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Abstract

In this paper we study how to design a scheduling strategy aimed at minimizing the average holding cost
for flows with general size distribution when the feasible transmission rate of each user varies randomly
over time. We employ a Whittle-index-based approach in order to achieve an opportunistic and non-
anticipating size-aware scheduling index rule proposal. When the flow size distribution belongs to the
Decreasing Hazard Rate class, we propose the so-called Attained Service Potential Improvement index
rule, which consists in giving priority to the flows with the highest ratio between the current attained-
service-dependent completion probability and the expected potential improvement of this completion
probability. We further analyze the performance of the proposed scheduler, concluding that it outperforms
well-known opportunistic disciplines.

Keywords: opportunistic scheduling, non-anticipating size-aware scheduling, mean holding cost
minimization, Whittle index, Markov Decision Process

1. Introduction

Undoubtedly, due to the massive use of mobile Internet applications, one of the fundamental challenges
that networks providers nowadays face is the management for sharing radio resources among users’
traffic flows. Thus, motivated by the necessity of obtaining an implementable scheduler in channels with
randomly time-varying capacity such as wireless links, in this paper we aim at characterizing in closed-
form a novel channel-aware or opportunistic scheduler for the problem of minimizing the expected holding
cost in a scenario where flows arrive and depart upon service completion.

Although in time-varying transmission conditions taking advantage of the channel opportunistic gains
seems good, short-term disciplines that serve the user with the best instantaneous rate, such as Max Rate,
perform very poorly in this setting (see for example [6]). Moreover, due to the complexity of the present
problem, flow-level opportunistic scheduling in time-varying systems has been analyzed by approximate
techniques ([13, 3, 2]) to design simple schedulers, and in the asymptotic regimes to study optimality and
maximal stability ([1, 5]). Nevertheless, all these works deal with unrealistic assumptions in reference to
traffic flow sizes. On the one hand, exponential flow size distributions are considered for traffic modeling,
which, even though they simplify the resolution of those problems, are far from reality. On the other
hand, it is assumed that flow sizes are known by the scheduler, while in current network systems they
are not.

In this paper we take a step forward towards removing the assumption of exponential sizes. Fur-
thermore, we incorporate non-anticipating size-awareness by taking into account the bits that have been
transferred of a flow: the attained service. In the context of non-anticipating strategies the work [8] of
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Gittins is relevant, which based on the attained service of jobs proposed an index rule that minimizes
the mean holding cost when channel capacity is constant. [4, 15] propose some heuristics using Gittins
approach for the case of time-varying capacity, the first work for deterministic channels. However, to the
best of our knowledge, there is no strong analytically founded and well-performing scheduling proposal
for randomly time-varying channels that combines this kind of size-awareness with channel-awareness
using Gittins approach.

Therefore, in this paper we aim at developing in closed form a simple opportunistic and non-anticipating
size-aware scheduler for the problem of minimizing the expected holding cost in random time-varying
channels for flows with general size distribution. In order to achieve our goal, the work presented in [3]
has been relevant. [3] considers a finite number of channel conditions and exponentially distributed flow
sizes, and its associated optimal scheduling problem is formulated as a Markov Decision Process (MDP).
Due to the impossibility of solving the general model for being PSPACE-hard [12], the authors of [3] pro-
pose a simple Whittle-index-based [19, 11] heuristic scheduler, which they show to perform well in several
simulation scenarios. Moreover, as shown in [5, 10], this Whittle-index-based proposal is maximal stable
and fluid-optimal, as well as asymptotically optimal under some assumptions as the number of flows and
servers grows to infinity [18]. Hence, so as to achieve our aim, we design a simple Whittle-index-based
scheduler extending the framework presented in [3] to the case of general size distribution.

The rest of the paper is structured as follows. In Section 2 we present the problem description. We
formulate the problem as a MDP model in Section 3. We design the Whittle-index-based scheduler in
Section 4, and we evaluate its performance in Section 5. Finally, Section 6 gathers the main conclusions
of the paper. For the sake of readability, some of the proofs are postponed to the appendix.

2. Problem Description

We analyze a discrete-time job scheduling problem aimed at minimizing the expected holding cost,
in which the feasible transmission rate of each user varies randomly over time. Scheduling decisions are
taken at the beginning of time slots t ∈ T := {0, 1, . . . }, and are applied during a slot duration.

We consider a system without arrivals withK jobs waiting for service, which incur a holding cost ck > 0
per slot while the flow transmission is not completed. We will use terms job/flow/user interchangeably
throughout the paper. The job size in bits xk follows a general distribution with E[xk] < ∞, characterized
by its probability density function fk(x).

The channel of a user k can take Nk conditions from a finite set Nk := {1, 2, . . . , Nk}. These channel
conditions are associated to different transmission rates rk,n (in bits), where rk,1 ≤ rk,2 ≤ . . . ≤ rk,Nk

.
The channel condition of a user k evolves randomly and independently of other users. We denote the
probability of being in state n by qk,n, having

∑
n∈N

qk,n = 1.

The server makes use of the instantaneous channel information (rk,n and qk,n) and the instantaneous
attained service (ak) of each user in order to take decisions. In each decision slot it allows the trans-
mission of a single flow, and it is assumed to be preemptive (the service of a job can be interrupted
at the beginning of a slot even if not completed). We refer to job completion or departure probability,
P (ak < Xk ≤ ak + rk,n|Xk > ak)), as µk,(a,n).

3. MDP Formulation

In this section we present a MDP formulation of the scheduling problem described in Section 2. First,
we provide the MDP model of each job k. Then, we formulate the optimization problem for the joint
MDP model, which takes into account all the jobs in the system.

3.1. MDP model of a job

In each time slot t, a user k that is in a state sk ∈ Sk can be allocated either zero or full capacity. We
refer to B := {0, 1} as the action space, in which action 0 means not serving and action 1 serving. Thus,
the dynamics of user k is captured by the action process bk(.) and the state process sk(.). As a result of
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taking action bk(t) in state sk(t), the user k earns a reward, consumes the allocated capacity and evolves
its state in the time slot t+1. In such a way, each user k is defined independently of other users by tuple(
Sk,

(
Rb

k,s

)
b∈B

,
(
W b

k,s

)
b∈B

,
(
P b

k,s

)
b∈B

)
as follows:

• Sk := (Ak × {1, 2, . . . , Nk}) ∪ {∗} is the state space, where for a ∈ Ak and n ∈ Nk in each state
(a, n) the job is uncompleted, and state * represents a flow already completed.

• Rb
k:=(Rb

k,s)s∈Sk
, where Rb

k,s is the expected one-slot reward earned by user k at state s if action b
is decided at the beginning of a slot; it is defined as the expected cost of remaining in the system
as:

R0
k,(a,n) = −ck, R1

k,(a,n) = −ck(1− µk,(a,n)), Rb
k,∗ = 0;

• W b
k:=(W b

k,s)s∈Sk
, where W b

k,s is the expected one-slot capacity consumption or work required by
user k at state s if action b is decided at the beginning of a slot, so that

W 0
k,s = 0, W 1

k,s = 1;

• P b
k:=

(
pbk(s, s

′)
)
s,s′∈Sk

, where pbk(s, s
′) is the probability of moving from state s to state s′ under

action b at the beginning of a slot, so that

p0k ((a, n), (a,m)) = qk,m, p1k ((a, n), (a+ rn,m)) = qk,m(1− µk,(a,n)),

p1k ((a, n), ∗) = µk,(a,n), p0k(∗, ∗) = 1;

Figure 1 summarizes and relates the aforedescribed MDP elements, in which a part of the state
diagram of a user k MDP model is provided.
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Figure 1: A part of a per-user state diagram.

3



3.2. Optimization problem

Now we can define the optimization problem for the joint or system MDP model associated with the
single-job MDP model presented in the previous subsection. Let Π be the set of all admissible policies
for the studied problem. We aim at finding a joint policy π ∈ Π that maximizes the aggregate reward
starting from the initial time epoch 0 subject to the allocation constraint of serving a single user. Thus,
for a given discount factor β, we present the optimization problem we consider as:

max
π∈Π

Eπ
0

[ ∞∑
t=0

∑
k∈K

βtR
bk(t)
k,(ak(t),nk(t))∪∗

]
subject to

∑
k∈K

bk(t) = 1 ∀t (1)

It is known that the allocation constraint causes intractability in similar problems [19]. In this way, we
will design an approximate solution for our problem in the next section.

4. Whittle Index-Based Solution

In this section we provide a closed-form solution for problem (1) based on Whittle methodology [19].
This method consists in obtaining a metric per job state that measures the dynamic service priority of a
single user so as to achieve a simple scheduling index rule. With that aim, problem (1) can be relaxed by
requiring to serve a job per slot on average as proposed in [19], and further approached by Lagrangian
methods [17]. As a result, we obtain the following single-job price-based parametrized optimization
problem:

max
πk∈Π

∞∑
t=0

Eπ
0β

t
[
R

bk(t)
k,(ak(t),nk(t))

− vW
bk(t)
k,(ak(t),nk(t))

]
(2)

where the Lagrangian parameter v can be interpreted as the per-slot cost of serving. Note that we are not
interested in obtaining an index value for the absorbing state *, since, once completed flow transmission,
we will give the minimum priority to this state.

Let us define the serving set F ⊆ Sk, which prescribes to serve a user k if (a, n) ∈ F , while not to serve
this user if (a, n) /∈ F . We will refer to states (a, n) ∈ F as active and (a, n) /∈ F as passive. Therefore,
it is possible to rewrite problem (2) as

max
F⊆Sk

RF
k,(a,n) − vWF

k,(a,n) (3)

where RF
(a,n) and WF

(a,n) are respectively the expected total reward and expected total work in (a, n)
state.

The Whittle index is the break-even value of the Lagrangian parameter v, which measures the expected
efficiency of serving in each state. Under Conjecture 1, we assume that the Whittle index exists for each
(a, n) state of a user k. In this way, once concluded the main properties of the Whittle index in subsection
4.1, we will provide the methodology to obtain an analytically tractable index rule based on Whittle in
subsection 4.2. From now on we omit user label k.

Conjecture 1. Problem (2) is indexable.

4.1. Analysis of Whittle index properties

As defined in [11] the Whittle index represents the rate between the marginal reward and the marginal
work, where the marginal reward (work) is the difference of the expected reward earned (work required)
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by serving and not serving at initial state (a, n) and employing F afterwards. Thus, we can formally
write the Whittle index, v∗(a,n), for problem (2) as:

v∗(a,n) = vF(a,n) =
R<1,F>

(a,n) − R<0,F>
(a,n)

W<1,F>
(a,n) −W<0,F>

(a,n)

(4)

Lemma 1. For any state (a, n) and under any policy F we obtain:

v∗(a,n) = vF(a,n) =

cµ(a,n) + β(1− µ(a,n))
∑

m∈N
qmRF

(a+rn,m) − β
∑

m∈N
qmRF

(a,m)

1 + β(1− µ(a,n))
∑

m∈N
qmWF

(a+rn,m) − β
∑

m∈N
qmWF

(a,m)

(5)

Proof. From the definition of reward and work we have

RF
(a,n) =


−c(1− µ(a,n)) + β(1− µ(a,n))

∑
m∈N

qmRF
(a+rn,m) (a, n) ∈ F

−c+ β
∑

m∈N
qmRF

(a,m) (a, n) /∈ F (6)

WF
(a,n) =


1 + β(1− µ(a,n))

∑
m∈N

qmWF
(a+rn,m) (a, n) ∈ F

β
∑

m∈N
qmWF

(a,m) (a, n) /∈ F (7)

Then we obtain expression (5) by substituting (6) and (7) in (4).

Nevertheless, so as to achieve a closed-form characterization of the Whittle index (5) in a state (a, n)
it is necessary to determine the optimal policy F of the future states that have influence on the index
computation. In this way, first, we need to know if states (a,m) and (a + rn,m) are active or passive.
However, the structure of the active set is not trivial for the problem considered since the combination
of size properties and channel properties must be taken into account. We can suppose that a state
with a better channel condition will be better than a state with a worse channel condition for certain
attained service levels, resulting the first in a higher Whittle index value. Nonetheless, the attained
service threshold value that satisfies the previous supposition is not straightforward.

We focus on the important class of size distributions with a Decreasing Hazard rate (DHR), particu-
larly on the Pareto distribution with shape parameter α > 1 and scale parameter γ > 0 whose density
function for all x ≥ 0 is provided in (8). Thus, for a Pareto distribution that belongs to DHR, in con-
cordance to the previous supposition, we can assume that a state with a better channel condition will
be better than a state with a worse channel condition until certain attained service due to the DHR
property, but without prior knowledge of that attained service threshold.

f(x) =
γα

(1 + γx)α+1
(8)

Therefore, finding the structure of the active set becomes challenging. In order to achieve fundamental
properties of the Whittle index under study, which will be useful to determine the structure of the active
set, we have employed an algorithm called AG (Adaptive Greedy, see [11] for a survey) that computes
Whittle indices numerically. If the Whittle index value in the state (a, n) is higher than in the state (a′, n′),
state (a, n) will be active for v∗(a′,n′) computation, whereas state (a′, n′) passive for v∗(a,n) computation.

In this way, we have applied AG-algorithm for our case. We have performed several numerical exper-
iments considering a wide range of configurations. We have reduced experiments for three channel states
since the algorithm becomes time-consuming. Being A := maxi |Ai|, it requires O(AN+1) elementary
properties for computing all the index values for each configuration. We have paid attention to the undis-
counted case (β = 1), using β ≈ 1 to avoid indeterminacies; we have normalized Whittle index values by
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Figure 2: Normalized Whittle indices for a Pareto distribution with α = 1.5, q1 = q2 = q3 = 1/3, r1 = 8.4 Kb, r2 = 16.8 Kb
and r3 = 33.6 Kb.
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multiplying them by 1 − β to avoid large values and numerical computation instabilities. Thus, for the
performed numerical experiments we conjecture the following properties:

(i) All the index values for the best channel condition are greater than those for the rest of channel
conditions: v∗(a,N) > v∗(a′,m) ∀a, a′ ∈ A, ∀m < N (see Figure 2 and Figure 3).

(ii) Generally, being in a better channel condition does not guarantee that the index value is greater
than in a worse channel condition; v∗(a,m1)

> v∗(a′,m2)
∀a, a′ ∈ A, ∀m1 < N,m2 < N,m1 > m2 is

not always satisfied (illustrated in the right graph of Figure 3).

(iii) For the same attained service the Whittle index value in a better channel condition is greater:
v∗(a,m1)

> v∗(a,m2)
∀m1 > m2 (shown in Figure 2 and Figure 3).

(iv) For the same channel condition Whittle index values are decreasing with attained service (observe
the right graph of Figure 2).

(v) For the best channel condition the Whittle index is invariant with channel state probability (see
the right graph of Figure 4).

(vi) For channel conditions that are not the best the Whittle index value decreases as long as the channel
state probabilities of better channel conditions increase (illustrated in the left and middle graphs
of Figure 4).
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Figure 4: Normalized Whittle indices for different channel state probabilities. A Pareto distribution is used with α = 1.5
and E[X] = 5 Mb, r1 = 8.4 Kb, r2 = 16.8 Kb and r3 = 33.6 Kb.

4.2. Closed-form Whittle index characterization

In this subsection we set out to derive a closed-form Whittle index, for which the properties concluded
in the previous subsection have been useful for guessing the structure of the active set. If the optimal
policy has an easy structure, we can exploit it to obtain a tractable index expression.

In this way, for Whittle index computation (expression (5)), first we need to determine if states (a,m)
and (a+ rn,m) are active or passive. According to concluded properties:

• On the one hand, for the same attained service in a better channel condition the index value is
greater. Hence, in the index computation of (a, n) state, states with attained service a with a
higher channel condition than n will be active, and if channel condition is lower, passive; that is,
(a,m) ∈ F ∀m > n and (a,m) /∈ F ∀m ≤ n are satisfied.

• On the other hand, for a Pareto distribution that belongs to DHR class the Whittle index value is de-
creasing with attained service for each channel condition. Therefore, states with attained service a or
higher than a and with channel condition n or lower will be passive; thus, (a+ rn,m) /∈ F ∀m ≤ n
is satisfied.

• However, it is not clear if states with channel condition higher than n and with attained service
higher than a are active or passive; that is, for states (a+ rn,m) ∀m > n we do not know before-
hand from which attained service on and from which channel condition on are active or passive.

Nevertheless, for the best channel condition the active set is totally specified. From concluded prop-
erties, states that have influence on the index computation of a state (a,N) are passive, because in these
future states the attained service is equal or higher, without channel condition improvement. As shown
in Proposition 1, the value of the Whittle index is infinite, which coincides with the result obtained in [3]
for exponential sizes.

Proposition 1. For the best channel condition and a Pareto size distribution the Whittle index for
problem (2) in the undiscounted case is given by:

v∗
(a,N) = lim

β→1

cµ(a,N)

1 − β
= +∞ (9)

Proof. For channel condition N F = ∅ for all a. We use passive expressions of reward and work,
(6) and (7) respectively, and by solving equation systems ∀m RF

(a,m) = −c+ β
∑

m′∈N
qm′RF

(a,m′) and

∀m WF
(a,m) = β

∑
m′∈N

qm′WF
(a,m′) respectively, we achieve RF

(a,m) = RF
(a+rn,m) =

−c
1−β and
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Figure 5: Evolution of µ with attained service (left), µ error for the worst non-null channel condition (middle) and µ error
for the best channel condition (right), for different Pareto settings (mean size 50 Mbit, 5 Mbit and 0.5 Mbit top-down, for
α = 1.5) and different channel conditions.

WF
(a,m) = WF

(a+rn,m) = 0. By substituting those reward and work terms in (5) we obtain expression

(9).

Besides, due to the impossibility of obtaining a tractable Whittle index expression for any channel
condition, caused by the unclear and difficult active set structure, in the next subsection we propose a
heuristic based on an approximate Whittle approach.

4.2.1. An index rule proposal based on a Whittle index approximation

As previously stated, the Whittle index analytical expression for problem (2) is unachievable, except
for the best channel condition. In order to obtain a closed-form index expression for any channel condition,
we propose an approximate Whittle index solution in the following.

First of all, we will define an exact active set structure. From the previous statements, it is known that
in the achievement of the Whittle index of (a, n) state, states (a,m ≤ n) ∪ (a+ rn,m ≤ n) are passive
and states (a,m > n) active, but the activity of (a + rn,m > n) states is unknown. Let’s assume that
for all l = 1, 2, . . . , N µ(a,m) ≈ µ(a+rl,m) happens. In this way, knowing that (a,m > n) states are active,
being µ(a,m) ≈ µ(a+rn,m), we can suppose that (a+ rn,m > n) states are also active.

We define the completion probability error, µe(m,l)
, as: µe(m,l)

= 1− µ(a+rl,m)/µ(a,m). Note that this
error increases with rl. We present the error analysis related to this approximation in Figure 5, for which
for different mean sizes and for 16 channel conditions (rate values available in Table 1, which are typically
used in 4G wireless settings), we show the evolution of µ with attained service (graphs on the left), the µ
error for the worst non-null channel condition (graphs in the middle), and the µ error for the best channel
condition (graphs on the right). As can be observed, for the first two size configurations good results are
obtained; in the worst case about a 3% error is achieved. However, while the mean size decreases the
error notably increases; for the case that introduces the highest error, µe(2,16) , when the attained service
is the mean size about a 10% error is obtained. Nevertheless, we will show in the performance analysis
section that the effects caused by the error of this approximation do not deteriorate the performance.

Once determined the active set, and using the presented µ approximation, we will propose a simplified
Whittle index expression. Considering that µ(a,m) ≈ µ(a+rn,m), R(a,m) ≈ R(a+rn,m) and
W(a,m) ≈ W(a+rn,m) are satisfied. Thus, we can assume that Ra =

∑
m

qmR(a,m) ≈
∑
m

qmR(a+rn,m) and
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Wa =
∑
m

qmW(a,m) ≈
∑
m

qmW(a+rn,m). In this way, using these simplifications, the Whittle index formu-

lation (5) is simplified to the following expression, denominated by ṽ∗(a,n):

ṽ∗(a,n) =
βµ(a,n)(c−Ra)

1− βµ(a,n)Wa
(10)

Moreover, we could generalize the previous approximation for any attained service increase for any l
channel condition, resulting in Ra =

∑
m

qmR(a,m) ≈
∑
m

qmR(a+rl,m) and

Wa =
∑
m

qmW(a,m) ≈
∑
m

qmW(a+rl,m). Using this last approximation with the previous suppositions and

approximations, we obtain the Whittle index approximation presented in Proposition 2, that we call
Attained Service dependant Potential Improvement (ASPI). We provide the mathematical resolution to
obtain the Whittle-index-based closed-form index expression in Appendix A.

Proposition 2. The formulation of the ASPI index is (11):

ASPI = ṽ∗
(a,n) =

cµ(a,n)∑
m>n

qm(µ(a,m) − µ(a,n))
(11)

As can be observed in expression (11), the obtained ASPI index is computationally tractable. This
allocation strategy is a size-based and channel-aware policy, which depends on the size distribution,
channel rates and channel state probabilities. The achieved expression is similar to the one obtained
in [3] for the exponential distribution, called Potential Improvement (PI); but in our case the attained
service is taken into account, which does not happen for the exponential approach. The index value equals
the ratio between the instantaneous completion probability and the expected potential improvement of
the instantaneous completion probability. Moreover, as in the original Whitte index, in the best channel
condition the ASPI index is infinite, since the summation in the denominator is null. Thus, we summarize
the proposed ASPI index rule in Definition 1.

Definition 1. The ASPI index rule consists in: at every decision slot t,

• serving a user in its best channel condition with the highest value of cµ(a,N);

• if there is no user in its best channel condition, serving the user with the highest value of
cµ(a,n)∑

m>n
qm(µ(a,m)−µ(a,n))

(using (11)).

Therefore, the ASPI index rule can be easily implemented. Furthermore, in the next section, we will
show that the performance of this approximate Whittle index heuristic is adequate.

5. Performance Evaluation

In this section we analyze the performance of the ASPI index rule proposal, presented in Definition 1.
To that end, we compare its achieved mean holding cost with the one obtained with well-known priority
policies in several simulation scenarios. Note that, when all the holding costs are equal, the mean holding
cost is equivalent to the mean delay, which is a relevant user-level performance metric. Furthermore, we
will focus on wireless scenarios, and thus, we will use typical parameter values employed in this kind of
networks. Nevertheless, the achieved results will be valid for any time-varying channel context.

Below we provide a brief description of the scheduling index rules used in our experiments:

• cµ-rule, adapted to the attained service, denominated by cost and attained service dependant µ
(cASµ): consists in serving the user k with the highest value of vcµk,(a,n) = ckµk,(a,n).

• Max Rate (MR) scheduler: serves the user k with the highest value of vMR
k,n = rk,n.
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• Proportional Fair (PF) scheduler: consists in serving the user with the highest ratio of the current

transmission rate and the attained throughput; that is, the highest value of vPF
k,(a,n,d) =

rk,n
ak/dk

,

where dk is the time already spent in the system.

In case of ties, these are resolved randomly. As typical in current wireless networks, we use scheduling
decisions and transmission slots of 1 ms.

It is well accepted that Internet traffic flows can be suitably modeled by Pareto distributions [16]. We
use the Pareto distribution (8) in simulations, considering typical mean sizes employed in wireless settings:
0.5 Mb, 5 Mb and 50 Mb (see [7]). Even though in the analytical framework we do not consider arrivals
of new users, we take into account arrivals of new users in simulations, so as to show that the performance
of our scheduling proposal is satisfactory even in a more realistic case due to the presence of arrivals.
Flows arrive according to a Poisson process with rate λk per slot. This arrival rate will determine the
network load, ρ. We consider single-class settings, as well as scenarios with two classes of users. Thus,

we define ρk = λk · E[Xk]
rk,N

per-class k and ρ =
∑
k

ρk; in case of two classes, we have ρ1 = ρ2 for simplicity.

Moreover, we make use of transmission rates employed in 4G networks (adapted from [14]). The
mapping between Channel Quality Indicator (CQI) indices and rates is provided in Table 1. Note that in
each scenario we will only use several inputs (columns) from the previous table, depending on the number
of channel conditions considered in each setting.

CQI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r 0 4.2 6.7 8.4 11.2 16.8 21.8 25.2 26.8 33.6 44.6 50.4 53.7 67.2 75.6 80.6

Table 1: CQIs and corresponding rates (Kb).

In order to guarantee that the achieved performance results are generally valid, we have carefully
selected simulation scenarios. For that purpose, on the one hand, we have chosen a wide variety of
configurations for different channel, size or/and cost characteristics. On the other hand, we have taken
into account scenarios in which the µ error in the approximation of the achievement of ASPI is high. We
have analyzed seven relevant settings, whose parameters are collected in Table 2.

Scenario Channel Size c
1 CQI ={3,5}, q2 = 0.5 {α = 1.5,γ = 4 · 10−7, E [X] = 5Mb} 1
2 CQI ={3,9}, q2 = 0.5 {α = 1.5,γ = 4 · 10−7, E [X] = 5Mb} 1
3 CQI ={3,5}, q2 = 0.5 {α = 1.5,γ = 4 · 10−6, E [X] = 0.5Mb} 1
4 See Table 3 {α = 1.5,γ = 4 · 10−7, E [X] = 5Mb} 1
5 See Table 4 {α = 1.5,γ = 4 · 10−7, E [X] = 5Mb} 1
6 Class 1: See Table 4 {α1 = 1.5,γ1 = 4 · 10−7, E [X1] = 5Mb} (1,1)

Class 2: See Table 3 {α2 = 1.5,γ2 = 4 · 10−7, E [X2] = 5Mb}
7 See Table 5 {α1 = 1.5,γ1 = 4 · 10−7, E [X1] = 5Mb} (5,1)

{α2 = 1.5,γ2 = 4 · 10−8, E [X2] = 50Mb}

Table 2: Parameter set in experimental study.

CQI 1 3 5 9 13
q 0.05 0.1 0.2 0.25 0.4

Table 3: CQIs and corresponding increasing channel state
probabilities.

CQI 1 3 5 9 13
q 0.4 0.25 0.2 0.1 0.05

Table 4: CQIs and corresponding decreasing channel state
probabilities.

Next we show the results obtained in the analyzed scenarios.

10



CQI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
q 0.28 0.12 0.09 0.08 0.08 0.08 0.07 0.06 0.05 0.04 0.03 0.01 0.009 0.0005 0.0003 0.0002

Table 5: Channel state probabilities in a 4G network setting.

5.1. Scenario 1: Basic setting

We start analyzing scenarios with only two channel states so as to get fundamental insights into the
performance of our scheduling proposal. In the first setting, we consider a typical wireless configuration
that takes into account the equiprobable channel case and medium-sized flows. Figure 6 collects mean
holding cost results for this setting for different scheduling algorithms under different network loads. As
main conclusion, ASPI shows the lowest mean holding cost compared with the rest of policies.
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Figure 6: Mean holding cost for Scenario 1.

5.2. Scenario 2: A case with higher error due to rate

In this second family of simulations, the transmission rate of the best channel is four times higher
than the one of the bad channel, whereas in the basic setting was the double. Thus, the error caused in
the µ approximation for the ASPI index computation is higher. In spite of this higher error due to rate,
as can be observed from Figure 7, ASPI still outperforms all the analyzed disciplines.

5.3. Scenario 3: A setting with higher error caused by size

Now we consider the smallest mean size, which introduces a higher µ error for the Whittle index
approximation. Despite this higher error caused by size, as depicted in Figure 8, ASPI minimizes the
mean holding cost with respect to the rest of the disciplines under study.

5.4. Scenario 4: Optimistic network case

In the following we analyze the first configuration in which the number of channel conditions is higher
than two. We consider five channel states, whose transmission rates are multiples of the lowest rate
taken into account; the rate of a certain channel condition is twice the one of its smallest contiguous
channel condition. We assume that channel state probabilities are increasing with the improvement of
channel quality. In this optimistic network situation, we can see from Figure 9 that ASPI achieves the
best performance.

5.5. Scenario 5: Pessimistic network case

Contrary to the previous setting, we now assume that channel state probabilities are decreasing with
rate in order to contrast the effects of opposite channel state probabilities. Under such a pessimistic
network case, as can be appreciated in Figure 10, ASPI introduces the lowest mean holding cost. Note
that we omit results from cASµ since it is unstable for this scenario.
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Figure 7: Mean holding cost for Scenario 2.

0.3 0.5 0.7 0.9
0

5

10

15

20

25

30

ρ

M
ea

n 
ho

ld
in

g 
co

st

 

 

ASPI
cASµ
MR
PF

Figure 8: Mean holding cost for Scenario 3.
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Figure 9: Mean holding cost for Scenario 4.
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Figure 10: Mean holding cost for Scenario 5.

5.6. Scenario 6: A mixture of optimistic and pessimistic network cases

This setting mixes the previous optimistic and pessimistic single-class cases, resulting in a multiclass
scenario with users that differ in channel configuration. From Figure 11 and Figure 12 we conclude that
not only ASPI is superior for the aggregate of classes (see Figure 11), but also inside each class (see
Figure 12).

5.7. Scenario 7: A 4G network case

Finally, we present the performance analysis of a setting that resembles a real 4G network context.
To that end, we employ channel traces obtained from a system-level radio access simulator [9]. This
configuration leads to channel state probabilities that decrease with the improvement of channel rate.
Apart from that, we consider two classes of users, which differ in size and cost; we give priority to the
small-sized class by augmenting its cost value. Results in Figure 13 and Figure 14 indicate that, in this
emerging scenario, ASPI outperforms all the policies considered in the mixture of classes (from Figure 13),
as well as per-class (from Figure 14).
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Figure 11: Mean holding cost for Scenario 6.
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Figure 12: Mean holding cost per class for Scenario 6.
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Figure 13: Mean holding cost for Scenario 7.
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Figure 14: Mean holding cost per class for Scenario 7.

6. Conclusions

In this paper we provide a Whittle-index-based methodology so as to achieve a simple solution for
the scheduling problem aimed at minimizing the average holding cost considering flows with general
size distribution in randomly time-varying channels. Particularly, we obtain the opportunistic and non-
anticipating size-aware ASPI index rule scheduler for realistic DHR size distributions, which is analytically
tractable and performs well in relevant simulation scenarios.

Therefore, the results of this work will be useful for network providers in order to guarantee a better
quality of service to their customers in time-varying wireless networks. Apart from that, the simplification
applied in the Whittle method would be useful to other problems when the gradient of the system
components is considerably small among consecutive slots.

Besides, even though simulation results illustrate that the proposed scheduler is stable for ρ < 1, it
would be interesting to prove its stability.
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Appendix A. Proof of Proposition 2

Lemma 2. Suppose that states (a,m ≤ n) ∪ (a+ rn,m ≤ n) are passive and that states
(a,m > n) ∪ (a+ rn,m > n) are active, and

ṽ∗(a,n) =
µ(a,n)(c− βRa)

1− βµ(a,n)Wa
(A.1)

Along with this, if we assume that Ra =
∑
m

qmR(a,m) ≈
∑
m

qmR(a+rl,m) and

Wa =
∑
m

qmW(a,m) ≈
∑
m

qmW(a+rl,m) for any l = 1, 2, . . . N value, for the undiscounted case:

ṽ∗(a,n) =
cµ(a,n)∑

m>n
qm(µ(a,m) − µ(a,n))

(A.2)

Proof. Referring to reward elements, using (6):

R(a,m≤n) = −c+ βRa

R(a,m>n) = −c(1− µ(a,m)) + β(1− µ(a,m))
∑
m

q′mR(a+rm,m′) =

= −c(1− µ(a,m)) + β(1− µ(a,m))Ra

(A.3)
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And by (A.3),

Ra = (1−
∑
m>n

qm)(−c+ βRa) +
∑
m>n

qm(−c(1− µ(a,m)) + β(1− µ(a,m))Ra)

And by isolating Ra,

Ra =

−c(1−
∑

m>n
qmµ(a,m))

1− β + β
∑

m>n
qmµ(a,m)

(A.4)

Analogously, for work elements, using (7):

W(a,m≤n) = βWa

W(a,m>n) = 1 + β(1− µ(a,m))
∑
m

q′mW(a+rm,m′) = 1 + β(1− µ(a,m))Wa

(A.5)

And by (A.5),

Wa = (1−
∑
m>n

qm)βWa +
∑
m>n

qm(1 + β(1− µ(a,m))Wa)

And isolating Wa,

Wa =

∑
m>n

qm

1− β + β
∑

m>n
qmµ(a,m)

(A.6)

Substituting (A.4) and (A.6) in (A.1), and simplifying,

ṽ∗(a,d) =

cµ(a,n) − βµ(a,n)

c(−1+
∑

m>n
qmµ(a,m))

1−β+β
∑

m>n
qmµ(a,m)

1− βµ(a,n)

∑
m>n

qm

1−β+β
∑

m>n
qmµ(a,m)

=

=

cµ(a,n)(1− β + β
∑

m>n
qmµ(a,m))− βµ(a,n)c(−1 +

∑
m>n

qmµ(a,m))

1− β + β
∑

m>n
qmµ(a,m) − βµ(a,n)

∑
m>n

qm
=

=
cµ(a,n)

1− β + β
∑

m>n
qm(µ(a,m) − µ(a,n))

(A.7)

And thus, for β = 1, expression (A.7) equals (A.2).
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