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the power spectra of gravitational waves produced during the preheating stage following M-
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1 Introduction

Cosmological observations — evidenced, most notably, by recent data [1] from the Planck
satellite — are best explained if we have a period of accelerated expansion, inflation [2–4], in
the early Universe. Models of inflation usually involve one or more scalar fields coupled to
(Einstein) gravity, though it is also possible that inflation is driven by gauge fields [5]. These
models are specified by the form of their kinetic terms as well as the potential. It is more
common to take the canonical kinetic term and define the model by its potential(s), even
though inflationary models can be realized with non-canonical kinetic terms [6].

To explain the observed Universe, inflation should of course end and the energy stored
in the inflationary sector should be transferred into the (beyond) Standard Model (SM)
particles, an epoch known as the reheating era [2–4, 7]. Perturbative decay of quantum
fluctuations of an inflaton field (perturbative reheating) is usually not sufficiently fast and
efficient, and leads to reheat temperatures that are too low to solve particle physics problems
and hence to describe what we see.1 One must therefore equip inflationary models with
non-perturbative mechanisms of decay that yield sufficiently high reheat temperatures. In
this context the inflaton field condensate can provide “time dependent mass terms” for other
fields coupled to it, the preheat fields. This more efficient energy transfer mechanism to
other (beyond Standard Model) fields, preheating, happens because of possible resonance
bands [8, 9]. The energy in the preheat fields will eventually equilibrate or thermalize through
usual (perturbative) scattering processes [7].

1Big Bang Nucleosynthesis (BBN) requires a temperature of order 1 − 10MeV and baryogenesis re-
quires a temperature of order 1 − 10TeV. The reheat temperature should be at least bigger than these
two temperatures.
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Observable effects of inflationary models (in particular the observed CMB anisotropy [1])
are usually attributed to what happened during inflation and are related to super-horizon
quantum fluctuations of inflaton fields that appear as classical background fluctuations long
after inflation, and after the preheating and reheating eras [2–4]. The CMB data have hence
been used to restrict inflationary models [1]. However the recent Planck mission data — in
particular non-observation of non-Gaussianity — means that the CMB data does not provide
sufficient constraints to specify the inflaton potential. Other sources of cosmic data must be
sought out.

To this end, a more concrete understanding/modelling of reheating and preheating
may be needed. Various inflationary models can be constrained by probing possible specific
features they left during preheating or reheating. Previous analysis indicates that preheating
may have detectable traces on CMB only for a specific class of exotic models [10–12]. If
preheating occurs the turbulent, explosive and non-thermal energy transfer to the preheat
sector can in principle have possible observable effects by producing a stochastic background
of gravity waves typically in 107 − 109 Hz frequency band2 [15, 16].

The simplest scalar-driven slow-roll models (in particular, those with concave
potentials3) have so far passed the test very well insofar as Planck results are concerned,
see e.g. [19]. Nevertheless there remain with these models a plethora of unresolved theoret-
ical difficulties [20]. For instance, to have successful slow-roll inflation we need to keep the
inflaton mass hierarchically smaller than the Hubble scale H during inflation and quantum
corrections to the inflaton potential should not spoil its flatness [21]. Moreover, in the class
of large-field models there is also the problem of super-Planckian field excursions: that infla-
ton(s) in these scalar models typically have field displacements (in the last 60 e-folds) many
times larger than Mpl, in which case quantum (gravity) effects may become important [22].

It is a general belief that these and other theoretical issues regarding possible classical
or quantum instabilities in an inflationary model can/should be addressed within a quan-
tum gravity setup that is operative at some high energy (Planckian or sub-Planckian) scale.
Despite providing a richer framework for inflationary model building and for addressing the
above mentioned issues, being farther from SM physics, it becomes more challenging in the
quantum gravity setups to make connections with physics after inflation and in particular to
have a successful reheating scenario. Nonetheless, working within a string theoretic perspec-
tive, besides providing a framework to address questions about UV stability and completeness
of inflationary models, usually brings another feature: there are many more fields besides the
inflaton in the model. These fields can appear as isocurvature entropy modes, affecting the
CMB directly, or can appear as preheat fields, affecting the production of primordial gravity
waves in large frequency bands.

M-flation, which we will consider in this work, is one such model [23]. Although moti-
vated from string theory (quantum gravity) M-flation, as we will show, has the advantage of
having an embedded successful preheating mechanism in some regions of parameter space.
Furthermore, the model is based on a gauge field theory, the same framework upon which
beyond SM models operate, and is thus close to particle physics setups too.

2Preheating can also lead to production of long-lived non-linear excitations of the scalar field which domi-
nates the universe and can lead to stochastic gravitational wave background [13].

3Note that a choice of non-Bunch-Davies (excited) initial states for the cosmic perturbations can readily
change this conclusion [17]. Also if gravity is an inherently a classical theory, there will be no B-mode
polarization in the CMB [18].
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In general and in a string theory/supergravity framework, depending on whether the
inflaton field(s) is (are) coming from open string or closed string degrees of freedom, there
are two venues for inflationary model building [24, 25]. M-flation, in this sense, is an open
string model. However it has its own specific features that may justify viewing it as a third
venue. For example, as we will review in section 2, inflation in M-flation is not associated
with a mobile brane, unlike all the other known open string models. M-flation is rather
motivated by the dynamics of D3-branes subject to a proper RR six-form in a specific ten-
dimensional type IIB supergravity background [23]. The inflaton fields of M-flation are three
N × N matrix valued scalar fields associated with the position of a stack of N D3-branes
in this background. The action for M-flation, cf. section 2, will hence include U(N) gauge
fields (and possibly their spinorial counterparts in a supersymmetric setting). The model is
compatible with the Planck data if inflation happens in the hilltop φ < µ region. In the
symmetry breaking region, φ > µ, the model predicts a large tensor/scalar ratio, r ≃ 0.2,
which is not compatible with the upper bound of 0.11 with 95% CL if one assumes that the
perturbations start from a Bunch-Davies vacuum. The model could be still made compatible
with Planck if we assume excited initial states for the scalar or tensor fluctuations, as pointed
out in [17].

What renders M-flation theoretically appealing is not only its ability to naturally address
and resolve the theoretical difficulties of standard inflationary scenarios raised above [26], but
also the fact that it can connect to post-inflation physics: it comes with its own built-in pre-
heating mechanism in some regions of parameter space with no extra parameters (compared
to the inflationary background sector), and also it has the desirable form of a gauge theory
(cf. discussions above).

While work on M-flation has so far been directed more toward exploring it during
inflation [23, 26, 27], it is of appreciable importance to also address the question of its
possible observable effects coming from its built-in preheating period. In particular, we
focus our attention in this paper on gravity waves (GW) produced during the preheating
phase following inflation, in some region of parameter space. Their observational signature is
revealed by way of their power spectrum, which we numerically compute here with the help
of the lattice simulator HLattice 2.04 [28].

The rest of this paper is organized as follows. In section 2, we review the basic setup
of M-flation. In sections 3 and 4, we describe its embedded preheating mechanism. Then, in
section 5, we proceed with computing the power spectra of GW thereby generated. Finally,
section 6 presents some concluding remarks.

2 M-flation

Our setting is a 10-dimensional type IIB supergravity background,5 which is probed by a stack
of N D3-branes endowed with Yang-Mills gauge fields. Thus, there exist 6 spatial dimensions
perpendicular to the D3-branes, whose positions within this subspace are represented by 6
N×N matrices. The role of the inflaton, according to the original M-flation setup, is assumed
by 3 out of 6 matrix degrees of freedom,6 which we henceforth denote as Φi, i = 1, 2, 3. The

4For an updated version, the software and its user instructions see http://www.cita.utoronto.ca/
∼zqhuang/hlat/.

5For a detailed specification, the reader is referred to section 8 of [23].
6We assumed the 6 extra-dimensions are compactified on a CY3 or T 6 manifold that has two three-cycles,

one considerably larger than the other. In principle we can use all 6 extra dimensions and work with 6
matrices, which could be related generators of SO(6) or a subgroup of it.
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inflaton matrices are, by construction, in the adjoint representation of the U(N) gauge group;
therefore they are non-commutative as well as Hermitian.

In principle, the dynamics of these matrices is very complicated (increasingly so with
largerN), as one has any number of possible configurations of the D3-branes within the chosen
background. However there is a way to simplify the situation and make it computationally
tractable. As we will elaborate in the next subsection, the classical dynamics of this model
can be consistently truncated to a solution where the N D3-branes are uniformly distributed
along the surface of a 2-sphere (within the 6-dimensional orthogonal subspace), and their
positions on this sphere do not change during inflation. What instead changes is the sphere’s
radius, which thereby plays the role of an effective scalar inflaton.

Aside from the above, many other solutions — that make use of more of the available
(classical) degrees of freedom — are of course possible. This possibility was considered in [27]
and generically appears as a multi field inflationary model. In this work, however, we focus
on the single field model where the other “unused” degrees of freedom in this particular
solution will be identified with preheat fields after inflation ends.

2.1 Action and equations of motion

We work in the (−,+,+,+) metric signature, and use boldface to denote matrices of dimen-
sion N . The effective (3 + 1)-dimensional action of M-flation [26] comprises Einstein gravity,
minimally coupled to a Yang-Mills gauge field Aµ and the three inflaton matrices Φi,

S =

∫

d4x
√−g

{

M2
pl

2
R− 1

4
Tr (FµνF

µν)− 1

2
Tr (DµΦiD

µΦi)− V (Φi, [Φj ,Φk])

}

, (2.1)

where, as usual, Mpl = 1/
√
8πG is the reduced Planck mass, Fµν = 2∂[µAν] + igYM [Aµ,Aν ]

is the gauge field strength, and Dµ = ∂µ + igYM [Aµ, ·] is the gauge covariant derivative.
Moreover, the potential is given by

V (Φi, [Φi,Φj ]) = Tr

(

−λ

4
[Φi,Φj ][Φi,Φj ] +

iκ

3
ǫjkl[Φk,Φl]Φj +

m2

2
ΦiΦi

)

, (2.2)

where in (2.1) and (2.2) there is a sum on repeated i, j, k indices and the three coupling
constants have various stringy meanings: λ = 8πgs = 2g2

YM
is related to the string coupling

gs, κ = κ̂gs
√
8πgs is related to the Ramond-Ramond antisymmetric form strength κ̂, and m

is a parameter that multiples the three spatial coordinates along the D3-branes in the metric
of the background SUGRA theory [23]. To ensure a constant dilaton therein, we must also
impose the constraint λm2 = 4κ2/9 [23].

The equations of motion for the scalar and gauge fields that follow from the
action (2.1) are

DµD
µΦi + λ[Φj , [Φi,Φj ]]− iκǫijk[Φj ,Φk]−m2Φi = 0, (2.3)

DµF
µν − igYM [Φi, D

νΦi] = 0. (2.4)

2.2 Truncation to the SU(2) sector

The dynamics determined by the equations of motion (2.3) and (2.4) can generically be quite
complicated, but this may be simplified considerably as follows. Let Ji , i = 1, 2, 3 denote the

– 4 –
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three N ×N generators of the SU(2) algebra, so that [Ji,Jj ] = iǫijkJk. Now, we decompose
the inflaton matrices into two parts,

Φi = φ̂Ji +Ψi, (2.5)

one parallel and one perpendicular to the N ×N representation of SU(2), respectively (that
is Tr(JiΨi) = 0). It was shown in [23] that if Ψi = Ψ̇i = 0 initially, then (2.3) implies that
Ψi will remain vanishing for all time. Analogously, if Aµ is also initially turned off, then the
commutator in (2.4) will not source Fµν , and therefore the gauge field always stays turned
off as well.

Hence, it is possible to consistently restrict the classical dynamics of this model to a
sector where Ψi = Aµ = 0, so that the inflationary trajectory is determined solely by φ̂,
the length of the inflaton matrices along the direction of SU(2). This realizes precisely the
picture described earlier of the D3-branes fixed upon the surface of a 2-sphere with variable
radius, now identified with the value of effective inflaton field φ̂.

Concordantly, the vanishing Ψi and Aµ fields are referred to as spectators. Upon setting
them to zero, the action (2.1) simplifies propitiously to

S =

∫

d4x
√−g

{

M2
pl

2
R+TrJ2

i

(

−1

2
∂µφ̂∂

µφ̂− λ

2
φ̂4 +

2κ

3
φ̂3 − m2

2
φ̂2

)

}

, (2.6)

where TrJ2
i = N

(

N2 − 1
)

/4, using the properties of SU(2). Performing a field redefinition

φ =
√

TrJ2
i φ̂ brings the inflaton to a canonically normalized form, yielding

S =

∫

d4x
√−g

{

M2
pl

2
R− 1

2
∂µφ∂

µφ− V0 (φ)

}

(2.7)

which is the familiar single scalar field inflationary action.

Defining effective couplings λeff ≡ 8λ/N
(

N2 − 1
)

and κeff ≡ 2κ/
√

N (N2 − 1) and
then using the constraint that the background is a solution to the supergravity equations
of motion with constant dilaton, λm2 = 4κ2/9, the effective potential can be written, with
µ ≡

√
2m/

√
λeff , simply as

V0 (φ) =
λeff

4
φ4 − 2κeff

3
φ3 +

m2

2
φ2 =

λeff

4
φ2 (φ− µ)2 . (2.8)

Thus, in the SU(2) sector, the inflationary potential of M-flation assumes the form of
a symmetry-breaking potential. It has two global minima: one at φ = µ (corresponding to a
supersymmetric vacuum, when the N D3-branes blow up into a giant D5-brane wrapping a
fuzzy two sphere) and one at φ = 0 (corresponding to the trivial solution, when the matrices
become commutative). For typical inflationary trajectories determined by this potential, all
necessary parameters can be obtained by demanding certain standard requirements (namely,
60 e-foldings of inflation, together with a COBE normalization of δH ≃ 2.41 × 10−5 and a
spectral index of ns = 0.96). The resultant numerical values are as follows. Further details
about this analysis and the corresponding slow-roll trajectories in M-flation may be found
in [23, 27]; here we just quote the results.

– 5 –
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(a) φi > µ. Suppose inflation starts when φi > µ. The aforementioned standard require-
ments imply

φi ≃ 43.57Mpl , φf ≃ 27.07Mpl , µ ≃ 26Mpl , (2.9)

and

λeff ≃ 4.91× 10−14, m ≃ 4.07× 10−6Mpl, κeff ≃ 9.57× 10−13Mpl. (2.10)

Taking nS ≃ 0.96, the tensor/scalar ratio turns out to be 0.2 which is outside the 2σ
allowed region of Planck in the nS − r plane. One can render this region of M-flationary
phase space compatible with the data by assuming the modes start from a non-Bunch-Davies
vacuum [17].

(b) µ/2 < φi < µ. To fit the observational constraints we find

φi ≃ 23.5Mpl , φf ≃ 35.03Mpl , µ ≃ 36MP , (2.11)

and

λeff ≃ 7.18× 10−14 , m ≃ 6.82× 10−6Mpl , κeff ≃ 1.94× 10−12Mpl . (2.12)

(c) 0 < φi < µ/2. In this case we obtain

φi ≃ 12.5Mpl , φf ≃ 0.97Mpl , µ ≃ 36MP , (2.13)

and

λeff ≃ 7.18× 10−14 , m ≃ 6.82× 10−6Mpl , κeff ≃ 1.94× 10−12Mpl . (2.14)

Due to the φ → µ − φ symmetry of the background, the curvature perturbations in
regions (b) and (c) turn out to have the same spectral tilt nS = 0.96 and tensor-to-scalar
ratio r = 0.048. These predictions are within the 1σ region of Planck -allowed parameter
space. The two regions (b) and (c), however, could be distinguished by their predictions
for the amplitude of isocurvature perturbations at the Hubble scale [23], as the masses of
isocurvature modes do not satisfy the symmetry φ → µ− φ, which the classical background
enjoys. As we will see, in region (c) the model has an embedded preheating mechanism that
leads to observable gravity waves in the high frequency region.

In this way, M-flation resolves all of the problems raised earlier vis-à-vis single scalar
field inflation for several reasons. First, its effective couplings can easily be made naturally
small, provided N is chosen to be sufficiently large. For example, N ≈ 48 000 D3-branes
turn out to suffice in this case for ameliorating any hierarchy problem. Second, the total
amount of field displacement during M-flation has been argued [26] to be less than the UV
cutoff of this model, so there is no trans-Planckian problem. Finally, this approach suggests
a clear physical meaning for the inflaton, namely the radius of the two-sphere on which
D3-branes live.

Despite its theoretical successes, M-flation has not been up to now extensively exploited
in terms of deriving observationally testable predictions that may help set it aside from rival
inflationary models. This is what we turn our attention to next, in the context of preheating.

– 6 –
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3 Preheating in M-flation

The preheating mechanism after inflation in typical models of inflation necessitates the in-
troduction of one or more extra matter fields, or preheat fields, into which the inflaton
presumably ought to decay [8, 9]. M-flation comes with this feature tacitly built-in, by way
of its spectators Ψi and Aµ. Although, as discussed, these are assumed to be turned off
classically, they can nevertheless be excited quantum mechanically. During inflation, these
quantum fluctuations can cross the horizon and can become observable as isocurvature per-
turbations. The amplitude of the largest modes in each inflationary region was computed
in [23], and shown to be generically too small to have observable effects. After inflation, how-
ever, they appear as preheat fields which can have observable effects on the GWs produced
in this era.

To this end, we need to study the equations of motion and quantize their solution. We
hence start with Ψ̂i and Âµ as perturbations in the action (2.1) — with the hats denoting
“quantumness” — and deduce the resulting equations of motion. As usual in inflationary
cosmic perturbation theory we assume these perturbations to be of the same order and both
be much smaller than the background field values and hence keep only the first order terms
in these perturbations in the equations of motion. In either case, these will take the expected
form of Mathieu equations suitable for preheat fields. We discuss each case separately.

3.1 Scalar preheat fields

Setting Âµ = 0 and expanding (2.1) to quadratic order in Ψ̂i, we get [26]:

S
(2)
Ψ

=

∫

d4x
√−g

{

−1

2
Tr
(

∂µΨ̂i∂
µΨ̂i

)

− 1

2
M2

Ψ (φ) Tr
(

Ψ̂
2
i

)

}

, (3.1)

where there are two solutions for the scalar spectator masses, dubbed α-modes and β-modes
respectively:

M2
Ψ (φ) =











M2
αj

(φ) =
1

2
λeffφ

2(j + 2)(j + 3)− 2κeffφ(j + 2) +m2, 0 ≤ j ≤ N − 2,

M2
βj

(φ) =
1

2
λeffφ

2(j − 1)(j − 2) + 2κeffφ(j − 1) +m2, 1 ≤ j ≤ N,

(3.2)

with degeneracy 2j + 1 for each mode. The above φ-dependent masses, besides a bare mass,
induce both types of φ2χ2 and φχ2 interactions for the preheat fields χ.

It can be easily shown that if inflation happens in the region (c), the above masses for
α- and β-modes become tachyonic for an interval during the preheating era, if j > jmin. For
α-modes, jmin = 94 and for β-modes jmin = 16. For these modes, we have to alleviate the
problem by including the corrections up to quartic order in Ψ̂i.

7 We get:

S
(3)
Ψ

=

∫

d4x
√−g

{

−KΨ (φ) Tr
(

Ψ̂
3
i

)}

,

S
(4)
Ψ

=

∫

d4x
√−g

{

−ΛΨTr
(

Ψ̂
4
i

)}

,

(3.3)

7The reason for inclusion of these higher order terms is to stabilize the potential for large Ψ̂i; otherwise
later simulations for the gravitational waves become unstable. We have neglected the cross-coupling that may
arise from the interactions of the gauge mode and spectator mode at lower order.
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with

KΨ (φ) =











Kαj−2 (φ) =
[κeff

6
− λeff

4
jφ
]

√

j + 1 Gj , 3 ≤ j ≤ N,

Kβj+2 (φ) =
[κeff

6
+

λeff

4

(j + 1

2

)

φ
]

√

j Gj , −1 ≤ j ≤ N − 2,

(3.4)

and

ΛΨ =

{

Λαj−2 = (j + 1) Uj , 3 ≤ j ≤ N,

Λβj+2 = j Uj , −1 ≤ j ≤ N − 2 ,
(3.5)

where

Gj = 12 (−1)N+1
√

N (N2 − 1)
√

j (j + 1)

(

j j j
−1 0 1

){

j j j
N−1
2

N−1
2

N−1
2

}

,

Uj =
λeff

4
N
(

N2 − 1
)

(j + 1)

2j
∑

c=0

(2c+ 1)

(

j j c
1 −1 0

)2{
j j c

N−1
2

N−1
2

N−1
2

}2

,

(3.6)

and (:::) and {:::} respectively denote Wigner 3j and 6j symbols [30].
We remark that the cubic couplings (3.4) are linearly dependent on the inflaton, whereas

the quartic ones (3.5) are manifestly independent (i.e. they are constants for a given j).
Moreover, for reasonable values of φ, it is plain to see that

KΨ

Mpl
≪ ΛΨ, (3.7)

in virtue of the fact that the left-hand side is proportional to products of Wigner symbols,
while the right-hand side is proportional to large sums of products of squares of Wigner
symbols.8 Consequently, we can treat the cubic terms as negligible. ΛΨ in general is mode
dependent, however, one can show that for large j it becomes j-independent and is

ΛΨ ≃ 1.0069× 1011
λeff

4
. (3.8)

One can therefore take the potential of any scalar (α or β) mode χ̂ to be

V (φ, χ̂) = V0 (φ) +
1

2
M2

Ψ (φ) χ̂2 + ΛΨχ̂4. (3.9)

Performing the usual Fourier decomposition

χ̂ (t,x) =

∫

d3k

(2π)3/2

[

χk(t)âk exp(−ik · x) + χ∗
k(t)â

†
k exp(ik · x)

]

the corresponding equation of motion can then be written as

χ̈k + 3Hχ̇k +

(

k2

a2
+M2

Ψ (φ)

)

χk + 4ΛΨχ3
k = 0. (3.10)

As we will see, this has the familiar form of a Mathieu equation in the regime where φ is
oscillating about the vacuum (modulo the last term which, as discussed, was included to keep
the potential bounded from below), and can therefore lead to parametric resonance.

8This claim can be easily checked by explicitly computing the couplings’ numerical values for any given j.
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3.2 Gauge preheat fields

The story here proceeds along similar, albeit slightly simpler lines. Setting Ψ̂i = 0 and
expanding (2.1) to quadratic order in Âµ yields [26]:

S
(2)
A

=

∫

d4x
√−g

{

−Tr
(

∂[µÂν]∂
[µÂν]

)

− 1

2
M2

A (φ) Tr
(

Â2
µ

)

}

, (3.11)

where the mass spectrum is given by

M2
A (φ) =

1

4
λeffφ

2j(j + 1), 0 ≤ j ≤ N − 1. (3.12)

The degeneracy for j = 0 is 2 (corresponding to massless gauge fields) while for j ≥ 1 is
3(2j + 1), the factor of three corresponding to the three polarizations of a four dimensional
massive vector field. Unlike the scalar case, though, because (3.12) only contains a φ2 term,
we need not worry about the danger of acquiring tachyonic masses and the higher order
corrections will always remain small compared the leading quadratic terms.9 We can therefore
safely ignore all higher-order corrections and write the equation of motion for the Fourier
modes Ak of the gauge preheat fields as

Äk +HȦk +

(

k2

a2
+M2

A (φ)

)

Ak = 0. (3.13)

Despite the fact that the Hubble friction term appears with a different coefficient than in the
scalar case (3.10), we still get a Mathieu equation when the inflaton φ oscillates around its
minimum toward the end of inflation.

The next question to ask is then what the parametric resonance idiosyncratic to (3.10)
and (3.13) can give us. A potentially rich and predictive product thereof is GW production.

4 Parametric resonance

4.1 SUSY-breaking vacuum

If the initial condition is such that inflation happens in regions (a) or (b), the inflaton will
finally end up oscillating around the SUSY-breaking vacuum, φ = µ. It might be thought
the inflaton oscillations around the vacuum, φ = µ, and its couplings to different preheat
fields can create parametric resonance. However, it can be shown that the rest masses of α
and β modes in this region are so large that non-adiabatic particle production is suppressed.
To be specific, let us focus on α-modes and β-modes. A similar analysis and argument could
be repeated for the gauge modes as well.

The mass functions for the α and β modes can be unified in the following form

M2
Ψ (φ) =

1

2
λeffω(ω − 1)φ2 + 2κeffφω +m2, (4.1)

where

ω =

{

−(j + 2) 1 ≤ j ≤ N − 2,

(j − 1) 1 ≤ j ≤ N.
(4.2)

9Note that massless gauge field states do not couple to the background effective inflaton (as the effective
inflaton is a real field and massless gauge fields are in the center U(1) of the U(N) gauge symmetry. The
U(N) gauge symmetry is spontaneously broken to U(1) by the background field configuration.
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Expanding the interaction term around the SUSY-breaking vacuum φ = µ and introducing
the variable ϕ ≡ φ− µ, the interaction term between the inflaton and spectators looks like10

Vint =
1

2
g24ϕ

2χ̂2 +
1

2
g3ϕχ̂

2 +
1

2
m2

χ̂χ̂
2, (4.3)

where

g24 =
λeff

(

ω2 − ω
)

2
,

g3 =
1

2
λeffµ

(

2ω2 + ω
)

,

m2
χ̂ =

λeffµ
2

2
(ω + 1)2 = m2(1 + ω)2 ,

(4.4)

and ϕ varies between zero and Φ = µ− φf ≃ 1Mpl. Despite the existence of interactions like
ϕχ̂2, since the rest masses of all the χ̂ fields are larger or equal to the mass of the inflaton,
perturbative decay of the inflaton to none of the χ̂ fields is possible.11

Around the SUSY-breaking vacuum, the inflaton potential to a large extent resembles
1
2m

2ϕ2. Therefore, the inflaton has an oscillatory behavior ϕ(t) ≈ Φsin(mt) [8, 9] around
the SUSY-breaking vacuum. It can be shown that the contribution of the g24φ

2χ̂2 interaction
is subdominant with respect to the g3φχ̂

2 for all ω’s. The ratio of two interactions is

R ≡ g24ϕ(t)
2χ̂2

g3ϕ(t)χ̂2
≈ ω − 1

2ω + 1

Φ

µ
sin(mt). (4.5)

For all values of ω > 0 this ratio is less than one,12 since the ratio Φ/µ . 0.04 in both the
(a) and (b) regions. Thus we will drop this quartic interaction term in comparison with the
cubic one in the rest of the analysis.

Let us analyze (3.10) in a non-expanding background where a = 1. Dropping the
contribution of the quartic interaction, for an oscillating inflaton the approximated equation
takes the form

¨̂χk +

(

k2 +m2
χ̂ +

λeffµΦ

2
ω(2ω + 1) sin(mt)

)

χ̂k = 0. (4.6)

Introducing the new variable z ≡ mt
2 + π

4 and ′ ≡ d
dz , the equation takes the form of a Mathieu

equation [32]
χ̂′′ + (Ak − 2q cos(2z))χ̂ = 0, (4.7)

where

Ak ≡ 4
(

k2 +m2
)

m2
, (4.8)

q ≡ λeffµΦω(2ω + 1)

m2
=

2Φ

µ
ω(2ω + 1). (4.9)

It is known [33] that equation (4.7) has solutions with an exponential instability χ̂ ∝
exp

(

µ
(n)
k z

)

that represent a burst of particle production. The solutions have resonance

10In the rest of the analysis we will drop the quartic ΛΨχ̂4 term. As we will see in the next subsection
presence of this term weakens the particle production and thus strengthens our results.

11For the same reason the tachyonic resonance of [31] does not occur in our case.
12ω = 0 (the j = 1 β mode) does not have any interaction with the inflaton.
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bands with the width ∆k(l) ≃ ql. If q ≪ 1, what is known as narrow resonance band, the
resonance occurs in bands near Ak ≃ l2, where l is a nonzero integer. Hence the widest band
is the first instability band. Imposing the condition q < 1 for the inflationary region (a)
where µ ≃ 26 Mpl, only 0 ≤ ω ≤ 2 (1 ≤ j ≤ 3 β modes) lead to narrow resonance. In the
region (b), where µ < 36, besides the aforementioned modes, ω = −3 (j = 1 α mode) can
also lead to narrow resonance. The factor µk, the Floquet index, for the first instability band
is given by [8, 9]

µk =

√

(q

2

)2
−
(

2k

m
− 1

)2

, (4.10)

where the resonance happens for the narrow momentum k range 1 − q
2 ≤ 2k

m ≤ 1 + q
2 . It

obtains its maximum at µk = q/2 at k = m/2.
In an expanding background the redshift of momentum k from the resonance band can

prevent the resonance. As pointed out in [8, 9], the condition for the first band to be effective
during expansion is

q2m & H. (4.11)

The inequality is not satisfied for the modes that can undergo parametric resonance in flat
space-time. This is because during preheating H ≃ 0.1m [8, 9] and Φ2/µ2 . 1.5 × 10−3.
Thus narrow parametric resonance for these modes cannot lead to preheating.

For larger values of ω, the resonance is broad. However, one can show that the large
rest mass of these modes, mχ̂ = m(ω+ 1), and the smallness of the amplitude of oscillations
with respect to the supersymmetry-breaking vacuum µ, shuts off the particle production. To
see this, let us note that the time-dependent frequency in the equation of motion for χ̂ in an
expanding background is given by

Ω =

√

k2

a2
+m2

χ̂ +
λeffµΦ

2
ω(2ω + 1) sin(mt). (4.12)

The condition for the adiabaticity violation is that
∣

∣

∣

∣

∣

Ω̇

Ω2

∣

∣

∣

∣

∣

≃ 1

2

ω(2ω + 1) cos(mt)

m((ω + 1)2 − ω(2ω + 1)Φµ sin(mt))3/2
Φ

µ
& 1, (4.13)

a condition that cannot be satisfied for large values of ω due to the smallness of Φ/µ. Similar
arguments can be given for the gauge spectator modes.

Recapitulating our results, it is not possible to reheat M-flation around the SUSY-
breaking minimum via any of the α, β or gauge spectators modes. The supersymmetric model
is equipped with fermionic spectators that might contribute to this process. Nonetheless, due
to Pauli exclusion, resonances cannot happen for fermionic modes and considering them will
not change the above result.

4.2 Supersymmetric vacuum

Unlike the supersymmetry breaking vacuum, parametric resonance around φ = 0 (supersym-
metric vacuum) can be quite effective through the spectator modes. We first focus on the
scalar preheat fields. The equation of motion for the perturbations Ψi can be decomposed
into the equation of motion for the α and β spectator modes which in Fourier space takes
the form

¨̂χk + 3H ˙̂χk +

(

k2

a2
+

λeff

2
φ2
(

ω2 − ω
)

+
3

2
µλωφ+m2

)

χ̂k + 4ΛΨχ̂3
k = 0. (4.14)

– 11 –



J
C
A
P
0
3
(
2
0
1
4
)
0
2
0

The bare masses of the spectator modes are equal to the inflaton mass m2 and in principle for
large values of ω, the adiabatic condition may be broken violently. However, as we will see,
self-interactions of the χ̂ particles, incorporated in the last term of the equation of motion,
slows down the parametric resonance.

In terms of the dimensionless time variable z̃, defined as

z̃ ≡ mt, (4.15)

the equations of motion for the inflaton and the background are

φ′′ + 3Hφ′ +

(

2φ3

µ2
− 3φ2

µ
+ φ

)

= 0, (4.16)

H2 =
1

3M2
pl

[

1

2
φ′2 +

1

2
φ2

(

φ

µ
− 1

)2
]

, (4.17)

where

H ≡ a′

a
. (4.18)

The equation of motion for the Fourier mode, Xk ≡ a3/2χ̂k, is

X ′′
k +Ωk

2Xk +
4ΛΨ

a3m2
X 3
k = 0, (4.19)

where

Ωk
2 ≡ k2

m2a2
+

φ2

µ2

(

ω2 − ω
)

+
3φ

µ
ω + 1− 3

4
H2 − 3

2

a′′

a
. (4.20)

Eq. (4.19) can be solved imposing the Bunch-Davies vacuum on the mode Xk

Xk → e−i
Ωkt′

m

√
2Ωk

(4.21)

at the beginning of preheating. The number density for the produced particles is [8, 9]

nX
k =

Ωk

2

(

m2 |X ′
k|2

Ω2
k

+ |Xk|2
)

− 1

2
. (4.22)

To demonstrate the contribution of the cubic term to the comoving number density, we
have numerically solved the equations for perturbation in the presence and absence of the
cubic contribution to the equations of motion (4.19) for k = 0 for the largest j β-mode. As
can be seen in the L.H.S. graph of figure 1, in the absence of the cubic term, the number
density of the produced particles exhibits stochastic resonance behavior [8, 9], i.e. it typically
increases at some specific moments but it may decrease as well. In between these instants,
the number density remains approximately constant (sharp oscillations on the plateaus are
only numerical artifacts). The interval between the kicks in nk is roughly about π, which
is the small interval in which the mode becomes massless and tachyonic. However, once the
cubic term (from the quartic self-coupling term) is added to the equation of motion (4.19),
nk ceases to exhibit resonance behaviour initially, its value being highly suppressed. This
continues until the cubic term in the equation of motion of the scalar spectator redshifts and
the mode revert to resonance behaviour.
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Figure 1. Left graph shows how the comoving number density of the χ̂ particles, nχ
k evolves as a

function of z̃ for k = 0, in the absence of the quartic self-coupling term, which explicitly exhibits
the stochastic resonance behavior. The right figure shows the same when the quartic coupling term
is added to the Lagrangian of the χ̂ field. As can be seen, the self-coupling term slows down the
resonance.

For the gauge mode the equation of motion is given by (3.13). Introducing the new
variable

Ak = a1/2Ak, (4.23)

the equation takes the following form

A′′
k + Ω̃2

kAk = 0, (4.24)

where

Ω̃2
k ≡ k2

m2a2
+

φ2

2µ2

(

j2 + j
)

+
1

4
H2 + 1− a′′

2a
. (4.25)

Again (4.24) can be solved numerically imposing the Bunch-Davies vacuum in infinite past
for the Ak.

We have numerically solved (4.24) for k = 0. As it can be seen in figure 2 the gauge
mode number density of produced particles, which is given by [8, 9]

nA
k =

1

a2

[

Ω̃k

2

(

m2 |A′
k|2

Ω̃2
k

+ |Ak|2
)

− 1

2

]

, (4.26)

also demonstrates stochastic resonance behaviour. Note that the 1/a2 factor in nA
k will in

principle cause the gauge mode particles to dilute. The comoving number density of the
particles overall increases more slowly due to the expansion of the universe. The production
of gauge modes happens in brane-antibrane inflation too [14].

5 Gravity Waves from preheating around the SUSY vacuum

Effective preheating can lead to explosive particle creation and, consequently, the production
of stochastic Gravitational Waves (GWs) [15, 16]. The latter arise from the tensor modes hij
of perturbations to the FRW metric, and are linked to the former via the perturbed Einstein
equations,

ḧij + 3Hḣij −
[∇2

a
+ 2

(

H2 + 2
ä

a

)]

hij =
16πG

a2
δSTT

ij , (5.1)
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Figure 2. nA
k vs. z̃. Despite the decrease in the number density of the produced gauge particle, the

number density exhibits a stochastic resonance behavior.

where δSTT
ij is the transverse-traceless part of the stress tensor perturbation δSij = δTij −

1
3δijδTk

k which depends by construction on the number density and energy of the preheat
fields. This stress-tensor perturbations are receiving contribution from the particles produced
during the preheating era discussed in the previous section, which in turn source the gravity
waves through (5.1).

Recalling that the Landau-Lifshitz pseudotensor [34] associated with gravitational radi-
ation is Tµν = 〈hij,µhij ,ν〉/32πG, we can write the ratio between the spectral energy density
thereof and the present-day total energy density as

Ωgw (f) =
1

ρc

d

d ln f
T00 =

1

ρc

d

d ln f

∑

i,j

1

32πG

〈

h2ij,0
〉

, (5.2)

where f denotes the GW frequency. Using this, it is in principle possible to compute the
power spectrum, Ωgwh

2.
Of course, the dynamics involved are highly nonlinear and far too complicated to render

this task analytically tractable; instead, we resort to numerics. Thus, to determine the power
spectrum of GW generated during preheating after inflation by the various scalar and gauge
modes described in the previous section, we employ the lattice simulator HLattice 2.0 [28].

HLattice is generically designed to solve equations of motion via a numerical scheme
known as symplectic integration, which is typically very stable and often used for long-term
many-body simulations in astronomy and particle physics. The basic idea of how it works
is as follows (for a detailed overview, the reader is referred to [28]).Spatial coordinates are
discretized on a three-dimensional lattice — in our cases, with 64 grid points along each edge
— and time evolution is achieved by considering the Hamiltonian H of the system which, in
lieu of a spatial integral, can be written as a sum over all of the lattice points. Then, any
arbitrary function F evolves via

dF

dt
= {F,H} ≡ ĤF,
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Figure 3. GW amplitude as a function of frequency due to the highest-j scalar modes, both α (solid)
and β (dashed), for a range of scale factors from a = 1 (beginning of preheating) to a = 14.

where {·, ·} is the Poisson bracket and Ĥ is the corresponding functional operator. The
solution is thus

F (t+ dt) = eĤdtF (t).

An n-th order symplectic integrator is constructed by factorizing exp
(

Ĥdt
)

into a product
of exponentials of the constituent (kinetic and potential) terms of the Hamiltonian up to
O
(

dtn+1
)

. While HLattice 2.0 is in principle able to implement this up to sixth order
(using a fourth order Runge-Kutta subintegrator, with a time step much smaller than dt,
to solve the resulting equations of motion), we simply used its second order symplectic
integrator in obtaining all of the results that follow, for the sake of keeping computational
times manageable.

5.1 GW from scalar modes

The power spectra of GW due to the most massive — i.e. highest j — scalar modes (both
α and β) are shown in figure 3. The scale factor is normalized to a = 1 at the end of
inflation/beginning of preheating, and we carry out the computation up to a = 14, when the
spectrum becomes UV dominated. Indeed, after preheating, field energies typically cascade
towards the UV,13 and in HLattice this renders all further (higher a) computations non-
physical because of the finite resolution of the simulator as well as its lacking treatment of
quantum effects at very high wavenumbers [36]. To illustrate this, we plot the kinetic energy

13Note that all simulations start out (small a) “UV dominated” and have larger energies at larger wave
lengths. However, they do not remain so. However there is a later time (larger a) which become UV
dominated again.
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H
. That is, the plot shows, k3

4π2

[

k2

a2 |χk|2
]

/(ρbackground) vs
kH
π
.

spectrum of the highest j α mode in figure 4 and observe that it starts to be dominated at
the UV end for a ≥ 14.

We remark that, as is seen in figure 3, the two α and β types of scalar preheat fields
produce very similar GW spectra, as may well be expected from inspecting their masses (3.2)
and quartic couplings (3.5): for large j, both α and β type preheat fields have an approximate
mass of

M2
Ψ (φ) ≈ 1

2
λeffφ

2j2, (5.3)

and quartic coupling of

ΛΨ ≈ j2
[

λeff

4
N
(

N2 − 1
)

] 2j
∑

c=0

(2c+ 1)

(

j j c
1 −1 0

)2{
j j c

N−1
2

N−1
2

N−1
2

}2

. (5.4)

In producing these graphs we have assumed that N = 48000. We have also taken the largest
j α and β modes individually, i.e. j = 48000 single β and α mode.

5.2 GW from gauge modes

The GW power spectrum due to the most massive gauge mode, up to a = 7, before the
UV domination kicks in, is shown in figure 5. Again we have focused on the largest j gauge
mode, j = 47999. As in the scalar mode case, the amplitude grows with increasing scale
factor under the clear effect of parametric resonance. However the growth is much faster:
amplitudes become as large as 10−11 by a = 7, at which point the computations become
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Figure 5. GW amplitude as a function of frequency due to the highest-j gauge mode, for a range of
scale factors from a = 1 (beginning of preheating) to a = 7.

UV dominated. The difference between gauge and scalar modes is essentially coming from
the difference in their corresponding equations, and in particular the difference between
Ωk (4.20) and Ω̃k (4.25). The delay in the enhancement of GW spectrum from scalar modes
could be traced back to the fact that the presence of cubic coupling term in their equations
of motion generically slows down the resonance. To compare the contributions to the total
GW spectrum from the scalar and gauge modes, they are plotted together in figure 6. The
spectrum from a single gauge mode is also flatter in comparison with its scalar counterpart,
but still a double hump feature of the gravity profile from preheating can be distinguished.

Thus, we see that the spectrum of GW produced by preheating following M-flation is
dominated by the gauge preheat fields, which give rise to GW amplitudes more than 10 orders
of magnitude greater (at a=7) than those due to (either type of) their scalar counterpart.

5.3 GW from several gauge modes

As noted above the spectrum of GWs from the gauge modes dominate the scalar modes
by 10 orders of magnitude. This suggests that if all three modes are run together as the
preheat fields, the gauge modes are more effective in the production of GWs. However
this was done for a single scalar or gauge mode and at large j there are ∼ 2j (for scalars)
and ∼ 6j (for vectors) such modes for a given j. In principle one should consider the
effects of all the degenerate modes. It may seem from (5.1) and (5.2) that the GW power
spectrum should grow like j2 ∼ N2. However, given the highly nonlinear character of these
equations this expectation can only hold for a very short time in the very low frequency
region where the nonlinear effects are negligible. The larger the degeneracy, the earlier the
UV domination, and hence modes have a shorter growth time. This is compatible with the
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Figure 6. GW amplitude as a function of frequency due to the highest-j modes, both scalar (α in
solid and β in dashed) and gauge (dashed-dotted), at scale factor a = 7.

analysis of [35]. However one should note that in the study of [35] the preheat modes are
scalar fields, whereas the ones in our simulations are gauge modes, i.e. they appear with the
friction term proportional to H, instead of 3H in the equations of motion.

Given the fact that for large j gauge modes have a 6j degeneracy, to check the effects
of degeneracies in our setup we should simulate the effect of 3× 95999 = 287997 gauge mode
as preheat fields. This number is quite huge and cannot be handled without substantial
computational resources. To get an idea of the effects of degeneracy, we tried three and six
gauge modes.14

To explore the degeneracy effects more clearly we have shown the spectrum of GWs
from one, three and six largest j gauge modes in the same plot, figure 7. Although these
data are not enough for making precise deductions, they still exhibit the following features:

• Time dependence. At the beginning of preheating, low a up to a = 3, the amplitude
of the GW spectrum resulting from the three and six gauge preheat modes, is larger
than that of the single mode. As pointed out in [35], this is the stage the inflaton is
coherently oscillating around its minimum and non-linear effects have not yet kicked
in. However, as the inhomogeneities of the inflaton grow, gravitational radiation is
counteracted by the backreaction and the model with multiple preheat fields stops
being efficient; nonlinear effects suppress the degeneracy effects and we see no large
degeneracy effect. Moreover, UV domination happens earlier (at lower a) for larger
degeneracy such that the amplitude of GWs is almost degeneracy independent.

14We should note that the simulation of a single mode with highest j-number up to the onset of UV
domination took a week to perform on the Sharcnet cluster of the University of Waterloo. In comparison with
previous studies on gravitational wave production from preheating, this is due to the large value of coupling
of the inflaton to the preheat field which is of order λeffN

2
∼ 1.6× 10−4.
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Figure 7. Gravitational wave profile from one, three and six highest j gauge modes until their
corresponding onset of UV domination. The larger the numbers of preheat fields, the earlier the the
onset of UV domination.The spectrum generated from three and six gauge modes become steeper at
the high frequency tail in comparison with that of the single mode.

• Frequency dependence. Besides the amplitude of the produced GWs, frequency is the
distinctive observational feature in our model. Our current data with six gauge preheat
modes already shows that the GWs of our model are in the 1−3 GHz band and they are
almost flat with amplitudes around 10−16. Revealing the exact amplitude of the GW
spectrum and its finer features in this range needs an analysis with a larger number
of modes.

6 Concluding remarks

In this work we extended the analysis of [21, 23, 27] on the M-flation model. As discussed,
M-flation helps with the resolution of many of the principal theoretical difficulties endemic
to standard scalar field inflationary models. Moreover, M-flation is also able to furnish
concrete observational predictions courtesy of its built-in preheating mechanism around the
φ = 0 vacuum. In search for possible, beyond CMB, observational signatures of M-flation we
have analyzed the power spectra of gravitational waves produced in this model due to the
different types of its preheat fields. We have found that the gauge preheat fields contribute
overwhelmingly to this process as compared to their scalar counterparts, producing a large
amplitude spectrum in the few GHz band with an amplitude of order 10−16. It is hoped that
such a spectrum could be observed by ultra-high frequency GW detectors that may be able
to probe the GHz band, such as the Birmingham HFGW resonant antenna [37–39] or the one
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at Chongqin University [40, 41]. The Birmingham detector works based on the detection of
the rotation of the polarization vector of an electromagnetic wave induced by the interaction
between a gravitational wave and the polarization vector of the electromagnetic wave. The
sensitive frequency range is at 108 HZ. The Chongqing detector exploits the electromagnetic
interaction of a Gaussian beam propagating through a static magnetic field. These detectors
work based on different principles from the phase measurement with the laser interferometry
developed in the ground-based large-scale interferometers around few hundred Hz.

One should note that the GW spectrum we discussed in this paper is in the high
frequency range, and is in addition to the spectrum of gravity waves (tensor modes) that the
model produces at the CMB scales, with the tensor-to-scalar ratio r ≃ 0.048 [23]. In addition
the lightest spectator mode in this inflationary region will create a substantial amplitude of
isocurvature perturbations with amplitude PS/PR ≃ 5 × 10−3 which has a degeneracy of
three [23].15 These features could be used to distinguish M-flation in this region from other
inflationary models.
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