Generalised t-V model in one dimension

Marcin Szyniszewski*,1,2, Evgeni Burovski ${ }^{1}$

${ }^{1}$ Physics Department, Lancaster University, Lancaster, LA1 4 YB, UK
${ }^{2}$ NoWNano DTC, University of Manchester, Manchester, M13 9PL, UK

* E-mail for corresponding author: mszynisz@gmail.com

Ground state energy
$E_{0}=-\frac{L}{2 U_{3}} t^{2}+\left(\frac{L}{2 U_{3}^{3}}-\frac{3 L}{2 U_{2} U_{3}^{2}}\right) t^{4}+\left(\frac{4 L}{U_{2} U_{3}^{4}}-\frac{17 L}{4 U_{2}^{2} U_{3}^{3}}-\frac{5 L}{2 U_{2}^{3} U_{3}^{2}}-\frac{5 L}{U_{1} U_{2}^{2} U_{3}^{2}}\right) t^{6}+O\left(\frac{t^{8}}{U^{7}}\right)$
Current density
$\frac{J}{-i}=\frac{L}{U_{3}} t^{2}+L\left(\frac{2}{U_{3}^{3}}-\frac{6}{U_{2} U_{3}^{2}}\right) t^{4}+L\left(-\frac{15}{U_{2}^{3} U_{3}^{2}}-\frac{51}{2 U_{2}^{2} U_{3}^{3}}+\frac{24}{U_{2} U_{3}^{4}}-\frac{30}{U_{1} U_{2}^{2} U_{3}^{2}}\right) t^{6}+O\left(\frac{t^{8}}{U^{7}}\right)$
Density-density correlations:
$\left\langle\hat{n}_{i} \hat{n}_{i+\delta}\right\rangle$ were also obtained. Leading order is cyclic in δ which is consistent with expectations. - Include in your basis the desired subspace of
unperturbed states that you want to approximate.

- They are of step "0" in SCE.
- Example: Ising state $|\downarrow \uparrow \uparrow \downarrow \uparrow \downarrow\rangle$
- Act with \hat{V} on states from previous SCE step ("n"), creating set of states S.
- States in S are linear combinations of the unperturbed Hamiltonian eigenstates.
- Example: $|\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow\rangle+|\downarrow \uparrow \downarrow \uparrow \uparrow \downarrow\rangle+|\downarrow \uparrow \uparrow \uparrow \downarrow \downarrow\rangle+|\downarrow \uparrow \uparrow \downarrow \downarrow \uparrow\rangle$.
- Separate every state in S according to their unperturbed energy.
- Example: $|\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow\rangle$
$|\downarrow \uparrow \downarrow \uparrow \uparrow \downarrow\rangle+|\downarrow \uparrow \uparrow \uparrow \downarrow \downarrow\rangle+|\downarrow \uparrow \uparrow \downarrow \downarrow \uparrow\rangle$
- Orthonormalise the states in set S, so they would be orthonormal to each other and the basis.
- Include them in the basis.
- They are of step " $\mathrm{n}+1$ " in SCE.
- Example: The basis is now: $|\downarrow \uparrow \uparrow \downarrow \uparrow \downarrow\rangle,|\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow\rangle$,
$1 / \sqrt{3}(|\downarrow \uparrow \downarrow \uparrow \uparrow \downarrow\rangle+|\downarrow \uparrow \uparrow \uparrow \downarrow \downarrow\rangle+|\downarrow \uparrow \uparrow \downarrow \downarrow \uparrow\rangle)$
- Repeat from II until you achieve desired SCE step.

With every SCE step we are
increasing the accuracy by two orders in λ.
will be encoded in the truncated \widehat{H} in the new basis $[4,5]$.

Obtained accuracy was $O\left(t^{6}\right) \div O\left(t^{8}\right)$.

Summary:

* High precision results for both integrable and nonintegrable models in Mott insulating phases. Results are fully onsistent with other works

[5] D.P. Crewther and C.J. Hamer, Nucl. Phys. B 170, 353-368 (1980).
Depending on fermion density $Q=N / L$ we have different phases:

Critical density $Q_{C}=\frac{q}{p+1} ; q=1, \ldots, p$

- Mott insulator
- Simple unperturbed ground state

Away from critical density
- Luttinger liquid
- Highly degenerate
ground state of \widehat{H}_{0}.

Using SCE for near-critical densities, the Hamiltonian is small enough to calculate approximate solution to a very high precision.
Example: $p=3, Q=1 / 4$, step " 2 " in SCE:

$$
\widehat{H}=\left(\begin{array}{ccccc}
\cdot & -\sqrt{L / 2} t & \cdot & \cdot & \cdot \\
-\sqrt{L / 2} t & U_{3} & -\sqrt{3} t & -2 t & -\sqrt{L-10} t \\
\cdot & -\sqrt{3} t & U_{2} & \cdot & \cdot \\
\cdot & -2 t & \cdot & U_{3} & \cdot \\
\cdot & -\sqrt{L-10} t & \cdot & \cdot & 2 U_{3}
\end{array}\right)
$$

This simple 5×5 Hamiltonian gives the ground state energy of the system up to order $\left(t / U_{3}\right)^{5}$ we present results for a system with $p=3$. Similar results have been obtained for $p=1$ (integrable) and $p=2$ systems. $Q_{C}=1 / 4$. This is step " 3 " in SCE.

