Generalised t-V model in one dimension

MARCIN SZYNISZEWSKI^{*,1,2}, EVGENI BUROVSKI¹

¹*Physics Department, Lancaster University, Lancaster, LA1 4YB, UK* ²NoWNano DTC, University of Manchester, Manchester, M13 9PL, UK * E-mail for corresponding author: mszynisz@gmail.com

The generalised t-V model [2] of fermions distributed on a chain of *L* sites:

$$= -t \sum_{i=1}^{L} (\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.}) + \sum_{i=1}^{L} \sum_{m=1}^{P} U_{m} \hat{n}_{i} \hat{n}_{i+m}$$

Kinetic energy, i.e. the hopping term, is much smaller than the potential: $t \ll U_m$.

Ĥ

ARODICHORY

Potential energy makes sure the particles are not closer than p sites: otherwise energy cost is U_m . Example for p = 2:

Depending on fermion density Q = N/Lwe have different phases:

Critical density
$$Q_C = \frac{q}{p+1}; q = 1, ..., p$$

- Mott insulator
- Simple unperturbed ground state
- Away from critical density
- Luttinger liquid • Highly degenerate ground state of \hat{H}_0 .

Using SCE for near-critical densities, the Hamiltonian is small enough to calculate approximate solution to a very high precision.

starts similarly to the perturbation theory. Assume:

 $\widehat{H} = \widehat{H}_0 + \lambda \widehat{V}$

where $\lambda \ll 1$, so we can treat \hat{V} as perturbation. Eigenstates $|\alpha_n\rangle$ of \hat{H}_0 are known. Now, we want to create a new truncated basis of \widehat{H} using $|\alpha_n\rangle$.

Separate

Repeat

• Include in your basis the desired subspace of unperturbed states that you want to approximate. • They are of step "0" in SCE. • Example: Ising state $|\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow\rangle$.

• Act with \hat{V} on states from previous SCE step ("n"), creating set of states S.

• States in S are linear combinations of the unperturbed Hamiltonian eigenstates.

Example: $|\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\rangle + |\downarrow\uparrow\downarrow\uparrow\uparrow\downarrow\rangle + |\downarrow\uparrow\uparrow\uparrow\downarrow\downarrow\rangle + |\downarrow\uparrow\uparrow\uparrow\downarrow\downarrow\rangle$.

• Separate every state in S according to their unperturbed energy. • Example: $|\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\rangle$ $|\downarrow\uparrow\downarrow\uparrow\uparrow\downarrow\rangle + |\downarrow\uparrow\uparrow\uparrow\downarrow\downarrow\rangle + |\downarrow\uparrow\uparrow\downarrow\downarrow\downarrow\rangle$

• Orthonormalise the states in set S, so they would be

Current density:

 $\frac{J}{-i} = \frac{L}{U_3}t^2 + L\left(\frac{2}{U_3^3} - \frac{6}{U_2U_3^2}\right)t^4 + L\left(-\frac{15}{U_2^3U_3^2} - \frac{51}{2U_2^2U_3^3} + \frac{24}{U_2U_3^4} - \frac{30}{U_1U_2^2U_3^2}\right)t^6 + O\left(\frac{t^8}{U^7}\right)$

Density-density correlations:

 $\langle \hat{n}_i \hat{n}_{i+\delta} \rangle$ were also obtained. Leading order is cyclic in δ , which is consistent with expectations.

IV Orthonormalise

Act with \hat{V}

orthonormal to each other and the basis. • Include them in the basis. • They are of step "n+1" in SCE. Example: The basis is now: $|\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow\rangle$, $|\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\rangle$, $1/\sqrt{3} (|\downarrow\uparrow\downarrow\uparrow\uparrow\downarrow\rangle + |\downarrow\uparrow\uparrow\uparrow\downarrow\downarrow\rangle + |\downarrow\uparrow\uparrow\downarrow\downarrow\uparrow\rangle)$

• Repeat from II until you achieve desired SCE step.

With every SCE step we are increasing the accuracy by two orders in λ .

All the information about the desired states (e.g. ground states) will be encoded in the truncated \widehat{H} in the new basis [4,5].

to Q_C transition investigation More observables Temperature dependence Time dependence

consistent with other works REFERENCES [1,2,3].

[1] R.G. Dias, Phys. Rev. B, 62, 7791 (2000). [2] G. Gómez-Santos, Phys. Rev. Lett., 70, 3780 (1993). [3] R. Orbach, Phys. Rev., 112, 309 (1958). [4] C.J. Hamer, Phys. Lett. B, 82, 75-78 (1979). [5] D.P. Crewther and C.J. Hamer, Nucl. Phys. B 170, 353-368 (1980).

Engineering and Physical Sciences Research Council

