals in the system and each arrival has an iid workload, the stationary

distribution of the total number of individuals in the system is insensitive to the

distribution of Q. It then follows automatically that, for example, the mean duration

of a busy period of the network (at least one individual in the system) is insensitive to

the distribution of Q.

Given the similarities between queueing networks and birth-death type models,

arrivals equating to births and workload equating to lifetime, we seek in this paper

to explore insensitivity results for birth-death type processes with particular emphasis

upon branching processes and SIS (susceptible → infective → susceptible) epidemic

models. In many cases, Zachary (2007), Theorem 1, cannot be applied directly to birth-

death processes, as many birth-death processes do not exhibit stationary behaviour.

For example, a branching process will either go extinct or grow exponentially. However,

we can exploit Zachary (2007), Theorem 1, for birth-death type processes whose mean

time to extinction is finite by introducing a regeneration step (cf. Hernández-Suárez

and Castillo-Chavez (1999)) whenever the population goes extinct. That is, whenever

the population goes extinct, it spends an exponential length of time in state 0 (no

individuals) before a new individual is introduced into the population (regeneration).

The birth-death type process with regenerations then fits into the framework of Zachary

(2007), provided that the birth rate is Poissonian and depends upon the population

only through its size. Insensitivity results are then easy to obtain for the regenerative

process, and also for the original birth-death type process.

The paper is structured as follows. In Section 2, we formally introduce the generic
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birth-death type process with arbitrary birth rate α(n), where n denotes population

size, and introduce regeneration. We identify key insensitivity results for birth-death

type processes, including, that the mean duration, the mean time with n individuals

alive (n = 1, 2, . . .) and the mean total number of individuals ever alive in the process

are insensitive to the distribution of Q. In Section 3, we focus on three special

cases of the birth-death type process, namely, branching processes with constant birth

rate, and homogeneously mixing and household SIS epidemic models. In Section

3.1, we prove a conjecture of Neal (2014), that for a subcritical branching process,

the mean time with n (n = 1, 2, . . .) individuals alive is insensitive to Q and, using

Lambert (2011), Lemma 3.1, give a corresponding insensitivity result for critical and

supercritical branching processes. In Section 3.2, we apply the insensitivity results to

homogeneously mixing SIS epidemics and obtain a simple approximation for the mean

duration of the epidemic starting from a single infective. Moreover, we show that for

a supercritical epidemic (R0 > 1), the mean duration of the epidemic starting from

the quasi-endemic equilibrium does depend upon the distribution of Q and we give

a simple asymptotic expression for this quantity. Finally, in Section 3.3 we exploit

the results obtained for the homogeneously mixing SIS epidemic to show that both

the threshold parameter R∗ and the quasi-endemic equilibrium of the household SIS

epidemic are insensitive to the distribution of Q. These are interesting findings, as in

the household SIR (susceptible → infective → recovered) epidemic both R∗ and the

fraction of the population ultimately recovered if the epidemic takes off do depend

upon the distribution of Q.

2. Generic model

The generic birth-death type process is defined as follows. The process is initiated

at time t = 0 with one individual. All individuals, including the initial individual,

have iid lifetimes according to an arbitrary, but specified, positive random variable Q

with finite mean. At the end of its lifetime an individual dies and is removed from

the population. New individuals are born and enter the population at the points of

an independent inhomogeneous Poisson point process with rate α(n) ≥ 0, where n

denotes the total number of individuals in the population. Without loss of generality,
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we assume that E[Q] = 1, since otherwise we can simply rescale time by dividing Q and

multiplying α(n) by E[Q]. The special cases of a branching process with individuals

giving birth at the points of independent homogeneous Poisson point processes with

rate λ and the homogeneously mixing SIS epidemic (see, for example, Kryscio and

Lefèvre (1989)) in a population of sizeN with infection rate λ, correspond to α(n) = nλ

and α(n) = nλ(N − n)/N , respectively.

The birth-death type process is similar to the single-class networks studied in Zachary

(2007), Section 2. In Zachary (2007), it is assumed that new individuals enter the

system (births) at the points of a Poisson process with state-dependent rate α(n),

where n is the total number of individuals currently in the system. Individuals have

iid workloads, according to a random variable Q with E[Q] = 1. While there are n

individuals in the system, the total workload is reduced at rate β(n) ≥ 0, with β(n) > 0

if and only if n > 0. In a biological setting, where the workload Q associated with an

individual is its lifetime, it only makes sense to take β(n) = n, so each individual’s

remaining lifetime decreases at constant rate 1.

In Zachary (2007), Theorem 1, it is shown that if the proper distribution π =

(π(0), π(1), . . .) satisfies the detailed balance equations

π(n+ 1)β(n+ 1) = π(n)α(n), n = 0, 1, . . . , (2.1)

and

∞∑
n=0

π(n)α(n) < ∞, (2.2)

then π is the stationary distribution of the size of the system, irrespective of the

distribution of Q.

For many biological systems, Zachary (2007) does not apply since a stationary

distribution for the total number of individuals alive does not exist. The solution

to make Zachary (2007), Theorem 1, relevant to birth-death type processes is to follow

Hernández-Suárez and Castillo-Chavez (1999) and introduce regeneration by setting

α(0) = 1, leaving all other transition rates unchanged. Thus, if the process goes extinct,

it spends an exponentially distributed time, having mean 1, with no individual before

a new individual enters the population leading to the process restarting (regeneration).
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Recall that in the processes we study β(n) = n. Then (2.1) implies that

π(n) = π(0)

n−1∏
i=1

α(i)

i+ 1
, n = 1, 2, . . . , (2.3)

where the product is 1 when n = 1, whence

π(0) =

{
1 +

∞∑
n=1

n−1∏
i=0

α(i)

i+ 1

}−1

. (2.4)

Note that π being a proper distribution implicitly implies that π(0) > 0 or, equiva-

lently, that the sum in (2.4) is finite, and hence that the process is positive recurrent.

Thus the regenerative process is not suitable for critical or supercritical branching

processes. We discuss this in more detail in Section 3.1 below.

We complete this section by identifying a number of key quantities whose means are

insensitive to the distribution of Q and are summarised in Theorem 2.1.

Theorem 2.1. Let Yt denote the total number of individuals in the birth-death process

at time t. Let T =
∫∞
0

1{Yt>0} dt denote the duration of the birth-death process and,

for n = 1, 2, . . ., let An =
∫∞
0

1{Yt=n} dt denote the total time the birth-death process

spends with n individuals alive. Then

E[T ] =
∞∑

n=1

n−1∏
i=0

α(i)

i+ 1
, (2.5)

and for n = 1, 2, . . .,

E[An] =
n−1∏
i=0

α(i)

i+ 1
. (2.6)

Finally, let C denote the total number of individuals ever alive in the birth-death process

and let S be the sum of the lifetimes of those C individuals. Then

E[C] = E[S] =
∞∑
k=1

k
k−1∏
i=1

α(i)

i+ 1
. (2.7)

Proof. An immediate consequence of the above construction is that the mean time

between regenerations is 1/π(0), irrespective of the distribution of Q. On average one

unit of time is spent with no individual in the population, so (see Ball and Milne (2004)

for a formal justification)

E[T ] =
1

π(0)
− 1 =

{ ∞∑
n=1

n−1∏
i=0

α(i)

i+ 1

}
, (2.8)
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as required. Moreover, using (2.3), for n = 1, 2, . . .,

E[An] = π(n)
1

π(0)
=

n−1∏
i=0

α(i)

i+ 1
. (2.9)

Using Fubini’s theorem,

E[S] = E

[∫ ∞

0

Yt dt

]
= E

[∫ ∞

0

∞∑
k=1

k1{Yt=k} dt

]
=

∞∑
k=1

kE

[∫ ∞

0

1{Yt=k} dt

]

=
∞∑
k=1

kE[Ak] =
∞∑
k=1

k
k−1∏
i=1

α(i)

i+ 1
. (2.10)

Note that, after using (2.1) with β(n) = n, (2.2) ensures that E[S] is finite.

Given Ak, the mean number of births whilst the process is in state k is α(k)Ak, so,

including the initial ancestor and noting from (2.9) that E[A1] = 1, we have that

E[C] = E

[
1 +

∞∑
k=1

α(k)Ak

]
= 1 +

∞∑
k=1

α(k)
π(k)

π(0)
= E[A1] +

∞∑
k=1

(k + 1)
π(k + 1)

π(0)

= E[A1] +

∞∑
k=2

kE[Ak] (2.11)

= E[S]. (2.12)

3. Special cases

3.1. Branching process

As mentioned above, we consider branching processes where individuals have iid

lifetimes according to Q (with E[Q] = 1) and whilst alive give birth at the points of

independent homogeneous Poisson point processes with rate λ. Therefore we have that

α(n) = nλ. The key result is Lemma 3.1, which is a generalization of Neal (2014),

Conjecture 2.1.

Lemma 3.1. For n = 1, 2, . . . ,

E[An] =
λn−1

n(max{1, λ})n
. (3.1)

The Lemma is proved in (3.5) and (3.8) below.

For λ < 1, the branching process is subcritical and the results of Section 2 hold. It

follows from (2.3) that

π(n) = π(0)

n−1∏
i=1

iλ

i+ 1
= π(0)

λn−1

n
, n = 1, 2, . . . , (3.2)
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whence

π(0) =

{
1 +

∞∑
n=1

λn−1

n

}−1

= {1− log(1− λ)/λ}−1
. (3.3)

Therefore, it follows from (3.3) and (2.5) that the mean duration of the branching

process is

E[T ] = − log(1− λ)/λ. (3.4)

Also, Neal (2014), Conjecture 2.1, is proved in that, for n = 1, 2, . . .,

E[An] =
λn−1

n
. (3.5)

Finally, we obtain the classical result that the mean total number of individuals ever

alive in the branching process is

E[C] =
∞∑
k=1

kE[Ak] =
∞∑
k=1

λk−1 =
1

1− λ
. (3.6)

The above arguments break down when λ ≥ 1, since then the sum in (3.3) diverges.

However, progress can be made in extending Neal (2014), Conjecture 2.1, and (3.5)

to this case by using Lambert (2011), Lemma 3.1. (Note that the mean duration and

mean total number of individuals ever alive in the branching process are now both

infinite.) Specifically, Lambert (2011), Lemma 3.1, shows that, for n = 1, 2, . . .,

P(Yt = n) =

(
1− 1

W (t)

)n−1
W ′(t)

λW (t)2
, t ≥ 0, (3.7)

where W (t) solves Lambert (2011), equation (6). For most choices of Q, it is not

possible to get an explicit expression for W (t) for all t ≥ 0. However, for any Q

(E[Q] = 1) W (0) = 1 and for λ ≥ 1, W (∞) = ∞. Therefore, for n = 1, 2, . . .,

E[An] =

∫ ∞

0

P(Yt = n) dt =
1

λ

∫ ∞

0

(
1− 1

W (t)

)n−1
W ′(t)

W (t)2
dt

=
1

λ

[
1

n

(
1− 1

W (t)

)n]∞
0

=
1

λn
. (3.8)

Note that if λ < 1, W (∞) = 1/(1− λ) and (3.8) can be used to obtain (3.5) directly.

3.2. SIS epidemic

3.2.1. Mean duration with one initial infective As noted in Section 2, setting α(n) =

λn(N − n)/N (n = 1, 2, . . . , N) yields a homogeneously mixing SIS epidemic in a
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population of sizeN . Using (2.3), it is straightforward to show that, for n = 1, 2, . . . , N ,

π(N)(n) =
π(N)(0)

n

(N − 1)!

(N − n)!

(
λ

N

)n−1

, (3.9)

which has previously been obtained for the Markov case (Q ∼ Exp(1)) by Hernández-

Suárez and Castillo-Chavez (1999). Consequently, the mean duration of the epidemic

starting from a single infective is

E
[
T (N)

]
=

N∑
n=1

(N − 1)!

n(N − n)!

(
λ

N

)n−1

. (3.10)

Note that this follows directly from (2.5), on recalling that there α(0) = 1. We index

quantities of interest by the total population size N to highlight the role played by N

in the analysis below, where we investiage their behaviour for large N .

Lemma 3.2. For the subcritical case, λ < 1,

E
[
T (N)

]
→ − log(1− λ)

λ
as N → ∞. (3.11)

For the critical case, λ = 1,

E
[
T (N)

]
∼ 1

2
logN, (3.12)

where a(N) ∼ b(N) denotes that limN→∞ a(N)/b(N) = 1.

For the supercritical case, λ > 1,

E
[
T (N)

]
∼

√
2π

λ− 1

exp({log λ− 1 + 1/λ}N)√
N

. (3.13)

Proof. First note from (3.10) that

E
[
T (N)

]
=

N∑
n=1

n−1∏
i=1

(
1− i

N

)
λn−1

n
. (3.14)

Suppose that λ < 1. Then, for any k ∈ N,

lim inf
N→∞

E
[
T (N)

]
≥ lim inf

N→∞

k∑
n=1

n−1∏
i=1

(
1− i

N

)
λn−1

n
=

k∑
n=1

λn−1

n
,

and letting k → ∞ yields

lim inf
N→∞

E
[
T (N)

]
≥ − log(1− λ)

λ
. (3.15)
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Also, for any k ∈ N,

lim sup
N→∞

E
[
T (N)

]
≤ lim sup

N→∞

k∑
n=1

n−1∏
i=1

(
1− i

N

)
λn−1

n
+

∞∑
n=k+1

λn−1 =

k∑
n=1

λn−1

n
+

λk

1− λ
,

and letting k → ∞ yields

lim sup
N→∞

E
[
T (N)

]
≤ − log(1− λ)

λ
. (3.16)

Combining (3.15) and (3.16) yields (3.11).

Suppose that λ = 1. Then, setting λ = 1 in (3.14) and noting that

n−1∏
i=1

(
1− i

N

)
≤

n−1∏
i=1

exp

(
− i

N

)
= exp

(
−n(n− 1)

2N

)
,

yields that, for any L > 0 and all sufficiently large N ,

E
[
T (N)

]
≤

⌈L√
N⌉∑

n=1

1

n
+

N∑
⌈L√

N⌉+1

1

n
exp

(
−n(n− 1)

2N

)
≤

⌈L√
N⌉∑

n=1

1

n
+exp

(
−L2/2

) N∑
⌈L√

N⌉+1

1

n
,

where, for x ∈ (R), ⌈x⌉ denotes the smallest integer ≥ x. Hence,

lim sup
N→∞

E
[
T (N)

]
1
2 logN

≤ 1 + exp(−L2/2). (3.17)

Setting λ = 1 in (3.14) yields that, for any K > 0 and all sufficiently large N ,

E
[
T (N)

]
≥

⌈K√
N⌉∑

n=1

1

n

n−1∏
i=1

(
1− i

N

)
≥

⌈K√
N⌉∑

n=1

1

n

 ⌈K√
N⌉∏

i=1

(
1− i

N

)
.

Straightforward analysis (note the connection with the birthday problem and Aldous

(1985), page 96) yields

lim
N→∞

⌈K√
N⌉∏

i=1

(
1− i

N

)
= exp(−K2/2),

whence

lim inf
N→∞

E
[
T (N)

]
1
2 logN

≥ exp(−K2/2). (3.18)

Letting L → ∞ in (3.17) and K ↓ 0 in (3.18) yields (3.12).

For λ > 1, rearranging (3.10) yields E
[
T (N)

]
= a(N)b(N), where a(N) = N !

N2 (λ/N)N−1eN/λ

and b(N) = Ne−N/λ
∑N−1

j=0
(N/λ)je−N/λ

(N−j)j! . A simple calculation using Stirling’s approx-

imation, i.e. N ! ∼
√
2πN(N/e)N , yields a(N) ∼

√
2π

λ
√
N
exp({log λ − 1 + 1/λ}N), so to

complete the proof of (3.13) we show that b(N) ∼ λ/(λ− 1).
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Fix ϵ ∈ (0, λ−1) and let Aϵ
1 = {j ∈ Z : 0 ≤ j < N(λ−1 − ϵ)}, Aϵ

2 = {j ∈ Z :

N(λ−1 − ϵ) ≤ j ≤ N(λ−1 + ϵ)} and Aϵ
3 = {j ∈ Z : N(λ−1 + ϵ) < j ≤ N − 1}.

Further, let X(N) denote a Poisson random variable with mean N/λ. Then, using

Chebyshev’s inequality, P
(
X(N) ∈ Aϵ

1

)
→ 0 and P

(
X(N) ∈ Aϵ

2

)
→ 1 as N → ∞.

Also, by large deviation theory, there exists a > 0, independent of N , such that

P
(
X(N) > N(λ−1 + ϵ)

)
≤ e−aN . Now

N
∑
j∈Aϵ

1

(N/λ)je−N/λ

(N − j)j!
≤ 1

λ−1 − ϵ
P
(
X(N) ∈ Aϵ

1

)
→ 0 as N → ∞ (3.19)

and

N
∑
j∈Aϵ

3

(N/λ)je−N/λ

(N − j)j!
≤ NP

(
X(N) > N(λ−1 + ϵ)

)
→ 0 as N → ∞. (3.20)

Also,

1

1− λ−1 + ϵ
P
(
X(N) ∈ Aϵ

2

)
≤ N

∑
j∈Aϵ

2

(N/λ)je−N/λ

(N − j)j!
≤ 1

1− λ−1 − ϵ
P
(
X(N) ∈ Aϵ

2

)
,

whence, using (3.19), (3.20) and limN→∞ P
(
X(N) ∈ Aϵ

2

)
= 1,

lim inf
N→∞

b(N) ≥ 1

1− λ−1 + ϵ
and lim sup

N→∞
b(N) ≤ 1

1− λ−1 − ϵ
. (3.21)

Letting ϵ ↓ 0 in the two inequalities in (3.21) yields b(N) ∼ λ/(λ− 1), as required.

Let A
(N)
n denote the total amount of time that the SIS epidemic, initiated with a

single infective, spends with n infectious individuals. Then, from (2.9) and (2.8),

E
[
A(N)

n

]
=

π(N)(n)

π(N)(0)
=

π(N)(n)

1− π(N)(0)
E
[
T (N)

]
. (3.22)

Using (2.11), the first equation in (3.22) and (3.9), the mean total number of infectives

during the course of a supercritical epidemic is

E
[
C(N)

]
=

N∑
n=1

nE
[
A(N)

n

]
=

N∑
n=1

n
π(N)(n)

π(N)(0)

=
N∑

n=1

(N − 1)!

(N − n)!

(
λ

N

)n−1

(3.23)

∼
√
2π

λ

√
N exp ({log λ− 1 + 1/λ}N) . (3.24)

The derivation of (3.24) is similar to but simpler than that of E
[
T (N)

]
.
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Note that the second equation in (3.22) gives

E
[
C(N)

]
=

(
N∑

n=1

nπ(N)(n)

1− π(N)(0)

)
E
[
T (N)

]
.

The distribution π̃(N) = (π̃
(N)
1 , π̃

(N)
2 , . . . , π̃

(N)
N ), where π̃

(N)
n = π(N)(n)/(1 − π(N)(0)),

gives a “quasi-equilibrium” distribution for the SIS epidemic. Thus, the mean total

number of infectives in the epidemic is given by the mean number of infectives in quasi-

equilibrium multiplied by the mean duration of the epidemic. When the epidemic

is supercritical (λ > 1), the distribution of π̃(N) is concentrated on values close

to N(1 − λ−1), which explains the simple multiplicative relationship between the

approximations (3.13) and (3.24).

3.2.2. Mean extinction time from quasi-endemic equilibrium The above calculations

of E
[
T (N)

]
are insensitive to the distribution of Q. However, for supercritical SIS

epidemics there is interest in the time to extinction of the epidemic starting from

the quasi-endemic equilibrium of around N(1 − 1/λ) infectives. We outline how the

mean time to extinction from the quasi-endemic equilibrium, E
[
T

(N)
Q

]
, does depend

upon the distribution of Q. The epidemic initiated from a single infective either goes

extinct very quickly or takes off and reaches an endemic equilibrium of a proportion

(λ − 1)/λ of the population infected, cf. Kryscio and Lefèvre (1989). The epidemic

then spends a long time fluctuating about the endemic equilibrium before eventually

going extinct. This can be seen from π(N), with most of the probability mass centred

about (λ− 1)N/λ infectives. There has been considerable interest in investigating the

distribution of the time to extinction from the endemic equilibrium, see for example

Kryscio and Lefèvre (1989), Andersson and Djehiche (1998), N̊asell (1999) and Britton

and Neal (2010). This is a difficult problem on which to make analytical progress.

In Andersson and Djehiche (1998), it was shown that, when Q ∼ Exp(1), the time

to extinction divided by E
[
T

(N)
Q

]
converges in distribution to Exp(1) as N → ∞.

Moreover, E
[
T

(N)
Q

]
∼
√
2π/Nλ exp(N{log λ + 1/λ − 1})/(λ − 1)2 = µ(N)/(1 − 1/λ),

where µ(N) = E
[
T (N)

]
. It is conjectured that an exponential distribution for the time

to extinction holds more generally than for Q ∼ Exp(1), but even computing E
[
T

(N)
Q

]
up to leading terms in N has proved difficult. By studying Gaussian approximations

for the endemic equilibrium, qualitative results on the time to extinction have been
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obtained, see N̊asell (1999) and Britton and Neal (2010). Whilst, such approaches have

given a qualitative understanding of extinction of SIS epidemics, the estimates obtained

for the mean time to extinction are incorrect by orders of magnitude. Moreover, it is

noted in Neal (2014) that simulation results suggest that the distribution of Q does

affect the mean time to extinction from the quasi-endemic equilibrium, which is not

predicted by using the qualitative Gaussian approximation.

Lemma 3.3. For λ > 1 and var(Q) < ∞,

E
[
T

(N)
Q

]
∼ 1

1− pQ
µ(N),

where pQ is the extinction probability of the branching process studied in Section 3.1.

The requirement that var(Q) < ∞ is almost certainly not necessary but is assumed

in the formal proof of Lemma 3.3, which is very long and will be presented elesewhere.

Here we give a heuristic proof. As noted above, the supercritical SIS epidemic will either

quickly go extinct or will take-off and reach the endemic equilibrium. Let 1 − P
(N)
Q

denote the probability that the number of infectives Yt is at least logN at some point

in time. Then it is straightforward to show, using a branching process approximation

(see, for example, Whittle (1955) and Ball and Donnelly (1995)), that P
(N)
Q → pQ as

N → ∞. Then the mean duration of an epidemic, initiated from a single infective

satisfies

µ(N) =
1

π(N)(1)
= P

(N)
Q A

(N)
Q + (1− P

(N)
Q )

{
B

(N)
Q + E

[
T

(N)
Q

]}
, (3.25)

where A
(N)
Q is the mean duration of an epidemic which never reaches logN infected

(epidemic dies off quickly) and B
(N)
Q is the mean time take for the epidemic to reach the

endemic equilibrium given it reaches logN infected. The definition of B
(N)
Q is imprecise

and correspondingly we take B
(N)
Q to be the mean time to reach at least (λ − 1)N/λ

infectives given that the epidemic takes off. For the case Q ∼ Exp(1), it is shown in

Andersson and Djehiche (1998) that A
(N)
Q = O(1) and B

(N)
Q = O(logN). Therefore,

assuming that A
(N)
Q and B

(N)
Q are both o(µ(N)) for general Q, we have that

E
[
T

(N)
Q

]
=

1

1− P
(N)
Q

{
1

π(N)(1)
− P

(N)
Q A

(N)
Q − (1− P

(N)
Q )B

(N)
Q

}
∼ 1

1− pQ
× 1

π(N)(1)
=

1

1− pQ
µ(N), (3.26)
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which highlights the role of Q in E
[
T

(N)
Q

]
. Specifically, the greater the extinction

probability pQ, the longer the epidemic will on average persist, given that it takes

off and becomes established. Note that, subject to E[Q] = 1, pQ is least when Q is

constant (i.e. P(Q = 1) = 1), so the model with a constant infectious period has the

shortest mean time to extinction starting from quasi-endemic equilibrium.

3.3. Household SIS epidemic

Consider a fixed community consisting of m households which, for simplicity of

exposition, all have the same size h, so the population size is Nh = mh. Our results

extend straightforwardly to the case where the household sizes are unequal. We are par-

ticularly interested in the case where m, and hence Nh, is large. Infectious individuals

have iid infectious periods according to Q, after which they become susceptible again.

While infectious an individual makes two types of contacts: the individual makes global

infectious contacts at rate λG, each time the contacted person is selected independently

and uniformly at random from the whole community, including individuals in the

same household, and the individual makes local infectious contacts at rate (h − 1)λL,

each time the contacted person is selected independently and uniformly at random

from the other h − 1 individuals in the same household. If a contacted person is

susceptible then he/she becomes infected, otherwise nothing happens. By examining

the within-household dynamics of the SIS epidemic in the initial stages of the epidemic

and at the quasi-endemic equilibrium, we obtain interesting, and perhaps unexpected,

insensitivity results for the household SIS epidemic model.

For large m, the initial stages of the household SIS epidemic can be approximated

by a branching process; see Ball (1999), where the approximation is made fully rigorous

using a coupling argument. The branching process approximation is similar to that

used for the household SIR epidemic, Ball et al. (1997), with individuals in the ap-

proximating branching process corresponding to within-household epidemic outbreaks

in the epidemic. For large m, in the initial stages of the household SIS epidemic the

probability that a global infectious contact is with an infectious household (a household

containing at least one infective) is very small. Therefore, we assume that all global

infectious contacts are with totally susceptible households and we consider the epidemic

within a household, ignoring for the moment global infectious contacts, initiated by a



On expected durations of birth-death processes 15

single infective and without any additional global infections from outside.

Let S denote the severity of such a within-household epidemic, i.e. the sum of the

infectious periods of all infectives during the course of the epidemic from the initial

infective until the epidemic within the household ceases. Then, conditional upon S, the

total number of global infectious contacts emanating from the household has a Poisson

distribution with mean λGS, so the basic reproduction number of the approximating

branching process is R∗ = λGE[S]. The within-household epidemic without additional

global infections is simply a homogeneously mixing SIS epidemic with N = h and

λ/N = λL, so λ(n) = λLn(h− n), and (2.12) and (3.23) imply that

R∗ = λG

h∑
n=1

(h− 1)!

(h− n)!
λn−1
L ,

irrespective of the distribution of Q. Note, however, that the distribution of S does

depend upon the distribution of Q, and hence so does the probability that the epidemic

takes off, corresponding to the approximating branching process not going extinct.

Suppose that R∗ > 1 and that the epidemic takes off. Its quasi-endemic equilibrium

can be determined as follows; see Ghoshal et al. (2004) and Neal (2006). Suppose that

a proportion s of the population is infected and focus on a single household. Then each

susceptible individual in that household receives global infectious contacts at the points

of a homogeneous Poisson process with rate λGs, so the number of infectives in that

household follows a birth-death process with birth rate α(n) = (h − n){sλG + nλL}.

Note that this birth-death process is stationary and denote its equilibrium distribution

by ϕ(s) = (ϕ0(s), ϕ1(s), . . . , ϕh(s)). It follows, using (2.1) with β(n) = n, that

ϕk(s) =

∏k−1
i=0

(
h−i
i+1

)
(λGs+ iλL)

1 +
∑h

j=1

∏j−1
i=0

(
h−i
i+1

)
(λGs+ iλL)

, k = 0, 1, . . . , h.

Let z be the proportion of the population that are infected at the quasi-endemic

equilibrium. Then, by a self-consistency argument, the mean of the distribution ϕ(z)

must be hz, so z satisfies

hz =
h∑

i=0

iϕi(z),

which has a unique strictly positive solution if R∗ > 1; see Neal (2006), where the

argument is made fully rigorous in the limit as m → ∞. Note that, for s > 0, the
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distribution ϕ(s) is insensitive to the distribution of Q. Hence, at the endemic equi-

librium of the household SIS epidemic, both the proportion of the population infected

and the distribution of the number infected in a typical household are insensitive to

the distribution of Q.

The above results are in sharp contrast to the household SIR epidemic, in which the

threshold parameter R∗, the fraction of the population infected by a major outbreak

and the distribution of the ultimate number of susceptibles in a typical household in

the event of a major outbreak are all sensitive to the distribution of Q.
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