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Abstract—The current paper presents a novel texture-based method for detecting

texts in images. A support vector machine (SVM) is used to analyze the textural

properties of texts. No external texture feature extraction module is used; rather,

the intensities of the raw pixels that make up the textural pattern are fed directly to

the SVM, which works well even in high-dimensional spaces. Next, text regions are

identified by applying a continuously adaptive mean shift algorithm (CAMSHIFT) to

the results of the texture analysis. The combination of CAMSHIFT and SVMs

produces both robust and efficient text detection, as time-consuming texture

analyses for less relevant pixels are restricted, leaving only a small part of the input

image to be texture-analyzed.

Index Terms—Text detection, image indexing, texture analysis, support vector

machine, CAMSHIFT.
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1 INTRODUCTION

TEXTS in images include useful information for the automatic
annotation, indexing, and structuring of images [31]. Text detec-
tion is the process of detecting and locating those regions that
contain texts from a given image and is the first step in obtaining
textual information. However, text variations related to size, style,
orientation, and alignment, as well as low contrast and complex
backgrounds make the problem of automatic text detection
extremely challenging.

In previous literature, text detection methods are typically either

connected component (CC)-based or texture-based. CC-based

methods segment an image into a set of CCs, group small CCs to

successively larger ones, then classify the final CCs as either text or

background by analyzing their geometrical characteristics [1], [2],

[3]. While they are efficient at extracting texts, CC-based methods

run into difficulties when the text is noisy, degraded, multicolored,

textured, or touching itself or other graphical objects, which often

occurs in digital images [4]. Texture-basedmethods are based on the

observation that texts in images have distinct textural properties

that can be used to discriminate them from the background. In [5],

Jain and Zhong use a neural network (NN) to discriminate between

text, graphics, and halftones in document images. Zhong et al. [6]

analyze local spatial variations in a gray-scale image and locate

regions with a high variance as texts. They also combine a texture-

based method with a CC-based method. Li et al. [4] extract the

wavelet features of small windows in images, then classify them

usingNNs. Texture-basedmethods are known to performwell even

with noisy, degraded, textured, or complex texts and backgrounds,

however, they are usually time consuming as texture classification is

inherently computationally dense.
The current paper proposes a novel texture-based text detection

method. The following components are crucial to the success of

texture-based text detection: 1) construction of texture classifiers

that can discriminate between textures associated with different

classes (text and nontext) and 2) construction of text region (or chip

as referred to in [7]) generation module that can operate on the

classification results obtained from 1). In the proposed method,

support vector machines (SVMs) are used as the texture classifier

due to their robustness even in the absence of a rich set of training

examples. The previous success of SVMs in texture classification

[8] and other related problems [9], [10] also provided further

motivation to use SVMs as the classifiers for identifying text

regions. In addition, since SVMs work well even in high-

dimensional spaces, no external feature extractor is required to

reduce the dimensionality of the texture pattern, thereby eliminat-

ing the need for a time-consuming feature extraction stage. In fact,

SVMs can efficiently extract features within their own architecture

using kernel functions (Section 2.1).
As a result of texture classification, a text score image is

generated where each pixel represents the possibility of the

corresponding pixel in the input image being part of a text

region. Then, the text chips within the text score image are

identified by applying the continuously adaptive mean shift

algorithm (CAMSHIFT), the effectiveness of which has already

been demonstrated in face detection [11]. This combination of

CAMSHIFT and SVMs produces both robust and efficient text

detection through restricting the texture classification of less

relevant pixels. Consequently, only a small part of the input

image needs to be texture-analyzed to detect the text regions.

2 SYSTEM

The proposed method poses text detection as a texture classifica-

tion problem where problem-specific knowledge is available prior

to classification. Since this knowledge (the number and type of

texture classes) is often available in the form of example patterns,

the classification can be supervised. An SVM as a trainable

classifier is adopted for the texture classification. Specifically, the

system uses a small window to scan the input image, classifies the

pixel located at the center of the window into text or nontext by

analyzing its textural properties using an SVM, and then applies

CAMSHIFT to the results of the texture classification to obtain text

chips. To facilitate the detection of various text sizes, a pyramid of

images is generated from the original image by gradually changing

the resolution at each level. The number of levels was empirically

determined to be three. The extracted text chips are hypothesized

at each level and then fused to the original scale. Fig. 1 summarizes

the text detection process.
The remainder of this section is organized as follows: Section 2.1

reveals the basic theory and some useful properties of SVMs.

Section 2.2 then describes the use of an SVM for texture

classification, while Section 2.3 outlines the chip generation process

using CAMSHIFT. Finally, Section 2.4 discusses the fusion of chips

at different scales and positions.

2.1 Support Vector Machines for Texture Classification

SVMs have been recently introduced as a method for pattern

classification and nonlinear regression. Given a set of labeled

training examples xi; yið Þ 2 RN � �1f g, i ¼ 1; . . . ; l, an SVM con-

structs a linear classifier in a feature space F, which is nonlinearly

related to the input space via a map � : RN ! F . The classifier is

then identified as a canonical hyperplane in F that correctly separates

the largest fraction of data points, while maximizing the margin

between the nearest examples called support vectors (SVs), and is

represented in the input space as:
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f xð Þ ¼
Xl�
i¼1

yi�i� x�
i

� �
� � xð Þ þ b;

where x�
i

� �l�
i¼1

are the SVs. The coefficients �i and b are determined
by solving a large-scale quadratic programming problem [12].

The appeal of SVMs lies in their strong connection to the
underlying statistical learning theory. According to the structural
risk minimization principle [12], a function that can classify training
data accurately and which belongs to a set of functions with the
lowest capacity (particularly in the VC-dimension) will generalize
best, regardless of the dimensionality of the input space. In the case
of a canonical hyperplane, minimizing the VC-dimension corre-
sponds to maximizing the margin. As a result, for many applica-
tions, SVMs have been shown to provide a better generalization
performance than traditional techniques, including NNs and radial
basis function networks [13], [14].

For computational efficiency, the mapping � is often
implicitly performed using a kernel function k defined as:
k x;yð Þ ¼ � xð Þ � � yð Þ. Then, by selecting the proper kernels, k,
various mappings (or feature extractions), �, can be indirectly
induced [16]. One feature extraction is achieved by taking the
p-order correlations between the entries xi of an input vector x.
If x represents a texture pattern of just pixel values, this
amounts to mapping the input space into the space of pth
order products (monomials) of the input pixels. It should be
noted that these features cannot be extracted by simply
computing all the correlations since the required computation
is prohibitive when p is not small (p > 2): For N-dimensional
input patterns, the dimensionality of the feature space F is
ðN þ p� 1Þ!=p!ðN � 1Þ!.

However, the introduction of a polynomial kernel facilitates
work in this feature space as the polynomial kernel with degree
pðk x;yð Þ ¼ x � yð ÞpÞ corresponds to the dot product of the feature
vectors extracted by the monomial feature extractor �p [16]:

�p xð Þ � �p yð Þ
� �

¼
XN

i1 ;...;ip¼1

xi1 . . . xipyi1 . . . yip ¼
XN
i¼1

xiyi

 !p

¼ x � yð Þp:

2.2 Data Representation and Classification

One of the simplest ways to characterize the variability in a texture
pattern is by noting the gray level values of the raw pixels. This set
of gray values then becomes the feature set on which the
classification is based. An important advantage to this approach
is the speed with which the patterns can be processed as the
features do not need to be calculated. Furthermore, this approach
releases the system developer from the laborious feature design
task. Yet, the main disadvantage is the large size of the feature
vector. Accordingly, a classifier is required to generalize the

texture patterns in a high-dimensional space. In this case, SVMs
are a proper candidate as they can generalize well even in high-
dimensional spaces. Furthermore, SVMs incorporate feature
extractors and can use their nonlinear mapped input patterns as
features for classification (see previous subsection). Therefore, it
would appear to be more advantageous to allow an SVM to extract
features directly from the pixels rather than forcing it to base the
features on a user-defined feature set.

The input to the SVM texture classifier comes from an M �M

window in the input image (Fig. 1). However, instead of using all the
pixels in the window, only pixels corresponding to a configuration
for autoregressive features (shaded pixels within the window in
Fig. 1) are fed to the SVM. This reduces the size of the feature vector
(from M2 to 4M � 3) and results in an improved generalization
performance and classification speed. The sign of the SVM output
then represents the class of the central pixel in the inputwindow. For
training, þ1 was assigned to the text class and �1 to the nontext
class. As such, if the SVM output for an input pattern is positive, it is
classified as text.

When using a learning-from-examples approach, it is desirable
to make the training set as large as possible to attain a
comprehensive sampling of the input space. However, when
considering real-world limitations, the size has to be moderate.
Therefore, the problem is how to build a comprehensive, yet
tractable database. For text patterns, a collection was made of all
the text-containing images available. However, collecting nontext
patterns was more difficult as practically any image can serve as a
valid training example. From among these patterns, a “represen-
tative” set of nontext patterns was selected. A bootstrap method
recommended by Sung and Poggio [17] was adopted for this. The
idea is that some of the nontext training patterns are collected
during training rather than before training: A partially trained
SVM is applied to images that do not contain texts, then patterns
with a positive output are added to the training set as nontext
patterns. This process iterates until no more patterns are added to
the training set.

However, a training set constructed by a bootstrap, which is
moderate (about 100,000 in preliminary experiments) for training
conventional learning systems, such as NNs, is often too large for
training SVMs: When the number of training patterns is l, the
training of an SVM requires an Oðl2Þ-sized memory, which then
grows prohibitively in proportion to l (when l > 10; 000 the
memory grows to more than hundred gigabytes). Although several
methods have already been developed to reduce the time and
memory complexity for training a large-scale SVM [18], they barely
provide practical facilities for training sets larger than 100,000.

As such, the current approach used a moderately sized subset
of the training set rather than the whole training set, where a set of
“important” or “relevant” patterns was selected first to utilize the
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Fig. 1. Top-level process of text detection system.



information contained in the original training set. While, generally,

this is not an easy task, it is well-known that SVs are the only

informative patterns for constructing an SVM [12]. Furthermore,

the number of SVs compared to all the training patterns is usually

extremely small. Therefore, only SVs were collected as the training

set for the construction of the classifier. However, the problem here

is that SVs are only obtained after the training of the SVM (on the

whole set) is finished. Therefore, as an alternative, the SVs were

iteratively gathered during the bootstrap: At each iteration t,

nontext training data �ðtÞ for training an SVM �ðtÞwas obtained by

gathering the nontext SVs identified during training �ðt� 1Þ along
with newly found negative patterns �ðt� 1Þ at t� 1, instead of

�ðt� 1Þ plus �ðt� 1Þ. Although the collections of SVs obtained by

training SVMs using several partial sets are not necessarily exactly

the same as the SV set obtained from an SVM trained using the

entire set, they still have a similar effect on the construction of the

classifier because they are very informative patterns, despite being

partial. Accordingly, if certain patterns have to be selected,

selecting sets of SVs may be a proper choice. Similar ideas have

already been successfully applied in the virtual SVmethod [30] and

a training set decomposition technique referred to as chunking [33].

After finishing the bootstrap, a new SVM is trained using the

finalized training set, which is then used for classification. The

training process is summarized in Fig. 2.

Fig. 3 shows some of the images used in training: Figs. 3a and 3b

are examples of text and nontext images, respectively, from which

the initial training patterns were collected. Fig. 3c shows some of the

nontext training images used in the bootstrap and Fig. 3d shows

examples of misclassifications of Fig. 3c (marked with black pixels)

where nontext training patterns were tagged. Fig. 4 is an example of

texture classification performed by a trained SVM.

2.3 Chip Generation

As shown in Fig. 4b, the classification results obtained from SVMs
are not directly suitable as text detection results for future
processing, such as OCR, because of the presence of noise and
spurious regions. The classification stage only transforms an input

image into a representation from which the desired regions (or
chips) can be easily extracted.

For chip generation, a technique is borrowed from well-

developed face detection methodologies. CAMSHIFT was origin-

ally developed by Bradski [11] to detect and track faces in a video

stream.As amodification of themean shift algorithm that climbs the

gradient of a probability distribution to find the dominant mode

[22], CAMSHIFT locates faces by seeking the modes of the flesh

probability distribution.1 The proposed strategy is simply replacing

this flesh probability distribution with a text score distribution

yi;j
� �

i;j¼1;...;IW;IH
(IW: image width, IH: image height), where the

entry yi;j represents the probability of a pixel xi;j in the original

image xi;j
� �

i;j¼1;...;IW;IH
being part of a text region, and operating

CAMSHIFT on yi;j
� �

i;j¼1;...;IW;IH
. Then, each yi;j is obtained by

applying an SVM to the input xi;j. Although the SVM output is not a

probability (it is not even bounded), when it is scaled into an interval

½0; 1�using a sigmoidal activation function, the detection resultswith

CAMSHIFT are acceptable. Henceforth, for convenience, these

scaled SVM outputs for the pixels within a selected windowWwill

be referred to as the “probability distribution within W.”

However, for the purpose of text detection, mode seeking (or the

center position of the window) is insufficient. There are many

variations to text appearances, for example, font, perspective,

orientation, etc., therefore, the shape of a text region is variable.

As such, not only the location but also the shape needs to be

calculated to be useful as a text detection result. Since it is not easy to

estimate every possible shape variation, many simplifications have

been made in previous text detection systems. For example, [1] and

[6] assume that all text regions are rectangular, while [2], [3], and [4]

further assume that texts are horizontally aligned. This is reasonable
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Fig. 2. SVM training process for texture classification.

Fig. 3. Examples of training images: (a) text images, (b) nontext images, (c) images for bootstrap, and (d) classification results of (c).

1. Actually, it is not a probability distribution because its entries do not
total 1. However, this is not generally a problem with the objective of peak
(mode) detection.



asmost texts appearing inmedia aremainly in a horizontal direction

[2]. Accordingly, the proposed method detects texts as horizontal

rectangular shapes: CAMSHIFT initially sets a rectangular search

window. During the search process, the location and size of the

window are continuously adapted to fit the contents of window (or

probability distribution within the window). Then, the finalized

search window is output as the detection result. The parameters

controlled in each iteration t are the position x(t), y(t), width w(t),

and height h(t) of the search window.
x and y can be simply computed using geometrical moments:2

x ¼M10=M00 and y ¼M01=M00; ð1Þ

where Mab is the ðaþ bÞth moment as defined by

Mab Wð Þ ¼
X
i;j2W

iajbyi;j:

w and h are estimated by considering the two eigenvectors and

their corresponding eigenvalues in the correlation matrix R of

probability distribution within the window.3 These variables can

be calculated using up to second order moments as follows [11],

[19], [32]:

w ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a� cð Þ2

q� �
=2

s
;

h ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a� cð Þ2

q� �
=2

s
;

ð2Þ

where the intermediate variables a, b, and c are

a ¼M20=M00 � x2; b ¼ 2 M11=M00 � xyð Þ; and c ¼M02=M00 � y2:

Note that the moments involve sums of all the pixels and, thus,

are robust to small element changes. Consequently, a robust

estimation of the parameters is possible even with the existence of

noise (misclassifications) in the window. Nonetheless, the use of

(2) to estimate the window size is not directly suitable for the

purpose of text detection. When the whole text region is

completely contained within the search window, (2) produces

exactly what is needed. However, when the actual text region is

larger than the current (iteration t) window, the window size needs

to be increased beyond the estimation of (2) so as to explore a

potentially larger text area in the next iteration (tþ 1). In this case,

h and w are set slightly larger than that estimated by (2):

w ¼ 1:2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a� cð Þ2

q� �
=2

s
;

h ¼ 1:2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a� cð Þ2

q� �
=2

s
:

ð3Þ

The new estimate enables the window to grow as long as the major

content of the window is text pixels. When the iteration terminates,

the final window size is then reestimated using (2).
The terminal condition for iteration is that, for each parameter,

the difference between two parameters jxðtþ 1Þ-xðtÞj, jyðtþ 1Þ-yðtÞj,
jwðtþ 1Þ-wðtÞj, and jhðtþ 1Þ-hðtÞj in two consecutive iterations tþ 1

and t is less than the predefined thresholds Tx, Ty, Tw, and Th,

respectively.
As there may be more than one text region in an image,

multiple windows can be run with different initial positions and

sizes. This also reduces the possibility of being stuck to local

optima. Fig. 5 summarizes the operation of CAMSHIFT for text

detection. It should be noted that, in the case of overlapping

windows, the classification results are cached so that the
classification of a particular pixel is only performed once for an

entire image.
Besides robustness, an important advantage of CAMSHIFT is

that it does not require all the pixels in the input image to be

texture-classified: In the CAMSHIFT iteration, the parameters of

the windows are computed using only the text probabilities of the

pixels located within the windows. As such, instead of calculating

the text probability distribution over the whole image, the

distribution calculation can be restricted to a smaller image region

surrounding the window of interest. Then, the texture-classifier is

embedded in CAMSHIFT and only activated for those pixels
located within the search windows. This results in significant

computational savings when text regions do not dominate the

image. Fig. 6 shows an example of text detection: A considerable

number of pixels (black pixels in Fig. 6c occupying 79.2 percent of

all the pixels in the image) are excluded from the texture

classification for the given image.

2.4 Chip Fusion

The proposed method can make certain overlapping detections

when the overlapping chips occur at different scales (between

pyramid levels) or positions (within a pyramid level). In the

case of overlapping chips, an examination is made as to

whether they are originally a single text or multiple texts. This

is performed by checking the degree of overlap between the

two chips, which is measured using the size of the over-

lapdivided by the size of each chip.
Supposing that D� and D� are the areas covered by two text

chips � and �, then the degree of overlap between � and � is

defined as

� �; �ð Þ ¼ max size D� \D�

� �
=size D�ð Þ; size D� \D�

� �
=size D�

� �� �
;

where sizeð�Þ counts the number of pixels within �. Then, � and �

are determined to be a single text if To� �; �ð Þ, multiple texts

otherwise, where To is the threshold set at 0.8. Then, in the fusion

process, every pair of overlapping chips is checked and those pairs
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Fig. 4. Example of texture classification: (a) input image (640� 480) and

(b) classification result.

Fig. 5. CAMSHIFT for text detection.

2. For notational convenience, the temporal parameter t is dropped when
this does not cause confusion.

3. Since the input space is 2D, R is 2� 2 along with the existence of two
(normal) eigenvectors: The first gives the direction of the maximal scatter,
while the second gives the related perpendicular (assuming that the
eigenvectors are sorted in descending order of their eigenvalue size). Their
corresponding eigenvalues then indicate the degrees of scatter along the
direction of the corresponding eigenvectors [14].



identified as a single text are merged. After chip fusion, any small

chips are eliminated as they are usually false detections. Fig. 7

shows an example of chip fusion. For better visibility, only those

chips corresponding to text areas are shown for each level.

Although none of the text detection results for a single pyramid

level detected all the texts, the chip fusion results correctly

detected all the texts.

3 EXPERIMENTAL RESULTS

The systemwas tested on three sets of images. Database I contained

400 images composed of Web images, video frames, scanned

documents, etc. The images included examples of homogeneous,

multicolored, textured, and imaged backgrounds where the text

appearance varied in terms of color, texture, size, and style. The

resolution of these images ranged from 182� 256 to 1; 024� 2; 096

and the text strings size varied from about 5� 9 to 162� 73. The

image formats were BMP, JPEG, GIF, TIFF, etc. Database II was

obtained from the Web site of the Language And Media Processing

(LAMP) Laboratory, media group at the University of Maryland,

College Park [34]. It contained 75 text-containing video frames. All

the imageswere in JPEG format. Database IIIwas comprised of three

MPEG video streams obtained from the Web site of the movie

content analysis (MoCA) project [25] and contained examples of

textsmoving on a complex background. This databasewas also used

by Lienhart and Stuber [1].
One hundred randomly selected images from database I were

used for collecting the initial samples for training the SVMs, while

the others were used for testing. Nontext training examples for

bootstrapping the SVMs were also collected from 86 images that

contained no text and were distinct from the text image databases.

For each detected text region, the proposed system drew dotted

lines encompassing that region in the input image. It should be

noted that the finalized text regions were not always rectangular in

shape because multiple text chips were sometimes merged into a

single detection.

3.1 Tuning of Parameters

Prior to evaluating the overall performance of the proposed system

using the database, various parameters were tuned. These

included parameters for the texture classifier, i.e., input window

size M and polynomial degree p, plus the CAMSHIFT parameters,

i.e., initial window configuration and termination condition.

3.1.1 Evaluation of SVM Parameters

To investigate the effect of the parameter settings on the

performance of the texture classifier, two experiments were run

while varying one parameter at a time. The performance criterion

was the classification accuracy of the SVMs for text and nontext

patterns rather than the overall text detection results. For this

purpose, 100 training images were divided into two different

classes of 70 training images and 30 validation images from which

training patterns and validation patterns were collected, respec-

tively. The SVMs were then trained using the training patterns and

tested using the validation patterns. Table 1 shows the error rate as

p was varied from 1 to 6 when M ¼ 15. The best results were

obtained when using degree-4 and �6 polynomial kernels.

However, no obvious optimum was identified. Higher degrees of

p afforded a lower error rate, while a saturation point was reached

when p � 4.
Although the use of small input windows can reduce the

processing time, if the window size is too small, the classification

errors will increase because the classifier is unable to fully utilize

the textural information. Conversely, if the window is too large,

this can result in unstable classifications at the texture boundary

(edge of text area). Accordingly, selecting the appropriate input

window size is a trade off between classification accuracy and

processing time. As such, experiments were performed with

different input window sizes of 3� 3, 5� 5, 7� 7, 9� 9, 11� 11,

13� 13, 15� 15, and 19� 19. The results are summarized in

Table 2. While a smaller error rate tendency was observed with the

larger input window sizes, except for a 19� 19 window, the best

results were obtained with a 13� 13 window.

3.1.2 Determination of CAMSHIFT Parameters

The initial locations and sizes of the search windows are

dependent on the application. An effective selection for the initial

search windows should be relatively dense and large enough not

to miss texts located between the windows, yet also moderately

sparse and small enough to ensure fast processing. The current

study found that 5� 5-sized windows located at a regular interval

of ð25; 25Þ were sufficient to detect the text areas.
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Fig. 6. Example of text detection using CAMSHIFT: (a) input image (540� 400), (b) initial window configuration for CAMSHIFT iteration (5� 5-sized windows located at

regular intervals of ð25; 25Þ), (c) texture classified region marked as white and gray levels (white: text region, gray: nontext region), and (d) final detection result.

Fig. 7. Example of chip fusion: (a) intermediate detection results for each pyramid

level and (b) final detection result.

TABLE 1
Classification Error Rates Using Varying Polynomial Degree



Variations in the threshold values Tx, Ty, Tw, and Th (for

termination condition of CAMSHIFT) did not significantly affect

the detection results except when they were so large that the search

process converged prematurely. Therefore, based on various

experiments with the validation images, the threshold values were

determined as Tx ¼ Ty ¼ 3 pixels and Tw ¼ Th ¼ 2 pixels.

Although these parameters were not carefully tuned, the results

were acceptable with both the validation and test images, as

described in the next subsection.

3.2 Text Detection Performance Results

For the text detection experiments, the texture classifier parameters

were set according to one of the optimal results (p ¼ 4, M ¼ 13)

identified in the previous section. Based on these parameters, the

classifier was then retrained with all the training data, including

the validation patterns. The systems were coded in C++ and run on

a Pentium3 CPU with an 800 MHz clock speed. The time spent

processing an image depended on the image size, and the number

and size of the texts in the image. Most of the time was spent in the

texture classification stage. For the 640� 480-sized images, an

average of 3.2 seconds was taken to classify all the pixels in the

image. However, when the classification was restricted to just the

pixels located within the search windows involved in CAMSHIFT,

the entire detection process only took an average of 0.45 seconds.
Fig. 8 shows examples of input images from databases I and II

along with the computed text bounding boxes: While considerable

variations in contrast, intensity, and texture, even within a text

string were observed, almost all the text regions were correctly

located. Some text lines (Figs. 8d, 8e, and 8l) were missed because

of their small size or low contrast. However, such texts are usually

not important as regards the original purpose of text detection, i.e.,

image indexing or compression. The background of Fig. 8j was
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TABLE 2
Error Rates with Different Window Sizes

Fig. 8. Text detection examples: (a)-(c) Web images, (d)-(h), (m)-(o) video frames obtained from various video sources covering the news, games, movies, and LAMP lab

[34], and (i)-(l) scanned documents (scanned at 150 dpi).



filled with handwritten texts that were degraded by heavy shadow

and blur. As a result, only portions (with more moderate shadow)

were detected as texts. However, it is not easy even for humans to

locate all the texts in this image. There were some spurious

detections in Figs. 8h, 8i, 8k, and 8m. In particular, in the case of

Figs. 8h, 8i, and 8m, the depicted structure and intricate designs

were detected as texts because they exhibited a similar contrast

and texture to text, thereby making them difficult to distinguish

from text when only analyzing localized characteristics. Conse-

quently, a more complicated system is needed to deal with such

designs. It should also be noted that the texts detected in Figs. 8i, 8j,

and 8l were either textured or multicolored. Such texts cannot be

easily detected with CC-based methods.
Fig. 9 shows text detection examples from two video streams in

database III. To facilitate a comparison with other methods, the

detection results were converted into masked images where a

black mask was used to represent the background region. Despite

a complex moving background and variations in the text regions

related to size and position, nearly all the texts were detected with

very few false detections. When these results were compared with

the performance of various other methods [1], [26], the proposed

system was found to produce more precise boundaries and fewer

false detections.
To quantitatively evaluate the performance, evaluation criteria

were established for the detections produced automatically by the

system. Although several previous methods [2], [27] provide

results on detection accuracy, they are either restricted to specific

image classes or cannot be extended to an automatic evaluation of

large collections of diverse images. Accordingly, a new technique

was proposed for the automatic evaluation of text detection in

images. First, ground truths GTs are created by manually

constructing bounding boxes around each text string in the image.

Then, the outputs produced by the system As are compared with

the GTs based on checking the similarity, defined as the size of the

overlap divided by the size of the union. Formally, the similarity
between two detections � and � is defined as

� �; �ð Þ ¼ size D� \D�

� �
=size D� [D�

� �
: ð5Þ

Actually, this is the Tanimoto similarity [28] between two
detections when they are represented as IW � IH vectors whose
elements are 1 if the corresponding pixels are contained within the
text areas and 0 otherwise. As such, the output of the comparison
is a binary value of fcorrect; incorrectg, which is determined as

correct; if T < � GT;Að Þ; incorrect; otherwise; ð6Þ

where T is the threshold, which is set at 0.8.
The incorrect detections are further classified into {false detection,

miss} as defined by:

false detection; if size DAð Þ-size DGTð Þ > 0; miss; otherwise:

There are situations when a text region can be decomposed into
two or more detections A1; . . . ; AS , as exemplified in Fig. 10. In this
case, the detections are simply merged into a single large detection
A0 (D0

A ¼
S
j¼1;���;S D

j
A) containing all the Ajs, then the GT is

compared with A0. However, in this case, the threshold value T is
lowered to 0.75 to disregard the spaces between the lines and
words. Conversely, when several ground truths GT 1; . . . ; GTP

correspond to a detection A, they are merged into a single large
ground truth GT 0 (D0

GT ¼
S
i¼1;���;P D

i
GT ) and compared with A. To

enable the automatic counting of correct and incorrect detections
from this configuration, a simple merging procedure is presented
as summarized in Fig. 11. The basic strategy is to merge as many
detections as possible, while the resulting merged detection
satisfies the detection criterion (6) or increases the similarity score
(5). Although the resulting merging is not guaranteed to be
optimal, the results were found to be acceptable in preliminary
experiments.

Two metrics are used to summarize the detection results, as
defined by:

miss rateð%Þ ¼ # of misses

# of texts
� 100 and

false detection rate ð%Þ ¼ # of false detections

# of texts
� 100:

The performance of the proposed system with databases I, II,
and III was a 2.4 percent, 4.3 percent, and 1.2 percent miss rate and
71.5 percent, 53.1 percent, and 22.4 percent false detection rate,
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Fig. 9. Examples of text detection from two video streams (sequence from left to right): (a) input video streams and (b) detected text regions.

Fig. 10. Example of decomposed detection.



respectively. The false detection rate can go above 100 percent
because the number of nontext detections can be higher than the
number of text detection. To gain a better understanding of the
relevance of the results obtained using the proposed method,
benchmark comparisons with other methods were carried out. A
set of experiments was performed using a CC-based method and
two texture-based methods with database I. The CC-based method
[3] quantized the color spaces into a few prototypes and performed
a CC analysis on the resulting gray-scale images. Then, the
extracted CCs were verified according to their shapes. The first
texture-based method [20] adopted an NN to analyze the textural
properties of the texts and performed a histogram analysis to
generate text chips. The second texture-based method extracted up
to third order central moments as features from wavelet subband
images, selected some features based on the Bayes error rate, and
then classified them using an NN, following the classification
scheme of [4].4 Finally, the text chips were identified by a CC
analysis.

Table 3 summarizes the performances of the different systems:

A was the proposed method, B used an SVM for texture

classification and histogram analysis for chip generation, D used

an NN adopted from [20] for texture classification and CAMSHIFT

for chip generation, and C, E, and F were the CC-based method

and texture-based methods described above, respectively.
A and B exhibited similar performances and were far better

than the other four methods, while A was much faster than B. C
showed the highest false detection rate. However, when an NN
was combined with CAMSHIFT (D), the performance was
improved. E produced the highest miss rate, which mainly
stemmed from a poor detection of noisy and textured texts that
often occur in video images. However, preliminary experiments
showed that, when the texts were rather clean and single-colored
(such as texts on journal covers, Web logos, etc), E performed
slightly better and was much faster than A. F exhibited a medium
miss rate and rather high false detection rate with the second
longest processing time.

4 CONCLUSIONS

A texture-based method for detecting texts in images was

presented. The system analyzes the textural properties of texts in

images using an SVM and locates the text regions by operating

CAMSHIFT on the texture classification results. The proposed

method can facilitate fast text detection, even though it does not

assume the type of media or the color and textural properties of

texts and is relatively insensitive to image resolution. It also works

well in extracting texts from complex and textured backgrounds

and was found to produce a better performance than some other

techniques. However, the proposed texture classifier did encounter

problems classifying very small text or text with a low contrast.
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Extraction of Features Using M-Band Wavelet
Packet Frame and Their Neuro-Fuzzy

Evaluation for Multitexture Segmentation
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Abstract—In this paper, we propose a scheme for segmentation of multitexture

images. The methodology involves extraction of texture features using an

overcomplete wavelet decomposition scheme called discrete M-band wavelet

packet frame (DMbWPF). This is followed by the selection of important features

using a neuro-fuzzy algorithm under unsupervised learning. A computationally

efficient search procedure is developed for finding the optimal basis based on

some maximum criterion of textural measures derived from the statistical

parameters for each of the subbands. The superior discriminating capability of the

extracted features for segmentation of various texture images over those obtained

by several existing methods is established.

Index Terms—Texture segmentation, M-band wavelet packet frames, feature

selection, fuzzy feature evaluation index, neural networks.

�

1 INTRODUCTION

SEGMENTATION of multitexture image is an important problem in
image analysis [1], [2]. In this regard, some applications of octave
band wavelet decomposition scheme for texture analysis have been
attempted [3], [4]. The main difficulty in octave band wavelet
decomposition is that it can provide only a logarithmic frequency
resolution which is not suitable for the analysis of high-frequency
signals with relatively narrow bandwidth. The investigations of
Chang and Kuo [5] and Laine and Fan [6] indicate that the texture
features are more prevalent in the intermediate frequency band and
showed promising results using wavelet packet frames [7], [8].
Therefore, the main motivation of this work is to utilize the
decomposition scheme based onM-band (M > 2) wavelets, which,
unlike the standard wavelet, provides a mixture of logarithmic and
linear frequency resolution [9], [10]. The use of M-band wavelet
decomposition gives rise to a large number of features, most of
which are redundant for accurate and efficient recognition process.
Therefore, proper selection of the appropriate features using some
feature selection algorithms is necessary. Some recent attempts have
been made for multiscale basis and feature selection in the
framework of artificial neural networks (ANN) [11], [12]. In
this paper, we propose a method of multitexture segmentation
scheme based on discrete M-band wavelet packet frame analysis
ðDMbWPF Þ in order to extract themost significant information of a
texture which often appears in the middle frequency channels. The
other motivation of frame analysis is to achieve the translational
invariance in texture analysis.

The proposed methodology has two parts: In the first part, we

develop a computationally efficient and adaptive technique for

finding out an appropriate tree-structured (less than the complete

tree) M-band wavelet packet basis, to avoid a full decomposition.

This selection of basis is based on some maximal criterion of

textural measures to locate dominant information in each

frequency channel (subband) and to decide whether information

from a particular subband is needed or not. With this transform,
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