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Abstract

Responses to microhabitat are often neglected when ecologists sample animal

indicator groups. Microhabitats may be particularly influential in non-passive

biodiversity sampling methods, such as baited traps or light traps, and for certain

taxonomic groups which respond to fine scale environmental variation, such as

insects. Here we test the effects of microhabitat on measures of species diversity,

guild structure and biomass of dung beetles, a widely used ecological indicator

taxon. We demonstrate that choice of trap placement influences dung beetle

functional guild structure and species diversity. We found that locally measured

environmental variables were unable to fully explain trap-based differences in

species diversity metrics or microhabitat specialism of functional guilds. To

compare the effects of habitat degradation on biodiversity across multiple sites,

sampling protocols must be standardized and scale-relevant. Our work highlights

the importance of considering microhabitat scale responses of indicator taxa and

designing robust sampling protocols which account for variation in microhabitats

during trap placement. We suggest that this can be achieved either through

standardization of microhabitat or through better efforts to record relevant

environmental variables that can be incorporated into analyses to account for

microhabitat effects. This is especially important when rapidly assessing the

consequences of human activity on biodiversity loss and associated ecosystem

function and services.
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Introduction

Understanding the spatiotemporal patterns in species distributions is critical for

implementing conservation strategy [1]. However, demand for biodiversity data

far exceeds the resources available for its collection [2, 3]. Furthermore, what can

be inferred from the data that are available is wholly dependent on the scale at

which they are collected and analyzed [4, 5]. This means that effective

conservation prioritization directly depends on the fidelity of methodologies used

in biodiversity assessments.

In order to efficiently and cost effectively map or monitor diversity the use of

indicator groups is necessary [6]. Much research has shown that certain insect

groups make good indicator taxa [1, 6, 7]. Dung beetles (Coleoptera: Scarabaeidae:

Scarabaeinae) are one such group, and are widely recognized as an effective taxon

that can be used in biodiversity assessments across the world [8, 9]. They are a key

component of many tropical and temperate ecosystems, play important roles in

ecosystem functioning (such as nutrient cycling, secondary seed dispersal, and

parasite control), are amenable to rapid sampling, and are complemented by an

active group of taxonomists [8, 10, 11]. Moreover, the response of dung beetles to

environmental variables has been extensively documented [12–17], and they show

marked responses to anthropogenic disturbance [9, 18, 19].

The standard methodology for trapping dung beetles uses dung baited pitfall

traps along uniform linear transects [8, 20]. These traps are usually standardized

in terms of bait used, bait size, spacing between traps, and length of time before

collecting; and this allows ecologists to account for differences in the response

traits of species in the community they sample. However the placement of the trap

is rarely standardized. Accounting for species-specific responses to microhabitat is

particularly important for non-passive sampling methods, such as baited traps or

light traps, used for many important indicator groups, such as dung beetles,

butterflies and moths. Differences in species’ responses to microhabitat, may affect

trap effectiveness. In such cases the abundance and species composition of the

sample will not relate to the abundance and species composition of the local

community, but instead to a subset of the community that responds to the specific

microhabitat conditions around the trap. Knowledge on the spatial resolution of

non-passive traps is therefore essential to correctly relate samples to the

surrounding habitat and landscape characteristics.

To the best of our knowledge, no studies to date have investigated the effects of

trap placement and microhabitat preference of dung beetles on biodiversity

metrics yielded from a typical field-sampling program. Here we specifically assess

whether dung beetles show microhabitat level response traits, and if the current

sampling methods used by ecologists to estimate dung beetle species diversity,

biomass, and guild structure are robust to the effects of microhabitat variation.

We analyze our results on the two different scales commonly used by ecologists:

the trap and transect, in order to make our findings widely applicable. We discuss

the implications of our findings for studies using dung beetles as an indicator
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taxon to assess habitat changes across multiple forest sites, and in particular those

studies which link biodiversity to ecosystem functions and services.

Methods

Study site

Fieldwork was carried out during July-August 2009, in the tropical wet forest

surrounding Sirena Biological Station (8˚ 289 500N 83˚ 359 200W), Corcovado

National Park, Osa Peninsula, Costa Rica (Fig. 1). Distinct seasons exist in the

park with the vast majority of the annual rain falling during the months August-

October, and least falling between months of January-March, totaling 5500 mm/

year (INBIO unpubl. data). The mean average daily temperature is c. 25C. The

area directly surrounding the station was subject to settlement during the 1940–

50’s, with small pasture lands established during the 60s, and major clearings

occurring between 1973–75, just prior to the parks establishment [58]. At the time

of the study the sites used had been subject to 34 years of secondary regrowth in a

matrix of contiguous primary old growth forest (Fig. S1). This study area supports

diverse and abundant mammal populations [21, 22], which in turn provide a large

resource base for dung beetle populations. In total 76 species of dung beetle have

been recorded on the Osa Peninsula, 41% of the of the country’s 182 dung beetle

species [23].

Ethics

All necessary research and export permits were obtained for this project from

Ministerio de Ambiente, Energı́a y Mares de Costa Rica. A reference collection of

the insect material collected is curated at the Instituto Nacional de Biodiversidad,

Costa Rica.

Experimental design

The study followed a simple paired design with two types of trap placement: one

standardized to microhabitat (‘‘treatment’’) and one randomly placed (‘‘control’’)

(explained below). Control transects consisting of 10 sampling stations (50 m

apart) were installed in eight spatially independent sites (AB-OP) (sites 500 m

apart) (Fig. 1). The control transects used in this study represent the

recommended standardised protocol for recording dung beetle distributions and

abundances (ScarabNet: http://scarabnet.myspecies.info/) with each trap placed

along a linear transect at 50 m intervals, regardless of the surrounding

microhabitat features. Each control transect was coupled with a separate

treatment transect 50 m apart: where trap placement was standardized to 1 m

directly South from the base of a 60–80 cm diameter tree that was not situated

next to tree falls or large open areas. The treatment trap placement was made to

non-randomly select local microhabitat environmental variables around the trap,

relative to the controls, whilst being close enough to be considered as sampling the
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same macro-habitat as the control. Global Positioning Systems (Garmin GPSMAP

60CSx) were used to mark out both control and treatment transects. Suitable

sampling stations (trap locations set up for repeated trap servicing over a 72 hr

period) for the treatment transects were located either directly on the linear

transect or at short perpendicular deviations from it. In all cases minimum trap

distances of 50 m were maintained throughout the study.

Dung baited pitfall traps, were installed at each sample station. A 7.5 cm

diameter plastic cup was placed with the rim flush to the soil surface and 1/3 filled

with water and a scentless detergent (to break the surface tension). Each trap was

baited with 25 g of homogenized pig dung wrapped in biodegradable cheesecloth

and tied to a stick suspended over the cup. Traps were covered by one large, or

two crossed leaves to protect the trap from rainwater and direct manipulation of

the dung by the beetles. Omnivore dung is effective bait for trapping in the

Figure 1. Study site. Sampling sites comprised of 8 pairs of transects (AB-OP). Each transect pair consisted
of one transect with traps placed in a standardized microhabitat (‘‘treatment’’ traps), and one transect with
traps placed randomly at 50 m intervals as per methods usually employed in comparative studies of dung
beetles (‘‘control’’ traps) (see methods for further details). Dark blue dots represent sampling stations which
are set locations along transects where single traps were serviced over a 72 hr period.

doi:10.1371/journal.pone.0114015.g001
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neotropics [15, 24, 25], and pig dung in particular was suitable for our site because

of seasonal peccary movements in the study area at the time of year we were

trapping [22]. Each transect pair was run for 72hours, re-baiting and collecting

specimens every 24hours. Specimens were stored in 75% ethanol until material

was sorted and identified.

Environmental variables

Temperature and relative humidity changes over the 72hour trapping periods,

logged every 30 minutes, were recorded using EL-USB-2 data loggers (Lascar

Electronics Ltd, UK), which were tied to tent pegs and placed 2 cm above the

ground and 22 cm to the West of a trap, at equidistant points along the transects

(4 on each transect). At each trap canopy openness was recorded using the

Canopy Scope method: a simple, rapid and reliable assessment of forest

understory light [26]. Diameter at breast height (DBH) of all stems .5 cm within

a 5 m radius of each trap were measured, and used to estimate above ground

biomass using regression equations in Chave et al. [27]. Ground cover was

visually assessed in a 4 m2 quadrat surrounding each trap, and relative

proportions of bare ground, leaves, twigs, large woody debris, and litter layer

depth (mm) was recorded. Soil was sampled down to a depth of 10 cm,

(representing the most frequently utilized zone tunneled by dung beetles [Mann

unpubl. data]), and classified into 5 classes using textural inference: very coarse

(sand, loamy sand), coarse (sandy loam), medium (loam, silt, silt loam), fine

(sandy clay loam, silty clay loam, clay loam), very fine (clay, silty clay, sandy clay)

(1–5 respectively). Each transect line was mapped onto the land use prior to 1976

map, and classified as old growth forest (undisturbed), undercut forest (with

intact canopy but widespread understory clearing), abandoned farmland (cleared

and used for crops between 1940–75), or old pastures and clearings (prolonged

use of pastures and clear cut areas) [58] (Fig. S1).

Analysis

Material was identified to species level using the INBio reference collection and

papers listed in [28]. Data from each trap day at a given sample station were

treated cumulatively and amalgamated. Any ambiguities in the integrity of a pitfall

trap sample, as a result of flooding or interference with bait, led to that pitfall trap

sample being omitted from analysis, along with the corresponding pitfall trap

sample from the parallel paired transect. Equitability of trap spatial distribution

between the control and treatment transects was confirmed (after elimination of

one problematic sample station pair) using variance tests of x and y components

of the standard deviation ellipses for each transect pair [29].

We calculated all biodiversity metrics at the trap and at the transect level. The

transect level metrics were calculated on cumulated trap species abundances of the

10 sample stations on each transect. To control for differences in species richness

resulting from unequal sample sizes [30], individual-based rarefaction curves were
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plotted for each sample station based on 1000 randomized iterations using the

package PAST, and interpolated species richness extracted at the lowest number of

individuals in any one sample [31]. To check whether treatment vs. control

sampling stations generated differences in total species richness estimates across

sampling sites in the study area, Chao1 estimates and their asymmetrical

confidence intervals were computed using the package EstimateS (Version 8.2,

R.K.Colwell, http://purl.oclc.org/estimates). Simpsons Effective Diversity Index

(1/D) was computed in PAST [31]. As the full complement of different functional

groups has been found to play a role in maximizing ecosystem functioning in

dung beetle communities [32], guild structure were analyzed by calculating the

relative proportions of endocoprids (dwellers), paracoprids (tunnelers) and

telocoprids (rollers). A. panamensis and T. pilosum, were excluded from guild

structure analyses, due to uncertainty in their feeding behavior (Table 1). As

biomass has also been shown to be important for ecosystem functioning [33, 34],

biomass was estimated by calculating the mean mass per species from dried

specimens (either the mean of 20 individuals per species, or all collected during

the study if less than 20) to 0.1 mg on an ABS 220-4 analytical balance (KERN Ltd

Germany).

Trap and transect biodiversity data were analyzed using linear mixed models,

with microhabitat treatment as a fixed effect and site as a random effect, using the

lme4 package in R 3.0.2 [59–60]. Separate models were fit for rarefied species

richness, Simpson’s effective diversity, biomass, abundance and guild structure

(%rollers, %dwellers, %tunnelers). The importance of microhabitat for predicting

differences in biodiversity responses was tested by comparing the fit of these

models to null models with the microhabitat (treatment vs. control) term

removed using likelihood ratio tests. Dweller, tunneller and roller proportions

were logit transformed after [57], biomass and abundance square root

transformed, and 1/D log transformed, to meet linear modeling assumptions.

Although this study was not designed to test for interactive effects between

historic land use and microhabitat placement on dung beetle biodiversity, it is

possible that the different successional trajectories of land use over 34 years on our

site [58], influenced biodiversity responses. We tested for potential confounding

effects of land use on microhabitat treatments in two ways. Firstly, we re-built the

linear mixed effects models outlined above with an additional term including land

use history (as an interactive random effect with site). We then compared models

containing land use history information to nested models without this term, using

likelihood ratio tests and inspection of Akaike information criterion values. We

found that including land use history did not significantly improve our model fits,

suggesting we should drop it from our analyses. Secondly, we trimmed our dataset

so that land use history classes were equally represented by trap pairs along each

transect, and re-run our analyses. The results from this trimmed dataset did not

alter the main conclusions of the paper. Therefore, we present in this paper results

on the full dataset without land use history effect terms explicitly noted in our

models. A full dataset for the paper is deposited on Dryad digital repository [61].
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Table 1. Coprophagic Scarabaeinae species trapped separated by functional group.

Functional group and species Abundance Biomass (g)

Tunnelers

Anomiopus panamensis (Paulian)" 1 (1{) 0.0014

Canthidium ardens Bates 1 (1{) 0.0034

Ateuchus aeneomicans (Harold) 2 (2*) 0.0081

Coprophanaeus pecki Howden and Young 2 (2*) 0.4917

Canthidium sp (n/a) 2 (2*) 0.0030

Onthophagus marginicollis Harold 3 (2{, 1*) 0.0049

Sulcophanaeus noctis (Bates) 4 (4{) 0.2661

Canthidium aurifex Bates 5 (5{) 0.0312

Canthidium haroldi de Borre 6 (2{, 4*) 0.0162

Trichillidium pilosum (Robinson)" 13 (3{, 10*) 0.0018

Uroxys boneti Pereira & Halffter 21 (19{, 2*) 0.0012

Onthophagus coscineus Bates 23 (13{, 10*) 0.0021

Dichotomius satanas (Harold) 24 (12{, 12*) 0.3034

Canthidium centrale Boucomont 33 (11{, 22*) 0.0283

Dichotomius amicitiae Kohlmann & Solis 59 (19{, 37*) 1.0621

Onthophagus praecellens Bates 185 (94{, 91*) 0.0068

Onthophagus coriaceoumbrosus Kohlmann & Solis 678 (327{, 351*) 0.0083

Copris incertus Say 1,314 (648{, 646*) 0.0533

Onthophagus acuminatus Harold 9,783 (5467{, 4316*) 0.0050

Sub total 12,148 (6,634{, 5,511*) 198.6227 (90.1503{, 105.2861*)

Rollers

Deltochilum parile Bates 1 (1{) 0.0568

Canthon subhyalinus Harold 3 (1{, 2*) 0.0056

Canthon mutabilis Lucas 4 (4{) 0.0115

Deltochilum gibbosum (Fabricius) 4 (1{, 3*) 0.6787

Canthon humboldti Solis & Kohlmann 4 (1{, 3*) 0.0033

Megathoposoma candezei (Harold) 17 (3{, 14*) 0.2606

Canthon moniliatus Bates 97 (53{, 44*) 0.0082

Canthon aequinoctialis Harold 3,865 (1,661{, 2,204*) 0.0600

Sub total 3,993 (1724{, 2272*) 232.7869 (98.4237{, 138.3632*)

Dwellers

Eurysternus mexicanus Harold 17 (8{, 9*) 0.0337

Eurysternus plebejus Harold 99 (39{, 60*) 0.0108

Eurysternus foedus Guérin-Méneville 123 (39{, 84*) 0.0589

Eurysternus hamaticollis Balthasar 1, 364 (578{, 786*) 0.0843

Sub total 1,603 (664{, 939*) 123.872 (51.7133{, 72.1587*)

Total 17, 744 (9,022{, 8722*) 559.2816 (243.4736{, 315.808*)

Abundance is the total number of individuals trapped at 150 dung-baited pitfall traps over 332 trap days. {5control (non-microhabitat standardised traps;,
*5treatment (microhabitat standardised traps-see methods for description). "5uncertainty in feeding behavior classification given. Biomass is either the
mean of 20 individuals/species, or all individuals collected during the study if less than 20.

doi:10.1371/journal.pone.0114015.t001
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In order to test which environmental variables differed between our

microhabitat treatments we compared mixed models for each measured

environmental response, with and without microhabitat (treatment vs. control) as

a fixed effect (retaining site as a random effect). In order to test the differences

between ordinal environmental responses (e.g. soil texture, canopy openness)

between treatments vs. control we performed our likelihood ratio tests on

cumulative link mixed models using the ordinal package in R [62]. The remaining

response variables were analyzed using linear mixed models, some of which were

transformation to meet linear modeling assumptions: ground cover proportions

and relative humidity were logit transformed after [57], above ground woody

biomass was square root transformed, and litter layer depth was log transformed.

The extent to which the environmental variables that were found to differ between

treatment and controls could account for microhabitat treatment effects on

biodiversity responses was tested using model selection. Here, environmental

variables were fitted as fixed factors and compared to models with and without

microhabitat treatment terms. Temperature values were averaged across each

transect for this latter analysis.

In order to compare differences in effect sizes between trap and treatment scales

of analyses, and for the effect of microhabitat trap placement with environmental

variation taken into account, we estimated effect sizes (Cohens d) and

approximate 95% confidence intervals for microhabitat treatment effects using

equation 22 from Nakagawa and Cuthill [35], where d50.2, d50.5 and d50.8 are

rough guides to small, medium and large effects respectively [36]. Denominator

degrees of freedom for these calculations were approximated (Satterthwaite’s)

using lmerTest package [63] in R.

Differences in community composition across treatments and sites were

investigated with a two-way Analysis of Similarity (ANOSIM) using Bray-Curtis

distances in PAST [31] The analyses produce an ‘‘R’’ statistic for each level

(ranging between 1 and 1, where 1 indicates distances between groups are far

greater than those within groups), which was evaluated for significance with 9,

999 permutations of group membership at the P,0.05 level. Differences in

abundances of the species which contributed the most to community dissimilarity

were tested using Wilcoxon Signed Rank tests, and r effect sizes calculated after

Cohen [36] with r values r50.1, r50.3 and r50.5, equal to small, medium and

large effects respectively.

Results

Community composition

17,744 specimens, representing 332 trap days were included in the analysis. A total

of 31 species, with four species specific to control traps and five specific to

treatment traps (Table 1). Community composition differed to a very small degree

between control and treatment traps (R stat50.07, P50.006), and a small degree

between sites (R stat50.26, P,0.0001). The largest contributors towards
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dissimilarity between the microhabitat treatments where O. acuminatus, C.

aequinoctialis, E. hamaticollis and C. incertus, which accounted for 48%, 23%, 9%

and 8% of the total dissimilarity between treatments, respectively. Of these, we

found obvious differences in abundance between the treatments for C.

aequinoctialis (Wilcoxon signed rank test: W5851, Z522.3387, P50.02,

r520.27) and O. acuminatus, (Wilcoxon signed rank test: W51843, Z52.462,

p50.01, r50.28), but not for E. hamaticollis (Wilcoxon signed rank test: W5859,

Z521.5897, P50.11, r520.18) or C. incertus (Wilcoxon signed rank test:

W51145, Z50.007, P50.97, r5861024).

Species diversity

Effective diversity (1/D) was higher in the treatment vs. control at the trap level

(x2
157.29, P50.006, d50.36). The effect of treatment on 1/D was more variable at

the transect level (x2
153.26, P50.07, d50.65) (Figs. 2B, 3B). Rarefied species

richness was higher in treatment vs. control (x2
158.01, P50.005, d50.38).

However, this was lost at the transect level (x2
151.61, P50.2, d50.59) (Fig. 2A,

3E–F). Inspection of a plot of the confidence intervals of treatment and control

Chao1 estimates, support this finding, showing a considerable overlap, indicating

that the trapping methodologies did not yield large differences in minimum total

species richness across the study area when controlling for abundance differences

at each sample station (Fig. S2). Abundance did not differ between treatment and

control at the trap (x2
150.33, P50.56, d520.08), or the transect level (x2

150.27,

P50.59, d520.016) (Fig. 2F, Table 1).

Functional metrics

Biomass differences between treatments were not highly conclusive at the trap

(x2
153.57, P50.058, d50.25), or the transect level (x2

152.2, P50.13, d50.42) (

Figs. 2C, 3C). There was however a clear difference in guild structure between

treatment and control. Controls yielded a greater proportion of tunnelers relative

to treatment, at the trap (x2
1516.28 P,0.0001, d520.50) and the transect level

(x2
156.47, P50.012, d520.77) (Figs. 2G, 4A). Contrastingly, roller proportions

were greatest in treatment trap vs. controls at the trap level (x2
157.01 P50.008,

d50.36), but effects of trap placement on rollers were less conclusive at the

transect level (x2
153.58, P50.058, d50.50) (Figs. 2D, 4B). Dweller proportions

were also highest at treatment vs. control at trap (x2
1512.63, P50.003, d50.51),

but as with rollers this effect was less conclusive at the transect level (x2
153.57,

P50.059, d50.93) (Figs. 2E, 4C).

Environmental variables

Treatment traps had 1385 kg (¡408 SE) more above ground woody biomass

(x2
1510.91, P,0.0001) relative to controls. Marginal differences were also found

for temperature, with treatment traps 0.12 C̊ (¡0.06 SE) higher relative to
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controls (x2
153.41, P50.064). No statistically clear differences were found

between treatment and controls for bare ground cover (x2
151.29, P50.25), large

woody debris (x2
151.66, P50.19), leaf cover (x2

150.15, P50.69), twig cover

(x2
150.08, P50.77), litter layer depth (x2

150.0009, P50.97), humidity (x2
152.26,

P50.13), canopy openness (x2
151.62, P50.20), or soil texture (x2

150.49, P50.48).

Despite the differences in above ground biomass and temperature between

treatments, these environmental variables were unable to fully account for the

effect of trap placement on 1/D (x2
154.09, P50.027), species richness (x2

156.25,

P50.012), the proportion of tunnelers (x2
1512.48, P50.0004), rollers (x2

158.09,

P50.004), or dwellers (x2
158.59, P50.003) (Fig. S3).

Figure 2. Effect of trap microhabitat on dung beetle biotic responses. The magnitude of the effect of trap
placement (treatment5microhabitat standardized vs. control5non-standardized) on various biotic responses,
where 0.2, 0.5 and 0.8 represent small, medium and large effects, respectively. Transect level metrics were
calculated on cumulated trap species abundances of the 10 sample stations on each transect. Trap level
metrics are calculated from cumulative species abundances collected over 72hours for each sample station
(see Methods for details). Effect sizes are calculated from t-values generated in a linear mixed models
framework with biotic variables as responses, site as a random effect, microhabitat treatment as a fixed effect.
Total traps days5332, Total number of individuals517,744.

doi:10.1371/journal.pone.0114015.g002
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Discussion

Overview

Taxon-specific behavioral responses to spatial heterogeneity influence the way that

biodiversity is studied and managed [4, 5, 37]. If the habitat is not defined from

the perspective of the organism, then determining environmental parameters

underlying population distributions can be problematic [5, 38, 39]. Here, we

report the first study testing the effects of trap placement and microhabitat

preference of dung beetles on commonly used metrics of biodiversity. We show

that differences in biodiversity metrics can result from microhabitat trap

placement over small spatial scales. This may have important implications for

designing methodologies used for monitoring biodiversity and for studies

Figure 3. Distributions of dung beetle biotic responses to microhabitat treatments.
Treatment5microhabitat standardized traps, control5non-standardized traps. Transect level metrics were
calculated on cumulated trap species abundances of the 10 sample stations on each transect. Trap level
metrics are calculated from cumulative species abundances over 72hours for each sample station (see
Methods for details). The box represents the interquartile range, the line is the median, upper whisker is the
75th percentile and lower whisker the 25th percentile. All graphs are drawn from untransformed data. Total
traps days5332, Total number of individuals517,744.

doi:10.1371/journal.pone.0114015.g003
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investigating biodiversity-ecosystem functioning relationships using dung beetles

as indicator taxa.

Firstly, if insect indicator taxa are used without representative sampling of the

microhabitats they occupy, we may fail to compare like with like, which could in

turn result in biases and lead to erroneous biodiversity valuations, or misguided

conservation efforts. Secondly, in order to understand the functional roles

underlying ecosystem processes performed by indicator groups, there is a need to

account for the possibility that micro-scale variation in functioning could result

from different microhabitat preferences of distinct functional guilds. In order to

overcome these problems we suggest that sampling protocols for indicator taxa

should incorporate standardization of microhabitat when placing traps, or record

Figure 4. Distributions of dung beetle guild responses to microhabitat treatments.
Treatment5microhabitat standardized traps, control5non-standardized traps. Transect level metrics were
calculated on cumulated trap species abundances of the 10 sample stations on each transect. Trap level
metrics are calculated from cumulative species abundances over 72hours for each sample station (see
Methods for details). The box represents the interquartile range, the line is the median, upper whisker is the
75th percentile and lower whisker the 25th percentile. All graphs are drawn from untransformed data. Total
traps days5332, Total number of individuals517,744.

doi:10.1371/journal.pone.0114015.g004
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relevant environmental variables at the trap level, which can then be incorporated

into analyses to account for microhabitat effects.

Microhabitat preferences of dung beetles

The sensitivity of specific dung beetle species to irradiance, soil type, moisture,

temperature, leaf litter, structural complexity, vegetative cover, and dung resource

type are widely recognized [15, 40–43]. Despite the availability of resources,

particular habitats will be avoided by particular taxa [44, 45]. Although we found

that overall community composition was similar between treatments, some

species (O. acuminatus and C. aquinoctialis) exhibited noticeable differences in the

microhabitats they chose to visit. Moreover, we found three species (Anomiopus

panamenis, Canthon mutabilis and Canthidium ardens) exclusively in non-

standardized traps (although A.panamensis is a rare species that a rarely comes to

pitfall traps at all).

The lack of treatment differences for most of the environmental variables we

measured confirms our samples from traps along paired transects were obtained

from much the same macrohabitat, and were even similar in terms of many

commonly measured microhabitat environmental variables. The overall differ-

ences between species richness and diversity metrics between trap placements were

small, inconsistent across scales of analysis, and probably biologically insignif-

icant.

We found higher proportions of dweller and roller guilds, and lower

proportions of tunnelers, at treatment versus control traps, indicating micro-

habitat preferences at the functional guild level. These differences were larger than

those for species richness and diversity metrics, and, in the case of tunnelers,

consistent over the scale of analysis. It may be expected that tunnelers, which

directly bury beneath the soil, are be more likely to cope with open or warmer

microhabitats than dwellers or rollers, which may be more prone to desiccation

under these conditions [46, 47]. Likewise, dwellers and rollers are better able to

cope with soil obstruction than tunnelers [48, 46]. However, neither the humidity,

nor ground cover parameters, which we measured, were significantly different

between the standardized and non-standardized microhabitat trap placements in

our study. Furthermore, the inability for temperature and above ground woody

biomass to account for differences in guild structure, suggests that other factors,

such as predation intensity, body size or sensory traits, may be more likely to

influence the guild specific behavioral responses of dung beetles at this scale.

Implications for monitoring ecosystem functioning

Guild structure, body size and biomass of dung beetles have been used to infer

ecosystem functioning [42, 49, 50]. Studies have shown a lower effectiveness of

small-bodied beetles for seed dispersal compared to large bodied individuals, and

a disproportionate contribution of large bodied individuals for dung burial, even

when high abundances of small-bodied individuals are present [19, 32–33, 52].
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Despite the close proximity of the sample stations in the paired treatments, the

differences in the proportions of functional guilds suggest that standardization of

microhabitat will be important to link ecosystem processes to community

functional composition. Ignoring microhabitat biases may hinder the develop-

ment of a mechanistic understanding of the traits that underlie a particular

function. For example, the majority of ‘larger’ species collected during the study

(0.2–1.1 g dry weight) were found at microhabitat standardized traps, including

the largest species Dichotomius amicitiae. This species belongs to the large

nocturnal tunneler group, a group which makes significant contributions to

community ecosystem functioning in both Asian and Neotropical rainforests

[32, 34, 52]. In terms of biomass alone, D. amicitiae weighs 2.5 orders of

magnitude more than the hyper-abundant O. acuminatus that largely accounted

for the greater proportion of tunnelers found in non-standardized traps. The

greater proportion of rollers found at standardized traps, especially large bodied

species such as Deltochilum gibbosum and Megathoposoma candezei, are probably

important for reducing clumping in seeds through dispersal away from the dung

source, releasing plants from microsite limitation and negative density dependent

pathogen attack [51, 53]. Thus, the conclusions drawn on the effects of particular

functional guilds on ecosystem functions may be affected by the microhabitat in

which sampling takes place.

Implications for studies on habitat disturbance

The stenotopic nature of dung beetles and their rapid response to abiotic

parameters, suggests local extirpation of many species as a result of alteration of

microclimatic factors in heavily disturbed areas [44, 45, 54–55]. However, the

consequences of anthropogenic disturbance on dung beetle species composition

have been found to be variable, particularly at lower levels of forest disturbance

[9, 19, 56]. One explanation why studies may differ in their findings on the effects

of disturbance on communities is that comparative work does not consider

microhabitat conditions when placing traps.

Our results show that although species diversity metrics were influenced by

microhabitat treatments, the differences were small and unlikely to be important

for studies on habitat disturbance. Contrastingly, the composition of functional

groups differed with trap placement to a larger degree, and as changes in guild

structure have been shown to have knock-on effects for dung removal and

ecosystem functioning [32] we suggest that this difference is likely to be

biologically significant.

We highlight that on a practical level, problems in biodiversity assessments

using dung beetles are most likely to arise when trapping methodologies are

employed under restricted resources, and are thus incapable of randomly

sampling enough of the macrohabitat to guarantee that enough traps are placed to

encompass the full range of microhabitats within. In such instances we suggest

that standardizing trap placement, or recording microhabitat variables at the trap

level and including these in analyses may help to mitigate these biases. However, it
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is clear from our study that we need a better understanding of exactly which

environmental variables are driving fine scale responses. Caution also needs to be

applied in making inferences from studies that do control for trap placement: as

this will only sample a subset of the community of interest.

Conclusions

In conclusion, we have shown that biases exist in current trapping protocols

employed for the study of a widely used indicator taxon. We predict such biases to

be most important in studies without sufficient replication and randomization

along transects to properly represent the distribution of all potential microhabitats

existing in a given macrohabitat. We found that the differences in species diversity

responses to microhabitat conditions are subtle, but responses of functional guilds

were more pronounced. We also found that the scale of analysis influenced the

microhabitat bias. Thus, the impact of sampling methodology on decision-

making may depend on whether functional or species richness based diversity

measures are investigated, or at what scale they are analyzed. We suggest it may be

possible to account for microhabitat preferences through standardizing trap

placement or by including environmental parameters in analyses, but stress

further knowledge of microhabitat preferences is needed to ensure relevant

environmental parameters are measured in the field. A sharper focus on this topic

would allow us to better understand the spatial patterns in animal ecosystem

service provisioning.

Supporting Information
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Figure S3. Effect of trap microhabitat on dung beetle biotic responses with

environmental variables considered.
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