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Abstract

We consider the problem of estimating time-localized cross-dependence in a collection of non-stationary

signals. To this end we develop the multivariate locally stationary wavelet framework which provides

a time-scale decomposition of the signals and thus naturally captures the time-evolving scale-specific

cross-dependence between components of the signals. Under the proposed model, we rigorously de-

fine and estimate two forms of cross-dependence measures: wavelet coherence and wavelet partial

coherence. These dependence measures differ in a subtle but important way. The former is a broad

measure of dependence which may include indirect associations, i.e. dependence between a pair of

signals that is driven by another signal. Conversely, wavelet partial coherence measures direct lin-

ear association between a pair of signals, i.e. it removes the linear effect of other observed signals.

Our time-scale wavelet partial coherence estimation scheme thus provides a mechanism for identify-

ing hidden dynamic relationships within a network of non-stationary signals, as we demonstrate on

electroencephalograms recorded in a visual-motor experiment.
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1 Introduction

Historically much of the literature on non-stationary signals is focused on the univariate setting. For

reviews of this area see Cohen (1989); Dahlhaus (2012); Daubechies (1990); Kayhan et al. (1994);

Kumar and Fuhrmann (1992); Priestley (1988) and references therein. However with advanced

data collection devices such as those used in the medical and mobile sectors, there is a need for

rigorous approaches to assess and confirm time-localized direct vs. indirect dependence (or lack

thereof) between signals. It is often difficult to infer dynamic cross-dependence between components

of multivariate signals such as the multi-channel EEG collected during a visual-motor task (see

Figure 1) which we will revisit later.
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Figure 1: Plot of a 4-channel EEG.

We consider precisely this challenge, developing a novel approach for characterizing and estimating

cross-dependence between non-stationary signals having dynamic and complex cross-dependence

structures. In doing so, we highlight two specific forms of dependence which can be estimated

between pairs of signals within a multivariate collection. The simplest form is that of the (time-

dependent) coherence between two signals. This describes the linear relationship between two signals

- more precisely it is a time-evolving squared cross-correlation between filtered signals, Ombao and

Van Bellegem (2008). However, in so doing we may also include indirect associations driven by
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another observed signal in the collection. The alternative is partial coherence. This provides a

measure of the direct linear relationship between two signals over time, thus removing the (linear)

effects of other observed signals. The difference between direct vs indirect associations is illustrated

in Figure 2. This measure has broad potential scientific impact, for example the the neuroscience

and genomic communities are keenly interested in such associations.

Figure 2: Indirect vs. Direct Associations Between Signals. Left: X and Y are indirectly

linked through Z. Right: X and Y are directly linked. Coherence between X and Y is

non-zero for both networks. Partial coherence is non-zero for the network on the right (with

direct link) but zero for the left network because the link between X and Y is indirect.

Previous Work In recent years, several papers have appeared trying to address the non-stationary

modelling challenge associated with such large and complex signals. In Dahlhaus (2000a), Dahlhaus

presents a Fourier based model for multivariate locally stationary signals with time-varying spectral

structure. A similar approach was also developed by Walden and Cohen (2012). Under the Dahlhaus

framework, Ombao and Van Bellegem Ombao and Van Bellegem (2008) demonstrate that the time-

varying coherence is equivalent to the modulus-squared cross-correlation between filtered segmented

signals. Segment sizes are obtained data-adaptively by iteratively increasing segment lengths as

long as the stationarity assumption within each segment is not violated. Such a data-adaptive win-

dowing approach, however, is computationally demanding. An alternative Fourier based approach
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to model multivariate non-stationary series is the smooth localized complex exponential (SLEX)

model of Ombao et al. Ombao et al. (2005). Here the best representation of the signal is selected

from the SLEX library using a complexity-penalized Kullback-Leibler criterion. Although capable of

handling massive signals, the SLEX method is restricted to choosing representations obtained from

temporally-dyadic segmentation. Moreover we note that both Ombao and Van Bellegem (2008) and

Ombao et al. (2005) only develop methods for the estimation of coherence which, as we shall show

later, can mask understanding of the direct relationships between pairs of signal components.

Cohen and Walden Cohen and Walden (2010) overcome the limitations of dyadic temporal splits

within SLEX by using a wavelet basis to adapt to nonstationarity in the spectra of each channel

for the case of jointly stationary processes. The assumption of jointly stationary processes is not

present in Cohen and Walden (2011) and Sanderson et al. (2010) who both use wavelet based models

to quantify non-stationary linear dependence between components of a bivariate non-stationary

signals. More recently, within the more restricted context of changepoint detection of piecewise

stationary signals, Cho and Fryzlewicz (2014) has extended the approach of Sanderson et al. (2010)

to a p-variate setting. However none of these contributions directly address the issues that are

germane to truly multivariate non-stationary signals (with three or more components). Specifically,

as Koopmans (1964) identified in the stationary context, one major practical issue is to identify

whether the (time-dependent) connection or cross-dependence between two channels is either (a.)

direct or (b.) indirect (i.e., driven by another channel or common set of channels). It is this challenge

which lies at the heart of this article.

Our Work: The modelling framework which we propose in this paper is an alternative formulation

of the model form proposed by Sanderson et al. (2010). The model proposed by Sanderson et al.

(2010) decomposes the spectral and cross-spectral structure into two different components: the

within-channel structure being encapsulated within the transfer functions whilst the cross-channel

structure is contained within the process innovations. Instead we propose a more parsimonious form,

whereby both spectral components are described within a matrix of transfer functions. Specifically,

to extract cross-dependence structures, we introduce the multivariate locally stationary wavelet
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framework (MvLSW) - which is a stochastic representation that is ideally suited for non-stationary

signals. This framework permits the direct estimation of both the coherence and partial coherence

in a computationally efficient manner. In addition the framework also permits direct simulation of

processes with a specific time-scale partial coherence form, including processes with abrupt changes

in partial coherence. This direct simulation is necessary to perform resampling-based inference.

The format of the rest of the paper is as follows. Our main contributions are developed in

Sections 2 and 3. Specifically, in Section 2.1 we develop the multivariate locally stationary wavelet

framework for modelling multivariate signals. We then introduce the local wavelet spectral matrix

as a representation of the properties of the signals in Section 2.2. In Section 2.3 we use the MvLSW

model to develop our two key cross-dependence quantities: wavelet coherence and partial coherence.

Section 3 gives detail of the estimator for the local wavelet spectral matrix as well as establishing its

asymptotic properties. Finally Section 4 provides an example of how our approach can be used to

identify direct time-dependent relationships between components of a signal which we demonstrate

on multi-channel electroencephalograms (EEGs) recorded during a visual-motor experiment, as well

as on simulated data.

2 Locally Stationary Wavelet Processes

This section describes the multivariate LSW (MvLSW) modelling framework, together with various

time-scale measures which we introduce to describe the spectral and cross-spectral behaviour of such

non-stationary signals. For completeness we start by briefly reminding the reader of key aspects

associated with univariate LSW theory as introduced by Nason et al. (2000), their building blocks

(discrete wavelets) and the associated evolutionary wavelet spectrum (EWS).

The key building blocks in constructing LSW processes, discrete wavelets, are founded on {hk}

and {gk}, the usual low and high-pass quadrature mirror filters associated with the construction

of Daubechies’ compactly supported continuous-time wavelets. The associated discrete wavelets,

ψj = {ψj,0, ψj,1, . . . , ψj,Nj−1} are vectors of length Nj for scales j ∈ N which can be calculated using

the following: ψ1,n =
∑
k gn−2kδ0,k = gn for n = 0, . . . , N1 − 1 and ψj+1,n =

∑
k hn−2kψj,k, for n =
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0, . . . , Nj+1 − 1. Here δ0,k is the usual Kronecker-delta function, and Nj = (2j − 1)(Nh − 1) + 1

where Nh is the number of non-zero elements within the filter {hk}. The discrete wavelets form the

corner-stone of the (univariate) LSW time series model. Specifically, assume that T = 2J for some

J ∈ Z. Then the LSW process, Xt;T , is defined to be a sequence of (doubly-indexed) stochastic

processes having the following representation in the mean-square sense:

Xt;T =

∞∑
j=1

∑
k

Wj(k/T )ψj,t−kξj,k. (1)

As described in Nason et al. (2000), the representation consists of the discrete wavelets; {Wj(u)}u∈(0,1),

a smoothly varying transfer function and {ξj,k}, a collection of zero-mean, unit-variance uncorrelated

random variables. A number of smoothness assumptions are also required on the {Wj(·)} to ensure

that the transfer function can be estimated (see Nason et al. (2000) for details).

The transfer function, Wj(k/T ), provides a measure of the time-varying contribution to the

variance at a particular scale, j. Consequently, to describe the power contained at a given scale and

location, Nason et al. (2000) introduce the evolutionary wavelet spectrum (EWS), Sj(u) = |Wj(u)|2 ,

for j ∈ N. This can be estimated using the wavelet periodogram for a one-dimensional non-stationary

signal, see Nason et al. (2000) for details.

2.1 The Multivariate LSW model

We now introduce our multivariate generalization of the LSW framework. In what follows we will

refer to each (univariate) component signal as a channel. Our main goal is to develop a framework

for modeling multivariate non-stationary signals under which we rigorously define the time-varying

second order properties, and in particular the locally stationary cross-dependence between the dif-

ferent channels. In our framework we allow individual channels to experience their own uniquely

localized non-stationary behaviour. More importantly we explicitly describe the potentially locally

stationary correlation between channels. Under our model this correlation will be broken down into

contributions from different scales. This is known as the coherence structure. It is important to be

able to represent this structure adequately as it will reveal how the channels relate to each other and

how this can change over time.
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We start by considering a P -dimensional vector, Xt;T = [X
(1)
t;T , X

(2)
t;T , . . . , X

(P )
t;T ]′, each element of

which is an individual channel of the signal. To represent this signal under a multivariate model we

replace the transfer function, Wj(k/T ), from the (univariate) LSW model with a P × P matrix of

functions, Vj(k/T ), known as the transfer function matrix. The innovations, {ξjk}, are also replaced

by a set of random vectors, {zj,k} = {[z(1)j,k , . . . , z
(P )
j,k ]′}. The definition of the multivariate LSW model

is then given as follows.

Definition 2.1.1 The P-variate locally stationary wavelet process {Xt;T }{t=0,...,T−1}, T = 2J , J ∈

N is represented by,

Xt;T =

∞∑
j=1

∑
k

Vj(k/T )ψj,t−kzj,k, (2)

where {ψj,t−k}jk is a set of discrete non-decimated wavelets; Vj(k/T ) is the transfer function

matrix, which is defined to have a lower-triangular form. We assume that each element of the

transfer function matrix is a Lipschitz continuous function with Lipschitz constants Lj satisfying∑∞
j=1 2jL

(p,q)
j <∞; zj,k are uncorrelated random vectors with mean vector 0 and variance-covariance

matrix equal to the P × P identity matrix.

We will henceforth drop the explicit dependence of the process on T , although naturally it will still

be assumed.

Remark. The distributional property of the random elements in Definition 2.1.1 means that the

elements have the following covariance property: cov
(
z
(i)
j,k, z

(i′)
j′,k′

)
= δi,i′δj,j′δk,k′ . In other words

the {z(i)j,k} are random orthonormal increment sequences, which are themselves uncorrelated. De-

pendence between channels is encapsulated only in the transfer function matrix which also controls

the contribution to the variance made by each channel at a particular time within each scale. This

differs from the approach in Sanderson et al. (2010) where the dependence structure is encapsulated

within the innovations z.

Remark. The primary difference between our approach and that of Sanderson et al. (2010), or

indeed the more recent contribution of Cho and Fryzlewicz (2014), is that in our framework we

encapsulate the spectral structure (including cross-channel dependence) entirely within the transfer
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function matrix. This is in contrast to the Sanderson et al. framework, where the spectral structure

is encapsulated both within (i) the transfer functions (spectrum) and (ii) process innovations (cross-

channel dependence). As such our framework permits one to estimate the partial coherence in a

straightforward manner, since this structure is entirely embedded within the transfer function matrix.

Computationally there are also benefits to this particular formulation: for example, this approach

can be implemented via matrix operations, whilst in the formulation of [14] one would conduct

the estimation scheme on each channel individually. More importantly, perhaps, it is possible to

simulate multivariate time series with a given partial coherence form directly within this framework.

The ability to perform such simulations means that resampling based inference can be performed in

this setting.

Many different forms of transfer function matrix could be chosen, however for ease of interpre-

tation we choose for it to have a lower triangular form. The lower triangular form of Vj(u) makes it

very easy to generalize to multiple dimensions. It is also easy to see how linear dependencies between

the channels are produced. If the off diagonal terms are non-zero then there will be (time-varying)

dependence between the series, however if Vj(u) is diagonal then the channels will be uncorrelated

with each other. Here, we do not estimate Vj(u) but estimate the spectral quantities which we

discuss in the next subsection. Moreover the lower triangular form can represent a general spectral

structure even if the channel order is permuted. This is explained further in Proposition 2.2.5.

2.2 Local Wavelet Spectral and Covariance Matrices of Non-Stationary

signals

We next introduce the local wavelet spectral matrix which describes the time-scale decomposition of

power in our multivariate time series. Recall that in the univariate LSW context the concept of an

evolutionary wavelet spectrum describes a time-scale decomposition of power. Since we are dealing

with multivariate signals, and have replaced the transfer function with a transfer function matrix,

we will introduce its multivariate analog – the local wavelet spectral matrix.

Definition 2.2.1 Let Xt be a MvLSW signal with associated time-dependent transfer function ma-
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trix Vj(u). Then the local wavelet spectral (LWS) matrix at scale j and rescaled time u is defined to

be,

Sj(u) = Vj(u)V′j(u), (3)

where V
′

j(u) denotes the transpose of Vj(u).

Remark. The LWS matrix provides a measure of the local contribution to both the variance of

the channels and cross-covariance between channels made at a particular time, u, and scale, j. By

the construction of Definition 2.2.1 it is clear that for any given transfer function matrix the LWS

matrix is symmetric and positive semi-definite for every fixed time-scale combination. The diagonal

elements of the LWS matrix are the spectra of the individual channels of the signals and are denoted

S
(p,p)
j (u). The off diagonal terms, S

(p,q)
j (u), describe the cross-spectra between the series. It is

also natural to consider whether a connection can be established between the LWS matrix and the

local auto and cross-covariance. We start to explore this connection in the following definition.

However prior to doing so we introduce the discrete autocorrelation wavelet, Ψj(τ), which is defined

by Ψj(τ) ≡
∑
k ψj,kψj,k−τ for j ∈ N and τ ∈ Z (see Eckley and Nason (2005) for further details).

Definition 2.2.2 Let c(p,p)(u, τ) denote the local autocovariance of channel p at lag τ and c(p,q)(u, τ)

be the local cross-covariance between channels p and q. We can define these function in terms of the

elements of the LWS matrix and the discrete autocorrelation wavelets,

c(p,p)(u, τ) =
∞∑
j=1

S
(p,p)
j (u)Ψj(τ),

c(p,q)(u, τ) =

∞∑
j=1

S
(p,q)
j (u)Ψj(τ). (4)

The following proposition establishes that, up to choice of wavelet, the LWS matrix is unique for a

specified MvLSW model form.

Proposition 2.2.3 Given the corresponding MvLSW process, the LWS matrix is uniquely defined.

Proof: See Appendix 6.

We also consider if under this definition the local auto- and cross-covariance functions exactly rep-

resent the covariance between elements of the signals.
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Proposition 2.2.4 Let c(p,q)(u, τ) denote the local cross covariance stated in Definition 2.2.2. This

function can also be represented, approximately, in terms of the covariance between elements of the

signal because

∣∣∣c(p,q)(u, τ) − cov
(
X

(p)
[uT ], X

(q)
[uT ]+τ

)∣∣∣ = O(T−1).

Proof: See Appendix 7.

Remark. Given the lower triangular form of the transfer function matrix, Vj(u), it is natural to

ask if the representation is reliant on a certain ordering of the channels of Xt. It is possible to show

that under any permutation of this ordering Xt will have a MvLSW representation and the spectral

properties will be unchanged.

Proposition 2.2.5 Let Xt be a MvLSW process with LWS matrix, Sj(u). Also let X∗t be a permu-

tation of Xt such that X∗t = MXt for some permutation matrix M. Then the LWS matrix of X∗t ,

S∗j (u) has the form S∗j (u) = MSj(u)M′.

Proof: See Appendix 8.

2.3 Coherence and Partial Coherence within the MvLSW setting

We now introduce a measure of cross-dependence between different channels at a particular scale.

We can quantify this dependence by defining the wavelet coherence between channels. For our

multivariate series we will define the coherence in terms of the wavelet coherence matrix.

Definition 2.3.1 For scale, j, rescaled time point, u ∈ (0, 1), the wavelet coherence matrix, ρj(u)

is defined as,

ρj(u) = Dj(u)Sj(u)Dj(u). (5)

Here Sj(u) is the LWS matrix defined previously. We also define Dj(u) to be a diagonal matrix

whose elements are S
(p,p)
j (u)(−1/2).
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The (p, q) element of the wavelet coherence matrix, ρ
(p,q)
j (u), is the coherence between channels

p and q of the series. This individual element can also be expressed as,

ρ
(p,q)
j (u) =

S
(p,q)
j (u)√

S
(p,p)
j (u)S

(q,q)
j (u)

. (6)

Remark. Given this expression it is clear that the coherence between channels will take a value

between -1 and 1 at any given point in time. A value close to ±1 indicates a strong positive/negative

linear dependence between channels at that time and scale. A value close to 0 shows there is little

or no linear dependence between channels. Setting p = q in Equation (6) demonstrates that the

diagonal elements of ρj(u) are equal to 1. In Fourier analysis a quantity with these properties would

generally be referred to as coherency however we will follow the terminology of Sanderson et al.

(2010) and refer to it as coherence.

When analyzing the coherence structure of a multivariate signal it may, superficially, appear

that two channels are linked as there is significant coherence between them. However, it may in

fact be the case that there is not a direct link between them but they are both linked via a third

series (see Figure 2). To this end we conclude our modelling framework by introducing the wavelet

partial coherence. This provides a measure of the coherence between two channels after removing

the effects of all other channels. Partial coherence can again be defined in matrix form using the

LWS matrix. The definition of wavelet partial coherence below is analogous to the Fourier domain

definition developed in Dahlhaus (2000b).

Definition 2.3.2 We define the matrix Gj(u) = Sj(u)−1 and the diagonal matrix Hj(u) with el-

ements G
(p,p)
j (u)−(1/2). The wavelet partial coherence matrix at scale, j, and rescaled time, u, is

defined to be

Γj(u) = −Hj(u)Gj(u)Hj(u). (7)

The off diagonal terms of this matrix are the partial coherences between channels. That is the co-

herence between the channels after the linear effects of all other channels have been removed.
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3 Estimation of the MvLSW Spectral Dependence Quanti-

ties

In this section we turn our attention to estimating the spectral quantities of a MvLSW signal.

Specifically we first consider the estimation of the LWS matrix before turning to the estimation of

the wavelet coherence and partial coherence which were introduced in Section 2.

First, we define the empirical wavelet coefficient vector, dj,k = [d
(1)
j,k . . . , d

(P )
j,k ]′ whose elements

are the empirical wavelet coefficients for each signal channel

dj,k =

T−1∑
t=0

Xtψjk(t). (8)

We use the empirical wavelet coefficient vector to produce the raw wavelet periodogram matrix, Ij,k:

Ij,k = dj,kd
′
j,k. (9)

Moreover, we denote I
(p,q)
j,k to be the (p, q)-th entry of the periodogram matrix where p, q ∈ {1, . . . , P}.

The raw wavelet periodogram matrix is the starting point for estimating the LWS matrix. In order

to achieve a final estimator with the correct properties we explore the asymptotic properties of the

raw periodogram matrix as an estimator for this quantity. In particular, given the results in the

one-dimensional setting, it is natural to enquire whether the raw wavelet periodogram is biased.

Proposition 3.0.3 Let {Xt} be a MvLSW signal with underlying LWS matrix, Sj(u), and empirical

wavelet coefficients, {dj,k}. Then

E [Ij,k] =

J∑
l=1

AjlSl(k/T ) +O(T−1) and

Var
{
I
(p,q)
j,k

}
=

J∑
l=1

AjlS
(p,p)
l (k/T )

J∑
l=1

AjlS
(q,q)
l (k/T )

+

(
J∑
l=1

AjlS
(p,q)
l (k/T )

)2

+O(22j/T ),

where Ajl =< Ψj ,Ψl >=
∑
τ Ψj(τ)Ψl(τ) for j, l ∈ N is the inner product matrix of discrete auto-

correlation wavelets (see Nason et al. (2000) or Eckley and Nason (2005) for further details).

Proof: See Appendix 9.

As in the univariate setting of Nason et al. (2000), the above result establishes that the raw wavelet
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periodogram matrix is both asymptotically biased and inconsistent. The bias has a particular form

consisting of entries in the inner product matrix A. In Cardinali and Nason (2010), the inner

product matrix A is established to be invertible for all Daubechies’ compactly supported wavelets.

Consequently, the bias of the raw wavelet periodogram matrix estimator in Proposition 3.0.3 can be

corrected. However, this would still be an inconsistent estimator. Thus, our proposal is to first apply

a smoother on the raw wavelet periodogram matrix and then correct the bias. In particular, we use

a rectangular kernel smoother with window of length 2M + 1 to produce the smoothed estimator,

Ĩj,k =
1

2M + 1

M∑
m=−M

Ij,k+m. (10)

With such an estimator we establish the following result.

Proposition 3.0.4 Assume that supz∈[0,1] |
∑
τ c(z, τ)| ≤ ∞. Then

E
[
Ĩ
(p,q)
j,k

]
=

J∑
l=1

AjlS
(p,q)
l (k/T ) +O(MT−1) +O(T−1)

Var
{
Ĩ
(p,q)
j,k

}
=O(22j/M) +O(22j/T ).

Proof: See Appendix 10.

Remark. In the limit, as T,M →∞, Var
{
Ĩ
(p,q)
j,k

}
→ 0. Here, one observes the usual bias-variance

trade-off: increasing M reduces the variance but also increases the bias. Moreover, with the ad-

ditional condition that M/T → 0, then
∣∣∣E [Ĩ(p,q)j,k

]
− E

[
I
(p,q)
j,k

] ∣∣∣ → 0. Thus, one can correct the

bias of the smoothed periodogram using the inverse of the inner product matrix A−1. The final

smoothed bias-corrected estimator of the LWS matrix is then given by

Ŝj,k =

J∑
l=1

A−1jl Ĩl,k. (11)

We will use the quantity Ŝj,k to estimate the wavelet coherence and partial coherence. Denote

the (p, q)-th entry of Ŝj,k to be Ŝ
(p,q)
j,k and let D̂j,k;T be a diagonal matrix whose elements are

(Ŝ
(p,p)
j,k )−(1/2). Then, we define the estimator of the wavelet coherence matrix to be,

ρ̂j,k = D̂j,kŜj,kD̂j,k for j ∈ {1, . . . , J}, k ∈ {0, . . . , T − 1}. (12)

The (p, q)-th element of ρ̂j,k is the estimated time-varying wavelet coherence between chan-

nels p and q at level j. Next, define Ĝj,k = (Ŝj,k)
−1 and let Ĥj,k be a diagonal matrix whose
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elements are (Ĝ
(p,p)
j,k )−(1/2). Then, the estimator of the wavelet partial coherence matrix is

defined to be,

Γ̂j,k = −Ĥj,kĜj,kĤj,k for j ∈ {1, . . . , J}, k ∈ {0, . . . , T − 1}. (13)

Thus, the (p, q)-th element of Γ̂j,k is the estimated wavelet partial coherence between chan-

nels p and q. Note that the linear dependence of channels p and q on all the other channels

are removed in the calculation of wavelet partial coherence. Finally we note that using Slut-

sky’s theorem Slutsky (1925) it follows immediately that ρ̂j,k and Γ̂j,k are asymptotically

unbiased and consistent estimators of the true wavelet coherence matrix and wavelet partial

coherence matrix, respectively.

4 Applications of the Multivariate LSW model

To illustrate our proposed multivariate locally stationary wavelet process (MvLSW) we now

consider two examples. Section 4.1 considers a simulated example whilst Section 4.2 presents

an analysis of multivariate EEG data recorded during a visual-motor experiment.

4.1 Simulated Example

We simulate signals using a tri-variate model of the following form, Xt = A1Xt−1+A2Xt−2+

ξt, where A1 = 1.51I3, A2 = −0.83I3 and ξt = [ξ1t ξ
2
t ξ

3
t ]′ ∼ N(0,Σt). Here Σt varies across

time so that the cross-correlation structure changes from one time region to another. The

channels of the series will therefore have a time-varying coherence structure which is known

and constant over frequency. The structure is such that there is a peak in the spectral

power at frequency 3π/16 which corresponds to the mid point of wavelet level j = 3. We

simulated 100 tri-variate signals from this model. Using the method proposed in Section 3

we estimate the coherence and partial coherence matrices for each simulated signal. In the
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results reported the Haar wavelet was used in the analysis, although in other simulations

we observed that the choice of wavelet made little practical difference for this example.

For comparison we also calculate the coherence using both the SLEX method and the

method of Ombao and Van Bellegem (OVB) in Ombao and Van Bellegem (2008). For

direct comparisons, we have calculated these coherence values for the band of frequencies

corresponding to wavelet level j = 3.

Figure 3 shows the results of the coherence estimation. In particular we note that of the

three estimation methods, the proposed MvLSW coherence estimation scheme produces the

most faithful overall estimate of the three. Most notably OVB fails to suitably capture the

abrupt change in coherence which occurs within this simulated example. SLEX performs

slightly better than OVB in terms of capturing the abrupt changes however it fails to

consistently match the peaks and troughs of the coherence. The exception to this is the

coherence between channels 1 and 2, where the spectral structure is constant. Here SLEX

and OVB have both performed better then our MvLSW method. This is unsurprising given

that for this pair the coherence is stationary. This is because OVB can adaptively choose

the size of the window so that it matches any changes, if present, on the true spectral

quantity. Similarly, the SLEX method chooses the best basis for representing signals and

thus can adaptively select the stationary basis if the signal is indeed stationary. The results

of partial coherence estimation using the proposed method are shown in Figure 4. We draw

particular attention to how the wavelet partial coherence estimator is able to capture quite

subtle time-localized changes in partial coherence. Comparison of this approach with SLEX

and OVB equivalents for partial coherence is left as an avenue for future research, once such

methods have been developed in the literature.
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Figure 3: Coherence at level j = 3: truth (solid) and mean estimate of the coherence

obtained from 100 simulations using MvLSW (dotted); SLEX (dotted and dashed) and

OVB (dotted).

4.2 EEG Data

Our real data example is a multi-channel electroencephalogram (EEG) recorded from an

experiment in which participants are instructed to move a hand held joystick to either the

left or right. A 64-channel EEG was recorded at a sampling rate of 512 Hertz and then

bandpass filtered at (0.02, 100) Hertz. Each recording epoch was 1000 milliseconds; the

instruction (left vs right) was given at time t = 0; and the subject responded with a wrist

movement between 350 and 450 milliseconds. Here, we selected data for one participant
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Figure 4: Partial coherence at level j = 3. Solid lines represent true values, dashed lines

represent the mean of 100 simulations and the dotted lines denote approximate 95% point-

wise confidence intervals.

and used 4 channels on the right hemisphere namely FC4 (right fronto-central), FC6 (also

right parietal-fronto-central), P4 (right parietal), C4 (right central). This collection is a

subset of the channels in Fiecas and Ombao (2011) believed to be engaged in visuo-motor

tasks. The positions of these channels are shown in Figure 5. Here, we present an analysis

of the wavelet spectral quantities computed for level j = 2 (12.5 − 25 Hertz), which is

contained within the conventional beta band. To study the dynamics within each brain

region, we estimated the time-varying and level dependent LWS by kernel smoothing the
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wavelet auto- and cross-periodograms using a smoothing span that was objectively selected

by generalized cross-validated gamma deviance criterion developed in Ombao et al. (2001).

The Daubechies extremal-phase wavelet 10 vanishing moments was used as the analysing

wavelet. We found that by using a smoother wavelet we were able to better capture the

dynamics of the coherence and partial coherence of this recording.

Figure 5: Placement of EEG channels included in analysis.

We investigated the dynamics of cross-dependence within the brain network by estimat-

ing the wavelet coherence and wavelet partial coherence. The point estimates of the wavelet

coherence and partial coherence were computed using the quantities in the estimated LWS

matrix. The approximate 95% pointwise confidence intervals for coherence and partial co-

herence were obtained by bootstrap resampling the stochastic component of the MvLSW

model. Such an approach was used in Ombao et al. (2000) for inference on the evolutionary

SLEX spectrum. Empirical distributions of the Fisher-z transformed wavelet coherence and

partial coherence values were constructed based on B bootstrap replicates. Typically one

might use B = 1000 such replicates. Following ideas from Fourier coherence, see for exam-
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ple Ombao and Van Bellegem (2008), the wavelet coherence and partial coherence estimates

were Fisher-z transformed in order to stabilize the variance of the estimator. The scale-shift

specific variance of the empirical distribution of the Fisher-z transformed values were ex-

tracted and then utilized to compute the approximate 95% pointwise confidence intervals.

For ease of interpretation these confidence intervals were then back-transformed to the scale

(−1, 1).
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(b) Partial Coherence

Figure 6: Coherence plot (left) and Partial Coherence plot (right) at level j = 2. Solid

lines represent the estimated values and dashed the approximate 95% point-wise confidence

intervals.

The plots displaying confidence bands on the wavelet coherence (see Figure 6(a)) suggest

that, for the most part, brain activity captured by the P4 channel exhibited no linear

dependence with brain activity at the central channels namely C4, FC6 and C4. In contrast,

there appears to be a common temporal trend in coherence among the central channels.

Early in the signals (immediately following visual instruction) there does not seem to be

statistically significant connections. However, at about 400 milliseconds (approximately the
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time the subject responds to the cue by moving), these central channels become strongly

coherent with each other at the beta frequency band. It is interesting to see these brain

dynamics during hand movement.

The natural follow-up question is whether or not the links between the central channels

established by the coherence plots are direct or indirect (i.e., due to a connection0 with some

common channel). We addressed this question by using the wavelet partial coherence within

the framework of our proposed MvLSW model. In Figure 6(b), note that brain activity at

FC4 was not directly linked to brain activity at the C4 channel but the link between FC4 and

was FC6 was statistically significant beginning at around t = 400 milliseconds. Moreover,

we observe that there was a statistically significant direct link between FC4 and FC6 –

suggesting that the connection between FC4 and C4 observed in the coherence plot was not

direct but was in fact related to their common link with the FC6 channel.

The results produced by the proposed MvLSW model are similar to the results from a

Fourier-based approach in Fiecas et al. (2010). More importantly, we demonstrate that our

proposed model and cross-dependence measure are able to identify an interesting result on

the small network of central channels that suggest a direct link between activity at the FC6

channel and each of the FC4 and C4 channels during a visual-motor activity. This finding

certainly requires further scientific experiments especially in how these direct connections

might be crucial to preserving motor function as well as recovering lost motor function

following a major traumatic brain injury. Of course, this analysis is done only on one

subject and one will have to develop a more complex model that would take into account

brain response variation across many subjects. Nevertheless, the analysis has demonstrated

the potential utility and broad impact of the MvLSW model.
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5 Concluding Remarks

In conclusion, we developed a rigorous, wavelet-based modeling framework which can cap-

ture the evolutionary scale-dependent cross-dependence between components of multivariate

signals. An associated estimation theory was also established, demonstrating the uniqueness

and asymptotic consistency of our spectral estimators. The particular construction which

we proposed also permits the identification of time-scale localized coherence and partial

coherence. The proposed wavelet partial coherence measure, in particular, can prove use-

ful when considering the linear dependence between a pair of channels as it enables us to

decouple the linear effects of other components of the multivariate signal.
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6 Proof of Proposition 2.2.3

Suppose, by way of contradiction, that there exist two representations for the same process,

V
(1)
j (u) and V

(2)
j (u). At each time point, u, there exists S

(1)
j (u) and S

(2)
j (u) such that,

c(u, τ) =
∞∑
j=1

S
(1)
j (u)Ψj(τ) =

∞∑
j=1

S
(2)
j (u)Ψj(τ). (14)

Let ∆j(u) be a matrix representing the element-wise difference between the two represen-

tations, From equation (14) it is clear that,

∞∑
j=1

∆j(u)Ψj(τ) = 0, ∀u ∈ (0, 1) and τ ∈ Z. (15)

To establish the uniqueness of the MvLWS representation we must show that (15) im-

plies that, ∆j(u) = 0 ∀j > 0, u ∈ (0, 1). Using arguments similar to those set out by

Nason et al. (2000) we use Parseval’s relation and the definition of the inner product ma-

trix to obtain, Ajl =
∑

τ Ψj(τ)Ψl(τ) = 1
2π

∫
dωΨ̂j(ω)Ψ̂l(ω), where Ψ̂j(ω) =

∣∣∣ψ̂j(ω)
∣∣∣2 =

2j
∣∣m1(2

(j+1)ω)
∣∣2∏(j−2)

l=0

∣∣m0(2
lω)
∣∣2, and m0(ω) = 2−1/2

∑
k hk exp (−iωk), with

∑
k h

2
k = 1,

1√
2

∑
k hk = 1 and |m1(ω)|2 = 1−|m0(ω)|2. From equation (15) we can say that for a general

element:

∑
l

∑
j

∆
(p,q)
j (u)∆

(p,q)
l (u)

∑
τ

Ψj(τ)Ψl(τ) = 0

Hence it is easily shown that,∫
dω

∑
j

∆
(p,q)
j (u)Ψ̂j(ω)

2

= 0. (16)

Since we have already made the assuption that,
∑

j S
(p,q)
j < ∞ ∀p, q , we infer that∑

j ∆
(p,q)
j (u)Ψ̂j(ω) is continuous in ω ∈ [−π, π], because every Ψ̂j(ω) is and

∑
j

∣∣∣∆(p,q)
j (u)

∣∣∣ <
∞. Hence (16) implies that,

∑∞
j=1 ∆j(u)Ψ̂j(ω) = 0. The remainder of the proof then follows

similarly to Nason et al. (2000).

�
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7 Proof of Proposition 2.2.4

Recall the definition of the wavelet representation of a multivariate series in equation (2).

cov
(
X

(p)
uT , X

(q)
uT+τ

)
= E

[
X

(p)
uTX

(q)
uT+τ

]
,

= E

 ∞∑
j=1

∑
k

p∑
r=1

V
(p,r)
j (k/T )ψj,k(uT )z

(r)
j,k

×
∞∑
j′=1

∑
k′

q∑
r′=1

V
(q,r′)
j′ (k′/T )ψj′,k′(uT + τ)z

(r′)
j′,k′

 ,
=

∞∑
j=1

∑
k

min p,q∑
r=1

V
(p,r)
j (k/T )V

(q,r)
j (k/T )ψjk(uT )ψjk(uT + τ).

Recalling the definition of the LWS matrix we can say that,

S
(p,q)
j (u) =

∑min p,q
r=1 V

(p,r)
j (u)V

(q,r)
j (u). We also make the substitition m = k−uT to obtain,

cov
(
X

(p)
uT , X

(q)
uT+τ

)
=
∑
j

∑
m

Sj

(
uT +m

T

)
ψjm(0)ψjm(τ).

Analogous to the approach considered by Nason et al. (2000) in the univariate setting,

using the assumed Lipschitz continuous property of V
(p,q)
j (z) and therefore S

(p,q)
j (z)we can

consider the difference between this covariance and the function c(p,q)(u, τ),

∣∣∣ cov
(
X

(p)
uT , X

(q)
uT+τ

)
− c(p,q)(u, τ)

∣∣∣ =

∣∣∣∣∣∣
∑
j

∑
m

Sj

(
uT +m

T

)
ψjm(0)ψjm(τ)− c(p,q)(u, τ)

∣∣∣∣∣∣
≤ T−1

∑
m

|m|Lj |ψjm(0)ψjm(τ)| = O(T−1).

�

8 Proof of Proposition 2.2.5

To establish this result we firstly demonstrate that S∗j (u) is positive definite. Since Sj(u) is

positive definite, by Choleski, there exists a lower triangular matrix Vj(u) so that Sj(u) =

26



Vj(u)V′j(u). Hence S∗j (u) = MVj(u)V′j(u)M′ = (MVj(u))(MVj(u))′. Hence S∗j (u) is

positive definite. Second, since S∗j (u) is positive definite, there exists a lower triangular

matrix V∗j (u) such that S∗j (u) = V∗j (u)V′∗j (u). Thus X∗t admits a MvLSW representation

with transfer function V∗j (u) .

�

9 Proof of Proposition 3.0.3

Expectation: Recall that d
(p)
j,k =

∑
tX

(p)
t ψj,k(t) and

X
(p)
t =

∑
l

∑
m

∑
r V

(p,r)
l (m/T )ψl,m(t)z

(r)
l,m. Hence

E
[
I
(p,q)
j,k

]
=E

[{∑
t

X
(p)
t ψj,k(t)

}{∑
t′

X
(q)
t′ ψj,k(t′)

}]
,

=

J∑
l=1

∑
m

min {p,q}∑
r=1

V
(p,r)
l (m/T ) V

(q,r)
l (m/T )×

{∑
t

ψl,m(t)ψj,k(t)

}2

. (17)

Substituting m = n+ k into (17) we obtain,

E
[
I
(p,q)
j,k

]
=

J∑
l=1

∑
n

{
S
(p,q)
l

(
n+ k

T

)}{∑
t

ψl,n+k−tψj,k−t

}2

.

Analogous to the univariate setting of Nason et al. (2000), since S
(p,q)
j (z), is Lipschitz con-

tinuous with finite Lipschitz constant Lj , for some fixed n,∣∣∣S(p,q)
j ((k + n)/T )− S(p,q)

j (k/T )
∣∣∣ ≤ |n|Lj/T , and therefore S

(p,q)
j ((n+k)/T ) = S

(p,q)
j (k/T )+

O(T−1). Consequently

E
[
I
(p,q)
j,k

]
=

J∑
l=1

S
(p,q)
l

(
k

T

)∑
t

∑
v

ψj,−tψj,−v−t

×
∑
n

ψl,n−tψl,n−v−t +O(T−1). (18)
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Recalling the definition of the autocorrelation wavelets we find that,

E
[
I
(p,q)
j,k

]
=

J∑
l=1

S
(p,q)
l

(
k

T

)∑
v

Ψl(v)Ψj(v) +O(T−1),

=
J∑
l=1

AjlS
(p,q)
l

(
k

T

)
+O(T−1).

�

Variance: To establish the variance of the raw periodogram, we begin by considering

E
[
(I

(p,q)
j,k )2

]
= E

[(
d
(p)
j,k

)2 (
d
(p)
j,k

)2]
.

E
[
(I

(p,q)
j,k )2

]
=

(
J∑
l=1

∑
m

p∑
r=1

V
(p,r)
l (m/T )

∑
t

ψl,m(t)ψj,k(t)

×
J∑
l′=1

∑
m′

q∑
r′=1

V
(q,r′)
l′ (m′/T )

∑
t′

ψl′,m′(t′)ψj,k(t
′)

)2

× E
[
z
(r1)
l1,m1

z
(r2)
l2,m2

z
(r3)
l3,m3

z
(r4)
l4,m4

]
.

Using a result due to Isserlis (1918) the above expression can be re-written as the sum of

three different elements E
[
(I

(p,q)
j,k )2

]
= I1 + I2 + I3 where, for example,

I1 =

4∏
i=1

∑
ti,li,mi,ri

V
(pi,ri)
li

(mi/T )ψlimi
(ti)ψjk(ti)E

[
z
(r1)
l1,m1

z
(r2)
l2,m2

]
E
[
z
(r3)
l3,m3

r
(r4)
l4,m4

]
.

Since E
[
z
(r1)
l1,m1

z
(r2)
l2,m2

]
= δl1l2δm1m2δr1r2 this simplifies to:

I1 =
∑

l1,m1,r1

(
V

(p,r1)
l1

(m1/T )
)2
×

T−1∑
t1=0

ψl1,m1(t1)ψj,k(t1)

×
T−1∑
t2=0

ψl1,m1(t2)ψj,k(t2)
∑

l3,m3,r3

(
V

(q,r3)
l3

(m3/T )
)2

×
T−1∑
t3=0

ψl3,m3(t3)ψj,k(t3)

T−1∑
t4=0

ψl3,m3(t4)ψj,k(t4);

= E
[
I
(p,p)
j,k

]
E
[
I
(q,q)
j,k

]
.

Similarly for I2 we find that I2 = E
[
I
(p,q)
j,k

]2
and I3 = E

[
I
(p,q)
j,k

]2
. Hence,

E
[
(I

(p,q)
j,k )2

]
= E

[
I
(p,p)
j,k

]
E
[
I
(q,q)
j,k

]
+ 2E

[
I
(p,q)
j,k

]2
,
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and

Var
{
I
(p,q)
j,k

}
=

(
J∑
l=1

AjlS
(p,p)
l

(
k

T

)
+O(T−1)

)

×

(
J∑
l=1

AjlS
(q,q)
l

(
k

T

)
+O(T−1)

)

+

(
J∑
l=1

AjlS
(p,q)
l

(
k

T

)
+O(T−1)

)2

.

From Nason et al. (2000) it is known that
∑

τ |Ψj(τ)| = O(2j), and henceAjl =
∑

τ Ψj(τ)Ψl(τ) ≤

(
∑

τ |Ψj(τ)|)2 = O(22j). Hence it is easily verified that,

Var
{
I
(p,q)
j,kT

}
=

J∑
l=1

AjlS
(p,p)
l

(
k

T

) J∑
l=1

AjlS
(q,q)
l

(
k

T

)

+

(
J∑
l=1

AjlS
(p,q)
l

(
k

T

))2

+O(22j/T ).

�

10 Proof of Proposition 3.0.4

Recall that the form of the smoothed periodogram is, Ĩj,k = (2M + 1)−1
∑M

m=−M Ij,k+m.

Expectation:

E
[
Ĩ
(p,q)
j,k

]
=

1

2M + 1

M∑
m=−M

E
[
I
(p,q)
j,k+m

]
.

Where 2M + 1 is the size of the smoothing window. Using the expected value of the

periodogram previously calculated this becomes,

E
[
Ĩ
(p,q)
j,k

]
=

1

2M + 1

M∑
m=−M

J∑
l=1

{
AjlS

(p,q)
l

(
k +m

T

)
+O(T−1)

}
.

Due to the Lipschitz continuity assumed for the spectral components it follows that:

E
[
Ĩ
(p,q)
j,k

]
=

J∑
l=1

AjlS
(p,q)
l

(
k

T

)
+O(MT−1).
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As T →∞, M →∞ but M
T → 0, the smoothed raw wavelet periodogram (auto and cross)

is asymptotically biased in the usual way. As such it can be corrected by use of the inverse

inner product matrix, A−1 to achieve an asymptotically unbiased estimate.

�

Variance: We begin by considering: E

[(
Ĩ
(p,q)
j,k

)2]
.

E

[(
Ĩ
(p,q)
j,k

)2]
=

1

(2M + 1)2

M∑
m=−M

M∑
m′=−M

E
[
I
(p,q)
j,k+mI

(p,q)
j,k+m′

]
,

by substituting τ = m′−m. Using arguments similar to those employed in the proof of the

Expectation, it follows that:

1

(2M + 1)2

M∑
m=−M

M+m∑
τ=M−m

E
[
I
(p,q)
j,k+mI

(p,q)
j,k+m+τ

]
=

1

(2M + 1)2

∑
m,τ

E
[
d
(p)
j,k+md

(q)
j,k+md

(p)
j,k+m+τd

(q)
j,k+m+τ

]
,

Using Isserlis’ Theorem Isserlis (1918), it can be shown that

Var
{
Ĩ
(p,q)
j,k

}
=

1

(2M + 1)2

{∑
m,τ

E
[
d
(p)
j,k+md

(p)
j,k+m+τ

]
E
[
d
(q)
j,k+md

(q)
j,k+m+τ

]
+
∑
m,τ

E
[
d
(p)
j,k+md

(q)
j,k+m+τ

]
E
[
d
(q)
j,k+md

(p)
j,k+m+τ

]}
,

=
1

(2M + 1)2

M∑
m=−M

{∑
τ

J∑
l=1

S
(p,p)
l (k/T )Aτl,j

×
J∑
l′=1

S
(q,q)
l′ (k/T )Aτl′,j +

∑
τ

(
J∑
l=1

S
(p,q)
l (k/T )Aτl,j

)2

+
∑
τ

(|m|+ 1)O(T−1) +
∑
τ

(|m|+ 1)2O(T−2)

}
.

where Aτl,j =
∑

t Ψl,j(t)Ψl,j(t + τ). Note that this is a form of inner product matrix but
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with a given lag, τ . Examining the term,

∑
τ

J∑
l=1

S
(p,p)
l (k/T )Aτl,j

J∑
l′=1

S
(q,q)
l′ (k/T )Aτl′,j

≤

(∑
τ

∣∣∣∣∣
J∑
l=1

S
(p,p)
l (k/T )Aτl,j

∣∣∣∣∣
)(∑

τ

∣∣∣∣∣
J∑
l′=1

S
(q,q)
l′ (k/T )Aτl′,j

∣∣∣∣∣
)
,

=

(∑
n

∣∣∣c(p,p)(k, n)
∣∣∣∑
τ

|Ψl,j(n+ τ)|

)

×

(∑
n

∣∣∣c(q,q)(k, n)
∣∣∣∑
τ

|Ψl,j(n+ τ)|

)
= O(22j).

Similarly it can be shown that the second term is also equal to O(22j) hence,

Var
{
Ĩ
(p,q)
j,k

}
= O(22j/M) +O(22j/T ). (19)

Thus, the smoothed wavelet auto and cross periodogram is asympotically mean-squared

consistent as T →∞, M →∞, M
T → 0.

�
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