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Dynamical inference: Where phase synchronization and generalized synchronization meet
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Synchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates
their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization
from the time series of such systems is of great importance for the understanding and prediction of their dynamics,
and several methods for doing so have been introduced. However, the common case where the interacting systems
have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous
external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical
Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence
of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general
synchronization. Starting from phase or state observables, we present methods for the detection of both phase
and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are
further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous
van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated
chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify
noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.
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I. INTRODUCTION

Synchronization emerges from the interactions between
oscillatory systems. It is a ubiquitous phenomenon that can
involve either two or many systems, and it leads to the onset
of coordinated dynamics and spontaneous order [1,2], with
examples ranging from the synchronization of fireflies [3],
through the cardiorespiratory system [4], to electrochemical
oscillators [5]. Starting from Huygens, who first observed
synchronization, many other studies and definitions have
appeared, leading to different descriptions of synchroniza-
tion [6]. Two of them, phase synchronization (PS) [1] and
generalized synchronization (GS) [7], are of particular interest.
They appeared during the era when dynamical chaos was
also being intensively studied, and interest grew rapidly,
especially given that synchronization can emerge from weak
interactions. The markedly different definitions of PS [8]
and GS [9] were published in the same volume of Physical
Review Letters, with that of PS relying on the concept of
phase locking, whereas GS related to the state amplitudes
and the corresponding stability of the systems. Thus, PS and
GS are applied to different domains of observables to describe
what, as we will show below, is actually the same underlying
phenomenon—synchronization.

It is often desirable to be able to detect synchronization from
measured time series. This led to the development of a number
of different methods for the detection of both PS and GS. The
methods for PS detection require phase time series, and are
based mostly on the statistics of the phase difference [10–13].
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GS is assessed through use of the state signals of the inter-
acting systems: different methods have been developed based
on nearest-neighbor mapping [7], mutual information [14],
generalized angle [15], and statistical modeling [16]. Parlitz
et al. studied the connections and similarities between PS and
GS [17]. All of these methods, however, detect the outcome
from the statistics of the observables. Thus, they typically rely
on detecting effects such as mutual information or transfer
entropy, and many of them infer neither the noise intensity
nor the parameters characterizing the noise-induced events.
Dynamical inference [18,19], on the other hand, can reveal
the underlying dynamical mechanisms together with relevant
parameter values, thus yielding deeper understanding of the
synchronization process.

Two characteristic features of natural systems are their
inherent time-variability and their mutual interactions. A new
class of systems, named chronotaxic [20], has recently been
introduced: nonautonomous self-sustained oscillators with
time-varying, but stable, amplitudes and frequencies. Systems
exhibiting such features are found in many different fields,
including the cardiorespiratory system [4], climate [21], and
evolutionary science [22], but they have often been treated as
stochastic. Chronotaxic systems have been identified as highly
deterministic and now need new analytic approaches, or mod-
ifications of the existing ones. The recently developed method
for studying interoscillator interactions based on Bayesian
dynamical inference [18,19] is especially well suited to the
treatment of systems with time-varying parameters, including,
in particular, those that are chronotaxic. In what follows we
extend this method to the detection of GS and we study the
similarities between GS and PS and their mutual relationship.

Two synchronization detection methods, for PS and GS,
respectively, are presented below and it is shown that they can
improve the detection of “genuine” synchronization due to
deterministic functional interactions. The proposed methods
are based on a common inferential framework, which exploits
dynamical Bayesian inference [18,23–25] of the time-evolving
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interactions in the presence of dynamical noise. PS is evaluated
by testing whether the phase signals resemble a synchronized
phase oscillator model, while GS is evaluated through the
asymptotic stability of the inferred driven oscillator. We test
and illustrate the equivalence and consistency of the two
methods on signals emanating from an analog electronic
simulation of two unidirectionally coupled nonautonomous
van der Pol oscillators. The noise in the signals originates from
the experimental environment and the imperfections of the
electronic components. After demonstrating the application of
the methods to analog signals, we apply them to numerical
signals to point out two distinctive situations where they offer
a significant advance over earlier approaches. We show that
Bayesian dynamical inference is able to establish reliably
whether observed phase slips are noise-induced or not. In the
case of GS, the proposed Bayesian inference-based method
can distinguish, consistently and precisely, whether two
oscillators are simply coherent (but functionally independent),
or intrinsically synchronized due to a mutual coupling. The
Bayesian-based methods are also readily applicable to the
case of chaotic dynamical systems. We illustrate the latter
case by demonstrating satisfactory detection of PS and GS
between coupled Rössler and Lorenz chaotic systems, with
time-varying parameters and subject to noise.

Section II provides details of how the methods are devel-
oped. A brief description of dynamical Bayesian inference
for time-evolving interactions is provided, followed by an
explanation of how PS and GS are evaluated from the
parameters that are inferred. In Sec. III the analog experiment
is described and the methods to detect both PS and GS
are brought to bear on the same signal originating from it.
Section IV outlines how both methods can detect whether the
existence of phase slips is just on account of the perturbing
effect of noise or is on account of interactions. In Sec. V
we demonstrate that GS method can distinguish between
coherence and intrinsic coupling-induced synchronization.
Section VI provides a comprehensive discussion of appli-
cations to coupled chaotic systems. Finally, we summarize
and draw conclusions in Sec. VII. The Appendix describes
succinctly how the measurement noise can be treated within
the same inferential framework.

II. DYNAMICAL INFERENCE
OF COUPLED OSCILLATORS

A. Time-evolving dynamical Bayesian inference

In the present context, dynamical inference refers to a pro-
cedure for creating a model in terms of differential equations
from an analysis of time-series. This is quite different [26]
from other statistical methods, which measure quantities such
as entropy, Granger causality, and conditional probability
[27–31]. The most important distinction is that the end results
of dynamical inference are the equations of motion. These (or-
dinary or stochastic) differential equations can describe in full
not only the effects observed but also the underlying dynamical
mechanisms, phenomena, and qualitative transitions. In this
way, dynamical inference methods can probe the effective
connectivity [32] between the coupled oscillators.

The dynamical inference technique applied here uses a
recently introduced method based on a Bayesian frame-

work [18,19]. The main feature is that the method is applied
to a stochastic differential model whose deterministic part
is allowed to be time-varying. The aim is to provide a way
of detecting synchronization in a model of two (or more)
weakly interacting oscillators subject to noise. Such a model
is described by the stochastic differential equation

χ̇ i = f(χi,χj |c) +
√

Dξi, (1)

where i �= j = 1,2, and f (χi,χj |c) are base functions repre-
senting the deterministic part of the internal and the interacting
dynamics. The vector c denotes the parameters acting as scale
coefficients for the base functions. The dynamical noise is
assumed to be white, Gaussian, and parametrized by a noise
diffusion matrix D. We focus on inferring the dynamical noise
because of its ability to induce phase-slips that can affect
synchronization detection directly. Note, however, that it is
also possible to infer the measurement noise within the same
framework: see the Appendix and Ref. [33]. At this point we
speak of χi in general, but later we will refer separately to the
phase or state domain depending on the type of synchroniza-
tion we are treating, i.e., phase or generalized, respectively.

Given that 2 × M time-series X = {χn ≡ χ (tn)} (tn = nh)
are provided, and assuming that the model base functions
are known, the main task for dynamical Bayesian infer-
ence [24,33] is to infer the unknown model parameters and the
noise diffusion matrix M = {c,D}. The problem eventually
reduces to maximization of the conditional probability to
observe the parameters M, given the data X . For this we
applied Bayes’ theorem, which exploits the prior density
pprior(M) of the parameters and the likelihood function
�(X |M) to observe X given the choice M, in order to
determine the posterior density pX (M|X ) of the unknown
parameters M conditioned on the observations X :

pX (M|X ) = �(X |M) pprior(M)∫
�(X |M) pprior(M)dM .

The prior distribution, enclosing previous knowledge of the
unknown parameters based on observations, is assumed to
be known. The task is therefore to determine the likelihood
functions in order to infer the final posterior result. If the
sampling h is small enough,1 then one can construct the Euler
midpoint approximation of Eq. (1) for the acquired time-series:

χi,n+1 = χi,n + hf (χ∗
i,n,χ

∗
j,n|c) + h

√
Dzn. (2)

Here χ∗
n = (χn+1 + χn)/2 and zn is the stochastic integral of

the noise term over time: zn ≡ ∫ tn+1

tn
z(t) dt = √

h H ξn for the
H matrix that satisfies the Cholesky decomposition HHT =
D. Use of the stochastic integral for noise that is white and
independent leads to the likelihood function, which is given
by a product over n of the probability of observing χn+1 at each
time ([33] and references within). The negative log-likelihood

1With a large mismatch between the integration and sampling
rates, the inference of the stochastic part could become less precise.
Given the high sampling rates provided by current (and foreseeable)
analog-to-digital converters, however, this approximation is already
appropriate in most experimental applications.
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function is then S = − ln �(X |M), given as

S = N

2
ln |D| + h

2

N−1∑
n=0

{
ck

∂fk(χ·,n)

∂χ

+ [χ̇n − ckfk(χ∗
·,n)]T (D−1)[χ̇n − ckfk(χ∗

·,n)]

}
, (3)

with implicit summation over the repeated index k and approx-
imated derivatives χ̇n = (χn+1 − χn)/h. The log-likelihood
function Eq. (3) is of quadratic form. Thus, if the prior is a
multivariate normal distribution, so also will be the posterior.
Given such a distribution as a prior for the parameters c,
with mean c̄, and covariance matrix �prior ≡ �−1

prior, the final
stationary point of S is calculated recursively from

D = h

N
[χ̇n − ckfk(χ∗

·,n)]T [χ̇n − ckfk(χ∗
·,n)],

ck = (�−1)kw rw,

rw = (�prior)kw cw + h fk(χ∗
·,n) (D−1) χ̇n − h

2

∂fk(χ·,n)

∂χ
,

�kw = (�prior)kw + h fk(χ∗
·,n) (D−1) fw(χ∗

·,n),

(4)

where summation over n = 1, . . . ,N is assumed and the
summation over repeated indices k and w is again implicit.
The initial prior can be set as the noninformative flat normal
distribution, �prior = 0 and c̄prior = 0. These four Eqs. (4)
are applied to a single block of data X and the posterior
multivariate probability NX (c|c̄,�) explicitly defines the
probability density of each parameter set of the model Eq. (1).

In dynamical Bayesian inference each new prior distribu-
tion depends on and uses the previously inferred posterior
distribution. In this way, our inference uses informative priors
and differs from most of the maximum likelihood estimators.
In our framework, however, this information propagation
is amended in order to follow the time-variability of the
parameters [18]. The new prior covariance matrix becomes
�n+1

prior = �n
post + �n

diff , where �n
diff describes which part of the

dynamical fields defining the oscillators has changed, and the
size of the change. Constructed in this way, the prior will lie
within the clearly defined boundaries [19] between the case
of full information propagation �n+1

prior = �n
post and that of no

propagation �n+1
prior = ∞.

The description above, and in the rest of the paper, is for two
interacting oscillators. Nonetheless, the theory also holds for
a larger number of oscillators—see, e.g., the generalization
to networks in [19]. Dynamical Bayesian inference can be
applied successfully to a relatively wide spectrum of physical
problems but it is not, of course, applicable to every experimen-
tal problem. In certain cases (e.g., when very fast processing
is required, or the measurement noise is very high, or the data
blocks are extremely small), it is possible that an alternative
form of dynamical inference [34–37] may cope better with
some of the inferential issues and can then be used for detection
of PS and GS in the novel way presented below. A tutorial about
the practical implementation of dynamical Bayesian inference,
including programming and software codes from which the
following examples can be easily reproduced, is provided in
Ref. [38].

B. Detection of phase synchronization

To detect PS we perform inference in the phase domain;
i.e., we use phase time-series derived from the interacting
oscillators. Depending on the nature of the state signals, the
instantaneous phases can be estimated by use of any one of
a number of different phase detection methods [34,39–41]. If
the oscillators are weakly interacting, their dynamics can be
approximated by a phase oscillator model [42]. This serves as
the base model for the Bayesian inference:

φ̇i = f(φi,φj |c) +
√

Dξi, (5)

where φi are the phase variables. Because of their oscillatory
nature and the existence of periodic solutions, the base func-
tions f can effectively be decomposed into Fourier series [18]:

φ̇i =
K∑

k=−K

c
(i)
k 	i,k(φ1,φ2) + ξi, (6)

where i = 1,2, 	1,0 = 	2,0 = 1, c
(i)
0 = ωi , and the other 	i,k

and c
(i)
k are the K most important Fourier components. Note

that in this way we do not prescribe any specific model, and
the inference is applicable to interacting oscillators quite
generally.

Once we have inferred the parametersM = {c,D}, our goal
is to check whether or not the deterministic phase oscillator
model Eq. (5) undergoes PS for those parameters c. We
therefore present the phase dynamics on a T2 torus defined
by the toroidal coordinate ζ (t) = φ1(t) + φ2(t) and polar
coordinate ψ(t) = φ1(t) − φ2(t). Next, we consider a Poincaré
section defined by ζ = 0 and assume that dζ (t)/dt |ζ=0 > 0
for all ψ . In this way we construct a map M: [0,2π ] →
[0,2π ] that defines, for each ψn on the Poincaré section, the
next phase ψn+1 after one period of the toroidal coordinate
ψn+1 = M(ψn). Synchronization is verified if ψe exists such
that ψe = M(ψe) and |dM(ψe)/dψ | < 1. The existence of
a fixed solution is established by application of a modified
Newton’s root-finding method. A detailed description of the
procedure is given in Ref. [19]. If there is a root, the oscillators
are synchronized IPS = 1; otherwise they are not and IPS = 0.

C. Detection of generalized synchronization

To detect GS we perform inference in the state domain using
the “raw” signals for the whole state space. In doing so, we
assess the amplitude dynamics of the interacting oscillators.
The model to be inferred is then expressed as

ẋi = f(xi ,xj |c) +
√

Dξi, (7)

with xi being the state variables. We will assume that the
deterministic model and the base functions f are known and
presented as polynomial functions. In general, it is nontrivial
to determine the state model underlying the dynamics of a
given time series. Nonetheless, techniques do exist for treating
this problem—for example, the variational Bayesian or the
polynomial best fit methods [24,36,43]. These are model
selection methods that start from a large set of base functions
and try to establish the most probable approximative model
representing the dynamics of the observed time-series. On the
other hand, there also exist cases where the model is known
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a priori and the main task of the dynamical inference is then
to reveal the temporal dynamics from the time series, e.g., a
recent application of the same inference framework to effect
secure communications [44].

Next, we use the inferred parameters M = {c,D} and the
state model to detect whether or not the two systems are
synchronized. To do so, we employed a theorem by Kocarev
and Parlitz [9] stating that a unidirectionally coupled system
is in a state of GS if the driven system is asymptotically
stable. Knowing the model and the parameters, one can
evaluate the largest Lyapunov exponent (LLE) of the driven
oscillator [45,46]. If the LLE is negative, then the driven
oscillator is asymptotically stable and the two oscillators
undergo GS. Hence, the LLE can serve as a synchronization
index. Moreover, due to the information propagation within
the inference method, one is able to follow the time variability
of the LLE, and hence the time-evolution and corresponding
transitions into or out of GS.

III. DETECTING PHASE AND GENERALIZED
SYNCHRONIZATION THROUGH A COMMON

INFERENTIAL FRAMEWORK

A. Analog simulation

As Bayesian dynamical inference is by definition stochas-
tic, one often encounters the question: Is the inference valid
under noiseless conditions? In theory, in the complete absence
of noise, the zero-noise matrix D = 0 in Eq. (4) will result
in a singularity. Consequently, if one applies inference to
numerically generated signals with virtually no noise, the
method will fail in execution. We argue, however, that such a
situation is (almost) never encountered under real experimental
conditions. There will inevitably always be at least a little noise
(the omnipresent thermal noise if nothing else), which will
allow the methods to function correctly. To illustrate this we
performed an analog study of two interacting systems, without
using an explicit noise generator.

Analog experiments have been used extensively for study-
ing the dynamics of nonlinear systems [47–52]. They provide
a convenient way to study the continuous dynamics and inter-
actions between oscillatory systems and stochastic processes
in real time. The uncertainty in the system, arising from the
noise embedded in the signals, has a more realistic meaning
here, usually being attributed to environmental disturbances or
to imperfections of some of the electronic components in the
circuits. This is an example of the dynamical noise that is the
main focus of this manuscript. In addition, during the process
of data acquisition and discretization, measurement noise is
introduced that has no links with the actual dynamics of the
oscillators. In respect of synchronization, dynamical noise can
introduce phase slips, whereas measurement noise will only
reduce the overall precision of the inference.

The model system to be investigated consists of two coupled
van der Pol oscillators:

1

c2
ẍ1 − μ1

(
1 − x2

1

)1

c
ẋ1 + [ω1 + s(t)]2x1 = 0

(8)
1

c2
ẍ2 − μ2

(
1 − x2

2

)1

c
ẋ2 + ω2

2x2 + εx3
1 = 0,

where i = 1, 2 and xi are the state variables describing the
dynamics of each subsystem, μi are the shape parameters
that define the relaxation of each of the oscillator, and ε is
the coupling amplitude. Note that there is no explicit noise
generator in Eq. (8). When the shape parameters are small
(μ → 0), ωi are the oscillator frequencies. The constant c

appears from each integration procedure and is introduced for
electrical stability. The first oscillator has a nonautonomous
term s(t), which makes its frequency time-varying. The two
oscillators are unidirectionally coupled such that the first
oscillator drives the second one.

Figure 1 provides a block-diagram of the analog electronic
implementation of the system under investigation [Eq. (8)].
All the operational amplifiers are type MC1458N, while the
four-quadrant analog multipliers AD534LD. The output of

FIG. 1. Schematic block diagram of the analog electronic circuit used to model a pair of unidirectionally coupled, nonautonomous, van der
Pol oscillators. Standard notation is used: the triangles correspond to amplifiers and the rectangles to multipliers. The resistance R = 1 k�, the
capacitance is C = 1 μF, and the resistance of the potentiometer Rp = 1 → 10 k�.
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each multiplier is automatically divided by a factor of 10,
and this is taken into account in the design of the circuit.
For the design in Fig. 1 one can readily determine the values
of the corresponding parameters in the system Eq. (8). The
shape parameters are both set to unity μ1 = μ2 = 1 and the
basic frequencies are ω1 = 1 and ω2 = 1.1. A nonautonomous
influence is introduced additively in the frequency of the
first oscillator by means of a periodic sine or square-wave
signal from an analog signal generator. The constant c = 100.
Thus, the true oscillating frequencies are f1 = ω1100/2π =
15.92 Hz and f2 = ω2100/2π = 17.51 Hz. The analog-to-
digital conversion is performed at a sampling frequency fs =
1000 Hz. By varying the resistance Rp of the potentiometer one
can change the coupling strength ε = 0 → 1—corresponding
to a change from zero coupling to moderate coupling between
the two interacting oscillators. In this way, one is able to
observe the time-evolution of the dynamics and follow the
synchronization transitions in real time.

Figure 2 shows examples of signals from the analog
simulator. Because of the sinusoidal periodic influence on the
frequency, the phase portrait (a) and the Lissajous curve (b)
are not closed curves but, rather, oscillate within a confined
region. The wavelet transforms [53,54] in Figs. 2(d) and 2(e) of
the digitized signal x1 in Fig. 2(c), show clearly the sinusoidal
and square-wave time-variations of the frequency—a property
often observed in (thermodynamically open) biological sys-
tems [4,18]. The square-wave forcing produces time variations

FIG. 2. (Color online) Some results from the analog electronic
simulation of model Eq. (8). (a) Typical signals (oscilloscope traces)
showing for a window in time the phase portrait of the first oscillator
x1 for a sinusoidal external force s(t). (b) Oscilloscope trace of
the Lissajous curve during synchronization. (c) The x1 signals
after A/D conversion. (d) Time-frequency wavelet transform of x1

for a sinusoidal external force. (e) Wavelet transform of x1 for a
square-wave external force.

resulting in synchronization transitions that can be observed
in real time [55].

B. Equivalence of phase and generalized synchronization

The relationship between PS and GS was first analyzed
by Parlitz et al. [17]. They outlined the main similarities
and relations by detecting PS through phase difference and
mean frequency and by detecting GS through the nearest-
neighbors test. Here, we detect PS and GS through the
common inferential framework, where the evaluation of the
synchronization state relies on dynamical models and the
respective definitions of synchronization.

We applied the methods described above to analog sig-
nals from the unidirectionally coupled model Eq. (8). The
frequency of the first oscillator was varied by the square-wave
signal of Fig. 3(a). The variations were such that, for its
low frequency state, the two oscillators were synchronized.
Due to the periodicity of the external signal s(t), however,
intermittent synchronization occurred. First we analyzed PS.
The phases were estimated by application of the Hilbert [39]
and protophase-phase [34] transformations to the x1(t) and
x2(t) signals. By decomposing the phase dynamics to second
order in Fourier series, we inferred the parameters c of the
interacting systems. Next, by reconstruction of the map using
torus phase notation, we determined whether or not the coupled
phase oscillators were synchronized, for each inferred set of
parameters. The results in Fig. 3(b) show that we detected PS
time variations and transitions consistently with the frequency
variations. We then sought and detected GS. As base functions
we used the polynomials on the left-hand side of Eq. (8). We

FIG. 3. (Color online) Detection of PS and GS from the same
signals generated by analog simulation of the model Eq. (8). (a) Time-
frequency wavelet transform of x1. Note the discrete time-variation of
the frequency due to the square-wave signal perturbation s(t). (b) The
detected PS index IPS. High values of IPS = 1 indicate synchronized
intervals. (c) Largest Lyapunov exponent of the x2 oscillator. Negative
(nonzero) λ(t) indicates asymptotic stability of the x2 system and the
occurrence of GS. Both cases were calculated with windows of 4 s.
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applied the inference method to the four state signals created
from the parameter set c for each block of data. Evaluation of
the LLE λ(t) then revealed whether the driven oscillator x2 was
asymptotically stable, and hence whether GS existed or not.
The results in Fig. 3(c) show the time intervals of GS when
the exponent was negative, and the nonsynchronized intervals
where λ was around zero and the driven oscillator is marginally
stable. Again the detected GS transitions are consistent with
the frequency variations.

It is evident that the detected PS and GS in Fig. 3 [cf.
Figs. 3(b) and 3(c)] are mutually self-consistent and that
they undergo essentially the same time evolution and regular
transitions. Thus, our dynamical Bayesian inference, applied
to different observables in the same system, and exploiting
different synchronization definitions, has detected the same
phenomenon in each case—synchronization.

IV. DETECTING NOISE-INDUCED PHASE SLIPS

Noise can be the instigator of many events and phenomena
in dynamical systems. It is especially important in relation
to systems that are in “borderline” states [18,56,57]. Due to
the importance of the latter, there is an increasing need for
methods that can detect and describe the nature of such events.

We now try to describe the nature of phase slips in relation
to PS and GS. In doing so, we use a numerical simulation of
the same model Eq. (8), but with an explicit white-noise source
and without the integration constant c:

ẍ1 − μ1
(
1 − x2

1

)
ẋ1 + [ω1 + s(t)]2x1 + ξ1(t) = 0,

(9)
ẍ2 − μ2

(
1 − x2

2

)
ẋ2 + ω2

2x2 + εx3
1 + ξ2(t) = 0.

The frequency parameters were ω1 = 1.8, ω2 = 2.2, μ1 =
μ2 = 1, ε = 0.5, and the noise strength was D1 = D2 =
0.075. Again the frequency of the first oscillator is perturbed
by a square-wave signal s(t), causing a regular sequence
of synchronization intervals each of 500 s. Moderate noise
causes phase-slips during the synchronized intervals where
the deterministic parameters (in particular the frequencies
and couplings) are such that the oscillators are weakly
synchronized, i.e., inside the Arnold tongue, but close to
its border. This situation is illustrated by the simple phase
difference in Fig. 4(a). There are two 500 s plateau-like
intervals indicating synchrony. However, the two enlarged
insets show that, during these intervals, phase-slips occur.
Our objective is to ascertain whether these phase slips are
noise-induced or interaction-induced.

To illustrate their effectiveness and advantages, we compare
our methods with two earlier approaches based on the statistics
of the observables. First we study PS. As part of the class of PS
methods based on statistics of the phase difference [10–13],
we use the synchronization index, based on the conditional
probability [10], which we denote as ICP. The method first
divides each phase interval into N bins. Then, for each bin l,
we calculate the dependence of φ2(tj ), such that φ1(tj ) belongs
to this bin l, and Ml is the number of points in the bin. The
average over all bins leads to the final index:

ICP(tj ) = 1/N

N∑
l=1

∣∣∣M−1
l

∑
eiφ2(tj )

∣∣∣ .
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FIG. 4. (Color online) Detection of PS and GS for the model
Eq. (9) in the presence of noise-induced phase slips. (a) The
instantaneous phase difference. The insets are enlargements of
the regions where the noise-induced phase slips occur. (b) The
synchronization index based on the conditional probability ICP. The
dashed line is the acceptance threshold for synchronization and
denotes the mean + 2 SD (standard deviations) of 100 phase cyclic
surrogate [58] realizations. (c) The synchronization index for PS
based on dynamical inference IPS. (d) Nearest-neighbor distance as
a measure of GS. The dashed line is the acceptance threshold and
denotes the mean − 2 SD of 100 AAFT surrogate [59] realizations.
(e) The dynamically inferred LLE λ as a measure of GS. We note that
λ and IPS have natural acceptance thresholds so that surrogate testing
is not needed.

In this way, ICP measures the conditional probability for φ2 to
have a certain value provided φ1 is in a particular bin. We took
N = 10 as the number of bins, with windows of length 20 s and
we used surrogate testing to determine statistical significance.
The results shown in Fig. 4(b) demonstrate that the index ICP

was below the surrogate threshold for the time windows where
the phase slips occurred. This would seem to suggest that the
oscillators were unsynchronized throughout the whole of each
500-s synchronization interval. However, computation of IPS

by our dynamical inference method, Fig. 4(c), shows that,
actually, the oscillators remain synchronized throughout the
whole of each 500-s interval. It is because of the noise being
decomposed separately that our evaluation of the intrinsic
parameters can reveal this clear conclusion [18] that the
observed phase slips are noise-induced.

Let us now investigate the detection of GS in relation
to such phase slips. We use the index based on nearest
neighbors [17]—which starts from a delay-embedded state
and measures if the neighboring states of the drive un are
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mapped to neighbors in the response system vn. The distance,

dNN = 1

Nδ

N∑
n=1

||vn − vnn||,

is normalized to show zero for synchronized states and one
otherwise. We used three embedding dimensions, a delay of
τ = 20 s, and windows of 50 s. Figure 4(d) shows again that,
due to the phase slips, the distance rises above the surrogate
threshold indicating nonsynchronization. Note also that due
to the strong noise the distance index does not attain either
zero or one. The LLEs evaluated for the dynamically inferred
parameters, on the other hand, are negative throughout the
whole of each synchronization interval, indicating that the
systems are intrinsically synchronized.

V. DETECTING INTRINSIC SYNCHRONIZATION

Synchronization is by definition an “adjustment of rhythms
due to weak coupling” [1]. For synchronization to occur,
therefore, there needs to be coupling, i.e., synchronization
should be a consequence of interactions between the systems.
This also implies that a coincidence of rhythms is not in itself
sufficient to prove the existence of synchronization.

It is important to note that such situations can be encoun-
tered in real systems. For example if one studies the apparent
cardiorespiratory synchronization between the respiration of
one human subject with the cardiac activity of a different
subject (as is done in creating intersubject surrogates), what
appear to be short synchronized intervals can be detected using
the available methods. Such results are clearly fallacious,
given that the two signals cannot be related in any way at
all—coming, as they do, from different subjects measured at
different times.

To study this issue, we again used the numerical model
Eq. (9), but with the two van der Pol oscillators set to the
same frequency ω1 = ω2 = 0.9. At intervals of 500 s we
then switched the coupling ε{1} = 0.35 off or on to produce
sequential changes between the coherent and intrinsically
synchronized states. The noise strength was D1 = D2 = 0.01.
Figure 5(a) shows the resultant phase difference. As expected,
it is mostly constant, except for the noise perturbations and
the small transients at the switching points between the
intervals. These transients result from the nonlinear nature of
the oscillators and act as initial states for the nonsynchronized
intervals. Nevertheless, the phase difference is not diverging
and it remains confined within ±2π . The evaluation of the
synchronization index ICP is based directly on the statistics
of the phase difference; consequently, it will not be able
to distinguish between the two states. This is illustrated
in Fig. 5(b)—the index is above the surrogate threshold
throughout the whole time span, without a trace of distinction
between the two states. Similarly, the nearest-neighbor test for
GS is unable to detect the difference between the coherent
and synchronized states. This is because the distance in the
coherent state is again minimal and nondiverging. Figure 5(c)
shows that the distance index is always below the surrogate
threshold—indicating a constantly synchronized state. The
only exceptions are the few points resulting from the switching
between intervals. On the other hand, when we applied our
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FIG. 5. (Color online) Distinction between coherent and intrin-
sically synchronized states in the model Eq. (9). (a) Instantaneous
phase difference. (b) Synchronization index based on conditional
probability ICP. The dashed line denotes mean + 2 SD of 100
surrogate realizations. (c) Nearest-neighbor distance as a measure
of GS. The dashed line is acceptance threshold and denotes mean −
2 SD of 100 surrogate realizations. (d) Dynamically inferred LLE λ

as a measure of GS.

method for GS detection we were able clearly and precisely
to distinguish the synchronized from the nonsynchronized
(coherent only) states [Fig. 5(d)].

Because the phase domain in the coherent state does not fill
enough space for inference, the IPS index is not very reliable in
distinguishing this as a nonsynchronized state. For cases with
higher noise, when more of the space is spanned, the IPS index
will work consistently, but not in general.

VI. THE EASE OF INFERRING CHAOTIC INTERACTIONS

In the preceding sections we focused on the synchronization
of regular limit-cycle oscillators whose dynamics is time
varying. The reason and motivation for doing so resulted from
the great importance of such time-varying and chronotaxic
systems [20] and their abundance in nature and biology.
In order to illustrate the comprehensive character of the
proposed methods, however, in this section we now turn
our attention to the interactions of chaotic systems. These
are an important group of systems characterized by random-
like but deterministic signals [60]. The intriguing dynamics
of chaotic systems carry implications for many different
fields, including, e.g., climate [61], ecology [62], and secure
communications [44,63]. The application of the Bayesian
inference and synchronization detection methods to chaotic
systems follow the same procedure as that presented in Sec. II,
based on the rationales included in Ref. [64]. In fact, the
inference is even easier and more convenient to effect, because
chaotic systems, with their strange attractors, typically visit
more trajectories and thus facilitate inference within a larger
volume of phase space.
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To detect PS and GS from interacting chaotic systems we
considered the following Rössler system:

ẋ1 = −1.8x2 − x3

ẋ2 = 1.8x1 + 0.3x2 + ξ1 (10)

ẋ3 = 0.5 + x1x3 − 10x3,

which drives a Lorenz system

ẏ1 = σ (t)y2 − 10y1

ẏ2 = ρ(t)y1 − y1y3 − y2 (11)

ẏ3 = y1y2 − 2.66y3 + ε(t)x2 + ξ2.

Three parameters of the Lorenz system are set to be time
varying: sigma is continuously and periodically varied σ (t) =
10 + 0.3 sin(2π0.002t), while the other two parameters are si-
multaneously and discreetly varied, i.e., the intrinsic parameter
is ρ(t) = {0,28} and the coupling parameters is ε(t) = {0,8}.
The noise sources are again assumed to be white and Gaussian
with strengths of D1 = 0.02 and D2 = 0.5.

We used the discreet parameters ρ(t) and ε(t) to control
when the systems are synchronized and thus to introduce
intermittent transitions. At first we set ρ(t) = 28 and ε(t) = 0.
The two systems are then unsynchronized and each follows its
own self-sustained dynamics. Next, when we set ρ(t) = 0 and
ε(t) = 8, the Lorenz system becomes asymptotically stable
and synchronized (in the generalized sense, as shown in
Ref. [9]) to the Rössler dynamics. The latter statement can
be proved by application of the second Lyapunov stability
method to the dynamical error system e = y − y′, where y′ is
an identical copy of y with different initial conditions [65]. By
using the Lyapunov function L = 1/2(e2

1/10 + e2
2 + e2

3) one
can derive that:

L̇ = e1/10ė1 + e2ė2 + e3ė3

= −
(

e1 − σ (t)

20
e2

)2

−
(

1 − σ (t)2

202

)
e2

2 − 2.66e2
3. (12)

If the variations of σ (t) are confined to σ (t) ∈ [−20,20], then
L̇ < 0, the driven system y is globally asymptotically stable
and the two systems x and y are synchronized. We note that
σ (t) in our example was varied within the [9.7,10.3] interval
and that the condition for asymptotic stability L̇ < 0 was
fulfilled. This provides an analytic proof for the existence of
the synchronized state.

In order to verify whether the proposed methods can
detect such a synchronized state, we applied them on signals
generated from system Eqs. (10) and (11). By varying ρ(t) and
ε(t) we introduced intermittent intervals of synchronization.
Figure 6(a) shows a phase portrait of an unsynchronized
interval, which transforms into well defined space structure
once the systems undergo synchronization, as illustrated
Fig. 6(b). In Fig. 6(c) we illustrate how well the inference
can reconstruct the time-variations of the parameters ε(t) and
σ (t). The evolution of the coupling parameter ε(t) indicates
when the synchronization intervals are introduced. The PS
and GS of chaotic systems are usually equivalent [17], as
in the example we present. In general, however, this may
not be true so that exceptions can exist. For estimating the
phases we used the analytic signals of x2 and y3 because
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FIG. 6. Detection of PS and GS from interacting Rössler and
Lorenz chaotic systems. Phase portrait of (a) nonsynchronized and (b)
synchronized intervals. (c) Two inferred time-varying parameters σ (t)
and coupling ε(t). (d) Detected PS index IPS and the corresponding
instantaneous phase difference ψ(t). (e) Detected LLE λ as a measure
of GS.

of their regular circular form. (Note that, in general, phase
estimation from chaotic systems can be a nontrivial task and
that special optimization techniques introduced in Ref. [41]
may be needed). Application of the PS detection technique
results in a synchronization index IPS consistent with the
phase difference and the deterministic transitions as shown
in Fig. 6(d). By evaluating the LLE from the driven Lorenz
system with the inferred parameters we are able to detect GS, as
illustrated in Fig. 6(e). The transitions from positive to negative
LLE are consistent with the deterministic parameters, the PS
and the analytic condition Eq. (12).

VII. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated how PS and GS can
be detected by the use of Bayesian dynamical inference. The
evaluation was based on the core definitions of PS and GS,
and it led to inference of parameter values in the models on
which the procedure was being demonstrated. Thus, under
the approximation that the noise is white and Gaussian, the
method enabled the underlying stochastic differential models
to be inferred from their time series. The resultant equations of
motion describe the intrinsic mechanisms of interaction. For
PS, the model consisted of coupled phase oscillators, using
periodic Fourier series as base functions. For GS, a model
consisting of polynomial base functions was used to represent
the systems under investigation. We focused on systems
that possess deterministic time-varying dynamics, recently
formulated as chronotaxic [20], demonstrate that it can be
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inferred correctly, and show that the proposed methods can
detect precisely the deterministic synchronization transitions
characteristic of time-varying dynamics.

The two methods were illustrated and compared by means
of analog electronic simulations, demonstrating that PS and
GS can both be evaluated consistently despite the existence
of time-varying perturbations. The experiment involved two
unidirectionally coupled van der Pol oscillators, with time-
varying characteristics, i.e., the frequency of the driving system
was influenced by an external periodic signal. The electronic
implementation and the experimental set-up can potentially be
used for other studies involving intermittent synchronization
of similar kinds. The dynamical noise in the signals originated
from the real experimental conditions, i.e., from the circuit
components. The proven effectiveness of the methods confirms
that Bayesian inference of stochastic differential equations
is both valid and desirable in the experimental context. The
ability of the proposed methods to detect PS and GS within
diverse classes of dynamical systems was further illustrated
by their application to coupled chaotic systems. We studied a
Rössler system that is intermittently driving a Lorenz chaotic
system, with other time-varying parameters, and subject to
noise. Correct detection was validated by comparison with the
analytic synchronization condition.

In order to demonstrate the novelty and to differentiate our
approach from other methods, we considered two important
synchronization situations where the dynamical inference
methods showed exceptional performance—in their abilities to
detect noise-induced phase slips, and to distinguish coherence
from coupling-induced synchronization. There were two main
outcomes, both of which are crucially important for real-life,
experimental situations. First, inference of the underlying
stochastic dynamics allows intrinsic synchronization to be
detected in cases where the presence of noise-induced phase
slips might otherwise lead to the conclusion that the systems
are unsynchronized. Second, inference of the deterministic
dynamics facilitates discrimination between synchronization
and phase coherence. In this way, possible spurious detection
of synchronization from time series (or intervals of time series)
that are not causally or functionally dependent can easily be
identified. We compared the proposed methods with what are
arguably the two most widely used methods for detection of
PS [10] and GS [17]. The latter are easier to use and represent
a whole class of similar methods based on statistical measures.
Of course, our results in no way diminish the utility of these
longer-established methods. Nonetheless, we have shown that,
where dynamical inference methods are applicable, they can
bring substantial advantages.

The methods described are particularly suitable for the
analysis of data coming from thermodynamically open sys-
tems, subject to continuous external perturbations and noise,
and with their own inherently time-varying dynamics. The
cardiorespiratory interaction is an obvious and well-studied
example ([4] and references therein). It is characterized by
time variations in the frequencies of both the cardiac and
respiratory oscillations, by their time-varying mutual coupling
and by the presence of external noise. Hence, observed phase
coherence may, or may not, be due to causal couplings in any
given interval [66]. As such, systems abound in nature, we
anticipate that the proposed methods will play an important

role in terms of improved detection and deeper understanding
of synchronization phenomena.
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APPENDIX: INFERENCE OF THE
MEASUREMENT MODEL

The above analysis concentrated on the inference of how
noise affects the dynamics because our interest focused on the
detection of PS and GS in relation to dynamical noise-induced
phase slips. In experiments, however, the observed time series
Yn can often also be affected by measurement or observational
noise. These perturbations can reduce the overall precision
of the dynamical inference. In such cases, one should infer
both the dynamical Eq. (1), χ̇i = f(χi,χj |c) + √

Dξi , and the
measurement equation,

Yi = g(χi,χj |b) +
√

Eηi, (A1)

where g(χi,χj |b) are measurement base functions
parametrized by the b parameters, and the measurement
noise ηi is assumed to be white, Gaussian, and of intensity E.

The aim now is to infer Eqs. (1) and (A1) under the common
Bayesian framework. Using the same constraints (see Sec. II A
and Ref. [33]) one can derive the log-likelihood function as

S = Sdyn + Smeas

= N

2
ln |D| + h

2

N−1∑
n=0

{
ck

∂fk(χ·,n)

∂χ

+ [χ̇n − ckfk(χ∗
·,n)]T (D−1)[χ̇n − ckfk(χ∗

·,n)]

}
+ N

2
ln |E|

+ 1

2

N−1∑
n=0

[Yn − bkgk(χ·,n)]T (E−1)[Yn − bkgk(χ·,n)].

Note that the first and the second term in the equation
depict the inference of the dynamical model and are same
as Eq. (3). The last two terms in the equation provide the
(least-square-like) part of the likelihood function for inference
of the measurement model. The priors are again given by
the multivariate Gaussian distributions with the mean c̄ and
covariance matrix �−1

prior for the dynamical, and by the mean
b̄ and covariance matrix �−1

prior for the measurement model.
The parameters of the dynamical model are evaluated with the
equations already given [see Eqs. (4)], while the measurement
parameters are evaluated recursively with

E = 1

N
[Yn − bkgk(χ·,n)]T [Yn − bkgk(χ·,n)],

bk = (�−1)kw uw,

uw = (�prior)kw bw + gk(χ·,n) (E−1)Yn,

�kw = (�prior)kw + gk(χ·,n) (E−1) gw(χ·,n),

(A2)
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where summation over n = 1, . . . ,N is assumed and the
summation over repeated indices k and w is again implicit.
Equations (4) and (A2) coupled with an optimization proce-

dure in the paths’ space represent the dynamical Bayesian
framework for inference of nonlinear dynamical systems from
measurements that are corrupted by noise.
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[54] A. Stefanovska, M. Bračič, and H. D. Kvernmo, IEEE Trans.
Bio. Med. Eng. 46, 1230 (1999).

062909-10

http://dx.doi.org/10.1137/0150098
http://dx.doi.org/10.1137/0150098
http://dx.doi.org/10.1137/0150098
http://dx.doi.org/10.1137/0150098
http://dx.doi.org/10.1016/j.physrep.2009.12.003
http://dx.doi.org/10.1016/j.physrep.2009.12.003
http://dx.doi.org/10.1016/j.physrep.2009.12.003
http://dx.doi.org/10.1016/j.physrep.2009.12.003
http://dx.doi.org/10.1126/science.1140858
http://dx.doi.org/10.1126/science.1140858
http://dx.doi.org/10.1126/science.1140858
http://dx.doi.org/10.1126/science.1140858
http://dx.doi.org/10.1063/1.166500
http://dx.doi.org/10.1063/1.166500
http://dx.doi.org/10.1063/1.166500
http://dx.doi.org/10.1063/1.166500
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1816
http://dx.doi.org/10.1103/PhysRevLett.76.1816
http://dx.doi.org/10.1103/PhysRevLett.76.1816
http://dx.doi.org/10.1103/PhysRevLett.76.1816
http://dx.doi.org/10.1103/PhysRevLett.81.3291
http://dx.doi.org/10.1103/PhysRevLett.81.3291
http://dx.doi.org/10.1103/PhysRevLett.81.3291
http://dx.doi.org/10.1103/PhysRevLett.81.3291
http://dx.doi.org/10.1016/S0167-2789(00)00087-7
http://dx.doi.org/10.1016/S0167-2789(00)00087-7
http://dx.doi.org/10.1016/S0167-2789(00)00087-7
http://dx.doi.org/10.1016/S0167-2789(00)00087-7
http://dx.doi.org/10.1103/PhysRevLett.96.208103
http://dx.doi.org/10.1103/PhysRevLett.96.208103
http://dx.doi.org/10.1103/PhysRevLett.96.208103
http://dx.doi.org/10.1103/PhysRevLett.96.208103
http://dx.doi.org/10.1103/PhysRevE.87.052904
http://dx.doi.org/10.1103/PhysRevE.87.052904
http://dx.doi.org/10.1103/PhysRevE.87.052904
http://dx.doi.org/10.1103/PhysRevE.87.052904
http://dx.doi.org/10.1103/PhysRevE.63.046211
http://dx.doi.org/10.1103/PhysRevE.63.046211
http://dx.doi.org/10.1103/PhysRevE.63.046211
http://dx.doi.org/10.1103/PhysRevE.63.046211
http://dx.doi.org/10.1209/0295-5075/87/50002
http://dx.doi.org/10.1209/0295-5075/87/50002
http://dx.doi.org/10.1209/0295-5075/87/50002
http://dx.doi.org/10.1209/0295-5075/87/50002
http://dx.doi.org/10.1103/PhysRevE.85.056215
http://dx.doi.org/10.1103/PhysRevE.85.056215
http://dx.doi.org/10.1103/PhysRevE.85.056215
http://dx.doi.org/10.1103/PhysRevE.85.056215
http://dx.doi.org/10.1103/PhysRevE.54.2115
http://dx.doi.org/10.1103/PhysRevE.54.2115
http://dx.doi.org/10.1103/PhysRevE.54.2115
http://dx.doi.org/10.1103/PhysRevE.54.2115
http://dx.doi.org/10.1103/PhysRevLett.109.024101
http://dx.doi.org/10.1103/PhysRevLett.109.024101
http://dx.doi.org/10.1103/PhysRevLett.109.024101
http://dx.doi.org/10.1103/PhysRevLett.109.024101
http://dx.doi.org/10.1103/PhysRevE.86.061126
http://dx.doi.org/10.1103/PhysRevE.86.061126
http://dx.doi.org/10.1103/PhysRevE.86.061126
http://dx.doi.org/10.1103/PhysRevE.86.061126
http://dx.doi.org/10.1103/PhysRevLett.111.024101
http://dx.doi.org/10.1103/PhysRevLett.111.024101
http://dx.doi.org/10.1103/PhysRevLett.111.024101
http://dx.doi.org/10.1103/PhysRevLett.111.024101
http://dx.doi.org/10.1016/j.physd.2011.06.005
http://dx.doi.org/10.1016/j.physd.2011.06.005
http://dx.doi.org/10.1016/j.physd.2011.06.005
http://dx.doi.org/10.1016/j.physd.2011.06.005
http://dx.doi.org/10.1007/s12064-001-0027-7
http://dx.doi.org/10.1007/s12064-001-0027-7
http://dx.doi.org/10.1007/s12064-001-0027-7
http://dx.doi.org/10.1007/s12064-001-0027-7
http://dx.doi.org/10.1006/nimg.2001.1044
http://dx.doi.org/10.1006/nimg.2001.1044
http://dx.doi.org/10.1006/nimg.2001.1044
http://dx.doi.org/10.1006/nimg.2001.1044
http://dx.doi.org/10.1103/PhysRevLett.94.098101
http://dx.doi.org/10.1103/PhysRevLett.94.098101
http://dx.doi.org/10.1103/PhysRevLett.94.098101
http://dx.doi.org/10.1103/PhysRevLett.94.098101
http://dx.doi.org/10.1103/RevModPhys.83.943
http://dx.doi.org/10.1103/RevModPhys.83.943
http://dx.doi.org/10.1103/RevModPhys.83.943
http://dx.doi.org/10.1103/RevModPhys.83.943
http://dx.doi.org/10.1016/j.conb.2012.11.010
http://dx.doi.org/10.1016/j.conb.2012.11.010
http://dx.doi.org/10.1016/j.conb.2012.11.010
http://dx.doi.org/10.1016/j.conb.2012.11.010
http://dx.doi.org/10.1103/PhysRevLett.100.144103
http://dx.doi.org/10.1103/PhysRevLett.100.144103
http://dx.doi.org/10.1103/PhysRevLett.100.144103
http://dx.doi.org/10.1103/PhysRevLett.100.144103
http://dx.doi.org/10.1103/PhysRevLett.103.238701
http://dx.doi.org/10.1103/PhysRevLett.103.238701
http://dx.doi.org/10.1103/PhysRevLett.103.238701
http://dx.doi.org/10.1103/PhysRevLett.103.238701
http://dx.doi.org/10.1103/PhysRevLett.100.158101
http://dx.doi.org/10.1103/PhysRevLett.100.158101
http://dx.doi.org/10.1103/PhysRevLett.100.158101
http://dx.doi.org/10.1103/PhysRevLett.100.158101
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1103/PhysRevE.83.051112
http://dx.doi.org/10.1103/PhysRevE.83.051112
http://dx.doi.org/10.1103/PhysRevE.83.051112
http://dx.doi.org/10.1103/PhysRevE.83.051112
http://dx.doi.org/10.1089/brain.2011.0008
http://dx.doi.org/10.1089/brain.2011.0008
http://dx.doi.org/10.1089/brain.2011.0008
http://dx.doi.org/10.1089/brain.2011.0008
http://dx.doi.org/10.1103/PhysRevE.77.061105
http://dx.doi.org/10.1103/PhysRevE.77.061105
http://dx.doi.org/10.1103/PhysRevE.77.061105
http://dx.doi.org/10.1103/PhysRevE.77.061105
http://dx.doi.org/10.1103/PhysRevE.77.066205
http://dx.doi.org/10.1103/PhysRevE.77.066205
http://dx.doi.org/10.1103/PhysRevE.77.066205
http://dx.doi.org/10.1103/PhysRevE.77.066205
http://dx.doi.org/10.1142/S0218127404010345
http://dx.doi.org/10.1142/S0218127404010345
http://dx.doi.org/10.1142/S0218127404010345
http://dx.doi.org/10.1142/S0218127404010345
http://dx.doi.org/10.1016/j.physd.2009.08.002
http://dx.doi.org/10.1016/j.physd.2009.08.002
http://dx.doi.org/10.1016/j.physd.2009.08.002
http://dx.doi.org/10.1016/j.physd.2009.08.002
http://dx.doi.org/10.1103/PhysRevE.79.046204
http://dx.doi.org/10.1103/PhysRevE.79.046204
http://dx.doi.org/10.1103/PhysRevE.79.046204
http://dx.doi.org/10.1103/PhysRevE.79.046204
http://arxiv.org/abs/arXiv:1305.0041
http://dx.doi.org/10.1049/ji-3-2.1946.0074
http://dx.doi.org/10.1049/ji-3-2.1946.0074
http://dx.doi.org/10.1049/ji-3-2.1946.0074
http://dx.doi.org/10.1049/ji-3-2.1946.0074
http://dx.doi.org/10.1016/j.acha.2010.08.002
http://dx.doi.org/10.1016/j.acha.2010.08.002
http://dx.doi.org/10.1016/j.acha.2010.08.002
http://dx.doi.org/10.1016/j.acha.2010.08.002
http://dx.doi.org/10.1103/PhysRevLett.110.204102
http://dx.doi.org/10.1103/PhysRevLett.110.204102
http://dx.doi.org/10.1103/PhysRevLett.110.204102
http://dx.doi.org/10.1103/PhysRevLett.110.204102
http://dx.doi.org/10.1103/PhysRevX.4.011026
http://dx.doi.org/10.1103/PhysRevX.4.011026
http://dx.doi.org/10.1103/PhysRevX.4.011026
http://dx.doi.org/10.1103/PhysRevX.4.011026
http://dx.doi.org/10.1103/RevModPhys.57.617
http://dx.doi.org/10.1103/RevModPhys.57.617
http://dx.doi.org/10.1103/RevModPhys.57.617
http://dx.doi.org/10.1103/RevModPhys.57.617
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1088/0034-4885/61/8/001
http://dx.doi.org/10.1088/0034-4885/61/8/001
http://dx.doi.org/10.1088/0034-4885/61/8/001
http://dx.doi.org/10.1088/0034-4885/61/8/001
http://dx.doi.org/10.1038/38963
http://dx.doi.org/10.1038/38963
http://dx.doi.org/10.1038/38963
http://dx.doi.org/10.1038/38963
http://dx.doi.org/10.1103/PhysRevE.65.041105
http://dx.doi.org/10.1103/PhysRevE.65.041105
http://dx.doi.org/10.1103/PhysRevE.65.041105
http://dx.doi.org/10.1103/PhysRevE.65.041105
http://dx.doi.org/10.1103/PhysRevE.85.015204
http://dx.doi.org/10.1103/PhysRevE.85.015204
http://dx.doi.org/10.1103/PhysRevE.85.015204
http://dx.doi.org/10.1103/PhysRevE.85.015204
http://dx.doi.org/10.1109/82.246166
http://dx.doi.org/10.1109/82.246166
http://dx.doi.org/10.1109/82.246166
http://dx.doi.org/10.1109/82.246166
http://dx.doi.org/10.1109/10.790500
http://dx.doi.org/10.1109/10.790500
http://dx.doi.org/10.1109/10.790500
http://dx.doi.org/10.1109/10.790500


DYNAMICAL INFERENCE: WHERE PHASE . . . PHYSICAL REVIEW E 89, 062909 (2014)

[55] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.89.062909 for Video 1 showing in real time
the Lissajou curve on the oscilloscope with continuous time-
variation and synchronization transitions.

[56] A. Aragoneses, N. Rubido, J. Tiana-Alsina, M. C. Torrent, and
C. Masoller, Sci. Rep. 3, 1778 (2013).

[57] J. N. Teramae and D. Tanaka, Phys. Rev. Lett. 93, 204103
(2004).
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