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Abstract

We provide a constructive characterisation of circuits in the simple (2, 2)-
sparsity matroid. A circuit is a simple graph G = (V,E) with |E| = 2|V |−1
where the number of edges induced by any X ( V is at most 2|X| − 2.
Insisting on simplicity results in the Henneberg 2 operation being adequate
only when the graph is sufficiently connected. Thus we introduce 3 different
join operations to complete the characterisation. Extensions are discussed
to when the sparsity matroid is connected and this is applied to the theory
of frameworks on surfaces, to provide a conjectured characterisation of when
frameworks on an infinite circular cylinder are generically globally rigid.
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1. Introduction

For k, l ∈ N a multigraphG = (V,E) is (k, l)-tight if |E| = k|V |−l and for
every subgraph G′ = (V ′, E′) the inequality |E′| ≤ k|V ′| − l holds. It is well
known that the edge sets of such multigraphs induce matroids when l < 2k
[13, 22]; we denote these matroids as M(k, l). These multigraphs can be
decomposed into unions of trees and map graphs [15, 21, 23]; correspondingly
the matroids are unions of cycle and bicycle matroids. (We direct the reader
unfamiliar with matroids to [14] for a comprehensive introduction.)

There is an elegant recursive construction of the bases (maximal inde-
pendent sets) in M(k, l) due to Fekete and Szegő [3]. Their result is built
on the construction of Tay [20] for k = l. A recursive characterisation of
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circuits (minimal dependent sets) in M(k, k) can be found as a special case
of a theorem of Frank and Szegő [4] on highly k-tree connected multigraphs.

These characterisations use generalisations of the Henneberg moves [8].
However each list of construction moves is insufficient if we restrict to (sim-
ple) graphs at each stage of the induction. When the (k, l)-tight graph is
simple, they still induce a matroid and we denote it as M∗(k, l). Recursive
constructions for the bases of M∗(2, l) (l = 2, 1) can be found in [16, 17, 18].
In this paper we study circuits in M∗(2, 2).

From here on, for brevity, we define a circuit (resp. multicircuit) to
be the graph (resp. multigraph) induced by a circuit in M∗(2, 2) (resp.
M(2, 2)) i.e. a graph (resp. multigraph) G = (V,E) with |E| = 2|V |−1 and
for every proper subgraph H = (V ′, E′) ⊂ G we have |E′| ≤ 2|V ′|−2. Figure
1 gives three small examples of circuits. It is easy to see that circuits have
minimum degree 3. Hence, throughout we will call a vertex of degree 3 a
node. The Henneberg 2 move adds a node to a graph by subdividing an edge
and connecting the new vertex to a third existing vertex. Other Henneberg
moves will not be relevant here. In this paper we prove a constructive
characterisation of all circuits in M∗(2, 2). See Figure 1 for the base graphs
of the characterisation and Figure 2 for the join moves; both are formally
defined in Subsection 1.4.

Figure 1: From left to right: the base graphs K5 \ e, K4 tK4 and K4 YK4.

Theorem 1.1. A graph G is a circuit in M∗(2, 2) if and only if G can be
generated recursively from disjoint copies of base graphs by applying Hen-
neberg 2 moves within connected components and taking 1-joins, 2-joins or
3-joins of different connected components.

To prove Theorem 1.1 our main technical tool is Theorem 1.2 below.
This theorem gives precise connectivity conditions that guarantee we can
use the Henneberg 2 move. First we introduce some relevant terminology.

For the inverse Henneberg 2 operation, let G = (V,E) be a graph and
let Guwv denote the graph formed by removing a node v from G and adding
the edge uw where u,w ∈ N(v) (the neighbour set of v). Let G be a circuit
and let v be a node in G. The pair of edges uv,wv is admissible if Guwv is
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Figure 2: The 1-, 2- and 3-join operations forming G1⊕iG2 from G1 and G2 for i = 1, 2, 3
respectively.

a circuit. A node v is admissible if there is u,w ∈ N(v) such that uv,wv is
admissible. Figures 3 and 4 illustrate admissibility.

By a non-trivial k-edge cut we mean a k-edge-cut in which the two
components have at least two vertices. Since every circuit contains a degree
3 vertex, there always exist trivial 3-edge-cuts. Since we will primarily be
considering non-trivial 3-edge cuts in 3-connected graphs we may assume
the edges in any such cut are disjoint.

Theorem 1.2. Let G be a 3-connected circuit in M∗(2, 2) with no non-
trivial 3-edge cuts and |V | ≥ 6. Then G has two admissible nodes.

The second graph in Figure 3 gives an example showing the 3-connectivity
assumption is necessary. Similarly, Figure 4 shows why we must assume
there are no non-trivial 3-edge cuts.

1.1. Outline

In Section 2 we prove Theorem 1.2. We start with some elementary prop-
erties of circuits culminating in Lemma 2.5 where we establish two blocks to
admissibility: (a) preserving simplicity and (b) preserving subgraph spar-
sity. The key novelty in Section 2 is in dealing with (a). Proposition 2.6
establishes the level of connectivity required to guarantee nodes not con-
tained in copies of K4. Combining this with Lemma 2.8 largely allows us
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Figure 3: v is a non-admissible node in a 3-connected circuit with no non-trivial 3 edge-
cuts. Choosing uw as the new edge creates a copy of K4 tK4 and not choosing uw leaves
a degree 2 vertex. u and w are examples of admissible nodes. The second circuit contains
no admissible nodes.

Figure 4: Two 3-connected circuits with no admissible nodes. Every node is in a copy
of K4 so any inverse Henneberg 2 move results in a multiple edge, while circuits are
necessarily simple graphs.

to reduce to (b), which is considered in Subsection 2.3. This follows the
method of [1] establishing structural results for circuits with non-admissible
nodes. The proof of Theorem 1.2 is completed by deducing from Proposition
2.6 that a special subforest of nodes is non-empty and combining this with
these structural results.

In Section 3 we consider circuits which are not sufficiently connected for
Theorem 1.2 to apply. These are circuits with 2-vertex cuts or non-trivial
3-edge cuts for which we introduce the 1-, 2- and 3-join operations. There
is one final technical point which we deal with in Section 4; there are 2-
vertex cuts to which we cannot apply the inverse 2-join operation in a useful
way. This happens precisely when the circuit takes the form G1 ⊕2 G2,
see Figure 2, and either G1 or G2 is isomorphic to K4. In Section 4 we
translate a circuit in M∗(2, 2) into a circuit in M(2, 2) in order to establish
admissibility in circuits with no non-trivial 3-edge cuts where every 2-vertex
cut has this special form. The results to this point prove that any circuit is
either a base graph or can be reduced to smaller circuits using an inverse join
operation or can be reduced to a smaller circuit using the inverse Henneberg
2 move. Combining this with the fact that these operations preserve the
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circuit property completes the proof of Theorem 1.1
In Section 5 we consider connectedness in M∗(2, 2) and obtain a precise

analogue of [10, Theorem 3.2]. This is used to link our results to the unique
realisation problem for frameworks in 3-dimensions supported on an infinite
circular cylinder. We finish by conjecturing a combinatorial description
of when such a realisation is unique, Conjecture 5.7, and outlining some
extensions.

1.2. Motivation

The rigidity of frameworks on surfaces [11, 16] (particularly on a cylin-
der) provides geometric motivation for the study of M∗(2, 2). In particular
the question of global rigidity - when a geometric realisation of a graph on a
cylinder is unique (up to ambient motions). The corresponding question for
frameworks in the plane was finally settled in 2005 by Jackson and Jordán
[10], building upon results of Hendrickson [6], Connelly [2] and most rele-
vantly to this paper, Berg and Jordán [1]. Berg and Jordán’s contribution
was a recursive characterisation of circuits in M∗(2, 3) = M(2, 3). Circuits
arise because they have the minimum number of edges (as a function of the
number of vertices) possible for the realisation to be unique. We expect that
our characterisation will be similarly useful in establishing a combinatorial
description of global rigidity on the cylinder.

1.3. Comparing Constructions

While circuits in M∗(2, l) (l = 2, 3) necessarily contain nodes there may
be no node that is suitable for an inverse Henneberg 2 operation. This
is the key reason why circuits are more challenging than bases. Berg and
Jordán [1] showed that a circuit in M∗(2, 3) has a suitable node whenever
the graph is 3-connected (compare Theorem 1.2). Thus the combination
of the Henneberg 2 operation and the 2-sum operation [14], which glues
two circuits together over a 2-vertex cut (contrast with the 1-,2- and 3-join
operations), were sufficient to generate all such circuits.

In [4] it was shown that all circuits in M(2, 2) can be generated from
a single loop using Henneberg 2 operations. Hence, without the insistence
on simplicity, the graphs in Figure 4 can be reduced using the inverse Hen-
neberg 2 move. With this insistence, they give examples of graphs for which
multigraphs are required in the intermediate steps. Moreover repeated ap-
plication of, say, 3-join operations on these examples give arbitrarily large
circuits with no admissible nodes.

Since each of these examples contains a copy of K4 it would be natural
to consider a recursive operation in which a copy of K4 was contracted to
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a single vertex, as used in [18] for bases in M∗(2, 2). However contracting
a K4 need not preserve simplicity and the inverse, extending a vertex into
a K4, need not preserve 2-connectivity (so by Lemma 2.3 does not preserve
the circuit property).

Lastly, we comment that M(2, 3) provides a nice example of a matroid
which is not closed under the 2-sum operation [19]. This is in contrast to the
cycle matroid of a graph and hints at the added complexity of (2, `)-sparsity
matroids.

1.4. Preliminaries

We finish the first section by giving formal definitions of some terms used
in the introduction and by introducing some notation.

Let K4 t K4 denote the unique graph formed by two copies of K4 in-
tersecting in a single edge and let K4 YK4 denote the unique graph formed
from two copies of K4 intersecting in a single vertex by adding any edge.
We will say that K5 \ e, K4 tK4 and K4 YK4 are base graphs, see Figure 1.

Let G1, G2 be circuits such that G1 contains an edge a1b1 and G2 con-
tains a two vertex cut a2, b2 within K4(a2, b2, c2, d2). A 1-join operation
takes G1 and G2 and forms G1 ⊕1 G2 by removing a1b1, c2, d2 and a2b2
and superimposing a1, b1 onto a2, b2 and calling the resulting vertices a, b.
Secondly, let G1, G2 be circuits such that Gi contains a two vertex cut ai, bi
with one component inducing K4(ai, bi, ci, di). A 2-join operation takes G1

and G2 and forms G1⊕2G2 by removing ci, di and superimposing a1, b1 onto
a2, b2 and calling the resulting vertices a, b and keeping only one copy of the
edge ab. Finally, let G1, G2 be circuits such that Gi contains a node vi with
N(vi) = {ai, bi, ci}. A 3-join operation takes G1 and G2 and forms G1⊕3G2

by deleting v1, v2 and adding edges a1a2, b1b2, c1c2.
In this paper graphs have no loops or multiple edges, multigraphs may

have both. If G = (V,E) is a graph with v ∈ V then dG(v) denotes the
degree of v in G and N(v) denotes the neighbour set of v.

Define f(H) = 2|V ′| − |E′| for any H = (V ′, E′) ⊆ G. For X ⊂ V we let
iG(X) denote the number of edges in the subgraph of G induced by X. We
drop the subscript when the graph is clear from the context. If X and Y are
disjoint subsets of the vertex set V of a given graph G, then we use d(X,Y )
to denote the number of edges from X to Y and d(X) := d(X,V \X).

2. Admissible Nodes

In this section we prove Theorem 1.2. First let us note the elementary
’inverse’ of the theorem, whose proof we omit.
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Lemma 2.1. Let G′ be formed from G by a Henneberg 2 move and let G be
a circuit. Then G′ is a circuit.

2.1. Basic Properties of Circuits

We begin by establishing some basic lemmas on circuits and then give a
characterisation of admissibility.

LetG = (V,E). We say that a subsetX ⊂ V is critical if i(X) = 2|X|−2.
The following is a simple analogue of [1, Lemma 2.3] and we omit the proof.

Lemma 2.2. Let G = (V,E) be a circuit and let X,Y ⊂ V be critical such
that |X ∩ Y | ≥ 1 and |X ∪ Y | ≤ |V | − 1. Then X ∩ Y and X ∪ Y are both
critical, and d(X \ Y, Y \X) = 0.

Let G = (V,E) be a circuit. For any critical set X ⊂ V , G[X] is
connected but need not be 2-connected.

Lemma 2.3. Let G be a circuit. Then G is 2-connected and 3-edge-connected.

Proof. Let G = (V,E). Suppose there exists v ∈ V such that G \ v has a
bipartition A,B with no edges from A to B.

2|V | − 1 = |E| = |E(A ∪ v)|+ |E(B ∪ v)|
≤ 2(|A|+ 1)− 2 + 2(|B|+ 1)− 2

= 2|V | − 2,

a contradiction. This proves the first statement, the second is similar.

The following is easy and similar to [1, Lemma 2.5]. We omit the proof.

Lemma 2.4. Let G = (V,E) be a circuit. Let X ⊂ V be a critical set.
Then V \X contains at least one node (in G).

Our next lemma gives a criterion for admissibility.

Lemma 2.5. Let G be a circuit, let v be a node in G with N(v) = {u,w, z}.
Then uv,wv is not admissible if and only if either (a) uw ∈ E or (b) there
is a critical set X ⊂ V with u,w ∈ X and v, z /∈ X.

Proof. Suppose first that (b) holds. Then the inverse Henneberg 2 move
creates a new edge uw implying i(X) = 2|X| − 1 and X ( V . Also if (a)
holds then Guwv is not a simple graph.

Conversely, if uv,wv is not admissible and (a) fails there is X ⊂ V (Guwv )
such that G[X] is not (2, 2)-sparse. Then |E(X)| ≥ 2|X|− 1. It follows that
X is critical in G and u,w ∈ X. If z ∈ X then |E(X ∪ v)| = |E(X)|+ 3 =
2|X| − 2 + 3 = 2|X ∪ v| − 1, a contradiction. Thus z /∈ X.
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Condition (b) in Lemma 2.5 leads us to strengthen the definition of
critical as follows. Let G = (V,E) be a circuit. For a node v ∈ V with
N(v) = {u,w, z} we say that a critical set X is v-critical if u,w ∈ X and
v, z /∈ X. If z is a node and such an X exists then an inverse Henneberg
2 move on uv,wv is not admissible. Here V \ {v, z} is a trivial v-critical
set on u and w. If X is a v-critical set on u and w for some node v with
N(v) = {u,w, z} and dG(z) ≥ 4 then X is node-critical. We will return to
node-critical sets in Subsection 2.3.

2.2. Preserving Simplicity

Condition (a) in Lemma 2.5 is crucial in separating the problem at hand
from the analogue in [1]. The following Proposition is the key step in bridg-
ing this difficulty.

Proposition 2.6. Let G = (V,E) be a 3-connected circuit with no non-
trivial 3-edge-cuts and |V | ≥ 6. Let X1, . . . , Xn be critical sets and let Y =
V \

⋃n
i=1Xi. Suppose that any one of the following conditions holds:

1. |Y | ≥ 2,
2.

⋃n
i=1G[Xi] is disconnected, or

3. X1, . . . , Xn induce copies of K4.

Then Y contains at least two nodes of G.

Proof. We prove 1 and 2 simultaneously. With vertices labelled v1, . . . , v|V |,
since |E| = 2|V | − 1 we have

|V |∑
i=1

(4− dG(vi)) = 2.

Let Z1, . . . , Zm be the connected components in
⋃n
i=1G[Xi]. In cases 1 and

2 Lemma 2.2 implies Xi ∪Xj is critical and d(Xi, Xj) = 0 or Xi ∩Xj = ∅
for each 1 ≤ i < j ≤ n. Now i(Zj) = 2|Zj | − 2 for each j. Thus

|Zj |∑
i=1

(4− dG[Zj ](vi)) = 4.

By assumption 1 or 2 |V \ Zj | ≥ 2 so there are at least 4 edges of the form
xy with x ∈ Zj , y ∈ V \ Zj . This implies

|Zj |∑
i=1

(4− dG(ui)) ≤ 0
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(with the vertices in Zj labelled u1, . . . , u|Zj |) for each j. Thus

m∑
j=1

(

|Zj |∑
i=1

(4− dG(ui))) ≤ 0.

Since the minimum degree in G is 3 comparing this with the first summation
implies Y contains at least two nodes.

For 3 assume X1, . . . , Xn induce copies of K4 and suppose m = 1 and
|Y | < 2. (If m > 1 or |Y | ≥ 2 then we can apply the previous cases.) Let
|Y | = 1 then Z1 is critical, G[Z1] is connected and every edge in G[Z1] is
in a copy of K4. Since every A ( Xi with |A| > 1 satisfies i(A) ≤ 2|A| − 3
we must have X1 ∩ Xi = a for some i. If a is a cut-vertex in G[Z1] then
we guarantee a cutpair in G which contradicts our assumptions so m > 1.
However, if a is not a cut-vertex, there is a path in G[Z1] from any vertex
in X1 \a to any vertex in Xi \a. Since d(X1, Xi) = 0 the only way this may
happen is if there is a set containing some y1 ∈ X1 \ a and some yk ∈ Xi \ a
which is not contained in X1 ∪ Xi. Let the path use vertices y1, y2, . . . , yk
for some k ≥ 2 and choose X ′ to be the union of all Xj ’s containing some
yj except X1 and Xi. Then X ′ is critical. As X1 ∪Xi is critical this implies
that i(X ′ ∪X1 ∪Xi) > 2|X ′ ∪X1 ∪Xi| − 2. Thus a must be a cut-vertex.

A similar argument applies when Y = 0; here Z1 = V and there is
exactly one edge e not in a copy of K4. As above we find a is a cut-vertex
for G \ e and hence a cut-pair exists in G. Therefore m ≥ 2 and the result
follows from 2.

Let V3 = {v ∈ V : v is a node}. Let V ∗3 ⊂ V3 be the subgraph of nodes
which are not contained in copies of K4 (in G). Following [1] we call a node
v with dG[V ∗3 ](v) ≤ 1 a leaf node, with dG[V ∗3 ](v) = 2 a series node and with
dG[V ∗3 ](v) = 3 a branching node. From Proposition 2.6 we can derive an
analogue of [1, Lemma 2.1].

Lemma 2.7. Let G = (V,E) be a 3-connected circuit with |V | ≥ 6 and no
non-trivial 3-edge cuts. Then G[V ∗3 ] is a forest on at least two vertices.

Proof. By Proposition 2.6 part 3 |V ∗3 | ≥ 2. Suppose C ⊂ V ∗3 induces a cycle.
G is not a cycle so C̄ := V \ C 6= ∅. |C̄| > 1 since G is not a wheel. Now

i(C̄) = 2|V | − 1− i(C)− d(C, C̄) = 2|V | − 1− |C| − |C|
= 2(|V | − |C|)− 1 = 2|C̄| − 1,

a contradiction.
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We take this opportunity to dispense with the case when the neighbour
set of a node neither induces K3 or induces a graph with no edges.

Lemma 2.8. Let G = (V,E) be a circuit containing a node v with N(v) =
{w, u, z}. Suppose that either

1. G is 3-connected, uz /∈ E and wz,wu ∈ E or

2. uz,wu /∈ E and wz ∈ E.

Then v is admissible.

Proof. Since z, u is not a cutpair, dG(w) ≥ 4. Let t ∈ N(w) and suppose v is
not admissible. By Lemma 2.5 there exists a proper critical subset Xzu ⊂ V
containing z, u but not w, v. If t ∈ Xzu then i(Xzu ∪ w) = 2|Xzu ∪ w| − 1,
a contradiction as v /∈ Xzu ∪ w. If t /∈ Xzu then Xzu ∪ w is critical and
i(Xzu ∪w∪ v) = 2|Xzu ∪w∪ v| − 1, a contradiction as t /∈ Xzu ∪w∪ v. This
proves 1.

Now assume for a contradiction that v is not admissible. By Lemma
2.5 there exists proper critical sets Xwu, Xuz ⊂ V . Note dG(z) ≥ 4 since
|N(z) ∩ Xuz| ≥ 2 and similarly dG(w) ≥ 4. By Lemma 2.2 Xwu ∪ Xuz is
critical so adding wz then v plus its three edges gives a contradiction. Thus
at most one of the critical sets Xwu and Xuz can exist and 2 follows.

Recall that Lemma 2.5 showed there are two blocks to admissibility; we
must preserve simplicity and subgraph sparsity. Proposition 2.6 and Lemma
2.8 allow us to find nodes which we know will not violate simplicity. In the
following subsection we consider subgraph sparsity.

2.3. Guaranteeing an admissible node

In this section we consider nodes whose 3 neighbours induce a null graph.
For this we modify results from [1]. Then in the final subsection we will com-
bine this analysis with Proposition 2.6 and Lemma 2.8 to deduce Theorem
1.2.

Lemma 2.9. Let G = (V,E) be a circuit with |V | ≥ 6. Suppose v is a non-
admissible node of G with N(v) = {x, y, z} and none of xy, xz, yz present
in E. Then there exists two v-critical sets X,Y such that X ∪ Y = V \ v.
Moreover we may choose X,Y such that z ∈ X ∩ Y .

Proof. Since v is non-admissible Lemma 2.5 implies there exist critical sets
X on y, z, Y on x, z and Z on x, y. From Lemma 2.2 we deduce that X ∪Y
is critical and hence X ∪ Y = V \ v, since x, y, z ∈ X ∪ Y .
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The next lemma, an analogue of [1, Lemma 3.3] gives a crucial structural
result about 3-connected circuits with no non-trivial 3-edge-cuts containing
non-admissible nodes. Figure 5 illustrates this; see also the first graph in
Figure 3 for an example of a non-admissible series node.

v

Figure 5: A 3-connected circuit with no non-trivial 3-edge-cuts. v is a non-admissible leaf
node.

Lemma 2.10. Let G = (V,E) be a 3-connected circuit with no non-trivial
3-edge-cuts. Let v ∈ V be a node with N(v) = {x, y, z}, dG(z) ≥ 4 and
suppose no pair of neighbours of v defines an edge. Let X be a v-critical set
on x, y. Furthermore suppose that either

1. there is a non-admissible series node u ∈ V \ X \ v with no edges
between its neighbours, precisely one neighbour w in X and w is a
node, or

2. there is a non-admissible leaf node t ∈ V \X \ v with no edges between
its neighbours.

Then there is a node-critical set X ′ in G with |X ′| > |X| and (X ∩ V ∗3 ) ⊆
(X ′ ∩ V ∗3 ).

Proof. First let u ∈ V \X \ v be a non-admissible series node with N(u) =
{w, p, n} and dG(w) = 3. We may assume dG(p) = 3 and dG(n) ≥ 4. Since
u is non-admissible and wp /∈ E there exists a u-critical set Y on w and p
by Lemma 2.5. By Lemma 2.7 G[V ∗3 ] contains no cycles. Note |Y | ≥ 5 since
p, w are not in a copy of K4. Now X∩Y contains w so X ′ := X∪Y ⊆ V \u\v
is node-critical on u by Lemma 2.2. Also p /∈ X and dG(n) ≥ 4 so |X ′| ≥ |X|
and (X ∩ V ∗3 ) ⊆ (X ′ ∩ V ∗3 ).

For the second part of the lemma let t be a non-admissible leaf node.
Lemma 2.9 implies that there exist two t-critical sets Y1 and Y2 with Y1∪Y2 =
V \ t and if t has a neighbour r which is a node then we can also assume
r ∈ Y1 ∩ Y2. Note that Y1 and Y2 are node-critical and |Y1|, |Y2| ≥ 5.
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Now x, y ∈ Y1 ∪ Y2 and Lemma 2.2 implies that d(Y1 \ Y2, Y2 \ Y1) = 0.
Since also Y1 ∪ Y2 = V \ t and t /∈ X we know that |X ∩ Y1| ≥ 1 or
|X ∩ Y2| ≥ 1. Without loss of generality assume |X ∩ Y1| ≥ 1. d(t,X) = 3
implies i(X ∪ t) > 2|X ∪ t| − 2 so d(t,X) ≤ 2. Moreover d(t,X) ≤ 1 as if it
were equal to 2 then X ∪ t is critical and the result follows.

Now |N(t) ∩X| ≤ 1. First suppose |N(t) ∩X| = 0. Lemma 2.2 implies
that X ∪ Y1 is t-critical. Thus choosing X ′ = X ∪ Y1 completes the proof in
this case. Now suppose N(t) ∩X = {s}. If s ∈ Y1 then N(t) \ (X ∪ Y1) 6= ∅
(as N(t) * Y1) and hence X ′ = X ∪ Y1 is node-critical and we are done. If
dG(s) = 3 then s ∈ Y1 ∩ Y2 so we may assume dG(s) ≥ 4 and s /∈ Y1. Since
Y1 ∪ Y2 = V \ t this gives s ∈ Y2. |X ∩ Y2| ≥ 1 so choose X ′ = X ∪ Y2 to
complete the proof.

Similarly to [1, Lemmas 3.5 and 3.6] we have the following two lemmas.

Lemma 2.11. Let G be a 3-connected circuit with no non-trivial 3-edge-cuts
and |V | ≥ 6. Let X = {X ⊂ V : X is a node-critical set in G}. If X = ∅
then G has two admissible nodes.

Proof. By Lemma 2.7 V ∗3 is a forest and |V ∗3 | ≥ 2. Since X = ∅ the result
follows from Lemmas 2.5 and 2.8.

Lemma 2.12. Let G be a 3-connected circuit with no non-trivial 3-edge-
cuts and |V | ≥ 6. Suppose v is an admissible node. Let Y = {Y ⊂ V :
v ∈ Y, Y is a node-critical set in G}. If Y = ∅ then G has two admissible
nodes.

Proof. By Lemma 2.7 |V ∗3 | ≥ 2. Let w 6= v be a leaf in G[V ∗3 ] and suppose w
is non-admissible. Either this contradict Lemma 2.8 or by Lemma 2.9 there
exist node-critical sets X,Y with X ∪ Y = V \ w, contradicting Y = ∅.

We remark that this final lemma is included to make the statement of
Theorem 1.2 as strong as possible. It is sufficient, for the application in the
proof of Theorem 1.1, to guarantee only one admissible node.

2.4. Proof of Theorem 1.2

We are now ready to prove that any sufficiently connected circuit con-
tains admissible vertices.

Proof of Theorem 1.2. By Lemma 2.7 G[V ∗3 ] is a forest and |V ∗3 | ≥ 2. By
Lemma 2.8 we need consider only the case when there are no edges between
the neighbours of every a ∈ V ∗3 .
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Let X = {X ⊂ V : X is a node-critical set in G}. If X = ∅ we are
done by Lemma 2.11. Otherwise let X ∈ X be maximal. Choose t ∈ N(v)
such that X is v-critical with dG(t) ≥ 4 and t /∈ X. X ∪ v is critical and
|V \X \ v| ≥ 2, otherwise i(X ∪ v ∪ t) > 2|X ∪ v ∪ t| − 1. By Lemma 2.4
V \X \ v contains a node.

Let X = Xn and let X1, . . . , Xn−1 be critical sets in G not contained
in X such that every copy of K4 is induced by some Xi and every Xi

induces a copy of K4. Then there are two cases. If t /∈ Xi for all i then
|Y | = |V \

⋃n
i=1Xi| ≥ 2 so Proposition 2.6 part 1 implies there is a vertex

not in X ∪ v which is a node not in a copy of K4. Secondly if t ∈ Xi for
some i then |X ∩Xi| ≤ 1 otherwise i(X ∪Xi) > 2|X ∪Xi| − 2. Moreover
if X ∩Xi = a then X ∩Xi is critical so d(X,Xi) = 0 and X ∪Xi ∪ v = V
implying a, v is a cut-pair for G. Hence |X ∩ Xi| = 0 and

⋃n
i=1G[Xi] is

disconnected so Proposition 2.6 part 2 implies there is a vertex not in X ∪ v
which is a node not in a copy of K4.

Let W ∗ := V ∗3 ∩ (V \X \ v). G[W ∗] is a subforest of G[V ∗3 ] on the vertex
set W ∗. By the preceding paragraph |W ∗| ≥ 1 so W contains a leaf u. Each
vertex z ∈ V \X \ v \ t has at most one neighbour in X; otherwise X ∪ z
is node-critical, contradicting the maximality of |X|. Therefore u is not a
branching node of G.

Now if u is a leaf node then Lemma 2.10 part 2 and the maximality of
|X| imply that u is an admissible node. If u is a series node in G then, since
u has at most one neighbour in X and u is a leaf in G[W ∗], it follows that
it has precisely one neighbour y in X and y is a node. Thus Lemma 2.10
part 1 and the maximality of |X| imply that u is an admissible node.

Finally let Y = {Y ⊂ V : u ∈ Y, Y is a node-critical set in G}. If Y = ∅
the result follows from Lemma 2.12. Otherwise let Y ∈ Y be maximal, and
argue similarly to the proof for X ∈ X to complete the proof.

3. Joining Circuits

By Lemma 2.3 and Theorem 1.2, in order to prove Theorem 1.1, it
remains to consider the generation of circuits with cutpairs or with non-
trivial 3-edge cuts. In this section we introduce 3 new operations to do
exactly this.

3.1. Circuits containing cut-pairs

We start by considering graphs that are not 3-connected. Let Kn(a1, . . . ,
an) denote the complete graph with vertex set {a1, . . . , an}. Let G = (V,E)
be a circuit with a cutpair a, b and a bipartition A,B of V \ {a, b}. Since
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f(G) = 1 and f(H) ≥ 2 for all subgraphs there are two options: ab ∈ E and
f(G[A∪{a, b}]) = f(G[B∪{a, b}]) = 2 or ab /∈ E and 3 = f(G[A∪{a, b}]) <
f(G[B∪{a, b}]) = 2. This leads us to the 1- and 2-join operations. To refresh
the readers memory we define the inverse operations.

Let G be as above and suppose f(G[A ∪ {a, b}]) < f(G[B ∪ {a, b}]). A
1-separation over the cutpair a, b forms disjoint graphs G[A∪{a, b}]∪ab and
G[B ∪ {a, b}] ∪K4(a, b, c, d) where c, d /∈ B ∪ {a, b}. Also let G = (V,E) be
a circuit with a cutpair a, b with a bipartition A,B of V \ {a, b} such that
f(G[A∪{a, b}]) = f(G[B∪{a, b}]). A 2-separation over the cutpair a, b forms
disjoint graphs G[A∪ {a, b}]∪K4(a, b, c, d) and G[B ∪ {a, b}]∪K4(a, b, c, d)
where c, d /∈ A ∪ {a, b} or B ∪ {a, b}.

Lemma 3.1. Let G1 = (V1, E1), G2 = (V2, E2) be graphs such that G1 con-
tains an edge a1b1 and G2 contains a two vertex cut a2, b2 within
K4(a2, b2, c2, d2). Then the 1-join G1 ⊕1 G2 = G = (V,E) (merging a1 = a2
into a and b1 = b2 into b) is a circuit if and only if G1 and G2 are circuits.

Proof. We have V = (V1 \ {a1, b1}) ∪ (V2 \ {a2, b2, c2, d2}) ∪ {a, b} so

|E| = |E1| − 1 + |E2| − 6 = 2|V1| − 1 + 2|V2| − 1− 7

= 2(|V1|+ |V2| − 4)− 1 = 2|V | − 1.

Let X ⊂ V . Let Xi = (Vi ∩X) ∪ ({a, b} ∩X) and let X ′i = (Vi ∩X) ∪
({ai, bi} ∩X). If X contains both a and b then

iG(X) = iG1(X ′1) + iG2(X ′2)− 2 ≤ 2|X ′1| − 1 + 2|X ′2| − 2− 2

= 2(|X ′1|+ |X ′2|)− 5 = 2|X| − 1.

where equality holds if and only if X = V . Similarly, if X contains at most
one of a and b then iG(X) ≤ 2|X| − 2.

Conversely, suppose G1 is not a circuit. Since |E1| = 2|V1|−1 there exists
X properly contained in A∪ {a, b} with iG1(X) = 2|X| − 1. X contains a, b
otherwise X ⊂ V . We have

iG(X ∪B ∪ {a, b}) = 2|X| − 2 + 2|B ∪ {a, b}| − 3

= 2(|X \ {a, b}|+ |B ∪ {a, b}| − 2)− 1,

a contradiction.
Now suppose G2 is not a circuit. Since |E2| = 2|V2| − 1 there exists X

properly contained in B ∪ {a, b, c, d} with iG2(X) = 2|X| − 1. X contains
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c, d otherwise X is a subset of V and thus X contains a, b. We have

iG((X \ {c, d}) ∪A ∪ {a, b}) = 2|X \ {c, d}| − 2 + 2|A ∪ {a, b}| − 2− 1

= 2(|X \ {c, d}|+ |A ∪ {a, b}| − 2)− 1,

a contradiction.

Lemma 3.2. Let G1 = (V1, E1), G2 = (V2, E2) be graphs such that Gi
contains a two vertex cut ai, bi within K4(ai, bi, ci, di). Then the 2-join
G1 ⊕2 G2 = (V,E) (merging a1 = a2 into a and b1 = b2 into b) is a circuit
if and only if G1 and G2 are circuits.

Proof. We have V = (V1 \ {a1, b1, c1, d1}) ∪ (V2 \ {a2, b2, c2, d2}) ∪ {a, b} so

|E| = |E1| − 6 + |E2| − 6 + 1 = 2|V1| − 1 + 2|V2| − 1− 11

= 2(|V1|+ |V2| − 6)− 1 = 2|V | − 1.

Let X ⊂ V . Let Xi = (Vi ∩X) ∪ ({a, b} ∩X) and let X ′i = (Vi ∩X) ∪
({ai, bi} ∩X). If X contains both a and b then

iG(X) = iG1(X ′1) + iG2(X ′2)− 1 ≤ 2|X ′1| − 2 + 2|X ′2| − 2− 1

= 2(|X ′1|+ |X ′2| − 2)− 1 = 2|X| − 1.

where equality holds if and only if X = V . Similarly, if X contains at most
one of a and b then iG(X) ≤ 2|X| − 2.

For the converse, by symmetry, it is enough to show that G1 is a circuit.
Suppose G1 is not a circuit. Since |E1| = 2|V1|−1 there exists X properly

contained in A∪{a, b, c, d} with iG1(X) = 2|X|−1. X contains c, d otherwise
X is a subgraph of G and thus X contains a and b. We have

iG((X \ {c, d}) ∪ (B ∪ {a, b})) = 2|X \ {c, d}| − 2 + 2|B ∪ {a, b}| − 2− 1

= 2(|X \ {a, b}|+ |B ∪ {a, b}| − 2)− 1,

a contradiction.

3.2. Circuits with 3-edge-cuts

We also require the 3-join operation. Let G = (V,E) be a circuit with a
non-trivial 3-edge-cut a1a2, b1b2, c1c2 with a bipartition A,B of V such that
f(G[A]) = f(G[B]). A 3-separation over the cut a1a2, b1b2, c1c2 forms dis-
joint graphs G[A] ∪ v1 ∪ {a1v1, b1v1, c1v1} and G[B] ∪ v2 ∪
{a2v2, b2v2, c2v2}.
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Lemma 3.3. Let G1 = (V1, E1), G2 = (V2, E2) be graphs. Then the 3-join
G = G1 ⊕3 G2 = (V,E) (deleting vi ∈ Vi with dGi(vi) = 3 and N(vi) =
{ai, bi, ci} for i = 1, 2 and adding a1a2, b1b2, c1c2) is a circuit if and only if
G1 and G2 are circuits.

Proof. We have V = (V1 \ v1) ∪ (V2 \ v2) so

|E| = |E1| − 3 + |E2| − 3 + 3 = 2|V1| − 1 + 2|V2| − 1− 3

= 2(|V1|+ |V2| − 2)− 1 = 2|V | − 1.

Let X ⊂ V . Let Xi = (Vi ∩ X). X contains at least one of ai, bi, ci,
otherwise X ⊂ Xi and so i(X) ≤ 2|X| − 2. Let 0 ≤ t ≤ 3 be the number of
edges in the subgraph induced by X from the set {a1a2, b1b2, c1c2}. Then

iG(X) = iG1(X1) + iG2(X2) + t

≤ 2|X1| − 2 + 2|X2| − 2 + t

≤ 2|X| − 1.

where equality holds if and only if X = V ; otherwise for some i, Xi ( Vi,
i(Xi) = 2|Xi| − 2 and Xi contains ai, bi, ci so adding back vi contradicts Gi
being a circuit.

For the converse, clearly f(G[A]) = f(G[B]) = 2. By symmetry it is
enough to show that G1 is a circuit.

Suppose G2 is not a circuit. Since |E1| = 2|V2)| − 1 there exists X
properly contained in A ∪ v1 with iG1(X) = 2|X| − 1. X contains v1,
otherwise X is a subgraph of G, and thus contains a1, b1, c1. We have

iG((X \ v1) ∪B) = 2|X \ v1| − 2 + 2|B| − 2 + 3

= 2(|X \ v1|+ |B|)− 1,

a contradiction.

4. A Recursive Construction of Circuits

It remains to deal with the case when every cutpair a, b in G with asso-
ciated bipartition A,B is such that, at least one of the subgraphs induced
by A∪{a, b} and B∪{a, b} is isomorphic to K4. Here the 2-separation move
results in a copy of G and a copy of K4 t K4. However we do not need
a new recursive move to deal with this case. Consider a graph G with n
cutpairs and each cutpair ai, bi with bipartition Ai, Bi leaves G[Ai∪{ai, bi}]
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isomorphic to K4(ai, bi, ci, di). Now delete each ci, di and all incident edges
and add a second copy of each edge aibi. We denote the resulting multigraph
as G− = (V −, E−). G− is a 3-connected multicircuit, see Figure 6. None
of the ai or bi are nodes; if dG(ai) = 3 then N(ai) = {bi, x} for some x but
then bi, x is a cutpair for G− and hence for G. Thus every node in G− has
3 distinct neighbours.

There is a node in a multicircuit in which an inverse Henneberg 2 move
results in a multicircuit by Frank and Szegő [4, Theorem 1.10]. However
we need the following stronger result which follows by the same proof as
Theorem 1.2, noting that the simplicity assumption did not provide a sim-
plification.

v v’

Figure 6: For every 2-vertex cut with one component a copy of K4, replace each copy with
a double edge. We show that if v′ is an admissible node then so is v.

Proposition 4.1. Let G = (V,E) be a multigraph with |V | ≥ 6. Let G be a
3-connected multicircuit with no non-trivial 3-edge-cuts in which every node
has 3 distinct neighbours. Then G contains an allowable node.

By allowable here we mean that there is an inverse Henneberg 2 move on
a node that results in a multicircuit and that the new edge does not create
a multiple edge. Thus if we can apply the proposition to find there is an
allowable node in G− then the corresponding node is admissible in G.

4.1. Proof of Theorem 1.1

We are now ready to prove our main result.

Proof of Theorem 1.1. By Lemmas 2.1, 3.1, 3.2 and 3.3 a connected graph
built up recursively from disjoint copies of base graphs by 1-joins, 2-joins,
3-joins and Henneberg 2 moves is a circuit.

Conversely, since K5 \ e is the unique circuit on at most 5 vertices, by
Theorem 1.2, we may apply an inverse Henneberg 2 move whenever G is
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3-connected with no non-trivial 3-edge cuts. If G is 3-connected with a non-
trivial 3-edge-cut then, by Lemma 3.3 we may apply a 3-separation to G
resulting in smaller circuits.

If G is not 3-connected then there is a cutpair. Choose a cutpair a, b. If
ab /∈ E then by Lemma 3.1 we can apply a 1-separation in such a way that
the resulting graphs are circuits. Suppose then for every cutpair a, b, ab ∈ E
and suppose there is a choice of a, b such that G[A∪{a, b}] and G[B∪{a, b}]
are not isomorphic to K4. Then by Lemma 3.2 we can apply a 2-separation
in such a way that the resulting graphs are circuits.

Now if every minimal choice of cutpair results in G[A ∪ {a, b}] ∼=
K4(xi, yi, zi, wi) where xi, yi is the cutpair and the corresponding multi-
graph G+, as above, has |V +| ≥ 6 then the result follows from Proposition
4.1.

It remains to check the cases when |V +| ≤ 5. If |V +| = 2 then G ∼=
K4 tK4. If |V +| = 3 then G ∼= K4 YK4. If |V +| = 4 or |V +| = 5 there are
a small number of cases that are each easy to check (there is an admissible
node or a separation to smaller circuits).

5. Connected Matroids and Rigid Frameworks

In the remainder of the paper we consider potential applications of our
results to frameworks on surfaces.

5.1. Rigidity on the cylinder

A framework (G, p) on the cylinder S1 × R in R3 is the combination
of a graph G and a map p : V → S1 × R. We will focus only on when
such frameworks are generic: there are no algebraic dependencies among
the coordinates of the framework points that are not required by M. The
cylinder rigidity matrix RS1×R(G, p) is the (|E|+ |V |)× 3|V | matrix where
the first |E| rows correspond to the edges and the entries in the row for
edge uv are 0 except in the column triples corresponding to u and v where
the entries are p(u)− p(v) and p(v)− p(u) respectively. The final |V | rows
correspond to the vertices and the entries in the row for vertex i are zero
except in the column triple corresponding to i where the entry is N(p(i)), the
surface normal to the point p(i). A framework (G, p) on S1×R is generic if
the only polynomial equations satisfied by the coordinates of p are those that
define S1 × R. Let RS1×R denote the cylinder rigidity matroid, that is the
linear matroid induced by linear independence in the rows of RS1×R(G, p)
for generic p. A framework is infinitesimally rigid if its edge set has maximal
rank in RS1×R.
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More detailed definitions may be found in [16], see also [5] for a detailed
study of rigidity matroids.

Theorem 5.1 ([16]). Let G = (V,E) be a graph with |V | ≥ 4 and let (G, p)
be a generic framework in 3-dimensions constrained to S1 × R. Then the
matroids RS1×R and M∗(2, 2) are isomorphic.

Similarly if R2 denotes the rigidity matroid for generic frameworks in R2,
then Laman’s theorem [12] states R2

∼= M(2, 3). We will need the following
corollary to Theorem 5.1. A redundantly rigid framework (G, p) on S1 × R
is a framework such that after deleting any single edge from G the rigidity
matroid still has maximal rank.

Corollary 5.2. Let G = (V,E) and let p be generic. Then (G, p) is redun-
dantly rigid on S1×R if and only if (G, p) is infinitesimally rigid on S1×R
and every edge of G belongs to a RS1×R-circuit.

Remark 5.3. By Theorem 5.1 a generic framework (G, p) on S1 × R is
rigid if and only if G contains a spanning (2, 2)-tight subgraph. However
as K3,6 illustrates (see also [10, Figure 6] for the plane case) extending
Theorem 1.1 from circuits to 2-connected redundantly rigid graphs is non-
trivial. For example K3,6 is not a circuit so one of the operations must be
an edge addition. The last move must be a Henneberg 2 move since K3,6 is
3-connected with no non-trivial 3-edge cuts and minimal in the sense that
removing any edge results in a graph G = (V,E) with |E| = 2|V | − 1 that
is not a circuit.

5.2. RS1×R-connected Graphs

Following [10], for RS1×R = (E, I), define a relation on E by saying
e, f ∈ E are related if e = f or if there is a RS1×R-circuit C with e, f ∈
C. We abuse notation slightly by referring to C as both the circuit in
RS1×R and the graph induced by the circuit, i.e. the RS1×R-circuit. This
is an equivalence relation and the equivalence classes are the components of
RS1×R. If RS1×R has at least two elements and only one component then
it is RS1×R-connected. G is RS1×R-connected if RS1×R is connected. The
RS1×R-components of G are the subgraphs of G induced by the components
of RS1×R.

Since bases in M∗(2, 2) can contain cut-vertices while circuits cannot,
to link redundantly rigid frameworks and RS1×R-connected graphs requires
2-connectivity.
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Theorem 5.4. A graph G is 2-connected with a redundantly rigid realisation
on S1 × R if and only if G is RS1×R-connected.

Proof. Suppose G is RS1×R-connected. G is infinitesimally rigid since there
is only one RS1×R-connected component. RS1×R is connected so every edge is
in a RS1×R-circuit. Thus G has a redundantly rigid realisation by Corollary
5.2. Also Lemma 2.3 implies G is 2-connected.

Conversely let X be the set of RS1×R-connected components of G and
θ(X) the set of vertices of G belonging to two distinct elements of X. Let
dX(v) denote the number of elements of X containing v. Let r(G) denote
the rank of the rigidity matroid RS1×R(G, p). Then

2|V | − 2 = r(G) =
∑
H∈X

r(H) =
∑
H∈X

(2|V (H)| − 2)

and
|V | =

∑
H∈X

|V (H)| −
∑

v∈θ(X)

(dX(v)− 1).

This implies that
∑

v∈θ(X) dX(v) < 2|X| so there exists H ∈ X with |V (H)∩
θ(X)| ≤ 1.

5.3. Global Rigidity

Definition 5.5. A framework (G, p) on S1 × R is globally rigid if every
framework (G, q) which satisfies the (Euclidean 3-space) distance constraint
equations |pi − pj | = |qi − qj |, for each edge ij where pi, pj , qi, qj are points
on S1 × R also satisfies |pi − pj | = |qi − qj | for every pair of vertices i, j of
G.

We now recall the celebrated characterisation of generic global rigidity
in the plane. This is due, in its various parts, to Connelly [2], Hendrickson
[8] and Jackson and Jordán [10]. Giving a full 3-dimensional combinatorial
characterisation remains a hard open problem.

Theorem 5.6. Let G = (V,E) with |V | ≥ 4 and let p be generic. Then the
following are equivalent:

(1) (G, p) is globally rigid in R2,

(2) G is 3-connected and (G, p) is redundantly rigid in the plane,

(3) G can be formed from disjoint copies of K4 by Henneberg 2 moves and
edge additions,

(4) G is 3-connected and R2-connected.
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The analysis in this paper leads us to make the following conjecture.

Conjecture 5.7. Let G = (V,E) with |V | ≥ 5 and let p be generic for
S1 × R. The following are equivalent:

(1) (G, p) is globally rigid on S1 × R,

(2) G is 2-connected and (G, p) is redundantly rigid on S1 × R,

(3) G can be formed from disjoint copies of K5 \ e,K4 tK4 and K4 YK4

by Henneberg 2 moves, 1-joins, 2-joins, 3-joins and edge additions,

(4) G is RS1×R-connected.

For |V | ≤ 4, (G, p) is globally rigid on S1 × R if and only if G is a
complete graph. Following the submission of this paper, (1)⇒ (2) has been
confirmed in [11]. Theorem 5.4 shows the equivalence of (2) and (4).

6. Concluding Remarks

Our conjectured characterisation would provide a sufficient condition for
global rigidity on the cylinder that fails somewhat trivially in the plane. Let
G contain a spanning subgraph H which is a RS1×R-circuit and let p be
generic for S1×R. Then Conjecture 5.7 implies that (G, p) is globally rigid
on S1 × R. Remark 5.3 illustrates why this does not characterise globally
rigid frameworks on the cylinder.

The special case in which G has the minimum possible number of edges
2|V | − 1 corresponding to [1, Theorem 6.1] conjectures that the generically
globally rigid graphs on the cylinder are exactly the RS1×R-circuits. To
prove the minimal case it remains to show that the Henneberg 2 and i-join
moves preserve global rigidity.

The remaining combinatorial difficulty in Conjecture 5.7 is in showing
that every RS1×R-connected graph can be generated using only the con-
struction moves in Theorem 1.1. In the case of the plane this was done by
Jackson and Jordán [10] who used the concept of an ear decomposition in
a R2-connected graph. Such a theorem would complete the equivalence of
(2), (3) and (4).

Conjecture 5.7 would lead to an efficient algorithm for checking global
rigidity. 2-connectedness can be checked in linear time [9] and redundant
rigidity, via the pebble game [7], [13], can be checked in O(|V |2) time.

Finally we note that Theorems 1.2 and 1.1 do not easily extend to the
case of circuits in M∗(2, 1). A higher level of connectivity will be required
to guarantee an admissible node when a node even exists. Moreover circuits
in M∗(2, 1) may contain cut-vertices and more elaborate i-join operations

21



may be required. A characterisation of circuits in M∗(2, 1) would be a step
towards proving the analogue of Conjecture 5.7 for frameworks on a surface
of revolution [17], such as a cone [11].
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