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Abstract—In this paper we study how to design an oppor-
tunistic scheduler when flow sizes have a general service time
distribution with the objective of minimizing the expected holding
cost. We allow the channel condition to have two states which in
particular covers the important special case of ON/OFF channels.
We formulate the problem as a multi-armed restless bandit
problem, a particular class of Markov decision processes. Since
an exact solution is out of reach, we characterize in closed-form
the Whittle index, which allows us to define a heuristic scheduling
rule for the problem. We then particularize the index to the
important subclass of distributions with a decreasing hazard rate.
We finally evaluate the performance of the proposed Whittle-
index based scheduler by simulation of a wireless network. The
numerical results show that the performance of the proposed
scheduler is very satisfactory.

Index Terms—Whittle index rule, opportunistic scheduling,
size-aware scheduling, mean delay optimization, wireless net-
works.

I. INTRODUCTION

Due to fading and interference effects, the quality of a
wireless downlink channel, and hence its transmission rate,
fluctuates over time. This has given rise to so-called oppor-
tunistic schedulers, that is, scheduling disciplines that take
advantage of the channel fluctuations by serving a user who
has a good channel condition with respect to its own statistical
behavior, see for example [1]. In a dynamic scenario, where
users arrive and depart upon service completion, and when
the objective is to minimize the mean number of users in the
system or the mean waiting time, the challenge is how to keep
the number of uncompleted flows low while taking advantage
of opportunistic gains. Interestingly, greedy or short-term
policies that serve the user with best instantaneous capacity,
such as the Max Rate policy, are known to perform very poorly
in this scenario, see for example [1] or [2].

Over the years the literature on performance evaluation and
optimal scheduling of flows in wireless downlink channels
has grown tremendously (see [1]–[6]). A particularly relevant
paper to our work is [2], where the authors consider a finite

number of channel conditions with exponentially distributed
flow sizes, and formulate the optimal scheduling problem in
the framework of restless bandit problems [7], which is a fun-
damental model for resource allocation problems. Notoriously
difficult in general, it does not allow to obtain tractable optimal
solution, for being PSPACE-hard [8]. Using recent advances
in the theory of restless bandits [9], the authors of [2],
characterizing the so-called Whittle index, develop a simple
Whittle index-based heuristic scheduler that they illustrated in
simulations to perform well. It was shown in [10], [11] that
the Whittle index-based scheduler of [2] has the property of
maximal stability and fluid-optimality. Moreover, the Whittle
index rule has (in case of no arrivals and departures) the
property of being asymptotically optimal as the number of
flows and servers grows to infinity, under some technical
assumptions [12].

In the present paper we aim at characterizing the optimal
scheduling of flows with general size distribution in systems
with time-varying service channels. That is, we consider a
flow-level model with the objective of minimizing the expected
holding cost, which covers as special cases the minimization of
the mean number of uncompleted jobs and of the mean delay
(waiting time). The extension to general flow size distribution
is a major step in comparison with previous literature which
assumes exponentially distributed sizes. An exception is [1],
where it is shown that the Proportional Fair policy, under
some assumptions, with generally distributed flow sizes can
be accurately modeled by a state-dependent processor-sharing
queue.

Given the difficulty of the problem we restrict ourselves to
the case of two channel conditions, good and bad condition,
so as to get fundamental insights into the problem. This
Gilbert-Elliot channel model has been extensively studied in
the context of wireless channels that dates back to the original
paper by Gilbert in [13] and covers also the important special
case of ON/OFF channels.

In such a way, in order to achieve our goal we extend the



framework introduced in [2] to the case of general flow size
distribution. In our main contribution we derive in closed-
form the Whittle index, which allows us to define a heuristic
scheduling rule for the problem considered.

The rest of the paper is organized as follows. In
Section II we present the problem description. Section III
formulates the problem as a Markov Decision Process (MDP).
We obtain the Whittle index-based solution in Section IV, and
its performance is evaluated in Section V. Finally, Section VI
gathers the main conclusions of the paper. For the sake of
readability, proofs are postponed to the appendix.

II. PROBLEM DESCRIPTION

We consider a time-slotted system, so that we study a
discrete-time job scheduling problem. The decisions are taken
in time epochs/instants t ∈ T := {0, 1, . . . }, and are applied
during the time slots t ∈ T , where slot t corresponds to the
interval between epochs [t, t+ 1).

A. Users

Suppose that there are K users, labeled
k ∈ K := {1, 2, . . . ,K}. Each user is uniquely associated
with the flow/job (used interchangeably throughout the paper)
it requests to download and with the dedicated wireless
channel. For every user k a holding cost ck > 0 is paid
for every slot while requested download is uncompleted. In
the mathematical model we do not consider arrivals of new
users. However, in the numerical section we will compare
the performance of scheduling disciplines in the presence of
arrivals.

a) Job Sizes: The (integer-valued) job size xk of user
k is measured in bits and has a general distribution with
E[xk] < ∞ for user k ∈ K. The job sizes of users are assumed
to be independently distributed, and we denote by Fk(x)
and fk(x) the cumulative distribution and density function,
respectively.

b) Channel model: For user k the quality of the channel
(the channel condition) evolves according to a distribution
which may depend on k, independently of all other users
present in the system. We assume that for every user the
channel can be in two conditions. Different channel con-
ditions correspond to different transmission rates associated
with the available modulation and coding schemes. User k
is in channel condition n = 1, 2 with probability qk,n having
qk,1 + qk,2 = 1, and rk,n bits are transmitted to channel in
each transmission slot. We assume that 0 ≤ rk,1 < rk,2.

c) Departure probability: We will find it useful to define
the Generalized Hazard Rate (GHR) function for a distribution
Fk(x) and any positive integer r as:

Hk(x, r) =
Fk(x+ r)− Fk(x)

1− Fk(x)
(1)

Then we can easily see that the departure (or job completion)
probability of user k with attained service a (the bits that have
been transferred of a job) if served in channel condition n is

µk,(a,n) = Hk(a, rn) (2)

We will say that a probability distribution belongs to the
Decreasing (Increasing) Generalized Hazard Rate (DGHR,
IGHR) class if the GHR is decreasing (increasing) for both
transmission rates rk,n.

We further present the job size distributions used in this
paper. First, we define the Pareto distribution with shape
parameter α > 1 and scale parameter γ > 0 whose density
function for all x ≥ 0 is:

f(x) =
γα

(1 + γx)α+1
(3)

Second, we define the Weibull distribution with shape param-
eter α > 0 and scale parameter γ > 0 whose density function
for all x ≥ 0 is:

f(x) =
α

γ

(
x

γ

)α−1

· e−(
x
γ )

α

(4)

The Pareto distribution is known to have the property of
Decreasing Hazard Rate (DHR). The Weibull distribution with
α > 1 belongs to the Increasing Hazard Rate (IHR) class. It
can easily be seen that a DHR (IHR) distribution is necessarily
DGHR (IGHR). Thus, Pareto belongs to the class DGHR and
Weibull with α > 1 to IGHR.

B. Server

At the beginning of every slot t, the server (base station)
observes the actual channel condition by receiving the Channel
Quality Indicator (CQI) and the attained service retrieved from
its memory of all the users present in the system, and decides
which of them to serve during the slot. We assume that the
server is preemptive; that is, at every decision epoch it is
permitted to suspend the service of a user whose job is not
yet concluded.

III. MDP APPROACH

In this section we formulate the problem described in
Section II by MDP framework. We aim at minimizing the
mean holding cost, which covers in particular (when all the
holding costs are equal) the minimization of the mean delay
and the mean number of uncompleted jobs. The problem
studied here fits the multi-armed restless bandit problem
adapted to job scheduling (see [14]).

A. MDP Model of a Job

At the beginning of every time slot, a user k can only be
either served or not. We denote by B the action space of user
k; B := {0, 1}, where the action 0 means not serving and
action 1 serving.

Each user k is defined by tuple(
Sk,
(
Rb

k,s

)
b∈B

,
(
W b

k,s

)
b∈B

,
(
P b

k,s

)
b∈B

)
as follows:

• State space Sk = (Ak × {1, 2}) ∪ {∗} is the set of all
states s for a user k such that

– as long as the job is uncompleted: bi-dimensional
state s = (a, n), with components attained service
a ∈ Ak, being Ak the space of possible attained
service levels, and channel condition n ∈ {1, 2};



– if the job is completed: absorbing state s = ∗.
• Rb

k:=(Rb
k,s)s∈Sk

, where Rb
k,s is the expected one-slot

reward received from user k at state s if action b is
decided at the beginning of a slot,

R0
k,(a,n) = −ck, R1

k,(a,n) = −ck(1− µk,(a,n)),

Rb
k,∗ = 0;

• W b
k:=(W b

k,s)s∈Sk
, where W b

k,s is the expected one-slot
work done for user k at state s if action b is decided at
the beginning of a slot,

W 0
k,s = 0, W 1

k,s = 1;

• P b
k:=
(
pbk(s, s′)

)
s,s′∈Sk

, where pbk(s, s′) is the probability
for user k of moving from state s to state s′ if action b
is decided at the beginning of a slot,

p0k ((a, n), (a,m)) = qk,m,

p1k ((a, n), (a+ rn,m)) = qk,m(1− µk,(a,n)),

p1k ((a, n), ∗) = µk,(a,n), pbk(∗, ∗) = 1;

Thus, the dynamics of user k is captured by state process
sk(t) ∈ Sk and action process bk(t) ∈ B.

B. Optimization Problem, Relaxations and Decomposition

We present now the optimization problem we consider in
(5). Let Π be the set of all admissible policies to the studied
problem, and for a given discount factor β:

max
π∈Π

Eπ
0

[ ∞∑
t=0

∑
k∈K

βtR
bk(t)
k,(sk(t))

]
subject to

∑
k∈K

bk(t) = 1 ∀t (5)

The optimization problem formulated in (5) can be relaxed
by requiring to serve a job per slot on average as proposed in
[7], which is further approached by Lagrangian methods and
can be decomposed into a single-job price-based parametrized
optimization problem (see [2] for more details). For a price,
v, we will therefore study the user-k subproblem:

max
πk∈Π

∞∑
t=0

Eπ
0β

t
[
R

bk(t)
k,sk(t)

− vW
bk(t)
k,sk(t)

]
(6)

IV. WHITTLE INDEX-BASED SOLUTION

In this section we study the single-user parametrized prob-
lem (6), and we aim at obtaining an optimal solution in terms
of the Whittle index. The restless bandit problem and their
index-based solution were introduced in [7], generalizing the
so-called Gittins index policy that was proved optimal for the
multi-armed bandit problem in [15]. The idea of Whittle [7]
was to introduce a function to measure a (dynamic) priority
for serving, so that a simple scheduling rule appears: At every
slot, serve the user with the highest actual Whittle index value.
Since the Whittle index is a function of state, it is dynamic,
and gives rise to an opportunistic scheduler for a wireless

network. Such a Whittle index-based scheduler, however, is
only a heuristic for the problem considered. Nevertheless, it
has been shown for an increasing amount of models (see [10]–
[12]) that the Whittle index rule performs strongly, possesses
asymptotically optimal properties, and may even be optimal
in some circumstances.

A. Whittle Index and Indexability

Let us define the Whittle index values and indexability,
following [16], formalizing the intuitive definition given in
[7]. The Whittle index measures the expected efficiency of
serving a user for every state, since it is the break-even value
of the Lagrangian parameter v, which can be interpreted as
the per-slot cost of serving. From now on we omit the user
label k.

Definition 1 (Indexability). We say that the problem (6) is
indexable if there exist values v∗s ∈ R ∪ {−∞,∞} for all
s ∈ S such that

(i) it is optimal to serve the user in state s if v∗s ≥ v, and
(ii) it is optimal not to serve the user in state s if v∗s ≤ v.

Such values v∗s are called the (Whittle) index values, and
define an optimal index policy for the problem.

Index policies and indexability has been established for
several classes of problems [7], [9], [17]; however, not all
problems are indexable. There is an algorithm for computing
these index values and verifying sufficient indexability condi-
tions, called Adaptive-Greedy, shortly AG-algorithm, (see [9]
for a survey). If a problem is indexable then the AG-algorithm
computes the index values.

We now state the Conjecture 1 of indexability, which we
have not proved rigorously for our model due to its complexity.
Indexability was, however, established for geometric job sizes
in [2].

Conjecture 1. Problem (6) is indexable.

We assume that Conjecture 1 holds throughout the rest of
this section. For a given job, we have employed the AG-
algorithm to compute the Whittle index values numerically.
In such a way, we have performed extensive numerical exper-
iments, based on which we further conjecture the following
fundamental properties. We illustrate these results in Figure 1
and Figure 2. (All the Whittle index values shown in the
figures are normalized, i.e., multiplied by 1−β, to avoid large
values obtained for β ≈ 1.)

(i) All the index values for the good condition are greater
than those for the bad condition. In particular, for the
same attained service the Whittle index value in the
good condition is greater: v∗(a,2) > v∗(a,1). This property
is illustrated in the top-graph of Figure 1.

(ii) For the same channel condition Whittle index values are
ordered by GHR as illustrated in Figure 1 and Figure 2.
We show that for a DGHR size distribution (in particular,
Pareto distribution) index values are decreasing with
attained service (see Figure 1) and that for an IGHR size
distribution (in particular, Weibull distribution) index



values are increasing with attained service (shown in
Figure 2).
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Fig. 1. Normalized Whittle indices for a DGHR size distribution. A
Pareto distribution is used with α = 1.5, q2 = 0.5, r1 = 8.4 Kb, and
r2 = 16.8 Kb.

B. Closed-Form Characterization of Whittle Index

In the previous subsection we illustrated the properties
of the Whittle index obtained numerically by applying AG-
algorithm. The use of the AG-algorithm for index value
computation becomes time-consuming and sometimes even
intractable (it performs O(A3) elementary operations for com-
puting all the index values, where A := maxk |Ak|). Further,
it is numerically unstable for β ≈ 1.

Therefore, in this subsection we set out to derive a closed-
form characterization of the Whittle index, for which the
numerically observed properties have been useful for guessing
the structure of the optimal policy. This result improves
the undiscounted Whittle index computation both in time
and precision. As we present in Proposition 1, the Whittle
index admits a rather complicated closed-form expression for
general job size distribution, whose computation may still be
computationally costly or even intractable.

The methodology to compute this index expression and
proofs are presented in the Appendix. The proof of
Proposition 1 relies on an analysis of the discounted case and
obtaining the undiscounted index values in the limit β → 1.
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Fig. 2. Normalized Whittle indices for a IGHR size distribution. A Weibull
distribution is used with α = 3 and γ = 5.75 · 105, q2 = 0.5, r1 = 4.2 Kb,
and r2 = 8.4 Kb.

Proposition 1. The Whittle index for Problem (6), v∗(a,n), in
the undiscounted case (β = 1) is given by:

v∗(a,n) =
cµ(a,n) + (1− µ(a,n))Ra1 −Ra2

1 + (1− µ(a,n))Wa1 −Wa2

(7)

where we have defined a1 := a and a2 := a+ rn, and for
z ∈ {1, 2},

if tz,0 ∈ {0, 1} then

Raz =

−c(1−
∑

mz,(0)>tz,0

qmz,(0)) +
∑

mz,(0)>tz,0

qmz,(0)R(az,mz,(0))∑
mz,(0)>tz,0

qmz,(0)

and

Waz =

∑
mz,(0)>tz,0

qmz,(0)W(az,mz,(0))∑
mz,(0)>tz,0

qmz,(0)

,

and if tz,0 = 2 then Raz = lim
β→1

−c

1− β
and Waz = 0, and

R(az,mz,(0)) = −c
(
1− µ(az,mz,(0))

)
−

c
(
1− µ(az,mz,(0))

)
∑

mz,(1)>tz,1

qmz,(1)

·
I(az)∑
i=0


i∏

j=1

∑
mz,(j)>tz,j

qmz,(j)

1− µ(
az+

j−1∑
k=0

r
mz,(k) ,mz,(j)

)


∑
mz,(j+1)>tz,j+1

qmz,(j+1)



·

1−
∑

mz,(i+1)>tz,i+1

qmz,(i+1)µ(
az+

i∑
k=0

r
mz,(k) ,mz,(i+1)

)
L(az, i)



W(az,mz,(0)) = 1 +
1− µ(az,mz,(0))∑
mz,(1)>tz,1

qmz,(1)

·
I(az)∑
i=0


i∏

j=1

∑
mz,(j)>tz,j

qmz,(j)

1− µ(
az+

j−1∑
k=0

r
mz,(k) ,mz,(j)

)


∑
mz,(j+1)>tz,j+1

qmz,(j+1)


·

∑
mz,(i+1)>tz,i+1

qmz,(i+1)

where the thresholds tz,i ∈ {0, 1, 2} are
such that it is optimal to serve in state

(az +
i−1∑
k=0

rmz,(k) ,mz,(i)) for tz,i < m(i) ∈ {1, 2}. Further,

I(az) is the smallest value of i that satisfies tz,i = 2, and
L(az, i) equals to 1 when i ̸= I(az) and equals either to 1
or 1 − β (depending on the type of size distribution) when
i = I(az).

Thus, for a general size distribution the Whittle index rule
consists in, at every decision slot, serving the user with the
highest value of (7). The values of the thresholds tz,i and
variables I(az) and L(az, i) will be mainly determined by
the job size distribution. For a job size distribution which
results in alternatively increasing and/or decreasing gener-
alized hazard rate, the value of I(az) will be finite and
L(az, I(az)) = 1− β. In the cases of both IGHR and DGHR
considering infinite attained service levels, we will have
I(az) = +∞ and L(az, I(az)) = 1. In the next subsection we
focus on an important special case of DGHR size distributions
in more detail.

C. Whittle Index for DGHR Size Distributions
In the previous subsection, we have characterized the Whit-

tle index values via a rather complicated analytic expression.
Next we focus on providing a simplified expression for certain
job size distributions, which allows an easier online index
computation and provides further fundamental insights. If the
optimal policy possesses a “nice” special structure, we can
exploit it to simplify the index expressions.

In the following proposition we consider the case in which
size distribution belongs to DGHR class. The proof is straight-
forward by simplifying the expressions given in Proposition 1,
and is, therefore, omitted. Note that as we conjectured in
subsection IV-A, for this case the Whittle index values are
nonincreasing as a function of attained service for each chan-
nel condition as well as all the indices for the good condition
are greater than those for the bad condition; consequently, for
the bad condition the threshold values will be tz,i = 1 for all
z ∈ {1, 2} and 0 ≤ i ≤ I(az) = +∞, whereas for the good
condition the value of the first threshold will be tz,0 = 2.

Proposition 2. Under Conjecture 1, if for a DGHR size
distribution the first threshold value tz,0 = 2 for the good
condition and the threshold values tz,i = 1 for all z ∈ {1, 2}
and 0 ≤ i ≤ I(az) = +∞ for the bad condition, then the
Whittle index value in the undiscounted case (β = 1) is given
by:

v∗(a,2) = lim
β→1

cµ(a,2)

1− β
= +∞ (8)

v∗(a,1) =
cµ(a,1) + (1− µ(a,1))R1 −R2

1 + (1− µ(a,1))W1 −W2
(9)

where, for z ∈ {1, 2},

Wz = 1 +

∞∑
i=0

i∏
j=0

(1− µ(az+jr2,2))

Rz =
−c

q2

1− q2µ(az,2) +
∞∑
i=0

i∏
j=0

(
1− µ(az+jr2,2)

)
·
(
1− q2µ(az+(i+1)r2,2)

))
As we can see in Proposition 2, the Whittle index value

for the good condition is infinite, which extends validity of
the result of [2] for exponential job sizes. Moreover, the
obtained expression of the Whittle index for the bad condition
is computationally feasible (up to an acceptable level of
precision).

In such a way, the Whittle index-based scheduling rule we
propose for DGHR distributions is as follows: at every slot t,

• serve the user k in channel condition 2 with the highest
value of ckµk,(ak(t),2);

• if there is no user in channel condition 2, then serve the
one with highest index value v∗k,(ak(t),1)

using (9).
In the next section we will see that the proposed scheduler

has a satisfactory performance.

V. PERFORMANCE EVALUATION

In this section we study the behavior of the proposed
Whittle index rule presented in Section IV. To that end, we
present several simulation scenarios in which we compare its
performance with priority-based schedulers already defined in
the literature. Below we define the scheduling algorithms used
in the carried out experimental study:

• Max Rate (MR) scheduler: vMR
k,n = rk,n.

• Proportional Fair (PF) scheduler: vPF
k,(a,n,d) =

rk,n
ak/dk

;

that is, the ratio of the current transmission rate and the
attained throughput, where dk is the time already spent
in the system.

• cµ-rule, adapted to the attained service:
vcµk,(a,n) = ck · µk,(a,n).

For all disciplines, in case of ties, these are resolved randomly.
We assume that users are grouped in K classes. A user

from a class k is characterized by its size distribution, channel
characteristics rk,n and qk,n, and cost, ck. We consider only
single-class and two classes of users in order to be able to



CQI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r 0 4.2 6.7 8.4 11.2 16.8 21.8 25.2 26.8 33.6 44.6 50.4 53.7 67.2 75.6 80.6

TABLE I
CQIS AND CORRESPONDING RATES (KB).

Scenario CQI q2 Size (Mb) c
1 {3,5} 0.5 {α = 1.5,γ = 4 · 10−7, E [X] = 5} 1
2 {3,5} 0.1 {α = 1.5,γ = 4 · 10−7, E [X] = 5} 1
3 {0,5} 0.5 {α = 1.5,γ = 4 · 10−7, E [X] = 5} 1
4 ({5,9}, (0.5,0.5) ({α1 = 1.5,γ1 = 4 · 10−7, E [X1] = 5} (1,5)

{5,9}) {α2 = 1.5,γ2 = 4 · 10−7,E [X2] = 5})
5 ({5,9}, (0.5,0.5) ({α1 = 1.5,γ1 = 4 · 10−6,E [X1] = 0.5}, (1,1)

{5,9}) {α2 = 1.5,γ2 = 4 · 10−8,E [X2] = 50})
6 {1,3} 0.5 {α = 3,γ = 5.7 · 105,E [X] = 0.5} 1

TABLE II
PARAMETERS SET IN EXPERIMENTAL STUDY.

easily point out the differences in the performance of the
policies studied.

Besides, it is known that mobile Internet traffic flow sizes
are properly modeled by means of Pareto distributions [18].
This way, we will particularize our study to Pareto distributed
flow sizes defined in (3). For the set of parameters chosen this
distribution belongs to DGHR class. Moreover, so as to show
the validity of the Whittle-based approach in other type of
distributions we consider a scenario with a Weibull (see (4))
size distribution that belongs to IGHR.

Referring to user arrivals in the system, we assume that a
new class-k user arrives in a transmission slot according to
a Poisson process with rate λk. Arrival rate will determine
network load, ρ, where ρk = λk · E[Xk]

rk,2
and ρ =

∑
k

ρk. For

simplicity, in our simulations we have ρ1 = ρ2.
In order to simulate scenarios as realistic as possible we con-

sider transmission rates employed in 4G networks. A mapping
from CQI values to rate values is shown in Table I, which is
adapted from [19]. Furthermore, we use a transmission time
interval of 1 ms, value employed in current wireless networks.

In this way, we have analyzed six relevant settings, whose
parameters are summarized in Table II. Note that we consider
two channel conditions of Table I in each scenario and that in
the last setting we focus on the Weibull size distribution. In
the following we show the results achieved in these scenarios.

A. Scenario 1: Basic case

In this first family of simulations we consider a typical
setting, which takes into account the equiprobable channel
case and medium-sized self-similar flows. As appreciated in
the left-graph of Figure 3, by the proposed Whittle-based
discipline the distribution of the number of users is more
satisfactory. Consequently, if we observe the mean delay
employing different scheduling policies for varying ρ in the
right-graph of Figure 3, these results indicate that Whittle
behaves better than the rest of disciplines in mean delay terms.
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Fig. 3. CDF of the number of users (left) and mean delay (right) for
Scenario 1.
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Fig. 4. Mean delay for Scenario 2 (left) and Scenario 3 (right).

B. Scenario 2: Low good channel probability case

In these simulations the channel conditions are bad, being
the state probability in good channel low (only a 10% of
the time in good channel). As depicted in the left graph of
Figure 4, Whittle introduces the lowest mean delay for all the
network loads considered. We omit results from cµ rule since
it is unstable for this case.

C. Scenario 3: ON-OFF case

We now study the special case of ON/OFF channels, which
apart from being applicable to a wireless system covers other
areas such as systems with time–varying breakdowns. Results
collected in the right plot of Figure 4 show that Whittle and
cµ are equivalent in this setting, and they achieve the best
performance in mean delay terms.

D. Scenario 4: Heterogeneous case in cost

In this scenario we would like to analyze the behavior of
different disciplines considering that users from class 2 are
more important than those belonging to class 1. To deal with
this property, we assume that the holding cost in class 2 is five
times higher than in class 1. In such a way, as can be seen
for the aggregate of classes in Figure 5, Whittle minimizes the
mean holding cost among the rest of disciplines considered.
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Fig. 5. Mean holding cost for Scenario 4.
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Fig. 6. Mean holding cost per class for Scenario 4.

Moreover, as illustrated in Figure 6 inside each class Whittle
outperforms all the policies considered too.

E. Scenario 5: Heterogeneous case in size

In this setting we consider two classes that differ in the mean
job size. We modify the γ parameter from Pareto so the mean
size of class 2 is a hundred times the mean size of class 1.
We conclude from Figure 7 that the Whittle-based approach
is also superior in both classes, and thus, in the mixture of
classes as well (see the left graph of Figure 8).

F. Scenario 6: IHR case

All the previous scenarios focus on Pareto flow size dis-
tributions. However, in order to show the validity of Whittle
index not only for DGHR distributions, in this subsection we
study the performance of Whittle index rule when a Weibull
distribution with IGHR is considered. As concluded from the
right plot in Figure 8, the Whittle index suitably minimizes
mean delay respect to the rest of the policies analyzed.

VI. CONCLUSIONS

This paper represents a first attempt on the challenging
problem of scheduling flows with general size distribution in a
wireless time-varying channel aimed at minimizing the mean
holding cost. We have proposed a heuristic scheduling policy

0.3 0.5 0.7 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ρ

M
ea

n 
de

la
y 

(s
)

Class 1

Whittle
MR
PF
cµ

0.3 0.5 0.7 0.9
0

20

40

60

80

100

120

140

160

180

ρ

M
ea

n 
de

la
y 

(s
)

Class 2

Whittle
MR
PF
cµ

Fig. 7. Mean delay per class for Scenario 5.
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Fig. 8. Mean delay for Scenario 5 (left) and Scenario 6 (right).

mathematically founded on the Whittle index, which gives an
optimal solution for the relaxed problem. Moreover, we have
evaluated the performance of the heuristic using simulations,
concluding that it outperforms existing disciplines.

There are many interesting research problems that stem
from our work. A first important question pertains to stability,
since the stability region for this problem is not known.
Our numerical simulations indicate that policies that serve
a user in his good channel (whenever this is possible) are
stable provided ρ < 1, but no rigorous proof is available. A
second important contribution will be to obtain a simpler
representation of the Whittle index for the case of general flow
size distribution. Indeed the solution obtained in Proposition 1
does not provide insights into the structure of the scheduling
rule. Another important extension will be to generalize the
results to an arbitrary number of channel conditions.
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APPENDIX

In the discussion below we provide the methodology to
obtain a closed-form Whittle index rule for problem (6) (for
more details see [9]).

Let us define serving set F ⊆ Sk, which prescribes to
serve a user k if (a, n) ∈ F , while not to serve this user if
(a, n) /∈ F . We will refer to states (a, n) ∈ F as active and
(a, n) /∈ F as passive. The Whittle index, vF(a,n), represents
the rate between marginal reward and marginal work, where
the marginal reward (work) is the difference of the expected
total reward earned (work required) by serving and not serving
at the initial state (a,n) and employing policy F afterwards.

Lemma 1. For any state (a,n) and under any policy F we
have

vF(a,n) =

cµ(a,n) + β(1− µ(a,n))
∑
m∈N

qmRF
(a+rn,m) − β

∑
m∈N

qmRF
(a,m)

1 + β(1− µ(a,n))
∑
m∈N

qmWF
(a+rn,m) − β

∑
m∈N

qmWF
(a,m)

(10)

Proof: From the definition of reward and work, respec-
tively, we have

RF
(a,n) =


−c(1− µ(a,n)) + β(1− µ(a,n))

∑
m∈N

qmRF
(a+rn,m)

(a, n) ∈ F
−c+ β

∑
m∈N

qmRF
(a,m) (a, n) /∈ F

(11)

WF
(a,n) =


1 + β(1− µ(a,n))

∑
m∈N

qmWF
(a+rn,m) (a, n) ∈ F

β
∑
m∈N

qmWF
(a,m) (a, n) /∈ F

(12)

Lemma 2. For a general attained service, a, the sum of
work and reward measures in (10),

∑
m∈N

qmWF
(a,m) and∑

m∈N
qmRF

(a,m), respectively, can be rewritten as:

∑
m∈N

qmWF
(a,m) =



∑
m>t

qmWF
(a,m)

1− β + β
∑
m>t

qm
(a,m) ∈ F

0 (a,m) /∈ F

(13)

∑
m∈N

qmRF
(a,m) =



−c(1−
∑
m>t

qm) +
∑
m>t

qmRF
(a,m)

1− β + β
∑
m>t

qm

(a,m) ∈ F
−c
1−β (a,m) /∈ F

(14)

Proof: Suppose that for attained service a channel states,
m, higher than a channel state threshold, t, are active. Thus,
(a,m) ∈ F for ∀m > t, and by (12):

WF
(a,m) = β

∑
m′∈N

qm′WF
(a,m′), m ≤ t

We can solve such a system of linear equations obtaining

WF
(a,m) =

β
∑

m′>t

qm′WF
(a,m′)

1−β+β
∑

m′>t

qm′
, m ≤ t (15)

If we define X(t) as

X(t) =
β

1− β + β
∑

m′>t

qm′
(16)

We can express (15) as follows

WF
(a,m) = X(t)

∑
m′>t

qm′WF
(a,m′), m ≤ t (17)



On the other hand, using (16) and (17), we can generally
express and rewrite∑

m∈N

qmWF
(a,m) = (1−

∑
m>t

qm)X(t)
∑
m>t

qmWF
(a,m)+

+
∑
m>t

qmWF
(a,m) =

∑
m>t

qmWF
(a,m)

1− β + β
∑
m>t

qm
(18)

Besides, if ∀m (a,m) /∈ F , then
∑

m∈N
qmWF

(a,m) = 0

(solution to ∀m WF
(a,m) = β

∑
m′∈N

qm′WF
(a,m′)).

Analogously, we obtain expression (14) for rewards.

Lemma 3. For a initial channel threshold, t = t0, the ex-
pressions of WF

(a,m>t0)
and RF

(a,m>t0)
, in (13) and (14)

respectively, are:

WF
(a,m>t0)

= 1 + (1− µ(a,m))X(t1)

(∑
m(1)>t1

qm(1)

+

I(a)∑
i=1

( i∏
j=1

∑
m(j)>tj

qm(j)(1− µ
(a+rm+

j−1∑
k=1

r
m(k) ,m(j))

)X(tj+1)
)

·
∑

m(i+1)>ti+1

qm(i+1)

)
(19)

RF
(a,m>t0)

= −c(1− µ(a,m))

(
1 +X(t1)

(
1−

∑
m(1)>t1

qm(1)

+
∑

m(1)>t1

qm(1)(1− µ(a+rm,m(1)))
))

− c(1− µ(a,m))X(t1)

·
I(a)∑
i=1

( i∏
j=1

∑
m(j)>tj

qm(j)(1− µ
(a+rm+

j−1∑
k=1

r
m(k) ,m(j))

)X(tj+1)
)

· 1

L(a, i)

(
1−

∑
m(i+1)>ti+1

qm(i+1)

+
∑

m(i+1)>ti+1

qm(i+1)(1− µ
(a+rm+

i∑
k=1

r
m(k) ,m(i+1))

)
)

(20)

Proof: Let us express WF
(a,m) for m > t components. By

(12):

WF
(a,m) = 1 + β(1− µ(a,m))

∑
m′∈N

qm′WF
(a+rm,m′), m > t

Using (18)

∑
m′∈N

qm′WF
(a+rm,m′) =

∑
m′>t′

qm′WF
(a+rm,m′)

1− β + β
∑

m′>t′
qm′

where (a+ rm,m′) ∈ F for m′ > t′

Therefore,

WF
(a,m) = 1 +

β(1− µ(a,m))
∑

m′>t′
qm′WF

(a+rm,m′)

1− β + β
∑

m′>t′
qm′

=

= 1 + (1− µ(a,m))X(t′)
∑

m′>t′

qm′WF
(a+rm,m′), m > t

This way,

WF
(a,m>t0)

= 1 + (1− µ(a,m))X(t1)
∑

m(1)>t1

qm(1)WF
(a+rm,m(1))

where (a+ rm,m(1)) ∈ F for ∀m(1) > t1

WF
(a+rm,m(1)>t1)

= 1 + (1− µ(a+rm,m(1)))X(t2)

·
∑

m(2)>t2

qm(2)WF
(a+rm+r

m(1) ,m(2))

where (a+ rm + rm(1) ,m(2)) ∈ F for ∀m(2) > t2

This recursion may happen until at least one of the following
statements is true:

• (a+rm+rm(1)+. . .+rm(k+1) ,m(k+2)) /∈ F for ∀m(k+2)

• (a+rm+rm(1)+. . .+rm(k+1) ,m(k+2)) /∈ S for ∀m(k+2)

• βk+2 = 0 when k + 2 → ∞, which results in
X(tk+2) = 0

and consequently, WF
(a+rm+r

m(1)+...+r
m(k) ,m(k+1))

= 1.

Applying the previous recursion, WF
(a,m>t0)

can be more
suitably written as

WF
(a,m>t0)

= 1 + (1− µ(a,m))X(t1)
∑

m(1)>t1

qm(1)

·

(
1 + (1− µ(a+rm,m(1)))X(t2)

∑
m(2)>t2

qm(2)

·
(
1 + (1− µ(a+rm+r

m(1) ,m(2)))X(t3)
∑

m(3)>t3

qm(3)

·
(
1 + (1− µ(a+rm+r

m(1)+r
m(2) ,m(3)))X(t4)

∑
m(4)>t4

qm(4)

· . . .
∑

m(k+1)>tk+1

qm(k+1) . . .)
)))

(21)

Manipulating (21) we can more properly express WF
(a,m>t0)

as (19), where I(a) is the last iteration for which
the recursion condition holds. Analogously, using the
same procedure for the computation of the expression
WF

(a,m>t0)
, we achieve expression (20) for reward compo-

nents, where L(a, i) = 1, excepting the case of I(a) is due

to for ∀m(i+2) (a+ rm +
I(a)+1∑
k=1

rm(k) ,m(i+2)) /∈ S , that

L(a, I(a)) = 1− β.


