Generalised t-V model in one dimension
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O% The generalised t-V model [2] of fermions Depending on fermion density Q = N/L O/I/ % 5S¢
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Solved only in the first Solved by using
order perturbation [1,2]. Bethe ansatz
Using strong coupling approach
expansion, we will try [3].
to approximate the

. . O
analytical solutions to & CUp
a very high order. The method /l/p/q/\/S/L/NG
starts similarly to the ON

perturbation theory. Assume:

where 1 < 1, so we can treat V' as perturbation.
Eigenstates |a,,) of Hy are known. Now, we want to create
a new truncated basis of H using |a,,).

e Include in your basis the desired subspace of
unperturbed states that you want to
approximate.

« They are of step “0” in SCE.
« Example: Ising state [{TTIT!).

l
First states

. Act with V on states from previous SCE step (“n”),
creating set of states S.

e States in S are linear combinations of the unperturbed
Hamiltonian eigenstates.

« Example: |TITITL) + LTITTL) + [LTTTLL) + [LTTLLT).

 Separate every state in S according to their
unperturbed energy.

« Example: |TITITI)
JLTLTTL) + JUTTTLL) + UTTLLT)

« Orthonormalise the states in set S, so they would be
orthonormal to each other and the basis.

|
Act with V

1]
Separate

vV

, e Include them in the basis.
rthonormalise

« They are of step “n+1” in SCE.
« Example: The basis is now: [ITTITl), [TITITL),

1/V/3 (LTI + [UTTTLL) + [L1TLT))

« Repeat from Il until you achieve desired SCE step.

| I

All the information about the desired states (e.g. ground states)
will be encoded in the truncated H in the new basis [4,5].
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Using SCE for near-critical densities, the Hamiltonian is small
enough to calculate approximate solution to a very high precision.

Example: p = 3, Q = 1/4, step 2” in SCE:

/ : —JL/2 t : : : \

—JL/2 t Us —/3t =2t —/L—10t
. —2t . U3 .
\ : —VL — 10t : : 2U, /

This simple 5x5 Hamiltonian gives the ground
state energy of the system up to order

(t/U3)>.

Below
we present results
for a system with p = 3. Similar
results have been obtained for p = 1 (integrable)
and p = 2 systems. Q. = 1/4. This is step“3” in SCE.

Ground state energy:
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Current density:
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Density-density correlations:
(;N;,s5) Were also obtained. Leading order is cyclic in 6,
which is consistent with expectations.
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Obtained accuracy was
0(t®) = 0(t®).

Leading order of t/U

Summary:
% High precision results for
both integrable and non-

Further integrable models in Mott
Densities not work: insulating phases.
exactly equal Phase % Results are fully
to U¢ transition consistent with
investigation other works
More

observables
Temperature
. dependence
Time P
dependence
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