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Implications of purely classical gravity for inflationary tensor modes
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We discuss the implications of a purely classical (instead of quantum) theory of gravity for the
primordial gravitational wave spectrum generated during inflation. We argue that for a scalar field
driven inflation in a classical gravity the amplitude of the gravitational wave will be too small,
irrespective of its primordial seed, to be detected in any forthcoming experiments. Therefore, a
positive detection of the B-mode polarizations in the Cosmic Microwave Background spectrum will
naturally confirm the quantum nature of gravity itself. Furthermore there will be no upper limit on
the scale of inflation in the case of classical gravity, and a high-scale model of inflation can easily

bypass the observational constraints.

Primordial inflation is one of the most successful
paradigms for the early Universe cosmology (for a re-
view, see e.g., @]), which has many observational conse-
quences [2]. One of the predictions for inflation is the
generation of stochastic primordial gravitational waves
along with the matter perturbations B] Typically, mat-
ter perturbations are created from the initial vacuum
fluctuations which are stretched outside the Hubble patch
during inflation [4] (for reviews, see [3, [6]).

As in any quantum field theory in a time-dependent
background, the initial choice of vacuum is typically ob-
tained by imposing the quantum commutation relation-
ships for creation and annihilation operators which sat-
isfy the Wronskian condition, while confirming that the
initial quantum state is the least excited state analogous
to the plane wave solution emanating from deep inside
the Hubble patch ﬂﬂ, ] Similar quantum calculations
exist for the gravitational waves generated during infla-
tion in which case one directly quantizes the tensor per-
turbations of the metric. Since the observed temperature
anisotropy in the Cosmic Microwave Background (CMB)
radiation is very small: 6T /T ~ 1075 [2], the treatment
of linearized perturbation is a very good approximation
for both matter and gravity sectors.

However, the assumption that gravity should also be
quantized along with the matter perturbations is not yet
based upon any observed phenomena A I fact, the en-
tire framework of matter perturbations created during

1 Whether gravity is truly quantum or classical is still an open issue
(see [1, [§] for some discussions). For a consistent treatment, we
often argue that gravity must be quantized along with the matter
sector. However, even if gravity is treated classically, there is a
hint that it might be possible to address non-singular blackhole
and cosmological solutions, found very recently in the context of
higher-order infinite-derivative theories of gravity IQ}

inflation can be carried out without quantizing the met-
ric fluctuations. What it means is that a pure de Sitter
background without matter cannot seed the temperature
anisotropy in the CMB radiation. This can also be seen
by noticing the fact that one can consistently use a choice
of gauge where scalar perturbations of the metric can be
set to zero and all the temperature anisotropy would sim-
ply arise from the matter fluctuations ﬂﬂ, ]

Therefore, a natural question arises — what if we had to
treat the primordial gravity waves purely at the classical
level by assuming that the space-time is indeed classical
and we just quantize the matter sector in a given space-
time background. The aim of this letter is to explore
such a possibility and to show what are the differences in
predictions one would expect if gravity were to be treated
classically, and in particular what would be the amplitude
of the primordial gravitational waves.

We recall here that in a scalar-driven inflationary
model, the tensor modes are generated from tensor fluc-
tuations of the metric [3, ld):

ds? = a*(1) (dT2 — [0i5 + hij]dazidazj) (1)

with |h;;| < 1, where h;; is a symmetric three-tensor
field satisfying h! = 0 = h;;*/ whose dynamics could be
determined by expanding the Einstein-Hilbert action to
second order:
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1 K2
s = 22 [ardx a2(r) s ond, ()

where M), is the usual Planck mass. It is possible to refor-
mulate the tensor action given by Eq. (@) to give it the
appearance of a Minkowski-space theory with variable
mass term by introducing the re-scaled variable P;:

Pli(z) = Tor a(7)h'; (), 3)
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whose dynamics is governed by

1
S5 =3 / drd®x
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and is different from Srfrl) by a total time derivative. One
can decompose Pij into its Fourier components:
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where the sum is over two independent polarization
states, usually denoted as A = +, x. €’;(k; \) is the po-
larization tensor satisfying the following conditions:

€i5 = €44, 611' = 0, kleij = 0, and

€51 N i(k; V) = S (5)

It is often convenient to choose €;;(—k;\) = €;(k; A)
which implies that

Py = ptk,A (6)

in Eq. @). This brings the Einstein-Hilbert action for
tensor modes to the following form:

s =3 / drd*k

A=+, X

< (O ma® = (1= L) k).

At this point, one can assume that the tensor pertur-
bations during inflation are either classical or quantum-
mechanical.

Let us briefly discuss what happens when gravity is
treated quantum-mechanically. In this case, the field pi
is now promoted to an operator, which can be expanded
in terms of creation and annihilation operators:

P = Pr(7)dnex + pi(T)af , - (8)

The mode function py(7) satisfies the following equation

of motion:
al/
i+ (-5 Ym0, o)

The Fourier-transformed field p(7,x) and its conjugate
momentum 7 (7, x) satisfy the canonical commutation re-
lations on hypersurfaces of constant 7:

[]5(7—7 X),ﬁ(T, X/)] =0, [W(T X) (T X )] 0,
[p(7,x), 7 (1,x")] = i0%(x — x'), (10)

which is equivalent to imposing the following commuta-
tion relations on the creation and annihilation operators

in Eq. @):

[dka dk'] = [&La dir(/] = 07 [dkv dL/] - 153(1( - k/) (11)
These relations enforce the following Wronskian condi-
tion on the mode function py(7):

pin) 0 WD )

In a de Sitter background, where a(r) = —1/(HT1), H
being the Hubble rate of expansion of the Universe, the
solution to Eq. (@) is given by

pr(r) = ar (1) Hyp(=kr) = By (=7)/2Hy7) (<k7),

(13)
where H?E /)2( ) and H?E /)2 are the Hankel functions of order
3/2. In the infinite past, k7 — —oo, the mode function
pr(7) behaves like

_ 2 —ikT i ikt
Pe(T) = —auy/ kﬂ_e + Br/ kwe ) (14)

Using the general solution given by Eq. (I3)), the Wron-
skian condition, Eq. (I2]), implies that

7T
ol = |5l = T. (15)

In the standard theory of cosmological perturbations, it is
usually assumed that the modes approached the Bunch-
Davies vacuum at infinite past (sce, e.g., [1]) a

1
T)—> —¢ "7 for kT — —o0 16
when the wavelength of the mode is much smaller than

the Hubble radius. This will result in the following values
for the coefficients in Eq. (I4):

QA — ———, ﬁkZO. (17)

The power spectrum of the gravitational waves for the
tensor modes can be computed in the limit that the mode
is well outside the Hubble patch:
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; (18)
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2 This is based on the sole assumption that no new physics appears
at very small scales (see, for example, [10]).



where the factor of two is for the two helicities of the
tensor mode. In the standard case with the amplitudes
given by Eq. (I7) and for a de Sitter background with
k/aH = —k7, we obtain from Eq. (I8) the following
power spectrum:

,Pquantum . 16H2
T N TM2’

(19)

where H denotes the Hubble expansion rate of the Uni-
verse during inflation.

Let us now pause here and ask what would be different
if we had treated the gravitational waves classically.

First of all, we cannot expand a classical field py » in
terms of creation and annihilation operators as in Eq. (g]).
However, it still satisfies the equation of motion deter-
mined by Eq. (@):

1" 2 aH
Pia T+ (k - Z) ey =0, (20)

which in a de Sitter background has a solution similar to

Eq. [@3):

PrA(T) = s n(—=7) V2 HY)) (k)

—BiA(=T)Y2H ) (— k7). (21)
The main difference as compared to the quantum case
is that we cannot impose the commutation relations,
Eqgs. (I and (I, on classical fields. As a consequence,
the Wronskian condition given by Eq. (I2)) is no longer
valid for classical gravitational waves. In other words,
the classical amplitudes ax  and Sk in Eq. 2I) do not
have to obey the relationship given by Eq. (3.

Nonetheless, one has to ensure that the mode function
P?; is real, i.e., pk \ satisfies Eq. (@), which imposes the
following condition on the classical amplitudes:

Ak N\ = _ﬁtk,)\' (22)

In a homogeneous and isotropic background, the ten-
sor perturbation of the metric cannot be sourced by the
matter perturbations at the first order. Also, it is well
known that there is no source term for the space-time
metric hy, at linear order. It cannot be sourced even
at quadratic order without a violation of the adiabaticity
condition for the scalar modes ﬂl_l|] Therefore, in a classi-
cal gravity, there is no reason a priori why ax x, Sk x 7 0,
unlike in the quantum case, where the Wronskian condi-
tion given by Eq. ([I&]) prevents both the Bogoliubov co-
efficients to be zero simultaneously. Hence in a classical

gravity, the amplitude of primordial gravitational waves
generated during inflation can in principle be absolutely
zero, unless the tensor perturbations are sourced some-
how. Such a source for h,, can arise, for example, from
higher order perturbations. The gravitational wave solu-
tion could then obtain a nonzero solution as these higher
order corrections modify the left-hand-side of Eq. 20)) to
a nonzero value. However the amplitude of such gravity
wave spectrum is known to be negligible ﬂﬁ] at cosmo-
logical scales [4.

The classical power spectrum for the gravitational
waves can now be computed from the formula given by

Eq. (I8), with pi(7) replaced by px x given by Eq. 1)
and we obtain

64 |oucx + Bl H?
]\/[;027r2 ’

«P%lassical _ (23)

where ak , Pk can be arbitrary, as long as they satisfy
the reality condition given by Eq. ([22)).

In what follows, we discuss some of the implications
of the above results for detecting tensor modes. It is
generically assumed that a positive detection of primor-
dial gravitational waves via tensor modes would naturally
put a bound on the scale of inflation. It must be empha-
sized that this is a correct statement only if gravity were
treated quantum-mechanically so that the power spec-
trum is solely determined by the Hubble expansion rate
of the Universe during inflation as in Eq. (I9). Requiring
that it must satisfy the current observational constraint
from WMAP [2], i.e.,

quantum __ 16H2 ~ 16pinf

~ 10710 24
Pr mM?2 M} S ’ (24)

we obtain an upper bound on the scale of inflation,
pini ~ Viat' S 10'°° GeV . (25)

which is coincidentally very close to the Grand Unified
Theory (GUT) scale.

On the other hand, for the case of classical gravity,
as shown in Eq. ([23)), the gravitational power spectrum

3 Tt is also possible to create a source for the equation of motion of
the tensor modes at first order perturbation theory if inflation is
driven by some non-Abelian gauge field ]7 but the amplitude of
such gravity wave spectrum is slow-roll suppressed. In addition,
such a model, as it stands right now, is unrealistic from the
point of view of creating the relevant Standard Model degrees of
freedom (see e.g., [1]).



depends on both o x, Sk,x. If there is no initial condi-
tion for the classical gravitational waves, the amplitude
of the gravity-wave spectrum would be absolutely zero,
irrespective of the scale of inflation. This will be the case
for the most common scenarios of a scalar field driven
models of inflation [1].

Note however that due to some reason if there exists
nonzero amplitude of classical gravitational waves, i.e.
ok, Pk # 0, the latter can be constrained from the
inflaton’s energy density. Classically the energy density
of the gravitational wave, when the modes are inside the
Hubble patch, i.e., for k% > a’’/a, is given by

W)= 3 { [ arac (O + 8 )
A=+, X%
kg
oc M Z/k kdk (|ak,xl2+|5k,x|2)a (26)

A=+,

where the second line is obtained from the fact that

dre*?*T over time is zero. This energy density must
be negligible in comparison with the energy density that
drives inflation, pjn¢ ~ H 2M5, in order to have a success-
ful inflationary scenario. The integration in Eq. (20]) is
taken over all the k’s in the Hubble patch for which the
classical initial configuration is nonzero, i.e. k;, ky > H.
Hence in order to suppress the backreaction of such clas-
sical gravity wave configuration on inflation, one has to
make sure that |aga|” + B> < 1, or equivalently
lo,a| < 1 and [B,z| < 1. In order to see how small
these parameters should be, let us assume that ax ) and
Bk, are almost scale-independent and the profile of grav-
ity wave spans at least for Ak ~ H [. Thus, (Too) is of
order

(Too) = (Joscn” + [ B |V HZ M. (27)

This gravitational energy can at most be of order of the
kinetic energy of the inflaton, (Tho) S eH QMZ?, where
€ < 1 is the slow-roll parameter. Inflation typically ends
when € ~ O(1). This means that both |ax | and |axk |
should be at least smaller than /€ in the slow-roll dom-
inated inflation, which suggests that the amplitude of
the classical gravitational waves at large scales should be
suppressed by a factor of e compared to that of Eq. ([24]).
This in turn implies that the amplitude of the classical
gravity waves in Eq. ([23) is too small to be detected.

4 If these assumptions do not hold, i.e. the Bogoliubov coefficients
are scale-dependent or the observed profile of gravity waves only
peaks around some specific value of k, then the classical configu-
ration could be easily distinguishable from that of the quantum
one.

To illustrate our point further, let us consider an al-
ternative possible source of classical gravitational waves,
namely, the collision of true-vacuum bubbles at the end of
a first-order cosmological phase transition ﬂﬂ] The frac-
tion of vacuum energy released into the low-frequency
gravity waves is roughly given by I(f) =~ Inax(f/fumax)®
for f < fuax, where fiax =~ 0.203 is the peak frequency,
and Inax ~ 6 x 1072y, where y = e N and N; is the
number of initial e-foldings before it goes outside the hori-
zon. The gravitational energy density of the modes inside
the horizon decreases as a~* while outside the horizon,
it goes as a~2. On the other hand, the frequency red-
shifts like a~!'. Thus, the fraction of gravitational energy
density today can be written as

-4
Qawh? = Lnax (e_Ni)_4 (eNf_Ni)_2 (%) {28)
0

where Ny ~ 60 is the total number of e-foldings re-
quired for a typical high-scale inflationary model, and
To = 2.3x107* eV is today’s temperature of the universe.
Using the critical value of x < x. = 1/3 to achieve perco-
lation and thermalization of the bubbles M], we find that
N,; < 1. For the conservative lower limit on the reheating
temperature Tryg > 1 MeV to have successful nucleosyn-
thesis, we obtain from Eq. @8): Qh? < 6 x 10724, This
is related to the amplitude of the power spectrum for
the primordial (tensor and scalar) density perturbations

by [15]
ngh2 = AGWPt = AGWrPsa (29)

where Agw = 2.74 x 1075(100/g.)'/3. For P, = 2.45 x
1079 [16], Eqs. @R) and J) imply that the tensor-to-
scalar ratio, 7 < 3 x 1078 which is obviously beyond
detection. Note that even in the most optimistic sce-
nario where all the vacuum energy is tranferred to the
gravitational wave which could happen for instance in
many preheating models of inflation, we estimate that r
is of the same order, and hence, can never be observed.
Hence, in classical gravity there will be no detectable B-
mode polarization in the CMB spectrum.

In conclusion, in a purely classical theory of gravity,
there is mo upper bound on the scale of inflation, and
hence, very high-scale (GUT-scale or even beyond) mod-
els of inflation can still be compatible with all the obser-
vational constraints. In addition, the amplitude of the
primordial tensor modes of a classical gravity wave is
too small to be ever observable in the CMB spectrum.
Hence, a positive detection of the B-mode polarization
in the CMB spectrum would have profound implications,
which will not only put inflation on firm footing, but
will also shed light on the very nature of the fabric of



space-time. This will be a huge step forward in resolving
the long-standing issue of whether the space-time gravity
should be treated as classical or quantum in nature.
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Note Added: The BICEP2 collaboration has just
announced the detection of the B-mode polarization at a
significance of > 5o ﬂﬂ] According to the results of our
paper, this is clearly the first direct evidence for the quan-
tum nature of gravity. We also note that, after several
months our paper first appeared on arXiv, a very simi-
lar argument on the quantization of gravity was made by
L. M. Krauss and F. Wilczek, Phys. Rev. D 89, 047501
(2014) [arXiv:1309.5343 [hep-th]].
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