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Abstract

We present experimental results on quantum grid turbulence produced

by moving grids within superfluid 4He, both at millikelvin tempera-

tures, with an oscillating grid, and at temperatures above 1.4 K with a

linearly moving grid.

Floppy devices were used at millikelvin temperatures to produce quan-

tum turbulence. We investigated the frequency dependence of the tur-

bulent drag on an oscillating grid. At high velocities, the turbulent

drag is independent of frequency and similar to what was measured in

liquid helium-4 in its normal phase. We also present measurements of

the inertial drag coefficient for grid turbulence, which is significantly

reduced by turbulence produced in both superfluid and normal fluid

4He.

To produce (approximate) homogeneous and isotropic grid turbulence

in a quantum liquid, with little to no extraneous heating in the fluid,

a new linear ‘control motor‘ has been designed and tested. The motor

consists of a drive coil, surrounded by three control coils. A linear

current ramp is passed through the drive coil, which lifts a supercon-

ducting armature placed in the centre of the solenoid. The control

coils are designed, when a steady DC current is applied to them, to

have constant magnetic field derivative. The control motor performs

adequately, having smooth motions with no oscillations, and with peak

velocities up to approximately 30 cm/s. The velocity is not, however,

very uniform during the motion of the motor.

Decaying turbulence is investigated using the attenuation of second

sound. We produce turbulence inside a short channel totally submersed



in liquid helium-II. The turbulence is produced by a superconducting,

magnetically levitated linear motor, with a grid attached to the top of

the armature. The theory applied, for calculating vortex line density

decay from second sound attenuation, is taken from Stalp, S. (1998)

Decay of Grid Turbulence in Superfluid Helium. Ph.D. Thesis. We

investigate the effects of different grid meshes on the vorticity decay

curve, in particular the time at which the turbulence becomes satu-

rated. We present comparisons of three separate meshes.

We observe a shorter saturation time, and therefore a longer inertial

regime with a t−3/2 dependence, for the turbulent decay produced by

the smallest mesh grid. It has been suggested elsewhere that there is

a t−11/10 dependence at early times in the vorticity decay curves, we

observe no such dependence. Finally, we present measurements of the

effective kinematic viscosity, and saturation time and their dependence

on grid mesh size.
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Chapter 1

Introduction

Turbulence is defined by the English Oxford dictionary as a “violent or unsteady

movement of air or water, or of some other fluid”. This statement is purposefully

quite vague, as ‘some other fluid’ could mean anything from flowing water through

a pipe to interstellar plasma (Elmegreen & Scalo [2004]) - and indeed turbulence

is found in all of these cases (Sreenivasan [1999]), and yet remains an unsolved

problem in classical physics. In all cases of turbulence, vortices are present and

are usually the precursor. Figure 1.1 shows two common forms: turbulence from

the wake of an aeroplane and turbulence surrounding a tornado (a giant vortex).

(a) Turbulence caused by an aeroplane (b) A Tornado, a natural large scale vor-
tex

Figure 1.1: Photos depicting turbulent systems
Pictures from free internet media

The understanding of turbulence is a crucial part to our understanding of

almost every fluid system, including technological applications. To understand

turbulence in general, the first steps are to produce the simplest form, with known

1



initial conditions.

The simplest form of turbulence is one which is homogeneous and isotropic.

One way to produce this relatively simple turbulence, approximately, is by having

a fluid pass sufficiently fast through a grid. Grid turbulence has been studied in

many different ways, and for many different applications: Mydlarski & Warhaft

[1996], Couder [1984], and Roach [1986] provide a few examples. Two different

types of grid motion have been investigated in this dissertation; one is an oscillating

‘floppy device’ which swings a grid mesh back and forth through the liquid, and

the other is a linear motor which pushes and pulls a grid mesh linearly through it.

The medium on which this dissertation is focused is liquid helium, in par-

ticular superfluid liquid helium-4. When cooled below a temperature of 2.17 K,

liquid helium undergoes a transition into a quantum liquid known as a super-

fluid. Superfluid 4He has the lowest kinematic viscosity of any known substance,

it can therefore produce highly turbulent flows. Turbulence produced in a super-

fluid is known as quantum turbulence, the vortices which comprise the turbulence

are quantised, and therefore their interactions are easier to interpret than their

classical counterparts. The theory of turbulence, and other relevant theory, are

discussed in chapter 2.

This thesis is split into three sub-topics, research areas, representing the three,

quite distinct, projects that I have been involved with. Chapter 3 discusses the

use of an oscillating floppy device, which produces turbulence through a range of

oscillating frequencies, as well as on resonance. Oscillating objects have been used

by a number of different groups, including (but my no means limited to) Bradley

et al. [2005], Charalambous et al. [2006], Luzuriaga [1997], and Nichol et al. [2004].

All of these have used oscillating objects driven on resonance to produce quantum

turbulence. Bradley et al. [2011] present a new, oscillating device which includes

an incorporated grid mesh to a goal-post shaped oscillating wire, as opposed to

a sphere or a small vibrating wire. Chapter 3 therefore, discusses the results

obtained from the use of this new device, and its corresponding position detection

2



technique, to investigate the dependence on oscillation frequency and amplitude.

The floppy device, however, is only approximately linear over small distances.

A new linear motor was therefore designed and manufactured; this is discussed in

chapter 4. There have been previous motors which have worked both at very low

temperatures, for example Ihas et al. [2008] and Liu et al. [2007], and at temper-

atures >1 K, for example Stalp et al. [1999] and Niemela et al. [2005]. The linear

motor discussed in this dissertation was designed to work at very low tempera-

tures on the principle of superconducting magnetic levitation. The operational

theory and practice, manufacturing techniques, and test results are all presented

in chapter 4.

The new linear motor was then utilised for a number of turbulence experi-

ments, described in chapter 5, in which the decay of the vortex line density was

observed through the attenuation of second-sound. second-sound is a propagating

entropy-temperature wave (see chapter 2), which can be produced, and detected,

by two vibrating superleak transducers. The transducers are placed so to face each

other across an experimental channel. The turbulence produced, from a motion of

the linear motor with a grid attached, will interact with the second-sound wave,

causing an attenuation in the measured signal. It is possible to calculate the vortex

line density from this signal attenuation Stalp et al. [1999], and record the decay

over time. The main goal of this set of experiments were to investigate dependency

of the vorticity decay on the grid mesh size and design. Previous work carried out

in this subject area, has only included the use of one grid mesh - Stalp [1998],

Niemela et al. [2005], and Smith et al. [1993]. The design of the transducers, the

operation practice, and all of the results for these second-sound experiments are

presented in chapter 5.

Finally, at the end of this dissertation, a summary of all aspects discussed is

presented in chapter 6. Also presented are suggestions and recommendations for

further work, to continue the investigation into quantum grid turbulence.
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Chapter 2

Theoretical Background

There are a number of different theoretical concepts that the reader will need as a

background to the experimentation and results discussed in the later chapters of

this thesis. These are described in the sections below.

2.1 Helium-4 and Superfluidity

Helium is the second most abundant element in the universe and yet it was not

discovered on Earth until 1895, by the Scottish chemist Sir William Ramsey (Enss

& Hunklinger [2005]); it was then liquefied for the first time in 1908 and along

with it came the birth of low temperature physics. Helium has the lowest boiling

point of all the known elements. This is due to the extremely small inter-atomic

forces and large zero-point energy. Zero point energy, otherwise known as vacuum

energy, is the energy of a quantum mechanical system’s ground state; it is the

lowest amount of energy an atom can have, even at absolute zero temperature. It

is derived from the Heisenberg uncertainty principle and is an intrinsic quantum

property of every atom, it is the energy left when all other energy has been removed

from the system. This large zero point energy results in the fact that the liquid

state of helium, at pressures below 25 bar, is always more energetically favourable

than the solid phase, even at absolute zero.

Liquid helium itself also has some unique properties, in particular the plot of the

specific heat of liquid helium has a large rise at 2.17 K, which is attributed to a 2nd
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order phase transition. This transition is known as the lambda transition, named

so as the graph resembles the Greek letter λ, as can seen in figure 2.1. The two

liquid phases of helium are named helium-I and helium-II, although helium-II is

more often than not referred to as superfluid helium due to its analogous properties

with superconductivity. This superfluid phase also means that the phase diagram

for helium, shown in figure 2.2, is unusual, especially considering that there is

no triple point as solid helium requires a fairly large amount of pressure to be

produced.
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Figure 2.1: The specific heat of helium-4 as a function of temperature

4He atoms are bosons with nuclear spin = 0, and therefore obey Bose-Einstein

statistics; if it is assumed that helium is an ideal Bose gas then the transition to

Bose-Einstein condenate is rpedicted to be at 3.1 K Enss & Hunklinger [2005]. The

discrepancy in the transition temperature is due to the fact that liquid helium is not

a non-interacting ideal Bose gas; there is a lower concentration of particles in the

ground state. Superfluidity has a explained by a single condensate wave function,

or collective excitations instead of separate ones for each individual particle. These

collective excitations are known as phonons and rotons and they are depicted in

the dispersion relation shown in figure 2.3. The critical velocity of the superfluid,

depicted as a dotted line, is the lowest velocity for which a moving particle can

cause excitations in the superfluid, thus dissipating kinetic energy. This is the

Landau critical velocity and is described as vL = ∆
p0

.
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Figure 2.3: The dispersion curve for helium-4, the energy curve of particles as a
function of momentum

[The straight line depicts the critical velocity]

2.1.1 Two Fluid Model

Superfluid helium has a vanishingly small kinematic viscosity, so when an experi-

ment such as the one described in Kapitza [1938] is undertaken, it can be observed

that the fluid flows through very small capillaries as though there is no viscosity in

the system. However, when a rotary viscometer experiment like the one described
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in Heikkila & Hallet [1955] is undertaken, a non-zero viscosity at temperatures

well below the λ-transition is observed. These seemingly contradictory results are

explained by the two fluid model, first suggested by Tisza in 1938. The liquid acts

as though it is made up of two completely inter-penetrating fluids: the normal

fluid component (with density ρn and velocity field vn) and the superfluid compo-

nent (with density ρs and velocity field vs). It is important to note that there are

not physically two separate fluids, and nor can you say that a particular atom is

either ‘normal’ or ‘superfluid’. However the model does explain the experimental

data seen with helium-II. These two components carry different properties within

the liquid, for example the normal fluid contains all of the entropy in the system,

along with all of the viscosity. The ratio of superfluid to normal fluid in helium-II

is temperature-dependent, as shown in figure 2.4, and below about 1 K the fluid

can be well approximated as completely superfluid with zero entropy and viscosity.
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Figure 2.4: Temperature dependence of the normal fluid and superfluid densities,
ρn and ρs, with respect to the total density, rho, for helium II
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2.1.2 Vortices in Superfluids

The superfluid component can be described by a single macroscopic wave function:-

Ψ(r) = |ψ0|eiφ(r), (2.1)

where ψ0 is the amplitude and the phase, φ(r), is a real function of position r, i.e

(kr − ωt), where k is the wave number. Using this, and momentum p = k~, you

can show that

~∇φ(r)

m4

=
~k
m4

= v (2.2)

where m4 is the mass of a helium atom. As ∇×(∇f) = 0 it is clear that ∇×v = 0;

superfluid is irrotational and therefore cannot undergo solid body rotation. How-

ever, we know that there is quantum turbulence in the superfluid, even at T→0 and

so there must be circulation. This problem is solved by having quantised vortices

in the liquid (Feynman [1955]). If an annular, multiply connected region within

the superfluid is imagined (think of a doughnut shape of helium-II), and using

Stoke’s theorem, we can write an equation for the flow pattern (or circulation)of

a line within this region, κ :-

κ =

∮
vs · dl (2.3)

Using this with equation 2.2 we arrive at

κ =
~∆φ

m4

(2.4)

It is also known that the phase is a real function of r, and the wave function is

singular. This means that φ has to be in multiples of 2π and consequently the

circulation is quantised:-

κ =
nh

m4

, where n = 0, 1, 2, ... (2.5)
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The only way to have circulation in superfluids is with quantised vortices, which

means there has to be something in the centre, the core of the vortex. The first

time quantum vortices were observed was in 1961 by W.F. Vinen (Vinen [1961])

using a thin wire as the core. However without the presence of something like a

thin wire, what is inside these quantum objects? Using equation 2.5 with equation

2.2 the velocity of the superfluid can be shown to go as 1/r, where r is the radius

from the centre of the vortex:-

vs(r) =
k

2πr
(2.6)

This means that at some small radius, the velocity of the superfluid exceeds the

Landau critical velocity and will therefore cause the superfluidity to break down,

this is shown in figure 2.5.
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Figure 2.5: A diagram of the vortex core with respect to the radius from the centre.

The shaded area depicts the normal fluid vortex core.

An approximation of the radius of the vortex core can be calculated from

equation 2.6; using 58 m/s as the critical velocity and the unit of circulation as

h/m4, the core radius is approximately 2.7×10−10 m.

The energy of the vortex can be calculated by integrating over the kinetic

energy per unit volume, Ev where the volume is the ‘doughnut shape’ of the
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superfluid density that is rotating (Enss & Hunklinger [2005]) :-

Ev =

∫ b

a0

ρsv
2
s

2
2πr dr (2.7)

where a0 is the radius of the core and b is half the distance between vortices.

Integrating and using equations 2.5 and 2.6, it can be shown that:-

Ev =
ρh2

m2
4

n2 ln
b

a0

(2.8)

Consequently, it is more energetically favourable for n = 1 than any other number,

physically this means that the vortices will want to be singular.

2.2 Turbulence

Fluid systems are normally described in terms of conservation of momentum, en-

ergy, and mass. The Navier-Stokes equation is derived from these principles, in

the form of Newton’s second law:

ρ

(
δv

δt
+ v · ∇v

)
= −∇p+ µ∇2v + F (2.9)

where ρ is the fluid density, v is the flow velocity, p is the pressure, µ is the dynamic

viscosity, and F is ‘other’ body forces (such as gravity). An analytical solution

to this equation without some severe boundary conditions can be very difficult to

compute, and for turbulent systems it is almost impossible. This results in the

understanding of turbulence largely relying on experimentation.

2.2.1 Classical Turbulence

Turbulence is a flowing system characterised by time-dependent chaotic property

changes; it is random and the fluid motion within is stochastic. It was first docu-

mented by Leonardo da Vinci in the 15th century, seen in figure 2.6, and has been

investigated and discussed ever since.

As turbulence is inherently unpredictable, it is useful to introduce a dimen-
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Figure 2.6: A photo of turbulence drawn by da Vinci in 1507. Photo taken from
free media on the internet.

sionless quantity which can be used to characterise different flow regimes; the

Reynolds number, Re. The Reynolds number is defined as the ratio of inertial

forces to viscous forces:

Re =
UL

ν
(2.10)

where U is the characteristic speed, L is the characteristic length, and ν is the

kinematic viscosity. In a simple, incompressible flow around a smooth surface the

Reynolds number is the only parameter involved in the transition to turbulence. A

small Reynolds number means that viscous forces are dominant and therefore the

flow is more likely to be laminar. A large Reynolds number indicates a large non-

linear inertial term, leading to an unstable laminar flow and eventually turbulence

(Vinen & Niemela [2002]).

Turbulent flow involves eddy (rotational) motion, on the characteristic length

scale, L. However, as the Navier-Stokes equation (2.9) has a non-linear inertial

term, motions on many different length scales are coupled together, as long as the

Reynolds number is large. This results in no turbulent energy dissipation from

larger scale eddy motion. Instead the energy ‘cascades’ to smaller scale eddies

until Re → 1, where viscosity becomes important again and dissipation occurs.

The length scale at which this happens is known as the Kolmogorov length scale,

Kν . The range of length scales before viscous forces take effect is known as the

inertial range.

In experiment, it is beneficial to simplify turbulence as much as possible, and
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Figure 2.7: Photo of grid turbulence taken in a wind tunnel, photo taken from free
media on the internet.

one such way is to create spatially homogeneous and isotropic turbulence by steady

flow through a grid, as shown in figure 2.7. This results in an ideal case where

energy only flows in k-space (Batchelor [1953]). At a distance away from the grid,

much larger than the size of the mesh holes (M), the statistical properties of the

turbulence are locally independent of position, making it essentially homogeneous.

In reality the turbulence is decaying in time, though as a rule this decay takes

seconds to occur and so has a negligible effect on the instantaneous local properties

of the turbulence. As previously discussed, a range of different length scales must

be considered for homogeneous turbulence. This is done through the use of the

Fourier transform, v(k), of the velocity field, with a length scale k−1. The fluid

flow through a grid, at a speed U , will initially generate turbulence on the length

scale M . The energy will then cascade though to smaller length scale eddies,

known as the Richardson cascade. The energy also flows through to larger length

scale eddies, saturating at the size of the container/flow channel, D; however the

mechanism through which this occurs is as yet unknown. The energy cascade will

continue without dissipation and with conservation of energy, until it reaches the

aforementioned Kolmogorov length scale.

An important statistical property of grid turbulence is the energy spectrum,

E(k), such that E(k)dK is the average turbulent energy per mass within the

range of wavenumbers dk. The energy spectrum within the inertial range can only

depend on the wavenumber, k, and the rate at which the energy flows through the

cascade, denoted as ε. Through dimensional arguments, this leads to a distribution
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of energy given by the Kolmogorov spectrum:

E(k) = CKε
2/3k−5/3 (2.11)

where CK is the Kolmogorov constant which experimentally has proven to be

of order unity for classical fluids, Sreenivasan [1995]. Even though Kolmogorov’s

theory of the inertial range is considered as one of the success stories of turbulence,

it does not explain the large scale eddies. It is accepted that for small wavenumber,

the energy spectrum is of the form E(k) = Akn, where A is positive number. n

is either assumed to be 2 (see Saffman [1967]), or 4 (see Batchelor & Proudman

[1956]); though it is generally accepted that the early time turbulence is Saffman

turbulence (Krogstad & Davidson [2009]). The full energy distribution is shown

in figure 2.8.

E(
K)

Wave Number, K

Time

Inertial Regime,

Energy Containing Vortices,

Kn

K -5/3

M-1

D-1

Figure 2.8: Energy decay spectrum of quantum turbulence, energy as a function
of wavenumber. The separate curves represent the curve decay path over time.

At zero time, the energy containing vortices are atM−1, and the energy contain-

ing scale then shifts towards the larger length scales over time, before saturating

at the size of the experimental container. This suggests that if the energy injection

scale, the mesh size, is small, then it will take a long period of time for the energy

containing vortices to reach saturation.
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2.2.2 Quantum Turbulence

Quantum turbulence is the name given to the turbulent flow of quantum liquids,

for example superfluid helium or a Bose-Einstein condensate. However it is the

tangle of quantised vortices (as explained earlier in section 2.1.2), as opposed to

eddies, of which quantum turbulence is comprised. As in classical turbulence, it is

important to consider the energy spectrum to try to explain the turbulence. In pure

superfluids the dynamics of the motion is completely dependent on the vortices,

and so the energy spectrum should yield a true insight into vortex dynamics in

the Richardson cascade.

In homogeneous and isotropic quantum turbulence, there are two characteristic

length scales; the mean intervortex spacing, l = L1/2, where L is the vortex line

density, and the coherence length corresponding to the vortex core, ξ. These

length scales have corresponding characteristic wavenumbers; kl = 2π/l (which is

equivalent to kν in classical turbulence), and kξ = 2π/ξ.

With k-values smaller then kl (but larger than M−1), the quantum turbulence

dynamics are dominated by the collective vortex tangle (Bennemann & Ketterson

[2013]). This means that the quantised circulation is not relevant and the dynamics

is similar to that in classical turbulence; this region is referred to as the classical

region and therefore the energy spectrum follows the Kolmogorov law (2.11).

Quantum vortices will transfer energy down from large length scales without

dissipation through the Richardson cascade, just like eddies in classical turbu-

lence. At temperatures above 1 K, once the wavenumber is sufficiently large (kl),

the dissipation will then occur through mutual friction, however at ultra low tem-

peratures there is no normal fluid, and so the energy has to dissipate in some

other way. Mutual friction is an interaction between the normal fluid and super-

fluid components, specifically an interaction between the superfluid vortex lines

and the classical vortex tangle within the normal fluid.

An important and unique aspect in the Richardson cascade in quantum tur-

bulence is vortex reconnection; two antiparallel vortices approaching each other

will reconnect (Koplik & Levine [1993]). Such reconnections will cause ‘kinks’ in
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the vortex line, in turn causing helical oscillations, or distortion waves, known as

Kelvin waves. Self-reconnections will also occur, causing fission of vortex loops

(Leadbeater et al. [2001]). At ultra low temperatures, all of these mechanisms will

dominate in the region kl < k < kξ, causing energy to cascade towards smaller

length scales (through a Kelvin wave cascade), this region on the energy spectrum

is known as the quantum region. It is predicted that the quantum region will obey

a Kolmogorov-like power law: E(k) ∝ kη, where the exponent η is yet to be deter-

mined (Kozik & Svistunov [2004]). The dissipation of quantum turbulence after

the quantum range is not yet completely understood, and is beyond the scope of

this thesis.

Figure 2.9: Cartoon depicting the energy cascade over time, through smaller length
scales and three distinct regions, starting as large vortices and cascading down to
phonons and rotons.
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2.3 Cryostats and Dilution Refrigerators

In chapters 4 and 5 the experiments did not require anything below 1 K, and were

therefore carried out in a cryostat, which is essentially a large Thermos flask. Using

a rotary vacuum pump, you can pump the helium bath down to temperatures close

to 1 K with the process of evaporative cooling. The pump creates a lower vapour

pressure above the surface of the liquid, this means that the helium particles with

higher energies can escape resulting in the energy of the system decreasing, and

therefore the temperature. The cooling power of this set-up relies on the pumping

speed of the pump and usual base temperatures are in the range of 1 2 - 1.3 K. This

method of cooling is not good for helium consumption as you lose about 45 % of

the bath through evaporation. However if there is a good helium recovery system,

like the ones at Lancaster University or at the University of Florida, this helium

is saved and re-liquifed, so a minimal amount is actually lost to the atmosphere.

For the experiments discussed in chapter 3 however, milli-Kelvin temperatures

were needed, leading to the use of a dilution refrigerator. The concept and science

of a dilution refrigerator was suggested by F. London in 1951, though it was not

published for another 10 years, in London et al. [1962]. A schematic of a dilution

fridge is shown in figure 2.10. One of the main ideas of a dilution fridge is that only

a small volume of helium has to be cooled, and then the use of heat exchangers

and good thermal contact is utilised to cool other areas.

The 1 K bath (sometimes known as the 1 K pot), does not actually reach 1 K,

it is cooled using evaporative cooling and so gets down to about 1.2 K. Once

the fridge is in thermal equilibrium with the pot, a 3He-4He mixture is added in

gaseous form. It will will cool and condense before it reaches the mixing cham-

ber. This liquid mixture has some unique properties, mainly due to the fact that

3He particles are fermions (with integer spin = 1/2) and therefore obeying Fermi

statistics. At low temperatures, it becomes more energetically favourable for the

mixture to separate into two phases; a light, 3He rich phase on top, and a heavy,

mostly 4He phase at the bottom. This can be seen in the phase diagram shown in
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Figure 2.10: A schematic of a typical dilution refrigerator, without a demagneti-
sation stage.

figure 2.11. Basically when the 3He particles cross the phase boundary from the

concentrated to dilute phase, for entropy to be conserved the process has to be

endothermic(for a more in-depth explanation into why this occurs, please refer to

Lounasmaa [1974] , pages 18-22). So in practice, if you can cause 3He atoms from

the light, concentrated phase to move into the heavier, dilute phase you produce

a cooling effect (analogous to normal evaporative cooling with the dilute phase

corresponding to a vapour).

For the fridge to operate in continuous mode, the helium mixture is condensed

and sent through the heat exchanger next to the 1 K pot, bringing it’s temperature

down to about 1.2 K. After this it will flow through the heat exchangers next to the

still where the temperature drops to about 0.7 K, the liquid is then cooled further

through the lower heat exchangers before finally reaching the concentrated phase

in the mixing chamber. As there is an osmotic pressure gradient, the 3He atoms
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Figure 2.11: A diagram of 3He percentage with respect to temperature, showing
the theoretically determined forbidden region of ratio and temperature.

will cross the phase boundary into the dilute phase and travel up to the still. The

vapour in the still is pumped out, the vast majority of which is 3He. This is then

circulated back to the beginning and the process starts again, a heater is placed in

the still to ensure a sufficient gas circulation. When starting this process, the gas

circulation is started using a rotary pump, and then a diffusion pump. Of course

the mixing chamber has to be a cold enough temperature for separation to occur

before the heater is switched on (Lounasmaa [1974]).

It should be noted that through the use of a dilution refrigerator temperatures

of about 2 mK can be reached. To get below this a magnetic cooling stage may be

added, for example a nuclear de-magnetisation stage, which can bring the experi-

mental cell down to the µK range. However this technique is not pertinent to this

dissertation and will therefore not be discussed, the reader is again recommended

to read Lounasmaa [1974] for further information.
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2.4 Magnetic Levitation and Superconductivity

Magnetic levitation is a method of suspending an object with no support other

than magnetic fields. This can be done using diamagnetic materials, eddy currents

or with superconductive materials; this thesis concentrates on the latter.

A superconducting material, once cooled below a characteristic critical temper-

ature, TC , will exhibit zero resistance and the expulsion of magnetic fields. For a

full review on this subject the reader is directed to Tilley & Tilley [1974], a brief

review is described below.

An electron moving through a lattice will cause a slight deformation in the

charge density, causing another electron to to move into an area of higher positive

charge. These electrons become ‘bound’, or paired; these paired electrons are

known as Cooper Pairs (Cooper [1956]). Once below TC , the binding energy

of a pair of electrons causes a gap in the energy spectrum at the Fermi energy,

separating the paired states from the ‘normal’ single-electron states. The quantum

mechanical effect keeping the electrons together is a very weak, pairing interaction

energy, and so only at low temperatures are there a significant number of Cooper

pairs for superconductivity to occur.

The fact that there is a gap in the energy spectrum means that low energy

excitations which would cause the electrons to disperse, or scatter, are forbidden.

According to Bardeen-Cooper-Schrieffer theory, or BCS theory, (Bardeen et al.

[1957]), the paired electrons can move throughout the lattice without hindrance,

carrying with them the current.

The act of expelling magnetic fields from a superconducting material is known

as the Meissner Effect. Given that the resistance is zero, supercurrents are gen-

erated within the material which will perfectly cancel out any exterior magnetic

field brought near. The supercurrents will also mirror the magnetic poles causing

a repulsion force which can often be enough to levitate either the superconductor

or the external magnet.

When describing a superconducting material there are two important factors;
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the London penetration depth, λL, and the superconducting coherence length, ξs. An

external magnetic field is not expelled from the whole superconducting material,

in fact it falls off exponentially past the surface boundary. The distance at which

the magnetic field reaches a value of 1/e times the original field is the London

penetration depth (Hook & Hall [1991]):

λL =

(
m

µ0nq2

)1/2

(2.12)

where m is the charge carrier mass, n is the number density and q is the charge.

The superconducting coherence length is the mean distance between the Cooper

pair electrons; it is dependent on the Fermi velocity, vf , and the superconducting

energy gap, ∆:

ξs =
2~vf
π∆

(2.13)

There are two types of superconductors; Type-I and Type-II. In a Type-I the

superconductivity will be abruptly destroyed when an external magentic field ex-

ceeds a characteristic critical field, HC , via a first order phase transition. A Type-

II superconductor has two critical fields; HC1 and HC2. HC1 is when magnetic

vortices first appear within the superconductor as the external magnetic field is

increased, and HC2 is when the superconductivity is completely destroyed. The

ratio of λL/ξs determines whether or not a superconductor is a Type-I or Type-II,

though generally speaking pure metallic elements are Type-I and metallic alloys

are Type-II (with pure Nb being one of the exceptions).
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2.5 second-sound

As previously discussed, the two separate helium-II components each carry dif-

ferent properties of the liquid. One result from this phenomena is the fact that

several different sound modes can be found, the second of which is of particular

interest for this dissertation. When the superfluid and normal fluid components

oscillate 180◦ out of phase with each other, a longitudinal wave with temperature

(or entropy) propagating is produced; this is known as second-sound. The wave

can be created using an AC voltage across a resistive heater with the temperature

distribution being measured by a thermometer moving with respect to the heater

[Enss & Hunklinger, 2005]. However there is another method which uses a super-

leak membrane mechanically oscillating to produce the second-sound wave, this is

the method used and described in chapter 5. second-sound velocity, u2, is temper-

ature dependant, a plot of second-sound velocity as a function of temperature is

shown in figure 2.12.
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Figure 2.12: second-sound velocity as a function of temperature, in liquid helium-4
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2.5.1 Attenuation

A second-sound (SS) signal will be attenuated by any vortices or quantum tur-

bulence it encounters. The main cause of this attenuation is an extra thermal

conductivity due to the drift motion of excitations [Tilley & Tilley, 1974]. The

quantised vortex is in the superfluid, with a normal fluid core. SS involves normal

fluid/superfluid counterflow, and will therefore be dissipated by the drag on the

normal fluid core. The attenuation of SS can be used to determine the vortex line

density, L, in a volume of quantum turbulence, the line density is then related to

the vorticity, ω, of the turbulence with equation 2.14:-

ω = κL (2.14)

where κ is the circulation.

The attenuation of the signal cannot simply and solely be attributed to the line

density of the turbulence. Other factors that can cause it are the experimental cell

dimensions along with properties contained within the liquid [Hanson & Pellam,

1954], and viscous surface losses [some citation that I can’t find]. Therefore the

total attenuation of the second-sound is αT = αB + αL, where αB and αL are

the background attenuation (due to all experimental factors) and the attenuation

due to vortices, respectively. The bulk liquid attenuation is considered to be a

constant throughout as the experimental cell does not change, also it is completely

submersed in the liquid helium at all times during runs, the attenuation due to

surface losses is assumed to be negligible.

The bulk attenuation is given by equation 2.15:-

αb =
f 2
ss

2ρu3
2

[(
4

3
η + ζII

)
ρs
ρn

+
K

Cp

]
(2.15)

where fss is the frequency of the SS wave, ρ is density, η is viscosity, ζII is a

second viscosity coefficient, K is a constant parameter analogous to the ordinary
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thermal conductivity coefficient, and Cp is the ordinary specific heat capacity of

liquid helium II [Hanson & Pellam, 1954].

A full derivation of the attenuation due to quantised vortex lines can be found

in Stalp [1998], pages 53-62; the principle steps of which are described below. It

should also be noted that the author has opted to only concentrate on the analytic

solution for arbitrary vorticity and bulk attenuation. It is assumed that a porous,

superleak vibrating membrane is used as the SS wave transmitter with a similar

membrane directly opposite used as a receiver.

To begin, the SS wave is approximated as a plane wave with wavelength λ,

frequency fss, phase φ, and amplitude AT 0 . Therefore at some time D/u2 (where

D is the width of the channel), the wave can be described as:-

A(fss,D/u2) = AT 0e−αDei(kD−fssD/u2+φ) (2.16)

where α is an attenuation coefficient α = αr+iαi, the real part of which is assumed

to be the total physical attenuation; αr = αT = αB + αL . Defining N as half the

number of reflections and R as the reflection constant, the received signal of the

wave, Ar, at infinite time (and therefore N →∞) can be described as:-

Ar(fss,∞) =
AT

e(a−ib) − e(−a+ib)
(2.17)

where

AT = AT 0eR, (2.18)

a = αTD +R, (2.19)

and

b = (fss/u2 − αi)D. (2.20)
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Experimentally, the wave will be measured using a lock-in amplifier and will

therefore be the magnitude of Ar:-

A(fss,∞) = [Ar(fss,∞)A∗r(fss,∞)]1/2 = AT [2 cosh(2a)− 2 cos(2b)]−1/2 (2.21)

From this, the resonance frequency (i.e. when cos(2b) = 1) for the nth mode can

be given by:-

fnss =
nu2

2D
+
αiu2

2π
(2.22)

Using this, with equation 2.20, and solving equation 2.21 for b gives:-

b =
2πD

u2

(fss − fnss) + nπ (2.23)

Take the half power frequency, fh, as the frequency at which A2(fn) = 2A2(fh),

and define the ‘full width half max’ as ∆ = 2 | fhss − fnss |. Taking the situation

where there are no vortices, αL = 0, and using the relationship arcosh(x) =

ln(x+
√
x2 − 1), it can be shown that

2αBD + 2R = ln
[
1 + C +

√
(2C + C2)

]
(2.24)

where

C = 1− cos

(
2πD∆0

u2

)
. (2.25)

The amplitude of a SS wave at resonance with no vortices present can be

written as

A0 = A(fnss,∞, αL = 0) = AT [2 cosh(2αBD + 2R)− 2]−1/2 (2.26)
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Using this along with equation 2.21, the attenuation due to vortices is shown to

be

αL =
1

2D
ln

1 +
(
A
A0

)2

C +

√
2
(
A
A0

)2

C +
(
A
A0

)4

C2

1 + C +
√

2C + C2

 (2.27)

Hall & Vinen [1956] gives a now well established equation for vorticity, ω, of

homogeneous and isotropic vorticity with respect to SS attenuation:-

ω =
16u2

πB
αL (2.28)

where B is the temperature dependant mutual friction parameter. Therefore, the

use of equation 2.27 with equation 2.28 gives the final, and desired, equation for

vorticity:-

ω =
8u2

πBD
ln

1 +
(
A
A0

)2

C +

√
2
(
A
A0

)2

C +
(
A
A0

)4

C2

1 + C +
√

2C + C2

 . (2.29)

It has been argued (for example Chagovets et al. [2007]) that the pre-factor in

equation 2.29 is different to that described here, substituting 3 for the 8/π. This

would have no effect to any of the data presented here, or conclusions made, other

than shifting the effective kinematic viscosity values up or down by this factor. As

the author is only discussing trends, the correct pre-factor is unimportant to this

thesis.
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Chapter 3

Turbulent Drag from Oscillating

‘Floppy Devices’

Mechanical oscillators have been used to investigate the decay of quantum turbu-

lence in liquid helium by a number of different groups; for example Yano [2009]

and Bradley et al. [2005] with small vibrating wires, or Blažková et al. [2007] and

Ahlstrom et al. [2013] with vibrating forks. A variant of the mechanical oscilla-

tor described here, known as the ‘floppy device’, was first introduced in Berent &

Polturak [1998] where it was used to study solid helium. This device can produce

large amplitudes of motion with an extensive range of velocities. It also allows for

low frequency motion to be investigated with high precision (Bradley et al. [2011]).

As any macroscopic object is cooled down to superfluid temperatures, remnant

vortices are left trapped on the roughness of the surface. Once a critical velocity

is reached these vortices can grow; the vortices will interact and reconnect with

each other producing quantum turbulence. The moving object, or floppy device,

will then feel a measurable extra drag force due to this turbulence.

It is possible to model the floppy devices, or any oscillating object, as a mass

on a spring with simple harmonic motion via a driving force, F :

F = F0e
ift (3.1)

The natural frequency of which will be f0 =
√
K/m, where K is the spring
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constant, and m is the mass of the object in vacuum.

It is then possible to write the equation of motion; taking into account the

velocity dependent fluid damping force, DF , and the effective mass of the object

(due to both clamped fluid on the object, and the fluid back-flow due to the

displaced mass), m+ δm:

(m+ δm)ẍ+DF ẋ+ f 2
0 = F0e

ift (3.2)

The steady state solution to equation 3.2 is:

ẋ = Ẋeift (3.3)

Substituting this into equation 3.2 leads to:

Ẋ =
F0if

−f 2(m+ δm) + ifDF +K
(3.4)

which is comprised of real and imaginary parts:

<{Ẋ} =
F0f

2DF

f 2D2
F + (f 2(m+ δm)−K)2

(3.5)

and

={Ẋ} =
F0f(k − f 2(m+ δm))

f 2D2
F + (f 2(m+ δm)−K)2

(3.6)

The real and imaginary parts are in and out-of-phase with the driving force,

respectively. Figure 3.1 graphically depicts the in and out-of-phase parts of a

resonance.

3.1 Construction and Operation

Two different and separate floppy devices were used in the experiment discussed

in this chapter, one of which has a rectangular piece of copper mesh attached, this

is so it can produce large quantities of quantum turbulence at once; this device is
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Figure 3.1: A diagram showing the ideal in and out of phase components of the
Lorentzian peak, for a simple harmonic oscillator

known as the ‘floppy grid’. Pick up coils are also used to detect the position, as

described below.

The floppy devices were made from a single-filament NbTi Copper clad insu-

lated wire, of 100µm diameter. The wire was bent over a 10 mm wide rectangular

former to make a goalpost shape. The 20 mm long legs of this goalpost were at-

tached to a small rectangular piece of paper hardened with Stycast 1266. For the

floppy grid, a 5 × 10 mm piece of fine copper grid mesh is attached to the top of

the goalpost using very minute amounts of Stycast. The mesh is approximately

1µm thick with 23µm square holes separated by 11µm thick copper strips, shown

in the insert of figure 3.2. Two pick up coils were positioned above and to either

side of the floppy device, these coils are made from 135 turns of 140µm single core

NbTi copper clad insulated superconducting wire. Figure 3.2 shows the floppy

grid with the pick up coils positioned above.

Two cells were constructed for this experiment; one with a floppy wire sans

grid and one with a floppy grid in. Both cells also contained very small vibrating

wires (with 3 mm leg spacing), and a 2 × 8 × 12 mm silver sinter for thermal

contact. A schematic of the floppy wire cell is shown in figure 3.3; both cells have

two pick up coils set approximately 1 mm above the top of the cell. Once in the
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L = 20mm

D=10mm

coil #1 coil #2

5mm

10µm

Figure 3.2: The floppy grid device with pick-up coils
Insert shows an image of the copper mesh taken with an electron microscope.

dilution refrigerator, both devices were operated in an 82 mT vertical magnetic

field provided by a large superconducting magnet, which is located in the 4.2 K

helium bath surrounding the refrigerator (Bradley et al. [2012]).
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Figure 3.3: A ‘side view’ schematic showing the cell layout for the ‘floppy wire’

The floppy devices are driven into oscillation by the Lorentz force when an AC
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‘drive current’, I0e
ift, is passed through the wire, the amplitude of this driving

force is:

F0 = BDlI0 (3.7)

where B is the magnetic field, and D is the leg spacing of the floppy device. As

the crossbar moves, it produces a Faraday voltage, V , proportional to its velocity,

v:

V = BDlv (3.8)

This voltage is measured by a phase-sensitive lock-in amplifier referenced to the

function generator providing the drive current. The voltage from the function

generator is converted to the drive current using a home made ‘drive box’. The

box has a range of resistors in series with a 100 Ω resistor, this allows for the range

of currents needed. Driving the floppy device over a range of frequencies produces

the expected Lorentzian peak at the resonant frequency, such as that in figure 3.1.

The resonant frequencies in vacuum at 4.2 K for the floppy wire and floppy grid

were found to be 95.82 Hz and 59.55 Hz respectively. Once the resonance is found,

a LabView programme is used to keep the floppy device on resonance by keeping

the out of phase signal to zero. By using this method, the amplitude of the drive

force can be increased and the resulting velocity recorded.

The drag force can be described in terms of the drag coefficient (Morison et al.

[1950]):

F =
1

2
ρv2AxCd (3.9)

where ρ is the density of the helium, and Ax is the cross sectional area of the object

perpendicular to the motion; for the floppy grid this is the solid area of the mesh.

When on resonance, the drive force balances the drag force on the floppy device.

Using equation 3.7 with equation 3.9, the drag coefficient is then calculated and

presented.

30



3.1.1 Low Frequency Measurements

The pick up coils are used to measure the position of the crossbar of the floppy

devices. They can detect small perturbations in the position to a high precision.

A high frequency alternating ‘probe’ current is linearly superimposed on the AC

drive current using a custom-made current source. The result is an induced voltage

in the pick up coils due to the mutual inductance between the wire and the coils.

The probe current is set to a much higher frequency to that of the resonance, about

90 kHz, to ensure it does not induce any additional motion in the floppy device.

Two separate lock-ins record the induced voltage for each coil, a third is used to

record the voltage across a high power standard resistor placed in series with each

of the floppy devices; all three lock-ins are referenced to the high frequency probe

current.

The induced voltage in the coils is dependent on the relative position of the

cross bar of the floppy device. When the floppy device is directly beneath the

coils, it is assumed that it will result in a peak in the signal recorded from the

coil. Likewise, it is assumed that when the floppy device is directly between both

coils, both lock-ins measuring the coil voltages will show the same value. In reality

this is not quite the case because, due to the arcing motion of the floppy device,

when the cross-bar moves directly below the coils it has slightly shifted down, and

therefore this position may not result in the maximum measured signal. The effect

of this, however, is assumed to be negligible. The signal change with respect to

position is demonstrated in figure 3.4, which is used for the calibration.

The distance between the coils is designed, and measured, as 6 mm. It is defined

that ∆IS is the change in steady drive current, I, needed to move the floppy device

from the midpoint of the coils, Im to directly underneath one of them, Ic; the

displacement corresponding to this is ∆X0, a distance of 3 mm (shown in figure

3.4). The drive force on the crossbar will then generate a deflection due to the

effective spring constant k:

F = K∆x (3.10)

31



-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

2

4

6

8

10

12

14

Co
il 

re
sp

on
se

 (µ
V/

m
A

)

DC current (A)

coil#1 
center

midpoint
of coils 

3mm

Grid Position (mm)
0-3.0 -2.0 -1.0 1.0-3.5 -2.5 -1.5 -0.5 0.5

coil#1

coil#2

Figure 3.4: A plot showing the induced voltage in the two pick-up coils with respect
to high frequency DC current. The curves represent slow movements of the floppy
device, moving towards, and away from, coil 1.

where ∆x is the horizontal displacement of the floppy device crossbar, relative to

its equilibrium position. Equating equations 3.10 and 3.7, it is possible to calculate

the distance the floppy device moves, x, from the equilibrium position (the mid

point between the coils) due to the steady state current, I, is:

x =
∆X0

∆IS
(I − Im) (3.11)

The calibration of the pick up coils, to determine position, can then be used to

investigate the frequency dependence of the drag forces on the floppy device, as it

is no longer necessary to work on resonance. A steady drive current is chosen so

that the crossbar is at a position where the coil response is linear. In practice this

is close to the midpoint between the two coils, where the response is linear over a

range of about 1 mm in displacement. The drive current, I0, is oscillated around the

chosen position with any arbitrary frequency, f , producing a sinusoidal modulation

of the coil signal. An additional lock-in amplifier, referenced to the drive current

generator, is used to measure the amplitude and phase of the oscillating coil. The
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oscillating position can be described as:

x0 = xei(wt) (3.12)

where x is the amplitude of the equilibrium position, using equation 3.11, and θ

is the phase shift with respect to the drive current. Particular care is needed to

account for the finite time-constants of the lock-in amplifiers, as these can introduce

additional phase shifts. As the frequency tends towards resonance, the phase shift

tends towards 90◦ and x0 goes through a maximum. At higher frequencies, the x0

drops and the phase shift tends towards 180◦ (Bradley et al. [2012]).

The dissipative drag force on the floppy device produces an average power

dissipated, Q̇:

Q̇ =
1

2
F0v0 sin θ (3.13)

where v0 = fx0 is the velocity resulting from the small oscillations around x0. The

dissipation itself is caused by the dissipative drag force, Fd0 ; therefore the energy

dissipated can also be written as:

Q̇ =
1

2
Fd0v0 (3.14)

giving the amplitude of the drag force on the floppy device for arbitrary frequencies

as:

Fd0 = F0 sin θ. (3.15)
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3.2 Results and Conclusions

3.2.1 Floppy Wire

The measured response, on resonance, for the floppy wire is presented in figure

3.5. These measurements were taken by slowly ramping up the amplitude of

the drive current, at 4.2 K in a vacuum, 4.2 K in normal liquid helium, and at

approximately 4 mK in superfluid helium. The latter temperature could not be

verified as there as no independent thermometer in the experimental cells; however,

it has been shown (Schoepe [2004]) that the response of vibrating objects below

100 mK become temperature independent.
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Figure 3.5: A plot showing the velocity amplitude of the floppy wire, on resonance,
as a function of driving force

At low velocities, the response curve at millikelvin temperatures is similar to

that found in a vacuum. This is as expected; before a critical velocity, the wire

does not interact with the superfluid (there is no measurable viscous damping).

After a critical velocity, there is a transition into the non-linear, turbulent regime.

The curve eventually joins the curve measured in the normal fluid, becoming non-
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linear, which is attributed to vortices and turbulence.

Using equation 3.9, and subtracting the internal drag forces of the wire, it is

possible to show the fluid drag force as a function of velocity; this is presented in

figure 3.6. The internal drag force for the data obtained in normal fluid, at 4.2 K,

was assumed to be the drag force calculated from vacuum data, taken at the same

temperature. However, it is very difficult to measure the vacuum damping at the

low temperature limit due to the lack of thermal coupling. It was assumed that

the response for mechanical oscillators does not change substantially below 4 K,

and therefore the vacuum measurements taken at 4.2 K were subtracted from the

values taken at the low temperature limit. To ensure a precise value was used

however, a multiplicative factor of 0 65 was used, to ensure that the fluid forces

vanish at low velocities.
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Figure 3.6: A plot showing the fluid drag coefficient (the total drag coefficient after
subtracting the vacuum, internal drag), as a function of velocity, for the floppy
wire.

This plot, along with figure 3.5, shows an approximate critical velocity, for the

onset of turbulnce, of 11 mm/s. The fluid drag coefficient, at 4.2 K, is shown to

tend towards a constant of approximately 0 35. This is far from the order unity

expected from classical experiments, though it does agree with results presented
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in Bradley et al. [2009] which were obtained from tuning forks in superfluid at low

and very low temperatures.

Using the method outlined in the previous section, the floppy wire was then

driven at various frequencies; the drag force, inferred from equation 3.15, as a

function of velocity for various frequencies within the range of 9 to 100 Hz. It

was found that there is no significant dependence on the oscillation frequency.

Although, there is a larger spread in the data than originally expected. It is

believed that this is mainly due to remnant vortices left on the wire. The drag

force seems to remain proportional to the squared velocity, up to velocities of

approximately 200 mm/s.
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3.2.2 Floppy Grid

All of the results presented in this this section can also be found in Bradley et al.

[2012]. Figure 3.7 shows the velocity of the floppy grid, as a function of driving

force. As with the floppy wire, the plot shows curves taken in vacuum at 4.2 K, in

normal fluid at 4.2 K, and in superfluid at the low temperature limit.

Also as before, the curve representing millikelvin temperatures follows a linear

regime at low velocities, as the vacuum curve does throughout. At a critical

velocity, the curve then becomes non-linear, joining with the normal fluid curve,

indicating the production of vortices and turbulence.
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Figure 3.7: A plot showing the amplitude velocity of the floppy grid, on resonance,
as a function of driving force

Using equation 3.9, the drag coefficient (for the normal fluid at 4.2 K and for

superfluid at the low temperature limit) as a function of velocity is presented in

figure 3.8. This shows more clearly the transition from the linear to the turbulent

regime for the floppy grid at millikelvin temperatures. At low velocities, the drag

in the normal fluid is dominated by viscosity. The drag coefficient curve for the low

temperature limit, at high velocities, seems to be similar to that in normal fluid.

This indicates that the dissipative turbulent drag for fully developed quantum

turbulence is similar to that of classical turbulence.
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Figure 3.8: A plot showing the (total) drag coefficient of the floppy grid as a
function of velocity amplitude, for helium in the normal phase and superfluid
phase.

The internal drag forces can be subtracted from the data of figure 3.8, to leave

just the fluid drag forces. For the measurements taken at 4.2 K this is straight

forward: the measured response taken in vacuum at the same temperature (figure

3.7), can be subtracted. As before, it was assumed that the response for mechanical

oscillators does not change substantially below 4 K, and therefore the vacuum

measurements taken at 4.2 K were subtracted from the values taken at the low

temperature limit. A multiplicative factor of 1.19 was used, to ensure that the

fluid forces vanish at low velocities.

The drag coefficient of the grid, at 4.2 K and at the low temperature limit, as

a function of velocity, with the internal drag forces subtracted are presented in

figure 3.9. The fluid drag coefficient in normal fluid, at 4.2 K, is shown to tend

towards a constant of approximately 1.6, which is associated with turbulent drag.

The critical velocity, for the sudden onset of turbulence, is shown to be ap-

proximately 3 mm/s, in the low temperature limit. The critical velocity, vc, of

an oscillating sphere has been theoretically shown to be vc ≈
√

8κf (Hänninen

& Schoepe [2008]). For the floppy grid discussed here, this equation results in a

calculated critical velocity of approximately 17 mm/s; this is much higher than the
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value shown in figure 3.9. However, there is most likely a geometry dependence;

the maximum relative velocity between the surface of the oscillating object and

the superfluid is an important factor. The grid mesh used in these experiments

was very thin compared to it’s width and distance travelled; this means that the

local superfluid flow around the edges of the grid will be enhanced, reducing the

measured critical velocity.
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Figure 3.9: A plot showing the drag coefficient of the floppy grid after subtracting
the vacuum drag, as a function of velocity amplitude

With the use of the pick-up coils, and the method described in section 3.1.1,

figure 3.10 shows the velocity of the floppy grid as a function of the amplitude of the

(averaged) drag force for arbitrary driving frequencies. The open circles represent

the floppy grid driven on resonance. The data show reasonable agreement between

the on-resonance response and the response from the position measurements taken

at a range of frequencies. As the drag force remains roughly proportional to the

squared velocity, it can be inferred that the drag coefficient remains constant, up

to approximately 200 mm/s. The main result taken from this plot is that the

response of the grid in the turbulent regime is independent of frequency, over the

range from 9 to 100 Hz.

As previously discussed, at higher frequencies the phase shift of the oscillating
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Figure 3.10: A plot showing the velocity of the floppy grid, with varying frequencies
between 9 and 100 Hz, with respect to the dissipative drag force, in superfluid
helium-4 at very low temperatures.

grid position tends towards 180 ◦. This results in the small errors in the phase

measurement generating large errors in the inferred drag force. Therefore it was

not possible to take any measurements using higher frequencies than the ones

presented in figure 3.10.
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Chapter 4

Linear Motor

The simplest form of turbulence is homogeneous, isotropic turbulence. The closest

approximation to this is grid turbulence. In classical fluid grid turbulence experi-

ments, the grid is held stationary with the fluid flowing through it, mostly within

a wind tunnel (for examples see Roach [1986] and Hideharu [1991]). Superfluid

liquid helium has a very low kinematic viscosity, therefore it is incredibly hard

to have fluid flow of any significant velocity and not produce turbulence, with or

without a grid present. To stop the helium from flowing past any objects, includ-

ing the walls of the channel, and therefore producing unwanted turbulence, the

grid is moved and the superfluid kept stationary.

A constant hurdle in low temperature experimentation is temperature con-

trol; when working at milli-Kelvin temperatures, a very small increase in heat will

change the temperature of the cell/experiment by a large percentage. It is there-

fore desirable that any moving apparatus in superfluid helium does not have any

significant frictional forces involved, as these can produce heat. For small scale

motion and grids with very small mesh sizes, oscillating devices have been used,

such as what was discussed in Chapter 3 (see also Bradley et al. [2012], Bradley

et al. [2011], and Yano [2005]). However if larger mesh values are required, a

larger motion is needed to ensure a sufficient distance from the grid (� M) is

available for homogeneous turbulence to develop. The main motivation for using

a linear grid however, is the hope that it will produce turbulence which is more
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homogeneous and isotropic.
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Figure 4.1: SolidWorks drawing of the motor, including the channel, the
quadrupole bearings, the position sensor, and the niobium actuator with the ex-
tension rod and grid attached. The Second sound transducers and channel are
shown, but not discussed in this chapter.

For experiments done at 1 K and higher, a linear motor attached to a pulley

system outside of the cryostat has been used (Stalp [1998]), the heat from which is

negligible at these relatively high temperatures. However at milli-Kelvin tempera-

tures this type of machinery is likely to create too much of a heat leak. Therefore

a linear motor was designed with a levitating superconducting rod which is moved
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via electromagnetic repulsion from a magnetic field produced by a solenoid, pre-

cluding any mechanical dissipation. The rod, or armature, has a grid attached to

one end and is centred using quadrupole magnetic bearings ; a full schematic of the

motor is shown in figure 4.1. The details of this motor are described below.

The channel and second sound transducers are included in figure 4.1, these are

discussed in chapter 5; the channel is the experimental volume in which turbulence

is produced by the grid, the turbulence decay is then observed using a second sound

resonance. The second sound wave and decaying turbulence is discussed in the next

chapter.

4.1 Principles of Operation

Superconducting linear motors were developed through a collaboration between

Lancaster University and the University of Florida (the details of which can be

found in Giltrow et al. [2009] and Liu et al. [2006]). Both of these motors operate

through the same basic principles; magnetic levitation using a superconducting

armature, and one or more spatially fixed field coils. Though the practical oper-

ations were subtly different, neither of these systems gave the amount of control

and velocity stability needed. The earlier linear motors used short solenoids to

maximise the field gradient, the next iteration of motor design, known as the in-

ertial motor, used one long solenoid achieving a substantial sustained force over

time. The principles and theory of the final control motor design are a direct

continuation from the inertial motor; it is therefore pertinent to discuss the latter

before the former.

4.1.1 Inertial Motor

The inertial motor, described fully in Thompson [2012], maintained a magnetic

contact with the armature throughout the entire motion. The single solenoid, or

the drive coil, was 55 mm in length, had a radius of 7.55 mm, and had 4 wound

layers of Cu clad NbTi wire. The armature was made up of two pieces of supercon-
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ducting material, of lengths 78.6 mm and 43.2 mm (the red parts of the rod shown

in figure 4.2), spaced apart by a 96.4 mm piece of fibreglass epoxy material known

as G-10 (the blue part of the rod in figure 4.2). The superconductor used was in

the form of hollow tubes of 99.9 % pure niobium. The top piece of Nb was placed

within the drive coil and used to move the armature. Two quadrupole magnets

were used at the ends to centre the Nb and an inductive position sensor was placed

at the bottom end, surrounding the lower, second piece of Nb (the position sensor

is discussed further on in this chapter). The set-up is shown in figure 4.2.

Figure 4.2: Diagram of the Inertial Motor, including a schematic of the shunt
resistor placed in parallel.

This was the previous motor used, and the basis for the Control Motor.

The magnetic field, B, generated by the drive coil is approximated by an infinite

solenoid approximation:

B = µ0nI (4.1)

where µ0 is the permeability of free space, n is the turn density, and I is the current

in the coil. The assumed B-field, for an infinitely this solenoid, as a function of

z-position is shown in figure 4.3. In reality the end effects of the solenoid will

result in a curve to the corners of the field depicted here.

As the Nb armature will already have been cooled well below the critical tem-
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Figure 4.3: Diagram showing the theoretical B-field for the inertial motor, for an
ideal case with a perfect, infinite solenoid. Thompson [2012]

perature, Tc, once a current is passed through the drive coil, and therefore pro-

ducing a magnetic field, the magnetic flux within the armature will be expelled.

Through this repulsion, the armature feels a driving force in the z-direction due

to the Meissner effect. The magnetic energy displaced by a superconductor is

dependent on the magnetic field, the volume of the expelled field, V , and the

permeability of free space:

EB =
B2V

2µ0

=
B2Axz

2µ0

(4.2)

where Ax is the cross sectional area of the superconducting armature, and z is the

displacement of the armature within the coil. Given that force, F = − d
dz
EB, and

integrating along the length of the superconductor, it is possible to show the total

force on the armature due to the Meissner effect, assuming that the B-field inside

of the superconducting tube is always zero and the upper Nb tube is part way

through the drive coil:

FM =
Ax
2µ0

B2 (4.3)

The only dissipative force on the armature is the fluid drag. This cannot be relied

upon to sufficiently damp the motion, therefore an additional damping mechanism
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is introduced: a shunt resistor, depicted as R in figure 4.2. The fluid drag force,

dependent on the cross sectional area (or the area of the attached grid), the density

of the fluid, ρ, and the velocity, v, will contribute to the total force; although this

is negligible compared to the shunt resistor dissipation. Substituting equation 4.1

into equation 4.3 and including gravity, the final equation for the force on the

armature is:

F =
1

2
Axµ0(nI)2 −mg (4.4)

The Faraday voltage, or EMF, ε, caused by the armature moving through the

coil will cause a retarding force, directly opposite to the upward force due to the

Meissner effect. The EMF is defined as the rate of change of flux:

EMF = −dΦ

dt
' −BAxn

(
dz

dt

)
(4.5)

where n is the turn density of the solenoid. Therefore, the power dissipated, Q̇,

which is equal to the work done, W , of the armature can be written as:

Q̇ =
ε2

R
' B2A2

xn
2v2

R
(4.6)

where v is the velocity of the armature, and R is the resistance of the circuit. The

work done of the system is defined as W = FD · v, and hence the drag force, FD,

can be described as:

FD '
B2A2

xn
2

R
· v (4.7)

If the resistance of the circuit is small enough, for example by adding a shunt

resistor in parallel like the one shown in figure 4.2, then the system will be critically

damped.

With no current in the drive coil, the armature rests on a bottom plate. At the

start of the motor motion, enough current is sent through the solenoid so that the

Meissner force exactly cancels out gravity, i.e. on the brink of motion. After this
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is established, the drive coil current is increased to produce a lifting force. By the

design of the motor, the armature will accelerate until the Faraday drag exactly

cancels out the applied force, after which the motor should move with constant

velocity.

Experimental tests were done at 1K, by K.J. Thompson, of single movements

of the inertial motor, there was no grid attached to the armature (Thompson

[2012]). However the inertial motor could only obtain speeds of about 8 cm/s before

oscillations were routinely observed at the end of the motion. This was attributed

to a very weak magnetic potential well, as in practise the magnetic profile is not

a perfect ’goalpost’ shape, in fact there is a very small physical position when the

profile is completely straight. Therefore a new design was developed which has a

well defined magnetic field gradient, rather than the field itself - the control motor.

4.1.2 Control Motor

To have a controllable, variable velocity the new motor needed to allow for a

constant rate of change in the drive coil current, while maintaining a large enough

potential well so the armature will move smoothly.

The magnetic field inside of an arbitrary coil is defined as:

B(z) = µ0nIC(t)P (z) (4.8)

where IC(t) is the current in the drive coil and P (z) is a function of z describing

the strength of the magnetic field. It is now possible to write equation 4.4 in terms

of an arbitrary B-field:

F =
1

2
Axµ0n

2I2
C(t)P 2(z)−mg. (4.9)

The desired design of the coil is one which P 2(z) = ac − bcz, where ac and bc are

approximate constants set by the construction of the coil, the force becomes:

F =
1

2
Axµ0n

2I2
C(t)(ac − bcz)−mg (4.10)

47



By integrating the force, it can be shown that the energy is a positive parabolic

potential well as a function of z, as opposed to the previous Inertial motor design.

Using the boundary conditions of z = 0 and t = 0, it can be shown that:

IC(0) =

√
2mg

µ0An2ac
(4.11)

where IC(0) is the current in the drive coil such that FM and gravity are in perfect

balance. A small increase is current is then applied to the motor such that:

IC(t) = IC(0) + γt (4.12)

The equation of motion, without damping, then becomes:

mz̈ =
1

2
µ0Axn

2(IC(0)2 + 2γtIC(0) + γ2t2)(ac − bcz)−mg (4.13)

By ignoring higher order terms, equation 4.13 becomes:

mz̈ +
1

2
µ0Axn

2bcIC(0)2 · z = µAxn
2γacIC(0)2 · t (4.14)

The solution to the above equation is:

z(t) =
2acγ

bcIC(0)
·t+C1 sin(ft)+C2 cos(ft) where f =

√
µ0Axn2bcIC(0)2

2m
(4.15)

and C1 and C2 are constants dependent on the initial conditions; setting the initial

conditions z(t = 0) = 0 and ż(t = 0) = 0 the solution to the equation of motion

becomes:

z(t) =
2γac
bcI0

(
t− sin ft

f

)
(4.16)

This describes a linear ramp in z with a sin wave superimposed. The natural

equilibrium oscillation frequency, f , defined in equation 4.15, can be matched using

a dissipative shunt resistor in parallel with the drive coil, so that the sinusoidal
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motions are critically damped. The frequency of the dissipation circuit, R/L, is

matched to the mechanical oscillation frequency of the armature. It was found

through trial and error that a shunt resistance of 0.1 Ω critically damped the

system.
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4.2 Design and Construction

It was decided two solenoids with opposing magnetic fields, coiled around the

existing drive solenoid, would give the desired magnetic field profile and therefore

the energy potential well needed for stable motor movements.

Using trial and error with multiple calculations in Mathematica, varying the

turn density, length and the radius of the outer coils, an ideal arrangement was

determined. This arrangement included a centre adjustment coil. The arrangement

decided upon is shown schematically in figure 4.4, with the drive solenoid in the

centre; hereafter the outer coils shall be referred to as the control coils. The control

solenoids were wound using a coil winder to the specifications described in figure

4.4; the previous ‘inertial motor’ solenoid was used as the drive solenoid. The three

control coils are connected in series and are designed to have the same, constant

current.

Radius of Drive Solenoid = 7.55mm
Radius of Control Solenoids = 22mm

4
8

m
m

2
4

m
m

20 layers

2 layers

13 layers

11mm

17mm

12mm

Figure 4.4: A cartoon for the control and drive solenoids design, including dimen-
sions and number of layers in each coil.

Figures 4.5 and 4.6 show the magnetic field profiles for the three separate coils,

and the total theoretical magnetic field, respectively. The latter plot shows an
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almost constant gradient for approximately 40 mm; the length within the channel,

within which the grid can move, is 1.6 in (40.6 mm). Therefore, with a slight

allowance for the curve at the ends, a linear input current profile should provide

a constant velocity throughout the movement of the armature. Care was taken

to ensure that the bottom of the upper piece of niobium was placed so that the

actuator only moved within the linear region.
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Figure 4.5: A plot from mathematica showing theoretical magnetic fields from
each outer coil separately, as a function of z-position.

Figure 4.6: Computed magnetic field from all outer, control coils with respect to
position, assuming a constant applied current

With this design, the control coils are kept at a constant current and the current
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through the drive coil is changed at a linear rate. This results in the Nb armature

constantly lying at the bottom of the potential well, while the well itself moves

up and down the z-axis, in accordance with the current in the drive coil. Figure

4.7(a) shows a photograph of the fully constructed motor; the drive coil cannot be

seen as it is surrounded by the control coils. Figure 4.7(b) is a schematic of the Nb

actuator, showing the two superconducting parts, the G-10 spacer, the extension

rod, and the grid on top. The extension rod is a cylindrical piece of G-10, which

attaches the actuator to the grid while still being thin enough to slip through a

small hole in the bottom cap of the channel.

(a) A photograph of the
motor, sans channel
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(b) The Nb actuator with the ex-
tension rod and grid

Figure 4.7: A photograph of the constructed motor (from top to bottom: heat
exchanger plate, quadrupole bearing, control coils, bottom quadrupole bearing,
position sensor, and bottom plate) and the Nb actuator with dimensions, including
the extension rod and grid.
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4.2.1 Quadrupole Bearing Magnets

Above and below the coils are the quadrupole bearings, each one is comprised of

four coils connected in series arranged in such a way so that each opposite coil

have the same polarity, as shown in figure 4.8.

B=0

Figure 4.8: A schematic of the quadrupole bearing magnets, with field lines. The
positive and negative signs represent polarity.

The purpose of these bearings is to centre the Nb actuator; the magnetic field

lines are so that the energetic minimum is in the centre. This means that the

superconducting tube will expel the field laterally from the centre, in all directions;

resulting in no movement of the actuator in the x or y-axis. Figure 4.9 shows a

photograph of the quadrupole bearing magnets used.

4.2.2 The Position sensor

Also shown, at the bottom, of figures 4.7(a) and 4.1 is the inductive position

sensor. The position sensor is a 1.5 in superconducting coil, figure 4.10 shows a

photograph of the inductive coil. As the niobium moves into, or out of, the centre

of the position sensor, the magnetic susceptibility, χ, of the coil changes resulting

in a change of the inductance, L:

L = (1 + χ)A
µ0N

2

l
(4.17)
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Figure 4.9: A photograph of the quadrupole magnets used to centre the niobium
actuator, each coil is screwed into a single brass holder for each set of bearings.

Figure 4.10: A photograph of the 1.5” inductive position sensor, wound with a
covering of GE varnish.
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where N is the number of turns, A is the cross sectional area, and l is the length

of the coil. The change in inductance is then measured and, using a calibration,

the position calculated. For the calibration, the inductance was measured using

an Agilent 4263B LCR bridge; the calibration data for the inductive position

sensor is presented in figure 4.11. The calibration was taken by attaching the

armature to a winch with a known turn to length conversion. The winch was

turned incrementally, and the inductance of the position sensor recorded.

Figure 4.11: The calibration data for the 1.5” inductive position sensor Thompson
[2012].

This data was taken by Kyle Thompson using an LCR bridge, three separate
frequencies were recorded for each point on the z-axis.

The armature started at the bottom of the position sensor, with the top of the

upper piece of Nb in line with the bottom of the coil. As the armature moves fur-

ther into the coil, the magnetic field inside decreases, and therefore the inductance

decreases. Once the armature is completely inside the position sensor, there is a

minimum in the inductance, as observed in figure 4.11. As the armature continues

to move up, and out of the coil, the magnetic field and inductance return to their

initial values.

After the calibration had been recorded, the inductance was measured using a

(variation of a) Wheatstone bridge. The reason for this is that a Wheatstone bridge
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records the inductance, and therefore the position, to a much higher precision. The

electrical circuit for recording the position via the Wheatstone bridge is shown in

figure 4.12

Figure 4.12: The electrical circuit for the inductive position sensor, LPF is a low
pass filter.
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4.3 Experimental Tests

The motor and other components were submerged in liquid helium inside of a

cryostat; using evaporative cooling the cryostat has a base temperature of about

1.2 K. The tests described below were done at this base temperature, without any

extension rod or grid attached to the Nb actuator.

The quadrupole magnetic bearings and the control solenoids were supplied

with a current using two Harrison 6203B power supplies, the current of which

was measured as a voltage across a 0.1 Ω resistor in parallel and recorded using

a NI LabView programme, via a National Instruments USB 6009 box. The drive

solenoid current supply was controlled manually through the computer and am-

plified by a Kepco 36-5M B.O.P, again the voltage was measured across a 0.1 Ω

resistor and recorded by the software. The output voltage from the Wheatstone

bridge, measuring the position sensor, was recorded using the circuit shown in

figure 4.12, a Stanford Research Systems SR830 lock-in with a probe frequency of

1 kHz.

Control Coils
Control Coils

Figure 4.13: A plot showing two similar motions of the motor with 2 different
currents through the control solenoids.

A number of different control coil currents and quadrupole currents were in-
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vestigated to determine the optimal combination for motor motions. An example

of such a test is presented in figure 4.13, for this test a current of 1.5 A was passed

through the quadrupole bearings and the same drive coil current linear ramp was

used. Through numerous tests and trial and error, it was determined that a

quadrupole bearings current of 1.5 A, and a control coils current of 2.8 A were the

ideal values for motor motions. A selection of different values for the shunt resistor

were also tested; it was determined that a resistance of 0.1 Ω critically damped the

system.

Presented in figure 4.14 are different velocities, plotted as position as a function

of time, achieved by the motor using the ideal current values discussed above. This

plot shows that the motor motion is very smooth, with no oscillations. The highest

velocity of 32 cm/s presented here shows oscillations at the end of the motion.
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Figure 4.14: A plot showing five different velocities achieved using the control
motor, as a position as a function of time. The current applied to the control coils
and quadrupole bearing were kept constant at 2.8 A and 1.5 A, respectively.

Figure 4.15 shows the velocity as a function of position for the motions pre-

sented in figure 4.14. This plot shows that, even though the motions are smooth

and without oscillations, the velocity is not constant for a substantial distance.
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The acceleration and deceleration periods are too long.
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Figure 4.15: A plot showing different velocities achieved using the control motor,
as a velocity as a function of position.

These results show that the control motor design produces smooth motor mo-

tions with little to no oscillations; although the velocity is not constant throughout.

Compared to results presented in Liu et al. [2006] and Thompson [2012], it is con-

cluded that the control motor is a better design.
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Chapter 5

Second-sound Attenuation

The turbulence is produced in a 1 cm2 cross-sectional channel within stationary

helium-II, by means of a gird moved by the control motor described in the previous

chapter. The attenuation of second-sound (SS) is used to calculate the vortex

line density, and therefore vorticity, of the decaying turbulence following a single

pass of the grid. The SS is excited, and detected, by using oscillating, superleak,

capacitive transducers. The channel and transducers are home-made, the detailed

drawings for the channel can be found in Appendix A.

5.1 Second-sound Transducers

The inspiration for the basic design of the transducers were found in 1970, Sherlock

& Edwards [2003]: an exploded schematic of the final design is shown in figure 5.1.

A length of copper clad wire is soldered onto the base of the brass electrode, as can

be seen in 5.1, and secured using Stycast 1280 in the protruding part of the channel

connection plate. This wire is then attached to the inner core of a coaxial cable,

the earth of which is electrically connected to the outer wall of the channel. The

channel with the SS transducers installed, including the coaxial cable, is shown in

figure 5.2. The inside of the channel (the experimental volume) is 4.1 cm long with

a 1 cm2 cross-sectional area.

The oscillating part of the transducers is a 0.2 mm thick, slightly larger than the

brass ring, piece of Sterlitech polycarbonate membrane filter, with 0.2µm pores
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Brass Ring

Brass Electrode

Plastic Base

Channel Connection Plate

Cu Clad Wire

Figure 5.1: An exploded view of the SS transducer design.
From top to bottom: The brass ring, the brass electrode with teflon tape around
to insulate from the brass ring, the plastic base, and the channel connection plate.

Figure 5.2: A photograph of the channel with SS transducers installed. Shown in
this photo is the channel, with the home-made coaxial cable protruding, and the
top of the top quadrupole bearing.
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and a 500 Å coating of gold. The membrane is attached to the brass ring with

Stycast 1266; a slight overlap of membrane is left around the outside of the brass

ring which presses against, and therefore electrically connects, to the channel wall

once the transducers are inserted. Once the channel and transducers are fully

constructed, the membrane is in-line with the inner wall of the channel. When

the first set of experiments were carried out, there was a 1 mm gap between the

channel wall and the membrane, as in Stalp [1998], though it was found that this

caused distortions in the SS wave and therefore the design was changed.

The membrane pressed against the brass electrode along with the outer gold-

plated side pressed against the channel wall, create a capacitor. Oscillations of one

of the superleak membranes (the transmitter) is induced by applying an AC signal

to the brass electrode. As the normal fluid flow is governed by viscosity, this re-

sults in the excitation of a second-sound wave propagating across the channel. The

second-sound wave induces an oscillation in the second membrane (the receiver),

which is situated directly opposite. The AC voltage from the receivers brass elec-

trode is recorded and therefore the SS wave measured. To ensure the membranes

only oscillate at the desired AC frequencies, a DC bias voltage is applied to the

gold side of both membranes, keeping the membranes taught.

Figure 5.3 shows the full experimental insert, including the motor. The insert is

then completely submersed in liquid helium and cooled to the desired temperature

by pumping on the free surface. The channel has caps on the top and the bottom,

though it is not leak tight; this is to ensure that there is no large scale turbulence

which may affect the data. Inside the dewar, all wires used are twisted pairs of

teflon coated copper wire, with exception to the transducer wires which are home-

made coaxial cables. Outside of the dewar all electrical signals are carried through

standard coaxial cables of varying length. Great care was taken to ensure that all

grounds were accounted for and sufficient.
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Figure 5.3: A photograph of the complete experimental cell, including the channel
with SS transducers installed, the control motor, the quadrupole bearings and the
heater base plate.
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5.2 Experimental Operation

To be able to record the attenuation of the SS signal, it is first apropos to scan

through a set of AC frequencies to find an appropriate SS resonance peak. An AC

signal is sent from a function generator to the transmitter, inducing oscillations

and therefore a SS wave within the liquid. The receiver then oscillates in response

to the induced SS wave, the resulting AC signal from which is picked up by a

lock-in, via a pre-amplifier, referenced to the original AC signal from the function

generator. A computer records the modulus of the SS signal. Figure 5.4 shows the

circuit described, the lock in amplifier used was a Princeton Applied Research 124A

and the function generator used was a Hewlett Packard 3325A. The pre-amplifier

is home-made.

Figure 5.4: Frequency scanning electrical circuit, used to find a resonance SS peak.
(JY)

A frequency sweep is controlled remotely using a LabView programme. A plot

like the one shown in figure 5.5 is produced and an appropriate peak, the peak

within the sweep with the largest Q-value, is chosen(for all data taken, the reso-

64



nance chosen was 23kHz < fss < 28kHz). Another sweep is then taken starting

just before, and ending just after, the desired resonance peak. The resulting plot

is fitted to a Lorentzian, care is taken to ensure that the phase is correct, and

therefore the errors on the fit are small. A single resonance peak and Lorentzian

fit are shown in figure 5.6. The centre peak frequency, the full width at half max

(FWHM), ∆0, and the correct phase (found through trial and error) are noted from

the Lorentzian fit. These values are needed for the SS tracking (which is explained

in the next section), and for the vorticity calculation described in the last section

of chapter 2. The resonances are well reproduced through all temperatures.
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Figure 5.5: A plot of a SS amplitude as a function of frequency showing several
SS resonance peaks around the 25th harmonic.

A range of DC bias-voltages and AC voltages were examined, and their resulting

SS amplitudes measured to determine the optimal settings. A DC value of 125 V

and an AC voltage of 6 V were shown to produce the largest signal, while remaining

in the linear regime of the SS amplitude. Figure 5.7 presents the measured SS

amplitudes for different AC signals, showing that 6 V is the optimum AC value.
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Figure 5.6: A plot of a second-sound resonance, shown as amplitude as a function
of frequency, with a theoretically calculated Lorentzian fit over-laid
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Figure 5.7: SS signal as a function of AC voltage applied to the transmitter trans-
ducer, by the function generator. This plot shows a linear relationship upto ≈ 6 V.

66



It is quite important in any low temperature experiment to have an effective

mechanism for controlling and stabilising the temperature to a high degree of

accuracy. A heater plate is suspended at the bottom of the apparatus, wound

around the diameter of the plate is 15 m of 12.2 Ω/m resistance wire Yang et al.

[2014]. A platinum RTD 100 resistance thermometer is thermally connected to

the top side of the plate; the heater plate can be seen at the bottom of figure 5.3.

There is also a ruthenium oxide resistance thermometer placed at the half way

plate, as is shown at the top of figure 5.3, directly above the channel. The heater

plate was also used to hasten the warm-up of the dewar, the mechanism for which

is fully described in Yang et al. [2014].

Figure 5.8: The electrical circuit used to regulate the temperature in the helium
bath, within the cryostat. (JY)

To achieve and sustain a certain temperature, the electrical circuit shown in

figure 5.8 was implemented. The thermometer’s resistance is recorded by a RV

Elektroniikka Oy resistance bridge AVS-46, the bridge sends an analogue DC sig-

nal of the temperature (in K) to a home-made PID LR-130. A Kepco Bipolar

Operational Power (BOP) 36-5M receives a DC signal and releases a (adjustable)

portion of the current to the heater. The PID is calibrated and the value of the

time constant set to optimise the correction of the temperature should it change;

it is important to have a quick reaction time as the temperature can change due
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to turbulence during experiments. The temperature can also be recorded using a

computer as well as simply monitored using the digital screen on the resistance

bridge. When the grid is stationary, the temperature is stable to 1 mK precision.

During and directly after a motor movement, the temperature fluctuations become

larger (up to 10 mK variance) due to ohmic heating from the motor coils; the cor-

rection time for these fluctuations vary with the initial temperature due to the

temperature dependence of the thermal conductivity of helium-II.

5.2.1 Feedback Circuit

Vin Vout

Figure 5.9: second-sound signal feedback circuit, insert shows the circuit within
the AGC box. Dotted area represents the cryostat, the red box indicates the gain
of the circuit. (LM+JY)

Phenomena which result in a change in second-sound (SS) amplitude can some-

times cause a shift in the resonant frequency of the SS peak, whether it is due to
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the slight amount of heat input from moving the motor, or due to the turbulence

generated. Therefore it is critical to track the resonance through any increase or

decrease in SS attenuation due to turbulence. To do this a frequency-tracking

feedback circuit was designed by Dan Ekdahl, an electrical engineer at the Uni-

versity of Florida. The diagram for the electrical circuit is shown in figure 5.9.

The lock-in amplifier used is a Princeton Applied Research, PAR 124A, the power

amplifier is a PAR 113, and the pre-amplifier and automatic gain control (AGC)

are home-made boxes (the circuits for each are shown in the main diagram and

the insert of figure 5.9, respectively).

The circuit works by exploiting the two Barkhausen conditions for oscillation,

with the SS resonance being the source of the oscillations in the circuit. The

reader is advised to read Millman & Halkias [1972] for a full understanding on

Barkhausen criteria for an analogue circuit; a brief description is given below.

The Barkhausen criterion states that if G(f) is the proportional function (gain)

of a circuit, and H(f) is the transfer function of the feedback part of the circuit,

then the circuit will sustain steady-state oscillations only if:

• The magnitude of the loop gain is equal to unity: |H(f)G(f)| = 1, and

• The phase shift around the loop is zero, or an interger multiple of 2π.

If either of these criteria is violated, the the circuit will correct itself by an increase

or decrease in the gain of an amplifier. This means that any loss or attenuation in

the system, H, will be exactly compensated for by the proportional error term, G.

Both G and H are functions of frequency, f . In practical linear control systems,

the ratio of the output voltage, Vout, to the input voltage, Vin, describes a

closed loop process, with the feedback inverted and summed with the input. This

is shown mathematically in figure 5.10 and by equation 5.1

VOut/VIn =
G(f)

1 +H(f)G(f)
(5.1)

In the diagram shown in figure 5.9, G(f) is the area within the red box and

H(f) is the dotted box, the second-sound cavity in the helium-II. It should be
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G(f )

H(f )

Figure 5.10: Mathematical representation for an electrical circuit with steady-state
oscillations

noted that G comprises all of the amplifiers, including the lock-in signal channel.

Vin and Vout are also indicated in figure 5.9 by arrows. Therefore, if the total

gain of all the amplifiers exactly equal the inverse of the SS attenuation in the

liquid helium-II, such that the product |H(f)G(f)| = 1, and the output signal is

inverted from the input (180 ◦), then the Barkhausen criteria for oscillation are

both met.

The closed loop circuit that has been set-up has a very high Q-value (ratio of

resonance peak frequency to bandwidth), resulting in the system always oscillating

on a resonance peak. The desired resonance peak is first determined using a

frequency sweep, as described previously, and the resulting ideal frequency set on

the signal channel dials of the lock-in. The signal channel Q-value is then set to its

highest value (100), so the neighbouring peaks are excluded from the loop. If the

resonance peak frequency is found to shift substantially, then the signal channel

Q-value may need to be lowered once the oscillations are initiated, to allow for

adequate frequency tracking; however it was found that this was not necessary.

Care is also needed to ensure that the other components of G, such as the pre-

amplifier and the power amplifier, do not restrict the bandwidth of the loop in any

way.

To initiate oscillations, the lock-in signal channel sensitivity is gradually in-

creased until an appropriate level of gain is found to sustain stable oscillations.

It is noted that the oscillations would not start at all without noise or random
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fluctuations in the system; the system is designed to find the noise at the desired

frequency and amplify it. An oscilloscope is placed just after the power amplifier,

to determine when there are steady state oscillations. To ensure a large signal to

noise ratio, the loop is operated within the linear regime of the SS signal (the linear

regime is explained in the next section). This is ensured by first calibrating the

AGC to match the function output of the lock-in amplifier when running within

the linear regime.

Turbulence introduced into the helium-II will cause an attenuation in the SS

signal, as well as a slight frequency shift; as the turbulence dissipates the SS signal

returns to its original value. The output of the lock-in, the value that the computer

records, is the DC value of the peak to peak amplitude of the SS resonance; so

when there is turbulence, the SS DC signal will be the attenuation. This signal is

also fed back to the AGC, which in turn will adjust the gain such that the loop

gain always remains unity. This process is separate from the frequency tracking,

which is done simply by appropriate settings of the lock-in sensitivity, reference

frequency, and Q-value.

5.2.2 Experimental ‘run’ Procedure

All of the data presented in the next section are averages, mostly over 5 motor

movements (or sweeps of the grid). The current in the control coils and in the

quadrupole bearings were kept at a constant 2.8 A and 1.5 A, respectively. A

complete motor motion consisted of increasing the current in the drive coil, at a

set rate, until the grid was as close to the top of the channel as limitations allowed

(unless otherwise stated). The motor was held stationary for a set time, at which

point the current was decreased at the same rate until the grid had reached its

initial position, which is always resting on the base plate. A number of different

wait times were investigated for three separate grid mesh designs. The motor was

moved using the procedure outlined in chapter 4.

The SS signal and the grid position from one sweep down of the motor is

shown in figures 5.11(a) and 5.11(b), respectively. For the purpose of calculating

71



vorticity and plotting the resulting graphs, a correct and precise zero time, t0, is

very important. t0 is calculated from the a position as a function of time, it is

taken as the physical position within the channel when the grid is at the bottom

of the transducers. Therefore all of the attenuation of the SS signal after t0 is

assumed to be only due to quantum turbulence. The zero time with respect to

the position and the SS attenuation is indicated on both figures in 5.11 by a red

arrow. Care was taken to ensure that the slight variations of the resting position

of the grid, both at the top and bottom of the channel, was noted and considered

when calibrating the position of the grid, and therefore the zero time point. These

variations could be due to shifting resting positions from a warm-up/cool-down or

any slight change to the gain on the signal current to the drive coil.

Figure 5.12(b) shows a plot of SS signal against position; figure 5.12(a) shows

the raw data of the SS signal and the position as a function of time, the aver-

age velocity is 0.4 cm/s. At this speed it is explicitly assumed that there is no

turbulence produced by the moving grid. This is done as a verification that the

t0 is taken at the correct position as it shows that once the grid has passed the

transducers, any attenuation to the SS signal will not be due to the grid/motor.

It also verifies the assumption that there is no attenuation to the SS signal from

the grid position before it reaches the transducers, in fact not until the grid is

about half way through them. While the grid is up, and past the transducers, the

extension rod is attenuating the second-sound signal, as it is physically between

the transducers.
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(a) A typical SS signal as a function of time, showing raw attenuation
data
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Figure 5.11: Typical SS attenuation data with corresponding motor movement.
The motor was swept down, past the transducers.

Red dotted lines showing straight lines on both plots, Red arrow indicates t0
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(a) The SS signal and position as a function of time.
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(b) The SS attenuation as a function of position.

Figure 5.12: The SS attenuation as a function of position, with corresponding
SS signal and position as functions of time, for a motor sweep up, held for two
minutes, then swept back down past the transducers.

Red dotted lines indicating the transducer position, the arrows indicate the
direction of the attenuation, for the up sweep and down sweep of the grid,

respectively.
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5.3 Results and Discussion

Presented in this section are the experimental results for the decay of quantum

turbulence. The three different grid meshes used are shown in figure 5.13 (for a

photograph of the grid frame with the Lancaster fine mesh attached, please see

figure 5.20), the results for each are discussed separately with comparisons made at

the end of this chapter. All three grids have an 8.4 mm2 × 8.4 mm2 cross sectional

area. The distance between the edges of the grid and the inner wall of the channel

is 1.6 mm, for each separate grid. The extension rod is connected perpendicularly

to the centre of the grids in such as way so that no grid holes were covered or

hidden (for Mesh 1, the top of the extension rod fitted into the centre circle). The

vorticity has been calculated from the attenuation of the SS signal, using equation

2.29 discussed in section 2.5, the constants for which are taken from Donnelly &

Barenghi [1998]. The attenuation at zero vorticity, A0, also needed for the vorticity

calculation 2.29, is calculated by averaging over 1 minute before each separate set

of motor motions.

(a) ‘Stalp Grid’ - Mesh 1 (b) 8x8 Grid - Mesh 2 (c) Frame to hold Lan-
caster mesh - Mesh 3

Figure 5.13: The three grids used in the second-sound experiments

All vorticity graphs are plotted in log-log scale to appreciate the power law

dependencies. Each plot also shows red and green dotted lines representing a t−3/2

and a t−11/10 relationship, respectively, the explanation for which are detailed

below.

The t−11/10 dependency is the expected variation when the energy containing

length scale is not limited by the size of the channel, and assuming that the early
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time turbulence is Saffman turbulence - the small wavenumber part of the energy

spectrum goes as E(k) = Ak2. By integrating the total energy spectrum in 3D,

and using the relationship ε = νω2, shown explicitly in Skrbek & Stalp [2000], it

is possible to derive the expected vorticity decay at early times as a function of

time, t:

ω<(t) =

(
11

5

)11/10
C9/10A1/5

√
ν ′

(t+ t0)−11/10 (5.2)

where D is the width of the channel, ν ′ is the kinematic effective viscosity, C is the

Kolmogorov constant (=1.5), and t∗ is the time needed for the decaying vorticity to

reach saturation (Stalp [1998] and Chagovets et al. [2007]). The reader is reminded

that saturation is assumed to be the point when the energy containing length scale

is fixed at the size of the channel, i.e. l ∝ D.

Once the energy containing vortices reach saturation, at the size of the channel,

the vorticity decay as a function of time changes. This also assumes that there is

a finite wavenumber for which the energy will be completely dissipated.

ω = κL =
D

2π
√
ν ′

(3C)3/2(t+ t∗)−3/2 (5.3)

The effective kinematic viscosity arises from the difference between a classical

turbulent system and a quasi-classical turbulent system. Liquid helium-II in the

temperature range 1K < T < Tλ follows the two fluid model, described in chapter

2. On length scales larger than inter-vortex spacing, l, the normal fluid and su-

perfluid components can act as a single fluid with a Kolmogorov spectrum; thus a

temperature-dependent effective kinematic viscosity is allowed (Vinen & Donnelly

[2007]).

It is also argued in Skrbek et al. [2000] that there are two other possibly ob-

servable regimes in the vorticity decay. However it was felt that the data obtained

by the experiments discussed in this chapter were not clean enough to attempt an

analysis to investigate these other two regimes.
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5.3.1 Mesh 1 - ‘Stalp Grid’

The design for this grid is the same as the grid described in Stalp [1998], though

it was originally published by Smith et al. [1993]. As the goal of this set of

experiments was to investigate the effects of different grid meshes on the line

density of decaying turbulence, it made sense to at first try to reproduce results

previously published (Skrbek et al. [2000], Stalp & Niemela [2002], and Stalp

[1998]).

Figure 5.14 shows the vorticity as a function of time for Mesh 1 at a tem-

perature of 2.0 K. The data acquisition rate for these data was 24 pts/s, though

those points were collected in 6 equally timed packets of 4 pts. The reason for

this was an unfortunate problem encountered while programming the data acqui-

sition software; the problem was rectified during experiments with Mesh 2. Due

to time constraints this data for Mesh 1 was not re-taken after the appropriate

programming solution was implemented.
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M e s h  1 ,  V e l o c i t y  ~  1 5 c m / s ,  T e m p  =  2 . 0 K

Figure 5.14: A plot showing the best vorticity data obtained with Mesh 1, as a
function of time.

The wait time, the time the motor rested before sweeping back down past the

transducers, was 5 minutes for this data set, though after 30 seconds the vorticity
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becomes just noise, as the turbulence has completely decayed and the SS attenua-

tion has returned to its initial value. A comparison of this data, along with similar

plots from Mesh 2 and Mesh 3, with a plot from Stalp et al. [1999] is shown in

figure 5.33, section 5.3.4.

As previously discussed, t0 was determined from the time that the grid was at

the bottom of the transducers, as deduced from the motor position sensor signal,

discussed in section 4.2.2. It took approximately 60 ms for the grid to pass the

transducers, this small amount of time would have no effect on the shape of the

vorticity curve, a shift of 0.5 s would be needed to see a significant difference.

The data presented in this section, with Mesh 1, are very preliminary data and

therefore only one sample is presented. It was decided that the vorticity curves

calculated from grid motions using Mesh 1 are not entirely accurate and cannot

be characterised, and therefore no conclusions drawn from them.

5.3.2 Mesh 2 - ‘8x8 Grid’

Mesh 2, shown in figure 5.13(b), has the same transparency as Mesh 1: 67%. The

data acquisition was 100 points per second, the experimental procedure used for

each of these plots in this section was as described previously.

Figure 5.15(a) shows the temperature dependence for vorticity decay as a func-

tion of time, using Mesh 2 to produce the turbulence. The motor was held in

position for one minute before it was swept back down past the transducers. This

plot shows that there is no discernible temperature dependence.

The highest velocity, occurs as the motor passes the transducers and is approx-

imately 15 cm/s. Figure 5.15(b) shows the velocity of the grid versus position. The

data shows that while the grid is passing through the transducers, the velocity is

approximately constant. Figure 5.15(b) also shows that there is no temperature

dependence of the velocity of the grid.

Unfortunately, the velocity of the motor motion is not as uniform as would be

ideal. This may be due to the extension rod used to connect the Nb actuator to

the grid. It slightly sticks to parts of the hole through the channel cap, as it passes
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Figure 5.15: Temperature comparison plot of the vorticity curves as a function of
time, and the corresponding velocity as a function of position, for 1 minute wait
times. Mesh 2, fastest velocity.

back and forth. It is believed that this is also the reason for slower speeds than

the initial tests on the motor demonstrated.
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When the motor itself was being first tested, the extension rod was cylindrical

in shape. However, the grid membranes were consistently being torn by the corners

of the grid, as the grid rotated around the z-axis. Therefore a rod with a cross-

shaped cross sectional area (a photograph of which can be found in the appendix)

was used. A cross-shape was chosen to try to reduce the volume of the extension

rod as much as possible, whilst blocking a smaller amount of the mesh.
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Figure 5.16: A plot of the vorticity as a function of time for 2 second wait times,
taken sequentially with mesh 2, with the fastest motion. This plot shows the
reproducibility of the vorticity curve, even with such a short wait time.

Figure 5.16 shows the vorticity decay as a function of time for Mesh 2 at 1.7 K

when the motor was only allowed to rest for two seconds, before it was swept back

past the transducers. In addition to the red and green dotted lines representing

t−3/2 and t−11/10, respectively, a black dotted line representing t−1.1/2 has been

included. As two seconds is considered not enough time for all of the turbulence

to be saturated, shown by figure 5.16, a relationship was determined which fit the

earlier time; this was done by trial and error.

Figure 5.16 shows individual, sequential runs. This plot shows that, even

though the grid was only allowed to rest for two seconds, any remnant vortices had

sufficiently dissipated, and subsequently had no noticeable affect on the turbulence
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caused by the following sweep.
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Figure 5.17: A temperature comparison plot of the vorticity decays as a function
of time, with mesh 2, for the fastest motion at various temperatures

The vorticity plot as a function of time shown in figure 5.17 was calculated

from the second-sound attenuation using Mesh 2, with a thirty second wait time

after moving the motor up, and then ten minutes after sweeping down. The final

wait time was used to see if there was any long lived vorticity produced, which

would be seen as any secondary attenuation after the initial decay: there was no

sign of this. Figure 5.17 also shows that there is no temperature dependency for

the decay of vorticity, just as was reported in Stalp [1998] (figure 26, page 96),

also stated in Skrbek et al. [2000]. Comparing figures 5.15(a), 5.16, and 5.17 shows

that the wait time of the grid has no affect on the vorticity curves.

Some other groups (Chagovets et al. [2007]) work with much lower SS resonant

frequencies than the 25 kHz which were used for the data presented in this chapter.

Figure 5.18 shows vorticity as a function of time using a much lower (12 kHz)

resonant peak frequency, using Mesh 2 and still with a velocity of approximately

15 cm/s. The plot shows the same temperature independence as the previous plots

in this section.
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Figure 5.18: A temperature comparison plot of the vorticity with mesh 2, using
a lower frequency SS resonance (≈12 kHz as opposed to 25 kHz), for the fastest
motion. A curve taken using 25 kHz is also included.

Also included in figure 5.18 is the vorticity curve taken from a motion using a

SS peak of 26 kHz, for comparison. This shows that the vorticity curve does not

depend on SS frequency; this is as expected.

Figure 5.19(a) shows the vorticity decay as a function of time, for different

temperatures, using Mesh 2 at a much slower speed. This plot shows that at

this velocity the inertial (t−3/2) range is much less discernible. This may be due

to an insufficient amount of energy at M−1 wavenumber, for the turbulence to

reach saturation before it decays. Figure 5.19(b) shows the velocity as a function

of position for the much slower motions. The velocity is much more constant,

which agrees with the hypothesis that the extension rod is sticking as it moves.

A comparison of the two separate velocities is presented for Mesh 3 in the next

section, figure 5.27.
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(b) Velocity as a function of position for lower velocity, with Mesh 2 (JY)

Figure 5.19: Temperature comparison plot of the vorticity as a function of time,
and the corresponding velocity as a function of position; Mesh 2, with a much
slower velocity.
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5.3.3 Mesh 3 - ‘Lancaster Grid’

Mesh 3 was chosen as a dramatic mesh hole size difference compared to Meshes 1

and 2, the transparency for this mesh is just a little different at 55%. Figure 5.20

depicts the small mesh attached, using small amounts of Stycast 1266, to the frame

(as shown in figure 5.13(c)) compared to the 8 x 8 grid. Mesh 3 is approximately

1µm thick, the holes are 23µm wide and are separated by 11µm copper strips; it

is the same mesh as was used in the experiments described in chapter 3. Great

care was taken to ensure that the Stycast used to attach the mesh to the frame

was only between the two, and no mesh holes were blocked by the epoxy.

Figure 5.20: A photograph of the Mesh 3 grid (left) next to the 8x8 grid, Mesh 2
(right)

All of the vorticity plots presented in this chapter are averaged over at least

five motor motions. To demonstrate the standard deviation, figure 5.21 shows all

five motions, and the average overlaid. The data are typical of all plots and it

proves the reproducibility of SS attenuation data.

Figure 5.22(a) shows the vorticity decay plot for Mesh 3 for the fastest motions,

for various temperatures. There seems to be slightly more variation in both the

vorticity level, and the transition time to the inertial range. It is unclear as to why

this is so, it is not a temperature dependence as the vorticity curves do not fall se-

quentially throughout the temperatures. One explanation for this would be the SS

feedback circuit not running in the linear regime, resulting in a slight offset in the

SS signal. However as the equation is dependent on A/A0, any offset should have
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Figure 5.21: The average vorticity shown with the 5 single, sequential data sets
for each motor motion, with mesh 3 - showing reproducibility.

been accounted for. Another explanation for this could be an unexplained offset

on the National Instruments current box, which is used to convert analogue signals

from the circuit to digital signals to be interpreted by the computer software.

A possible cause for the discrepancy to investigate could be the time of the

day the data were taken. For the temperatures of 1.6 K, 1.8 K, and 2.0 K the

data were taken in the afternoon, just after lunch-time. On the other hand, the

temperatures of 1.5 K, 1.7 K, and 1.9 K the data were taken either in the morning,

or late at night. The busiest part of the day, both for amount of people and other

experiments working, is mid-afternoon; therefore there may have been external

interference which was otherwise undetected during the runs.

Figure 5.22(b) shows the velocity as a function of position, for different temper-

atures, corresponding to figure 5.22(a). As for Mesh 2, it is clear that as the grid

is passing the transducers the motor is moving at its highest velocity, the velocity

is also approximately constant in this region. However, also as before, the velocity

was not constant throughout. It is thought that this inconsistency could also be a

contribution to the slight variation in the vorticity curves shown in figure 5.22(a),
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Figure 5.22: Temperature comparison plot of the vorticity as a function of time,
and the corresponding velocity as a function of position, at the highest velocity.

although the velocity curve is the same for all temperatures. A comparison of all

three meshes, with the same wait time and temperature can be found in the next

section, figure 5.32.
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Figure 5.23: A temperature comparison plot of vorticity as a function of time,
with mesh 3 and the fastest motion.

The vorticity plot shown in figure 5.23 was produced from motor motions using

Mesh 3, with 30 s wait after moving up (to ensure all turbulence has dissipated

from that movement) and 10 min wait time after. As for Mesh 2, no large scale

turbulence was observed. Figure 5.23 also shows no temperature dependence for

the vorticity curve.

To continue on from figure 5.18, showing no temperature dependence for motor

motions using Mesh 2 with using a much lower SS peak frequency, figure 5.24 is

presented. This plot shows a comparison between motor motions using 26 kHz

and 12 kHz, both curves were measured with a motor velocity of approximately

15 cm/s. The two curves on this plot clearly show the same time for saturation,

proving again that there is no dependence on the SS resonance peak.

Figures 5.25(a) and 5.25(b) show the vorticity as a function of time and the

velocity as a function of position, respectively, for Mesh 3 motions at a much lower

velocity. Again, there is no temperature dependence, and the grid velocity through

the transducers is fairly constant. As opposed to the slower motions with Mesh 2,

shown in figure 5.19(a), there is a discernible time at which the turbulence reaches
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Figure 5.24: A plot showing the averaged vorticity with a transducer driving
frequency of 12 kHz and 26 kHz, with mesh 3

saturation. This is better illustrated in figure 5.26, which shows vorticity curves for

motor motions using Meshes 2 and 3, at 1.9 K. It is thought that this is because

there are more vortices at the energy injection scale, M−1, at t0. With more

vortices produced, there are more re-connections possible, and so the turbulence

can grow more quickly. This is supported by the values for t∗, shown in figure 5.38

in the next section.

This is the opposite of what would be expected considering the energy spectrum

described in section 2.2.1 and depicted in figure 2.8. The energy spectrum shows

that the smaller the energy containing vortices (or eddies), the longer it should

take before these vortices reach the size of the channel, D. This is further discussed

in the next section.

Figure 5.27 shows a comparison of vorticity curves for the two different veloc-

ities discussed in this chapter. This plot shows that both curves reach the t−3/2

regime, but the turbulence produced from the lower velocity reaches the saturation

point about three seconds later than the faster motion turbulence. It should also

be noted that there is no discernible t−11/10 region.

The vorticity curve comparison presented in figure 5.27 is an important verifi-

cation for the model stated earlier. It is to be expected for all decaying turbulence
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Figure 5.25: Temperature comparison plot of the vorticity, and the corresponding
velocity vrs position plot, for 1 minute wait times. Mesh 3, much slower velocity.

to reach saturation and exhibit a t−3/2 power law dependency, regardless of initial

vorticity. or vortex line density.
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achieved by the motor, at a slower velocity
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5.3.3.1 Oscillations of Mesh 3

Other quantum grid turbulence experimental groups (Bradley [2011], Bradley et al.

[2012], Nichol et al. [2004]) have used oscillating grids as opposed to ‘single stroke’

grids as presented in this dissertation. To determine if there is any difference in

these two methods, a series of data sets were taken using an oscillating motion of

the motor and grid. The grid (Mesh 3) was bought up to a certain position and

oscillated, either just above, directly in-between, or just below the transducers,

before being bought back down to the initial resting position. The peak to peak

of these oscillations were the same for each set of data, and therefore so was the

velocity.

Figure 5.28 shows a typical motor motion plot of position as a function of time,

the grid oscillated around the centre of the transducers twice for this test.
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Figure 5.28: A typical position plot of ‘4 strokes’ with transducer placement, with
mesh 3. (JY)

Figure 5.29 shows three vorticity curves; 2, 4, and 6 strokes refer to the number

of times the grid was swept past the centre of the transducers. This plot shows that

an increased amount of oscillation does not change the vorticity, and therefore the

vortex line density decay. Figure 5.30 compares three separate 4 stroke oscillations,

the oscillations were just above, centred around, and just below the transducers.
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It is clear that oscillating just above and in-between the transducers does not have

an effect on the vorticity curves. However the transition to the inertial range

is observed at a later time from the turbulence produced by oscillating the grid

beneath the transducers, as there was less observable turbulence at early times.

These results show that there is a measurable small amount of turbulence being

produced from the oscillations.
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Figure 5.29: Comparison plot of vorticity for different numbers or motor strokes,
with mesh 3. (JY)

It was observed that there is a slight difference between the turbulence produced

from oscillations and the turbulence produced from single sweeps, as shown in

figure 5.31. The saturation time is later, meaning that there is less turbulence

initially produced in the single stroke data. Another interesting point to note from

figures 5.29 and 5.30 are the oscillations in the vorticity before the saturation point.

As the curves presented are averages, it goes without saying that the oscillations

observed are measured in each separate data set.
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Figure 5.30: A plot comparing 2 stroke motor motions with different start posi-
tions, with mesh 3
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Figure 5.31: A plot comparing an oscillating motor motion with 1 sweep of the
motor, with mesh 3. (LM+JY)
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5.3.4 Discussion of all Grids

A direct comparison of all three meshes discussed in this chapter are presented in

figure 5.32, this data was taken at 1.7 K with a motor velocity of approximately

15 cm/s. This plot shows all three meshes have the expected t−3/2 power law

dependency at late times; this agrees with the data published in Stalp [1998] for

a similar (stated as 10 cm/s in the thesis) velocity.

Due to the inadequate data acquisition technique for any and all of the data

recorded while using Mesh 1, no conclusions are made from the higher vortex line

density at t < tsat, seen in the top, black curve in figure 5.32 representing Mesh 1.

The discernible difference between Mesh 2 and Mesh 3 is the amount of turbulence

produced; Mesh 3 produced more turbulence at early times, and therefore the

turbulence reached saturation more quickly than the turbulence produced from

Mesh 2.
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Figure 5.32: A plot comparing the three different grids used, taken at 1.7K and
an average velocity of approximately 15cm/s

A classical grid turbulence experiment, Mohsen [1990], states a difference in

the energy dissipation rate, ε = νω2, between mesh sizes. This publication shows
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a smaller mesh size (M = 2.54 cm as opposed to 5.08 cm) has a higher energy

dissipation rate. This agrees with the results presented in figure 5.32 as Mesh 3,

the smaller mesh, has a higher initial vorticity.

Figure 5.33 shows a direct comparison between figure 5.32 and the data pre-

sented in Stalp [1998] and Stalp et al. [1999]. The black line (representing vorticity

produced from a motion with a velocity of 10 cm/s), from the published paper,

agrees with the data obtained form Mesh 2 vorticity, showing the exact same sat-

uration time. Another noticeable, and important point is the earlier saturation

time for Mesh 3.

0.01 0.1 1 10
1

10

100

1000

 Mesh 1 ('Stalps')
 Mesh 2 (8 x 8)
 Mesh 3 ('Lancaster')
 t^(-3/2)
 t^(-11/10)

 

 

av
e 

vo
rti

ci
ty

 (H
z)

time (s)

Velocity ~ 15cm/s, Temp = 1.7K
1000

100

10

1
0.01 0.1 1 10

Time (s)

Vo
rt

ic
ity

 (H
z)

Figure 5.33: A plot comparing results from Stalp [1998] with all three meshes
(shown in figure 5.32)Black lines are data from Stalp paper, square points are
Mesh one, green small dots are Mesh 2, and blue small dots are Mesh 3.

The difference in the time duration for which the vorticity curves follow either

power law dependencies is better illustrated in figures 5.34 and 5.35, representing

Mesh 2 and Mesh 3, respectively. These plots have been drawn from rearranging

equations 5.3 and 5.2, so that a straight line equation in the form y = mx+ c:

ω−2/3 = ω
−2/3
0 t+ ω

−2/3
0 t∗ (5.4)

where ω0 = D

2π
√
ν′

, and similarly for ω−10/11.

Figures 5.34 and 5.35 do not show any real evidence for the t−11/10 power law
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Figure 5.34: A plot showing the power law dependencies, taken at 1.7 K and an
average velocity of approximately 15 cm/s, for Mesh 2.
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dependence.

The line density as a function of time can be written as:

L(t) = ω/κ =
D

2πκ
√
ν ′

(3C)−3/2(t+ t∗)−3/2 (5.5)

Figure 5.36 shows a typical vorticity curve (presented as line density), the pink

curve fitted is the theoretical curve calculated from equation 5.5. From the pa-

rameters used for an appropriate fit to the late time region (the inertial region),

the effective kinematic viscosity is recorded. The parameters are found through

trial and error.
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Figure 5.36: A plot showing a typical fitted line density curve to the data.

The effective kinematic viscosities, deduced from fitting the expected line den-

sity curve to each late time region of the vorticity curve presented in this chapter,

are presented in figure 5.37. The black diamonds connected by straight black lines

represent a model calculation for ν ′, Vinen & Niemela [2002]. The orange spheres

represent values presented in Stalp & Niemela [2002]. The values obtained from

the turbulence produced by Mesh 3 are lower than the effective kinematic vis-

cosity values obtained from Mesh 2. This agrees with Niemela et al. [2005], who

show that the values for ν ′, as a function of temperature, from a smaller mesh are

slightly lower. Data presented in Chagovets et al. [2007] show similar results, with
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a data range of a factor of 10; this agrees with the data range seen in figure 5.37.
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Figure 5.37: A plot comparing the effective kinematic viscosity, for all the three
different grids used
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Figure 5.38: A plot comparing the saturation time, for all the three different grids
used

Figure 5.38 shows the values of t∗. This data is deduced from the point in time

when the vorticity curve veers from the expected late-time t−3/2, by a factor of

two. The value for the saturation time is not calculated from the fitted line, as

shown in figure 5.36, as not all vorticity curves allowed for it, due to the inherent
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error in the data. The reader is reminded that t∗ represents the time taken needed

for the turbulence to reach saturation at the size of the channel. As previously

discussed, the results presented here are contrary to what would be expected from

the Kolmogorov energy spectrum. This result may show that the growth of the

energy containing length scale is quicker with a smaller mesh, and therefore more

vortices at t0.
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Chapter 6

Summary

6.1 Low Frequency Turbulent Drag

Presented in chapter 3 are results from the use of an oscillating device Bradley

et al. [2011], which are also presented in Bradley et al. [2012]. An oscillating grid,

the ‘floppy grid’, was used investigate the velocity of a wire with respect to the

fluid turbulent drag. The device was also used to investigate the dependence of

oscillation frequency of the wire, on the resulting velocity.

It was found that there is no frequency dependence on the response of the

floppy grid, over the range 9 to 100 Hz. This contradicts the relationship between

critical velocity and frequency presented in Hänninen & Schoepe [2008]. The

fact that there is no discernible dependence on frequency means that this device

can be used to investigate quasi-static motion through superfluids at very low

temperatures.

The drag coefficient, for oscillations within normal fluid and superfluid, as a

function of grid velocity are also presented. It has been shown that, for the normal

fluid, the fluid drag coefficient tends towards a constant of approximately 1.6. This

value agrees with other work, using an oscillating cylinder, carried out in classical

turbulence, for example Obasaju et al. [1988]; although no published work has

been found which reports the use of an oscillating grid in a classical fluid.

Comparing the curves for drag coefficients, at high velocities, for quantum

turbulence and classical turbulence shows that they are very similar. This indicates

that the two types of turbulence are very similar, agreeing with work published by
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Blazková et al. [2009], who used tuning fork resonators.

The measured critical velocity for the transition into the turbulent regime in

superfluid at very low temperatures was found to be much smaller (3 mm/s) than

the calculated value (17 mm/s). This is assumed to be due to the local superfluid

flow around the edges of the grid, reducing the observed critical velocity, Bradley

et al. [2012]. It would therefore be suggested to repeat these measurements in a

more confined experimental cell, where the edges of the grid are constantly close

to the cell walls.

The critical velocity is suggested to be frequency dependent, vc ≈
√

8κω, and

the floppy wire and floppy grid both have very low resonant frequencies compared

to most previous work (with wires with resonant frequencies of kHz order, Yano

[2009] is one example). This may be a contributing factor to the apparent dis-

crepancy in critical velocity. However, it has been presented in chapter 3 that,

at low frequencies, the drag force is independent of frequency; this indicates that

the relationship described in Hänninen & Schoepe [2008] is only appropriate at

higher frequencies. It would therefore be very interesting to investigate the fre-

quency regime between 100 and 1000 Hz, to determine when the critical velocity

does indeed become frequency dependent.

Previous work using vibrating wires, for example Hashimoto & H. Yano [2007],

have shown a jump from the laminar to turbulent regime in the velocity curve as

a function of drag force. This jump was observed after warming, and subsequently

cooling through the lambda transition. It has been attributed to vortices pinned

to the vibrating wire caused by the transition into superfluid. It would therefore

be interesting to investigate this phenomena with the floppy grid device; there may

or may not be a dependence on whether or not a grid is present, as opposed to just

a single wire. As there is more of a surface area for the vortices to be pinned to, it

can be suggested that the jump from one regime to the other would be expected

to be seen at a lower velocity. It would also be interesting to see if this effect is

dependent on the frequency of the oscillating object.
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6.2 Control Motor

Chapter 4 discusses a new design for a superconducting linear motor, for the

purpose of producing homogeneous grid turbulence at very low temperatures. The

inspiration for the control motor, the design process, and construction details are

reported, along with test results shown in figures 4.14 and 4.15.

The linear motor is comprised of a drive coil, three control coils, two sets of

quadrupole bearings, a position sensor, and a base plate: this is depicted in figure

4.1. The actuator, on which the motor acts, is constructed from two sections of

niobium and a G-10 spacer; when the motor is not in operation the actuator rests

on the base plate. The two sets of quadrupole bearing magnets are connected in

series and are supplied with a constant current. The control coils are also connected

in series and are supplied with a constant current; these were designed specifically

to produce a constant gradient in the magnetic field over a set distance. A linear

current profile is supplied to the drive coil, this results in the armature moving in

the z-direction. The inductive position sensor is also detailed, which records the

position of the motor with a 0.5 mm precision, once calibrated.

The test results show that the motor produces smooth motions, with little to

no oscillations. The motor is reported to be able to travel with a peak velocity of

approximately 30 cm/s. However, the velocity is not constant throughout the mo-

tion. This means that the turbulence produced is not likely to be homogeneous. To

fix this problem, a current profile needs to be devised which takes into account the

slow acceleration and deceleration periods. Zmeev [2014] show a unique method of

deriving a current profile which compensates for these periods, hopefully resulting

in quasi-constant velocity.

The motor was originally designed to be able to work at very low temperatures.

Therefore the next stage for this equipment should be for it to be placed in a

dilution refrigerator. For this to occur an attachment will have to be designed so

that all of the coils are thermally isolated from the actuator, and more importantly

the experimental cell.

102



6.3 Second-sound Attenuation

Presented in Chapter 5 are results of decaying turbulence as a function of time.

The turbulence is intended to be approximately homogeneous and isotropic grid

turbulence, and is produced by the linear control motor discussed in Chapter 4.

The decay of the vorticity, or vortex line density, is recorded using the attenuation

of second-sound. Similar experiments, focusing on the dependence of grid velocity,

have been done before using a pulley driven linear motor: Stalp [1998], Smith

et al. [1993], and Skrbek & Stalp [2000]. One of the main discussion points of this

thesis is to determine if there is a dependence on the grid mesh used to produce

the turbulence. Temperature dependence above 1.4 K has also been investigated.

It was expected that the smaller grid mesh will produce turbulence which will

take a longer amount of time to reach saturation, as the energy containing vortices

at zero time will be at a larger wavenumber. It is suggested by the results presented

in this thesis, however, that the smaller grid mesh, Mesh 3, actually took a smaller

amount of time to reach saturation, the t−3/2 regime, than the larger grid meshes.

Figures 5.34 and 5.35 are presented to show how well the vorticity data fits

to the power laws t−3/2 and t−11/10. It is clear from these plots that there is no

evidence for the latter power law. The t−3/2 regime is observed for both meshes,

and as previously discussed, it is reached at an earlier time for Mesh 3. The repre-

sentative temperature of the presented vorticity curves, 1.7 K, show the saturation

time difference to be of the order of one second.

Mesh 1 was expected to produce approximately the same results as those pre-

sented in Stalp [1998], as the same grid mesh design and channel width were used,

as well as similar speeds. The vorticity curve presented for Mesh 1 data, is rep-

resentative of very preliminary data, and therefore not as accurate as the other

meshes. It is unfortunate that no conclusions can be drawn from this data, it

would be interesting to determine whether or not the difference between the de-

sign of the grid meshes 1 and 2 make a difference to the vorticity decay curve. The
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classical turbulence experiments discussed in Mohsen [1990] show that there is no

difference between turbulence produced by grids with different rod shapes as the

mesh; though this data was taken in a wind tunnel.

The data taken using Mesh 1 should be re-taken, with the improvements made

to the experimental set-up and procedure used for meshes 2 and 3. It would also

be interesting to determine if other designs of a grid, but with the same mesh size,

would result in a different line density decay. Mesh 2 is similar in mesh size, so

a simple comparison with accurate data would yield some conclusions to this effect.

The vorticity decay plots presenting various temperatures from the turbulence

produced by Mesh 2, as well as the similar plots shown for data achieved from the

use of Mesh 3, all show that there is no temperature dependence of the vorticity

decay curves. This agrees with data presented in Stalp [1998] and Chagovets et al.

[2007]. This is to be expected while the fluid is still in the 2-fluid model regime,

1K < T < Tλ. However below 1 K, the fluid is (almost) completely superfluid,

and therefore the result may differ. Data presented in Walmsley et al. [2007]

shows a clearer and more defined inertial regime at lower temperatures; Ahlstrom

et al. [2013] presents data showing the transition from laminar to turbulent flow at

different temperatures, depicting a drastic difference at temperatures below 0.5 K.

However, these other experiments were done using tuning forks (Ahlstrom et al.

[2013]) and turbulence produced from a spin down in a rotating cryostat (Walmsley

et al. [2007]).

There are many other processes in which to observe the decay of turbulence at

the zero temperature limit, where the use of second-sound is no longer an option

(for example - Fisher et al. [2001], Guo et al. [2010]). Therefore, an investigation

into the temperature dependence over a larger range should be performed, with

particular interest on the temperature where the fluid becomes pure superfluid.

It was also found that the SS resonance peak chosen, the peak to peak voltage

of which is continuously recorded to determine the attenuation, does not have an

affect on the vorticity decay curve. This is as expected, as the vorticity equation
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is dependant on ∆0, not the frequency of the SS.

There is an unexplained spread in the data presented in chapter 5. There

are a number of possible reasons for this: the non-constant velocity of the grid,

the feedback circuit being operated in the non-linear region, variations in the

electrical circuitry and home-made electrical boxes, interference from outside which

differs depending on the time of the day, or another reason which has not yet

been considered. More precisely, unknown initial conditions can, and will, cause

differences in the turbulence generating processes. All of these possible problems

need to be investigated and either eliminated or solved before any further tests are

carried out.

To better study these inconsistencies, it is imperative that the velocity of the

motor, and grid, be constant. The inconstant nature of the velocity means that the

turbulence produced is not necessarily homogeneous and isotropic. It is unclear

as to how this will effect the decay of the turbulence. Though the late-time decay

should still follow a t−3/2 dependence, the saturation time may be affected. This

is evident in the spread of t∗ values presented in figure 5.38.

The spread in the vorticity data may, of course, be real and a physical aspect of

the turbulence or fluid. It is assumed that the t−3/2 regime begins once the energy

containing vortices reach saturation, at the size of the channel. However, this

assumption may not be right; it is very possible that there are other, unknown

mechanisms in play in the fluid that are, as of yet, not understood. A way of

testing this is to change the channel size. If there were a large channel, and very

small mesh holes, then the turbulence may never, theoretically, reach saturation;

in which case a t−3/2 regime should not be observed. An experiment to test this

theory is, at the time of print, being designed at the University of Florida.

At early times in almost all vorticity plots, for all three meshes, an inconsis-

tent oscillation can be seen. One explanation for this would be the fluctuations

in temperature immediately following a motor movement. As the motor coils

are submerged in the same fluid as the experimental cell, when current is passed
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through them there is a heat leak; this heat rise is then compensated for by the

temperature regulation circuit. This compensation, however, is not instantaneous.

Another possible explanation is the feedback circuit not running at the optimum

settings. At the time of print, the feedback circuit described in this thesis is being

investigated and improved, and so future experiments will show if this is the case.

At time t0 it is believed that the energy containing vortices are at the size of

the mesh holes, and the energy containing scale shifts towards the larger length

scales over time, saturating at the size of the channel. This suggests that if the

injection scale is small (the mesh size is small), then it would take longer for the

energy containing vortices to reach saturation, resulting in a longer period of time

for the decaying vorticity to reach the t−3/2 regime. The opposite is observed in

the measurements presented, as shown in the comparison plot including all three

meshes and the saturation time plot.

The reason for this apparent contradiction could be due to a number of things,

one of which is the possible errors in the experiment suggested earlier. One other

problem, which could cause this, is large scale turbulence being produced around

the outside of the grid, between the grid and the inside of the channel walls. The

large scale turbulence may contain the energy containing vortices, and therefore

would take less time to saturate at the size of the channel. However, the gap

between the grid mesh and the channel walls was the same for both Mesh 2 and

Mesh 3, so this may not be the solution otherwise it would have the same effect

on both meshes, which is does not. Therefore if this is a problem, it is clear it is

not the only one.

Another possibility for the disparity observed, however, is the fact that there

are unknown factors which cause the saturation of turbulence other than the size

of the channel. This would also explain the spread in the effective kinematic

viscosity values, presented in figure 5.37. These unknown factors cannot be ini-

tial conditions that have been unchanged in the experiments discussed in chapter

5, like the mesh size, the channel wall roughness, or the consistency of the velocity.
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Appdx A

Technical Drawings Found below are the technical drawings for the channel

(figures 2(a) and 2(b)), channel caps (figure 1) and the extension rod (figure 3).

Also presented is the technical design for the Teflon holder which was used to hold

the extension rod and grid in the right positions for construction (figure 4).
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Figure 1: SolidWorks drawing for the bottom cap with a cross-shaped hole for the
latest extension rod.

All dimensions are in inches.
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Figure 2: Schematic drawings for the channel
There is a 1cm cross-sectional hole through the centre, from top to bottom; this

is the experimental volume. All dimensions are in inches.
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Figure 3: SolidWorks drawing for the cross shaped extension rod.
All dimensions are in inches.
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Figure 4: SolidWorks drawing for the Teflon aligning and levelling device.
This was made and used to ensure the extension rod was perfectly in line with

the actuator, and the grid was perpendicular to the extension rod. All
dimensions are in inches.
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