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We derive an effective Hamiltonian that describes the dynamics of electrons in the conduction band of
monolayer transition metal dichalcogenides (TMDC) in the presence of perpendicular electric and
magnetic fields. We discuss in detail both the intrinsic and the Bychkov-Rashba spin-orbit coupling
induced by an external electric field. We point out interesting differences in the spin-split conduction band
between different TMDC compounds. An important consequence of the strong intrinsic spin-orbit coupling
is an effective out-of-plane g factor for the electrons that differs from the free-electron g factor g≃ 2. We
identify a new term in the Hamiltonian of the Bychkov-Rashba spin-orbit coupling that does not exist in
III-V semiconductors. Using first-principles calculations, we give estimates of the various parameters
appearing in the theory. Finally, we consider quantum dots formed in TMDC materials and derive an
effective Hamiltonian that allows us to calculate the magnetic field dependence of the bound states in the
quantum dots. We find that all states are both valley and spin split, which suggests that these quantum dots
could be used as valley-spin filters. We explore the possibility of using spin and valley states in TMDCs as
quantum bits, and conclude that, due to the relatively strong intrinsic spin-orbit splitting in the conduction
band, the most realistic option appears to be a combined spin-valley (Kramers) qubit at low magnetic fields.
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I. INTRODUCTION

Monolayers of transition metal dichalcogenides
(TMDCs) [1] posses a number of remarkable electrical
and optical properties, which makes them an attractive
research platform. Their material composition can be
described by the formula MX2, where M ¼ Mo or W
and X ¼ S or Se. They are atomically thin, two-dimen-
sional materials, and in contrast to graphene [2], they have a
finite direct optical band gap of approximately 1.5–2 eV,
which is in the visible frequency range [3,4]. This has
facilitated the theoretical [5] and experimental [6–11] study
of the rich physics related to the coupling of the spin and
the valley degrees of freedom.
Very recently, there has also been a growing interest in

the transport properties of these materials. Although con-
tacting and gating monolayer TMDCs is not entirely
straightforward experimentally, progress is being made
in this respect [12–18]. Electric [17] and magnetic field
[19,20] effects are also being studied currently, in both
monolayer and few-layer samples. In addition, a promising

experimental work has recently appeared regarding spin
physics in these materials, showing, e.g., a viable method
for spin injection from ferromagnetic contacts [16].
The finite band gap in the TMDCs should also make it

possible to confine the charge carriers with external gates
and, therefore, to create, e.g., quantum dots (QDs).
Together with the above-mentioned progress in contacting
and gating TMDCs, this raises the exciting question of
whether these materials could be suitable platforms to host
qubits [21]. Our work is motivated by this question.
First, we introduce an effective Hamiltonian that accu-

rately describes the physics in the conduction band (CB) of
TMDCs in the (degenerate) K and K0 valleys of the
Brillouin zone (BZ). We confine our attention to the CB
while the effect of the valence band (VB) and other relevant
bands is taken into account through an appropriate choice
of the parameters appearing in the model. This approach is
motivated by the facts that (i) the band-gap energy Ebg is
large with respect to other energy scales appearing in the
problem and (ii) according to experimental observations,
the samples of TMDCs are often intrinsically n doped
[16,22] or show unipolar n-type behavior [23]. To obtain
realistic values of the parameters appearing in the theory,
we perform density functional theory (DFT) calculations.
We discuss the important effects of the intrinsic spin-orbit
coupling (SOC) that manifest themselves through both the
spin splitting of the CB and the different effective masses
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associated with the spin-split bands. We also point out that
a perpendicular magnetic field, in addition to the usual
orbital effect, leads to the breaking of valley degeneracy.
Moreover, due to the strong SOC, the coupling of the spin
degree of freedom to the magnetic field is described by an
out-of-plane effective g factor ~g⊥sp.
We then study the effect of an external electric field and

derive the Bychkov-Rashba SOC Hamiltonian for TMDCs.
This is motivated by recent experiments [11,22], where
strong electric fields were created by backgates to study the
charged excitons. In particular, we find that in contrast to
III-V semiconductors and graphene, due to the lower
symmetry of the system, the Bychkov-Rashba SOC
Hamiltonian contains two terms, one of which has not
yet been discussed in the literature. Using perturbation
theory and first-principles (FP) calculations, we estimate
the magnitude of this effect for each TMDC material.
Finally, we consider QDs obtained by confining the

charge carriers with gate electrodes (see Fig. 1). We study
the dependence of the spectrum of such QDs on a
perpendicularly applied external magnetic field. We show
that, while pure spin and pure valley qubits are possible,
e.g., in small QDs in MoS2, they require large magnetic
fields because of the relatively strong intrinsic SOC in the
CB. On the other hand, combined spin-valley qubits
represented by a Kramers pair can be operated at small
magnetic fields. QDs in nanowires consisting of a MoS2
nanoribbon with armchair edges or crystallographically
aligned confining gates have recently been discussed [24].
Our proposal does not require atomically sharp boundaries
or a precise control of the placement of the confining gates;
therefore, it should be easier to fabricate experimentally.
Moreover, we explicitly take into account the intrinsic spin
splitting of the CB.
The paper is organized as follows. In Sec. II, we derive

an effective Hamiltonian describing electrons in the CB.
We take into account the effects of perpendicular external
electric and magnetic fields. Using the results of FP
calculations, we obtain values for the important parameters

appearing in our model. In Sec. III, we use this model to
study the magnetic field dependence of the bound states in
a QD. We also discuss the possible types of qubits that QDs
in TMDCs can host. We conclude in Sec. IV. In
Appendixes A and B, we present the details of the
derivation of the effective Hamiltonian. We collect some
useful formulas in Appendix C, and the details of our DFT
calculations can be found in Appendix D.

II. EFFECTIVE HAMILTONIAN

We consider a monolayer TMDC and introduce a low-
energy effective Hamiltonian that captures the most impor-
tant effects in the spin-split conduction band at the K (K0)
point. The detailed derivation of the model, which is based
on a seven-band (without the spin degree of freedom) k · p
Hamiltonian, is presented in Appendix A. It is important to
note that, as pointed out in Refs. [25–27], there are several
band extrema in the band structure of TMDCs that can be of
importance: see Fig. 2, where we show the band structure of
MoS2 obtained from DFT calculations. Since we assume
that the system is n doped, the maximum at the Γ point of
the VB is not relevant. More important are the secondary
minima in the CB, which are usually called the Q (or T)
points. The exact alignment of the Q-point energy mini-
mum with respect to the K-point minimum is difficult to
deduce from DFTand GW calculations, because it depends
quite sensitively on the details of these computations [28].
We found that by using the local density approximation
(LDA), all compounds, with the exception of MoS2,
become indirect gap semiconductors if we take into account
the SOC, because the Q-point minimum is lower than the
K-point minimum. More advanced GW calculations also
give somewhat conflicting results and are quite sensitive to
the level of theory [29] (G0W0, GW0, etc,) and the lattice
constant used. Experimentally, monolayer TMDCs show a
significant increase of photoluminescence [10,22,30,31]
with respect to few-layer or bulk TMDCs, which is usually

FIG. 1 Schematics of a QD defined with the help of four top
gates in a monolayer TMDC. S and D denote the source and the
drain, respectively.

FIG. 2 Spin-resolved band structure of MoS2 from DFT
calculations. The qualitative features of the band structure are
the same for all TMDCs. An enlargement of the region in the
black frame is shown in the upper panel of Fig. 3.
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interpreted as evidence that they are direct gap semi-
conductors. Therefore, we assume that for low densities
it is enough to consider only the K and K0 points of the CB.
For the formation of QDs from states around the K point,
the safest material appears to be MoS2, where the secon-
dary minima are most likely above the K-point minimum
by a few hundred meV [26,32]. However, for operation at
low temperatures, the other TMDCs may also be suitable,
as long as the Q point lies a few meV higher than the K
points. In cases where the Q point lies below the K point,
one can envisage QDs formed within the Q valley, but this
is beyond the scope of this paper.

A. Electronic part and intrinsic spin-orbit coupling

Because of the absence of a center of inversion and
strong SOC, the bands of monolayer TMDC materials are
spin split everywhere in the BZ except at the high-
symmetry points Γ and M, where the bands remain
degenerate. In addition, the projection of the spin onto
the quantization axis perpendicular to the plane of the
monolayer is also preserved. This is a consequence of
another symmetry, namely, the presence of a horizontal
mirror plane σh. Therefore, a suitable basis to describe the
CB is given by the eigenstates ↑ and ↓ of the dimensionless
spin Pauli matrix sz with eigenvalues s ¼ �1. In what
follows, we often use the shorthand notation ↑ for s ¼ 1
and ↓ for s ¼ −1.
In the absence of external magnetic and electric fields,

the effective low-energy Hamiltonian that describes the
spin-split CB at the K (K0) point in the basis ↑, ↓ is

~Hτ;s
el þ ~Hintr

so ¼ ℏ2qþq−
2mτ;s

eff
þ τΔCBsz: (1)

Here, we introduce the inverse effective mass
1

mτ;s
eff
¼ 1

m0
eff
− τs 1

δmeff
, where τ ¼ 1 (−1) for K (K0) and the

wave numbers q� ¼ qx � iqy are measured from the K
(K0) point. Leaving the discussion of the effects of a
magnetic field to Sec. II B, we set qþq− ¼ q2x þ q2y,
and, therefore, the dispersion described by the
Hamiltonian [Eq. (1)] is parabolic and isotropic. The
trigonal warping [26], which is much more pronounced
in the VB than in the CB, is neglected here.
The strong spin-orbit coupling in TMDCs has two

consequences. First, as already mentioned, the CB is spin
split at the K (K0) point, and this is described by the
parameter ΔCB. Second, the effective mass is different for
the ↑ and ↓ bands. Our sign convention for the effective
mass assumes that the spin-up band is heavier than the spin-
down band at the K point (for details on the effective mass
calculations, see Appendix B). The effective mass mK;s

eff of
different TMDCs, obtained from fitting the DFT
band structure [33], is shown in Table I (note that
mK0;s

eff ¼ mK;−s
eff ). As one can see, the difference between

mK;↑
eff and mK;↓

eff is around 10%–14% for MoS2 and MoSe2,

while it is ≳30% for the WX2 compounds. In the seven-
band k · p model, this can be explained by the fact that the
effective mass depends on the ratio of the spin splittings in
other bands (most importantly, in the VB and the second
band above the CB) and the band gap Ebg. For the heavier
compounds, the spin splittings are larger, but Ebg remains
roughly the same or even decreases, leading to a larger
difference in the effective masses.
The results of DFT calculations also suggest that, in the

case of MoX2 materials, there are band crossings between
the spin-split CB because the heavier band has higher
energy. For WX2 materials, such a band crossing is absent.
Taking MoS2 and WS2 as an example, the dispersion in the
vicinity of the K point is shown in Fig. 3. A similar figure
could be obtained for MoSe2 andWSe2 as well, except that,
due to the larger spin splitting, the band crossings for

TABLE I. Effective masses and CB spin splittings appearing in
the Hamiltonian [Eq. (1)] for different TMDCs. me is the free-
electron mass.

MoS2 WS2 MoSe2 WSe2

mK;↑
eff =me 0.49 0.35 0.64 0.4

mK;↓
eff =me 0.44 0.27 0.56 0.3

2ΔCB [meV] 3 −38 23 −46

FIG. 3 Upper panel: Spin-split DFT CB of MoS2 in the vicinity
of the K point, which is indicated by a vertical dashed line. Lower
panel: The same for WS2. A band crossing, which can be seen in
the case of MoS2, is absent for WS2. The small asymmetry in the
figures with respect to the K point, especially in the case of
the band-crossing points in the upper panel, is due to the fact that
the calculations were performed along the ΓKM line.
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MoSe2 occur farther away from the K point. Within the
present model, which focuses on the CB, such a different
behavior can be accounted for by a different sign ofΔCB for
MoX2 and WX2 materials. A discussion about the possible
microscopic origin of this sign difference is presented in
Appendix B.
We note that a model Hamiltonian similar to Eq. (1), but

without taking into account the difference in the effective
masses, was used in Refs. [34,35] to study spin-relaxation
processes in MoS2. The effective mass difference and the
sign of the effective SOC in the CB was discussed recently
in Ref. [36].

B. Effects of a perpendicular magnetic field

We assume that a homogeneous, perpendicular magnetic
field of strengthBz is applied. The k · pHamiltonian can be
obtained by using the Kohn-Luttinger prescription, which
amounts to replacing the numbers qx and qy in the above
formulas with operators q → q̂ ¼ 1

i ∇þ e
ℏA, where A is

the vector potential in Landau gauge and e > 0 is the
magnitude of the electron charge. Note that, due to this
replacement, q̂þ and q̂− become noncommuting operators,
½q̂−; q̂þ� ¼ 2eBz

ℏ ; where jBzj is the strength of the magnetic
field. Therefore, their order has to be preserved when one
folds down a multiband Hamiltonian, which lies behind the
low-energy effective Hamiltonian [Eq. (1)]. As a conse-
quence, for a finite magnetic field, further terms appear in
the effective Hamiltonian. The derivation of these terms
within a seven-band k · p model is given in Appendix B.
One finds that in an external magnetic field Hτ;s

el in
Eq. (1) is replaced by

~Hτ;s
el þ ~Hτ

vl þ ~Hs
sp ¼

ℏ2q̂þq̂−
2mτ;s

eff
þ 1þ τ

2
sgnðBzÞℏωτ;s

c

−
τ

2
~gvlμBBz þ

1

2
μBg⊥soszBz; (2)

where ℏωτ;s
c ¼ ejBzj=mτ;s

eff .
The term ∼ωτ;s

c in the bulk case introduces a shift in the
index of the Landau levels, so that there is an “unpaired”
lowest Landau level in one of the valleys. The next term,
~Hτ
vl ¼ −τ~gvlμBBz, breaks the valley symmetry of Landau

levels. Here ~gvl is the valley g factor. Similar effects have
also been found in gapped monolayer [37] and bilayer
[38,39] graphene, and have recently been noted for MoS2
as well [40–42]; therefore, we do not discuss them here in
detail.
A new term, that to our knowledge has not yet been

considered in the literature of monolayer TMDC, is due to
the strong SOC in these materials. It can be written in terms
of an out-of-plane effective spin g factor g⊥so:
~Hs
sp ¼ 1

2
g⊥soμBszBz, where μB is the Bohr magneton. In

addition, the well-known Zeeman term HZ ¼ 1
2
geμBszBz

also has to be taken into account [43]. Here, ge ≈ 2 is the
free-electron g factor. The coupling of the spin to the
magnetic field can, therefore, be described by

~Hs
sp;tot ¼

1

2
~g⊥spμBszBz; (3)

where the total g factor in the CB is ~g⊥sp ¼ ge þ g⊥so. Values
of ~gvl and jg⊥soj obtained with the help of our DFT
calculations are shown Table II. The sign of g⊥so cannot
be obtained with our methods; it should be deduced either
from experiments or from more advanced FP calculations.
For the numerical calculations in Sec. III A, we assume
that g⊥so > 0.
In Sec. III A, we study the interplay of the magnetic field

and the quantization due to confinement in QDs. While
Eq. (4) is a convenient starting point to understand the
Landau level physics, for relatively weak magnetic fields,
when the effect of the confinement potential is important
with respect to orbital effects due to the magnetic field, one
may rewrite ~Hτ;s

el , ~Hτ
vl, and ~Hs

sp;tot in a slightly different
form:

Hτ;s
el þHτ

vl þHs
sp;tot ¼

ℏ2q̂þq̂−
2mτ;s

eff
þ 1

2
sgnðBzÞℏωτ;s

c

þ τ

2
gvlμBBz þ

1

2
μBg⊥spszBz; (4)

where gvl ¼ ð2me=m0
effÞ− ~gvl and g⊥sp ¼ ~g⊥sp − ð2me=δmeffÞ.

This form shows explicitly that, in contrast to Hτ;s
el , which

depends on the product of τ and s (through mτ;s
eff ), H

τ
vl and

Hs
sp;tot depend only on τ and sz, respectively. This can help

to understand the level splittings patterns in QDs: see
Sec. III A. In particular, for states that form a Kramers pair,
τ · s ¼ 1 or −1; therefore, Hτ;s

el , which depends only on the
product of τ and s, would not lift their degeneracy in the
presence of a magnetic field. Because of ~Hτ

vl, however, the
degeneracy of the Kramers pair states will be lifted.
Assuming g⊥so > 0 and Bz > 0, as in the calculations that
lead to Figs. 4 and 5, the values of gvl and g⊥sp are shown in
Table II.

C. External electric field and the Bychkov-Rashba SOC

The effective Hamiltonian [Eq. (1)] describing the
dispersion and the spin splitting of the CB is diagonal in

TABLE II. Valley (~gvl, gvl) and spin (g⊥so, g⊥sp) g factors for
different TMDCs.

MoS2 WS2 MoSe2 WSe2

~gvl 3.57 4.96 3.03 4.34
jg⊥soj 0.21 0.84 0.29 0.87
gvl 0.75 1.6 0.42 1.46
g⊥sp 1.98 1.99 2.07 2.04
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spin space. An external electric field has two effects: (i) it
can induce Bychkov-Rashba– type SOC, which will couple
the different spin states, and (ii) it can change the energy of
the band edge. We start with the discussion of the Bychkov-
Rashba SOC.
For simplicity, we assume that the external electric field

is homogeneous and that its strength is given by Ez. Then,
the Bychkov-Rashba SOC in TMDCs is described by the
Hamiltonian

~Hτ
BR ¼ λiBRðsyqx − sxqyÞ þ λrBRðsxqx þ syqyÞ

¼
�

0 λ�BRq−
λBRqþ 0

�
: (5)

The first term, λiBRðsyqx − sxqyÞ, is the well-known
Bychkov-Rashba [44] Hamiltonian, which is also present
in GaAs and other III-V semiconductor compounds. It is
equivalent to the Bychkov-Rashba Hamiltonian recently
discussed in Ref. [45] in the framework of an effective two-
band model, which includes the VB. The second term,
λrBRðsxqx þ syqyÞ, is also allowed by symmetry (see Table I
of Ref. [46]) because the pertinent symmetry group at theK
point in the presence of an external electric field is C3. A
derivation of the Hamiltonian [Eq. (5)] is given in
Appendixes A and B. We note that the coupling constants
λrBR and λiBR cannot be tuned independently, because both
of them are proportional to the electric field but with
different proportionality factors. Using our microscopic
model and FP calculations similar to those in Ref. [47], we
can estimate the magnitude of λBR but not λrBR and λiBR
separately. The jλBRj values that we have obtained are
shown in Table III. They give an upper limit for the real
values because we have neglected, e.g., screening in these
calculations (for details see Appendix B). More advanced
DFT calculations, such as those recently done for bilayer
graphene [48], would certainly be of interest here.
Comparing the numbers shown in Table III to the

values found in InAs [49] or InSb [50], one can see that,
for relatively small values of the electric field
(Ez ≲ 10−2 V=Å), where the perturbation theory approach
can be expected to work, jλBRj is smaller by an order of
magnitude than in these semiconductor quantum wells.
Nevertheless, the Bychkov-Rashba SOC is important
because it constitutes an intravalley spin-relaxation chan-
nel, which does not require the simultaneous flip of spin
and valley. Thus, it may play a role in the quantitative
understanding of the relaxation processes in the recent

experiment of Jones et al. [11], where a large backgate
voltage was used.
The external electric field has a further effect, which,

however, turns out to be less important for our purposes.
Namely, it shifts up the band edge of the CB, and the shift
is, in principle, spin dependent [see Eqs. (B2c) and (B3c) in
Appendix B]. The shift of the CB edge can be understood
in terms of the electric field dependence of the band gap
(we note that the band edge of the VB also depends on the
electric field, and the shifts of the VB and CB edges
together would describe the change of the band gap). In
contrast to Ref. [40], however, in our model the shift of the
band edge depends quadratically on the strength of the
electric field and not linearly. We think this is due to the fact
that in the model used in Ref. [40], the p orbitals of the
sulfur atoms are admixed only to the CB. In fact, symmetry
considerations [26,45] and our DFT calculations show that
the p (or d) orbitals of the X atoms have a small weight at
the K point both in the VB and in the CB. Taking this into
account, as in the tight-binding model of Ref. [27], one
would find that for a weak electric field regime, the
dependence of the band gap is quadratic in the electric
field. Moreover, both our perturbation theory and prelimi-
nary DFT results suggest that the shift of the band edge in
the CB is actually very small, at least in the regime where
the perturbation theory approach is applicable (see
Appendix B for details). Therefore, we neglect it in the
rest of the paper. The spin dependence of the band-edge
shift, being a higher-order effect, is expected to be even
smaller.

III. RESULTS

A. Quantum dots in TMDCs

QDs in novel low-dimensional structures, such as bilayer
graphene [38,51–53] and semiconductor nanowires with
strong SOC [54,55], are actively studied and the appli-
cability of these structures for hosting qubits has also been
discussed. Motivated by the interesting physics revealed in
these studies, we now consider QDs in two-dimensional
semiconducting TMDCs defined by external electrostatic
gates (see, e.g., Fig. 1). In particular, we are interested in the
magnetic field dependence of the spectrum and discuss
which eigenstates can be used as two-level systems for
qubits. We consider relatively small QDs that can be treated
in the ballistic limit. The opposite limit, where disorder
effects become important and the spectrum acquires certain
universal characteristics, can be treated along the lines of
Ref. [56], but this is beyond the scope of the present work.
Nevertheless, based on the findings of Sec. II A, the

followingobservations canbemade.Assuminga chaoticQD
with mean level spacing δ ¼ 2πℏ2=ðmeffAÞ, where A is the
area of the dot, one can see that one needs relatively small
QDs in order to make δ larger than the thermal energy kBT.
For instance, taking a dot of radius R ≈ 40 nm, we find for,

TABLE III. Estimates of the Bychkov-Rashba SOC parameters
jλBRj. The perpendicular electric field Ez is in units of V=Å.

MoS2 WS2 MoSe2 WSe2

jλBRj [eV Å] 0.033Ez 0.13Ez 0.055Ez 0.18Ez
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e.g., MoS2 that δ ≈ 0.2 meV, corresponding to T ¼
2.3 K, whereas for WS2, due to its smaller effective mass,
the mean level spacing is T ≈ 3.4 K. In this respect, TMDCs
with smaller meff, such as WS2 and WSe2, might be more
advantageous.Although the required temperatures aresmaller
than in the case ofGaAs (which hasmeff ≈ 0.067me), they are
still achievable with present-day techniques.
In the following, for simplicity, we study circular QDs

because their spectrum can be obtained relatively easily and
can illustrate some important features of the spectrum of
more general cases. In particular, we consider QDs in MoS2
and WS2. The total Hamiltonian in the K, K0 valleys
(τ ¼ �1) reads

H ¼ Hτ;s
el þ ~Hintr

so þ ~Hτ
BR þHτ

vl þHsp;tot þ Vdot; (6)

where Vdot is the confinement potential for the QD. As we
have shown, ~Hτ

BR is relatively small; therefore, we treat it as
a perturbation, whereas the stronger intrinsic SOI is treated
exactly. The Hamiltonian of the nonperturbed system is
given by

Hdot ¼ Hτ;s
el þHintr

so þHτ
vl þHsp;tot þ Vdot; (7)

i.e., it is diagonal both in valley and in spin space. We
consider a circular QD with hard-wall boundary conditions:
VdotðrÞ ¼ 0 for r ≤ Rd and VdotðrÞ ¼ ∞ if r > Rd. In
cylindrical coordinates, the perpendicular magnetic field
can be taken into account using the axial gauge, where
Aϕ ¼ Bzr=2 and Ar ¼ 0. With this choice, since the rota-
tional symmetry around the z axis is preserved, Hdot
commutes with the angular momentum operator l̂z and
they have common eigenfunctions. The Schrödinger equa-
tion, which determines the bound state energies and
eigenfunctions, can be solved by making use of the fact
that, as noted in Ref. [57], the operator q̂þ (q̂−) appearing in
Hτ

el acts as a raising (lowering) operator on a suitably
chosen trial function. Introducing the dimensionless new
variable, ρ ¼ 1

2
ð rlBÞ2, where lB ¼

ffiffiffiffiffiffi
ℏ
eBz

q
is the magnetic

length, one finds for Bz > 0 that

q̂− ¼ −i
lB

ffiffiffi
ρ

2

r
e−iφ

�
1þ 2∂ρ − i

ρ
∂φ

�
¼ −i ffiffiffi

2
p

lB
α̂−; (8a)

q̂þ ¼ i
lB

ffiffiffi
ρ

2

r
eiφ

�
1 − 2∂ρ − i

ρ
∂φ

�
¼ i

ffiffiffi
2

p

lB
α̂þ: (8b)

The eigenfunctions of the operators α̂þ and α̂−, which
are (i) regular at ρ ¼ 0 and (ii) also eigenfunctions of l̂z, are
ga;lðρ;φÞ ¼ eilφρjlj=2e−ρ=2Mða; jlj þ 1; ρÞ, where l is an
integer andMða; jlj þ 1; ρÞ is the confluent hypergeometric
function of the first kind [58]. One can show that

α̂þα̂−ga;lðρ;φÞ ¼
� −aga;lðρ;φÞ if l ≤ 0

ðl − aÞga;lðρ;φÞ if l > 0.
(9)

(For details, see Appendix C.) Considering now
the Schrödinger equation for the bulk problem, i.e., for
Vdot ¼ 0 in valley τ for spin s, it reads

�
ℏωτ;s

c α̂þα̂− þ 1

2
sgnðBzÞℏωτ;s

c þ τΔCBsz

þ
�
τ

2
gvlμvl þ

1

2
g⊥spμBsz

�
Bz

�
Ψ ¼ EΨ; (10)

where ΘðxÞ is the Heaviside step function. The wave

functions Ψ↑
l ðρ;φÞ ¼ eilφffiffiffiffi

2π
p ð 1

0
ÞΦlðρÞ and Ψ↓

l ðρ;φÞ ¼
eilφffiffiffiffi
2π

p ð 0
1
ÞΦlðρÞ will be eigenfunctions if ΦlðρÞ ¼

ρjlj=2e−ρ=2Mðal; jlj þ 1; ρÞ and

ℏωτ;s
c al ¼

�
Eτ;s if l ≤ 0

Eτ;s þ lℏωτ;s
c if l > 0.

(11)

Here, Eτ;s ¼ ð1=2ÞsgnðBzÞℏωτ;s
c þ τsΔCB þ 1

2
ðτgvlμvlþ

sg⊥spμBÞBz − E. The bound state solutions of the QD
problem are determined by the condition that the wave
function has to vanish at r ¼ Rd; i.e., one has to find the
energy Eτ;s

l for which Mðal; jlj þ 1; ρ½r ¼ Rd�Þ ¼ 0. The
task is, therefore, to find, for a given magnetic field Bz and
quantum number l, the roots ofMðal; jlj þ 1; ρ½r ¼ Rd�Þ ¼
0 as a function of al. The al values can be calculated
numerically. Once the nth root an;l is known, the energy of
the bound state Eτ;s

n;l can be expressed using Eq. (11).
The numerically calculated spectrum for a QD with

Rd ¼ 40 nm in MoS2 is shown in Fig. 4(a). At zero
magnetic field, because of the quadratic dispersion in
our model, there is an effective time-reversal symmetry
acting within each valley and, therefore, states with angular
momentum �l within the same valley are degenerate. For
finite magnetic field, all levels are both valley and spin
split. For even larger magnetic fields, when lB ≲ Rd, the dot
levels merge into Landau levels. Since ΔCB is relatively
small with respect to the cyclotron energy ℏωτ;s

c , spin-split
states ↓ and ↑ from the same valley can cross at some
larger, but still finite, magnetic field [see, e.g., the crossing
between the black and green lines for E > 3 meV for states
in valley K in Fig. 4(a)].
Taking into account the Bychkov-Rashba SOC turns the

crossings between states ja; l;↑i and ja; lþ 1;↓i, l ≥ 0 into
avoided crossings. The selection rules for Hτ

BR can be
derived by rewriting ~Hτ

BR in terms of the operators α−
and αþ and calculating their effect on the nonperturbed
eigenstates (see Appendix C for details). For the low-lying
energy states, in whichwe are primarily interested, the effect
of the Bychkov-Rashba SOC is to introduce level repulsion
between these states and higher energy ones allowed by the
selection rules. Taking jλBRj=lB as a characteristic energy
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scale of this coupling and using Table III, one can see that for
magnetic fields ≲10 T and electric fields Ez ≲ 10−2 V=Å
the level repulsion is much smaller than the spin splitting
ΔCB and, therefore, we neglect it.
Figure 4(b) shows the low-field and low-energy regime

of Fig. 4(a). As one can see, for Bz ≳ 1 T the lowest energy
states reside in valley K. We emphasize that, in contrast to
gapped monolayer [38,59,60] and bilayer [38,60] gra-
phene, the energy states are also spin polarized. This
suggests that QDs in MoS2 can be used as simultaneous
valley and spin filters.
Figure 5 shows the low-energy spectrum of a WS2 QD

with radius Rd ¼ 40 nm. Qualitatively, it is similar to
MoS2, but because the spin splitting ΔCB between the ↑
and ↓ states belonging to the same valley is much larger
than was the case for MoS2, they do not cross for the
magnetic field range shown in Fig 5. One can also observe
that the Bz ¼ 0 level spacing is somewhat larger than in the
MoS2 QD [see Fig. 4(b)]. Another important observation
that can be made by comparing the results for MoS2 and
WS2 is the following: for a given magnetic field, e.g.,
Bz ¼ 5 T, the splitting between states belonging to

different valleys is significantly larger for the former
material than for the latter [compare Figs. 4(b) and 5].
This is due to the different sign ofΔCB and, hence, different
spin polarization of the lowest levels in the two materials: in
the case of MoS2, the valley splitting (described by Hτ

vl)
and the coupling of the spin to the magnetic field (given by
Hsp;tot) reinforce each other, whereas for WS2, they
counteract, and since gvl and g⊥sp have similar magnitude,
in the end the valley splitting of the levels at large magnetic
fields is small. This suggests that for spin and valley
filtering the MoX2 compounds are better suited.
The qualitative difference between MoS2 and WS2

regarding the valley splitting does not depend crucially
on the exact values of the bulk parameters ~gvl and g⊥so.
However, on a more quantitative level, the valley splitting
does depend on the exact values of the valley and spin g
factors, which were calculated using the DFT band gap and
the k · p parameter γ3 (see Appendix B for details). It is
known that DFT underestimates the band gap, and the value
of γ3 depends to some extent on the way it is extracted from
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FIG. 5 Spectrum of a 40 nm WS2 QD as a function of the
perpendicular magnetic field Bz > 0. Black (red) lines show the
spin ↑ (↓) states from valley K (K0). The values of mτ;s

eff can be
found in Table I, whereas gvl ¼ 1.6 and g⊥sp ¼ 1.99 (see Table 2).
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FIG. 4 (a) Spectrum of a MoS2 QD of radius Rd ¼ 40 nm as a
function of the perpendicular magnetic field Bz > 0. Black
(purple) lines: spin ↓ (↑) in the K valley; red (blue) lines: spin
↑ (↓) in the K0 valley. States up to jlj ¼ 2 and n ¼ 2 are shown.
(b) Part of the spectrum shown in (a) for small magnetic fields and
low energies. Labels show the valley, orbital quantum number l,
and spin state for each level. The values ofmτ;s

eff , gvl, and g
⊥
sp used in

the calculations can be found in Tables I and II.
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FIG. 6 Spectrum of a 40 nm WS2 QD as a function of the
perpendicular magnetic field Bz > 0. The values of mτ;s

eff can be
found in Table I and we used gvl ¼ 2.31 and g⊥sp ¼ 1.84
(cf. Fig. 5). Black (red) lines show spin ↑ (↓) states from the
K (K0) valley.
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the FP computations. As a result, the values shown in
Table II probably overestimate ~gvl and g⊥so. To illustrate this
point, in Fig. 6 we show the low-energy spectrum of the
same WS2 quantum dot as in Fig. 5 but using a gvl (g⊥sp),
which was obtained from a ~gvl (g⊥so) that is ∼20% smaller
than the one shown in Table II. The valley splitting of the
bound states can now barely be observed.

B. Qubits in TMDC quantum dots

Circular hard-wall QDs in two-dimensional semicon-
ducting TMDCs have a spectrum similar to the character-
istic Fock-Darwin spectrum for harmonically confined QDs
(Fig. 4). Taking MoS2 as an example, due to the intrinsic
spin-orbit splitting of about 3 meV, each of the spin- and
valley-degenerate states jli splits into two Kramers pairs at
vanishing magnetic field B ¼ 0, namely, (jl; K;↑i,
jl; K0;↓i) and (jl; K0;↑i, jl; K;↓i). Only at relatively high
magnetic fields do we observe a crossing of two states
with the same spin and opposite valley or within the same
valley with opposite spin. These valley and spin pairs
could serve as valley or spin qubits, respectively, but the
required high magnetic field and the other overlapping
levels with different l0 quantum numbers complicate their
realization. (The energy of higher angular momentum
states can, in principle, be increased by making the QD
smaller.)
In view of the above, the most realistic approach seems

to be to use the lowest Kramers pairs around B ¼ 0, e.g.,
jl ¼ 0; K0;↑i and jl ¼ 0; K;↓i, as a combined spin-valley
qubit [54,61]. The energy splitting of these two-level
systems could be tuned using the external magnetic field.
The relaxation time of such spin-valley qubits in TMDC
QDs will be limited only by the longer spin or valley
relaxation time, while the pure dephasing time will be
limited by the shorter of the two. The exchange inter-
action then provides the necessary coupling of adjacent
spin-valley qubits for the realization of two-qubit gates.

IV. SUMMARY

In summary, we study TMDCs as possible host materials
for QDs and qubits. We consider n-doped samples, which
can be described by an effective model that involves only
the CB. Using our FP calculations, we obtain the param-
eters that appear in the effective Hamiltonian (effective
masses, g factors) for four distinct TMDC materials. We
discuss the effects of external magnetic and electric fields,
pointing out that the former leads to the splitting of the
energy levels in different valleys, while the latter induces a
Bychkov-Rashba SOC, which, however, appears to be
rather small. We use the effective Hamiltonian to calculate
the spectrum of circular QDs, finding that all bound states
are both spin and valley split. Our results suggest that, at
large magnetic field, QDs in TMDCs can be used as spin
and valley filters, but that this effect may depend on

material-specific details. Finally, we discuss the possible
types of qubits that QDs in TMDC materials can host. We
find that Kramers pairs around Bz ¼ 0 appear to be the
most realistic candidates.
The effective one-band model and the material para-

meters that we obtain for different TMDCs will hopefully
be helpful in other fields as well, e.g., for studying
plasmonic excitations [62].
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APPENDIX A: SEVEN-BAND MODEL

1. Introduction

Our aim is to derive a low-energy effective Hamiltonian
valid close to the K (K0) point of the BZ, which describes
the band dispersion, the effects of intrinsic SOC, and the
SOC induced by an external electric field (Bychkov-
Rashba effect). To this end, we consider the SOC in the
atomic approximation, apply k · p perturbation theory, and
take into account the effect of an external electric field
perturbatively. We consider a seven-band model (without
spin) that contains every band from the third band
below the VB (which we call VB-3) up to the second
band above the CB (denoted by CBþ 2); i.e., we take the
basis fjΨVB−3

E0
2

;si;jΨVB−2
E0
1

;si;jΨVB−1
E0
2

;si;jΨVB
A0 ;si;jΨCB

E0
1
;si;

jΨCBþ1
A0 ;si;jΨCBþ2

E0
1

;sig. The upper index b ¼ fVB − 3;

VB − 2;VB − 1;VB;CB;CBþ 1;CBþ 2g denotes the
band, and the lower index μ indicates the pertinent
irreducible representation of the point group C3h, which
is the pertinent symmetry group for the unperturbed basis
functions at the K point of the BZ. The spinful symmetry
basis functions are represented by jΨb

μ; si ¼ jΨb
μi ⊗ jsi,

where s ¼ f↑;↓g denotes the spin degree of freedom.
Note that the basis states can be separated into
two groups. The first group contains those states whose
orbital part is symmetric with respect to the mirror
operation σh: fjΨVB

A0 ; si; jΨCB
E0
1
; si; jΨVB−3

E0
2

; si; jΨCBþ2
E0
1

; sig;
the second group contains antisymmetric states:
fjΨVB−2

E0
1

; si; jΨVB−1
E0
2

; si; jΨCBþ1
A0 ; sig.

2. Intrinsic spin-orbit coupling at the K (K0) point
of the Brillouin zone

The intrinsic SOC is treated in the atomic approximation,
whereby the SOC is given by the Hamiltonian [43]
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Hat
so ¼

ℏ
4m2

ec2
1

r
dVðrÞ
dr

L̂ · Ŝ: (A1)

Here, VðrÞ is the spherically symmetric atomic potential,
L̂ is the angular momentum operator, and Ŝ ¼ ðsx; sy; szÞ is
a vector of spin Pauli matrices sx, sy, sz (with eigenvalues
�1). One can rewrite the product L̂ · Ŝ as L̂ · Ŝ ¼
L̂zsz þ L̂þs− þ L̂−sþ, where L̂� ¼ L̂x � iL̂y and s� ¼
1
2
ðsx � isyÞ. The task is then to calculate the matrix

elements of Eq. (A1) in the basis introduced in
Appendix A1 at the K (K0) point of the BZ. To this
end, one can make use of the symmetries of the band-edge
wave functions. For instance, the diagonal matrix elements
are proportional to sz. This is because the L̂z is symmetric
with respect to σh, whereas L̂� is antisymmetric.
Conversely, most of the off-diagonal matrix elements will
be proportional to s�, reflecting the fact that they are related
to matrix elements having different symmetry with respect
to σh. The only exception is the off-diagonal matrix element
between jΨv−3

E0
2
; si and jΨcþ2

E0
1
; si, which connects symmetric

states. In addition, one has to consider the transformation
properties of the basis functions and angular momentum
operators with respect to a rotation by 2π=3. The general
result for the K point is shown in Table IV.
Before showing further details of the calculations in

Appendixes A 3 and A 4, some comments are in order. As
long as one considers states close to the K point, the largest
energy scale is the band gap and other band-edge energy
differences. The next largest energy scale comes from the
SOC. As an upper limit of the various diagonal and off-
diagonal matrix elements (see Table IV) one can take the
spin splitting of the VB. The reason is that the main
contribution to this band at the K point comes from the
metal d orbitals, and the metal atoms, being much heavier
than the chalcogenides, are expected to dominate the SOC
(with the possible exception of the CB). This is smaller than
the typical interband energies for the MoX2 materials, and,
therefore, the different bands are only weakly hybridized by
the SOC. For the heavier WX2 compounds, the VB spin
splitting is 425–460 meV, indicating that some matrix
elements may not be small any more with respect to band-

edge energy differences. One is, therefore, tempted to first
perform a diagonalization of the SOC Hamiltonian (see
Table IV) to obtain the eigenstates jΨb

μ;μ0 ; si, which will be
some linear combination of the original basis states jΨb

μ; si,
and then perform the k · p expansion and the perturbation
calculation for the external electric field using this new
basis. Diagonalization of the Hamiltonian (Table IV) is
possible if one neglects the matrix elements Δv−3;cþ1,
Δv−3;cþ2, and Δv−2;cþ2 between remote bands. The eigen-
states are linear combinations of a symmetric and an
antisymmetric basis vector. However, the subsequent cal-
culations in Appendixes A 3 and A 4, as well as the final
Löwdin partitioning, are more tractable if we do not make
this diagonalization and stay with the original basis states
throughout the calculations. The two approaches give the
same results in the leading order of the ratio of the various
SOC matrix elements and band-edge energy differences.
For MoX2 compounds, the approach outlined below is
adequate: for the heavier WX2 materials, it still gives
reasonable results, but the numerical estimates for, e.g., the
effective g factor might have to be revised, once exper-
imental and theoretical consensus is reached regarding the
magnitude of the band gap and SOC band splittings.
The SOC Hamiltonian at K0 can be obtained by making

the following substitutions: Δb → Δ�
b, Δb;b0 → Δ�

b;b0 ,
s� → −s∓, sz → −sz. These relations follow from the fact
that the orbital wave functions atK andK0 are connected by
time-reversal symmetry; i.e., jΨb

μðKÞi ¼ K̂0jΨb
μ0 ðK0Þi,

where K̂0 denotes complex conjugation. Consider, as an
example, a matrix element hΨb

μðK0ÞjL̂zjΨb0
μ0 ðK0Þi:

hΨb
μðK0ÞjL̂zjΨb0

μ0 ðK0Þi ¼ hK̂0Ψb
νðKÞjL̂zjK̂0Ψb0

ν0 ðKÞi
¼ hK̂0Ψb

νðKÞjL̂zK̂0Ψb0
ν0 ðKÞi

¼ hK̂0Ψb
νðKÞjð−1ÞK̂0½L̂zΨb0

ν0 ðKÞ�i
¼ −h½L̂zΨb0

ν0 ðKÞ�jΨb
νðKÞi

¼ −ðhΨb
νðKÞjL̂zΨb0

ν0 ðKÞiÞ�:

Here, we have made use of K̂0L̂z ¼ −L̂zK̂0. Relations for
the matrix elements involving the operators L̂� can be

TABLE IV. SOC matrix of TMDCs at the K point in the seven-band model.

HK
so jΨVB

A0 ; si jΨCB
E0
1
; si jΨVB−3

E0
2

; si jΨCBþ2
E0
2

; si jΨVB−2
E0
1

; si jΨVB−1
E0
2

; si jΨCBþ1
A0 ; si

jΨVB
A0 ; si szΔv 0 0 0 s−Δv;v−2 sþΔv;v−2 0

jΨCB
E0
1
; si 0 szΔc 0 0 0 s−Δc;v−1 sþΔc;cþ1

jΨVB−3
E0
2

; si 0 0 szΔv−3 szΔv−3;cþ2 sþΔv−3;v−2 0 s−Δv−3;cþ1

jΨCBþ2
E0
2

; si 0 0 szΔ�
v−3;cþ2 szΔcþ2 sþΔcþ2;v−2 0 s−Δcþ2;cþ1

jΨVB−2
E0
1

; si sþΔ�
v;v−2 0 s−Δ�

v−3;v−2 s−Δ�
cþ2;v−2 szΔv−2 0 0

jΨVB−1
E0
2

; si s−Δ�
v;v−1 sþΔ�

c;v−1 0 0 0 szΔv−1 0

jΨCBþ1
A0 ; si 0 s−Δ�

c;cþ1 sþΔ�
v−3;cþ1 sþΔ�

cþ2;cþ1 0 0 szΔcþ1
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obtained by noting that K̂0L̂� ¼ −L̂∓K̂0 and, there-
fore, hΨb

μðK0ÞjL̂�jΨb0
μ0 ðK0Þi ¼ −ðhΨb

νðKÞjL̂∓jΨb0
ν0 ðKÞiÞ�.

3. k · p matrix elements at the K (K0) points

The Hamiltonian Hk·p ¼ 1
2

ℏ
me
ðqþp̂− þ q−p̂þÞ has non-

zero matrix elements only between states jΨb
μ; si and

jΨb0
μ0 ; si, which are both either symmetric or antisymmetric

with respect to the mirror operation σh. For the discussion
in the main text, we need only the matrix elements between
symmetric states. These matrix elements, which are diago-
nal in the spin space, have already been obtained in
Ref. [26], but for convenience they are replicated in
Table V. We note that, in addition to p̂�, another operator
due to SOC appears in the calculation of the k · p matrix
elements [43,64], but it can be neglected. The diagonal
elements in Table V are the band-edge energies.
The matrix elements at the K0 point can be obtained with

the substitutions γi → γ�i and q� → −q∓. This follows
from

hΨb
μðK0ÞjHk·pjΨb0

μ0 ðK0Þi ¼ hK̂0Ψb
νðKÞjHk·pjK̂0Ψb0

ν0 ðKÞi
¼ hK̂0Ψb

νðKÞjð−1ÞK̂0½Hk·pΨb0
ν0 ðKÞ�i

¼−hHk·pΨb0
ν0 ðKÞ�jΨb

νðKÞi
¼−ðhΨb

νðKÞjHk·pΨb0
ν0 ðKÞiÞ�:

As mentioned in Ref. [26], concrete values for the γi
parameters can be obtained from either fitting the band
dispersion or using the Kohn-Sham orbitals to directly
evaluate the matrix elements hΨb

μjp̂�jΨb0
μ0 i. The latter can be

done, e.g., with the help of the CASTEP code (see
Appendix D for computational details). To estimate the
effective valley and spin g factor (Appendix B1) and the
Bychkov-Rashba SOC parameter (Appendix B4), we need
the value of γ3, for which the two approaches give similar
results.
External magnetic field.—The effects of an external

magnetic field in the k · p formalism can be obtained by
using the Kohn-Luttinger prescription [43], which amounts
to replacing the numbers qx, qy in the above formulas with
the operators q̂ ¼ 1

i ∇þ e
ℏA, where A is the vector poten-

tial and e > 0 is the magnitude of the electron charge. Note

that, due to this replacement, q̂þ and q̂− become non-
commuting operators and their order has to be preserved
when one folds down the above multiband Hamiltonian to
obtain a low-energy effective Hamiltonian. Using the
Landau gauge to describe a homogeneous, perpendicular
magnetic field, the commutation relation is ½q̂−; q̂þ� ¼ 2eBz

ℏ :

4. External electric field

In order to derive the Bychkov-Rashba SOC, we assume
that a homogeneous, perpendicular external electric field is
present, which can be described by the Hamiltonian
UðzÞ ¼ eEzz. It breaks the mirror symmetry σh and,
therefore, couples symmetric and antisymmetric basis
states, while the matrix elements between states of the
same symmetry are zero. The full symmetry at the K point
is lowered from C3h to C3; i.e., the threefold rotational
symmetry is not broken. The matrix elements of HK

U
between the symmetric and antisymmetric states are shown
in Table VI.
The matrix elements ξb;b0 ¼ eEzhΨb

μjzjΨb0
μ0 i ¼ eEzζb;b0

are in general complex numbers. The magnitude of ζb;b can
be calculated using the band-edge Kohn-Sham orbitals, as
in Ref. [47], where this approach was used to estimate the
electric field–induced band gap in silicene (see Appendix D
for computational details). Since the Kohn-Sham orbitals
are defined only up to an arbitrary phase, we cannot extract
the real and imaginary parts of ζb;b0 from the actual
calculation. The matrix elements at the K0 point can be
obtained by complex conjugation of the K-point matrix
elements.

APPENDIX B: EFFECTIVE LOW-ENERGY
HAMILTONIAN FOR THE CONDUCTION BAND

The total Hamiltonian of the system is then given by

~H ¼ ~Hk·p þ ~Hso þ ~HU: (B1)

Because our seven-band model contains bands that are far
from the CB, our next step is to derive an effective
Hamiltonian for the spin-split CB. This can be done by
systematically eliminating all other bands using Löwdin
partitioning [64]. Because the trigonal warping in the CB is
weak, we consider terms up to second order in q. We also

TABLE VI. Matrix elements of the external electric field at the
K point between symmetric and antisymmetric states.

HK
U jΨVB−2

E0
1

; si jΨVB−1
E0
2

; si jΨCBþ1
A0 ; si

jΨVB
A0 ; si 0 0 ξv;cþ1

jΨCB
E0
1
; si ξc;v−2 0 0

jΨVB−3
E0
2

; si 0 ξv−3;v−1 0

jΨCBþ2
E0
2

; si 0 ξcþ2;v−1 0

TABLE V. The k · pmatrix elements between symmetric states
at the K point.

HK
k·p jΨVB

A0 ; si jΨCB
E0
1
; si jΨVB−3

E0
2

; si jΨCBþ2
E0
2

; si
jΨVB

A0 ; si εv γ3q− γ2qþ γ4qþ
jΨCB

E0
1
; si γ�3qþ εc γ5q− γ6q−

jΨVB−3
E0
2

; si γ�2q− γ�5qþ εv−3 0

jΨCBþ2
E0
2

; si γ�4q− γ�6qþ 0 εcþ2
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keep the lowest nonvanishing order in the product of q̂�
and the SOC and electric field matrix elements.
At theK point, one finds that the effective Hamiltonian is

given by

~HK;s
el ¼ ℏ2q̂2

2me
þ jγ3j2
εK;sc − εK;sv

q̂þq̂−

þ
� jγ5j2
εK;sc − εK;sv−3

þ jγ6j2
εK;sc − εK;s

cþ2

�
q̂−q̂þ; (B2a)

~HK;s
so;intr ¼ sΔK

c þ jΔc;cþ1j2
εK;↑c − εK;↓cþ1

sþs− þ jΔc;v−1j2
εK;↓c − εK;↑v−1

s−sþ

(B2b)

~HK;s
U ¼ jξc;v−2j2

εK;sc − εK;sv−2
; (B2c)

~HK
BR ¼

�
0 λ�BRq̂−

λBRq̂þ 0

�
; (B2d)

whereas at the K0 point,

~HK0;s
el ¼ ℏ2q̂2

2me
þ jγ3j2
εK

0;s
c − εK

0;s
v

q̂−q̂þ

þ
� jγ5j2
εK

0;s
c − εK

0;s
v−3

þ jγ6j2
εK

0;s
c − εK

0;s
cþ2

�
q̂þq̂−; (B3a)

~HK0;s
so;intr ¼ sΔK0

c þ jΔc;cþ1j2
εK

0;↓
c − εK

0;↑
cþ1

s−sþ þ jΔc;v−1j2
εK

0;↑
c − εK

0;↓
v−1

sþs−

(B3b)

~HK0;s
U ¼ jξc;v−2j2

ϵK
0;s

c − ϵK
0;s

v−2
; (B3c)

~HK0
BR ¼

�
0 λ�BRq̂−

λBRq̂þ 0

�
: (B3d)

In the above formulas, me is the bare electron mass and

we use the notation εKðK
0Þ;s

b ¼ εb þ sΔK;ðK0Þ
b , where s ¼ �1

is the spin quantum number, ΔK;ðK0Þ
b are the diagonal SOC

matrix elements from Appendix A2 at the K, ðK0Þ point,
and εb are the band-edge energies defined in Appendix A3,
i.e., not taking into account the SOC. For convenience, we
introduced the shorthand notation ↑ for s ¼ 1 and ↓ for
s ¼ −1 in Eqs. (B2b) and (B3b). Making use of the fact
that the K and K0 valleys are connected by time-reversal

symmetry (see Appendix A2), we write ΔK;ðK0Þ
b ¼ τΔb,

where τ ¼ 1 (−1) for K (K0), and we can introduce the
notation ετ;sb ¼ εb þ τsΔb.
The first term in Eqs. (B2a) and (B3a) is the free-electron

contribution [43,64]. Regarding the other terms in
Eqs. (B2a) and (B3a) that contain q̂þ and q̂−, we do not
assume that they commute; see Appendix B1. Note that
~Hel, ~Hso;intr, and ~HU are diagonal in spin space, but the
Bychkov-Rashba Hamiltonian ~HBR introduces coupling
between ↑ and ↓. Now, we briefly discuss each of the
terms appearing in Eqs. (B2) and (B3).

1. Electronic effective Hamiltonian Hel

In the electronic Hamiltonian Hel, we took into account
the fact that, in the presence of an external magnetic field,
the operators q̂þ and q̂− do not commute. To obtain Eq. (1),
one has to use the commutation relation ½q̂−; q̂þ� ¼ 2eBz

ℏ and

rewrite ℏ2q̂2

2me
as ℏ2q̂þq̂−

2me
þ ℏeBz

2me
: One finds

~HK;s
el ¼ ℏ2q̂þq̂−

2mτ¼1;s
eff

þ ℏeBz

mτ¼1;s
eff

−
�

1

2me
þ 2j ~γ3j2
ετ¼1;s
c − ετ¼1;s

v

�
ℏeBz (B4)

in the K valley and

~HK0;s
el ¼ ℏ2q̂þq̂−

2mτ¼−1;s
eff

þ
�

1

2me
þ 2j ~γ3j2
ετ¼−1;s
c − ετ¼−1;s

v

�
ℏeBz (B5)

in the K0 valley. The effective mass mτ;s
eff is given by

1

2mτ;s
eff

¼ 1

2me
þ j ~γ3j2
ετ;sc − ετ;sv

þ j ~γ5j2
ετ;sc − ετ;sv−3

þ j ~γ6j2
ετ;sc − ετ;scþ2

:

(B6)

In the above formulas, ~γi ¼ γi=ℏ. The inverse of the
effective mass mτ;s

eff can be then rewritten in terms of
m0

eff and δmeff , as shown below Eq. (1).
The difference δmeff in the effective masses comes

mainly from the spin splitting Δv and Δcþ2 of the VB
and CBþ 2, respectively, with other diagonal SOC matrix
elements being much smaller. We attribute the heavier
effective mass at theK point to the ↑ band. This assignment
is based on the following. (i) From DFT calculations, we
know that both the VB and the CBþ 2 are mainly
composed of dx2−y2 and dxy orbitals. Using group theo-
retical considerations, we take a VB Bloch wave function
∼dx2−y2 − idxy, whereas in the case of the CBþ 2, the
Bloch wave function is ∼dx2−y2 þ idxy. (ii) Taking into
account (i), we assume that Δv¼hΨvb

A0 ðKÞjHat
sojΨvb

A0 ðKÞi<0
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and Δcþ2 ¼ hΨvbþ2
E0
1

ðKÞjHat
sojΨcbþ2

E0
1

ðKÞi > 0. Regarding

(i), we note that, since the states at the K point are related
to the states at K0 by time reversal, our choice for the VB
Bloch wave function is equivalent to other choices in the
literature [5,27] up to a possible relabeling of the valleys
K↔K0. The sign of Δv, as shown below, affects the sign of
the effective spin g factor; therefore, it should be possible to
deduce it experimentally. (From symmetry considerations
[25,26] and FP results [27], we also know that there is a
small X-p orbital contribution to the VB and CBþ 2 as
well, but in contrast to the CB, which is discussed in
Appendix B 2, this can be neglected in the case of the VB
and CBþ 2 spin splitting.)
The physical meaning of the term ½2j~γ3j2=ðετ;sc −

ετ;sv Þ�ℏeBz appearing in Eqs. (B4) and (B5) is probably
more transparent if one expands it in powers of
ðΔc − ΔvÞ=ðεc − εvÞ, where Ebg ¼ εc − εv is the band
gap in the absence of SOC. The zeroth-order term yields
the valley-splitting Hamiltonian ~Hτ

vl ¼ −τ~gvlμBBz, with

~gvl ¼ 1þ 4mej~γ3j2=Ebg: (B7)

The higher-order terms in the expansion determine
how the coupling of the spin to the magnetic field is
modified due to the strong SOC in TMDCs. Keeping the
first-order term only, one arrives at the Hamiltonian ~Hs

sp ¼
1
2
g⊥soμBBz; where gso is an out-of-plane effective spin g

factor,

g⊥so ≈ 8mej~γ3j2
Δc − Δv

ðEbgÞ2
; (B8)

where me is the bare electron mass. The value of Δc, i.e.,
the spin splitting coming from the X-p orbitals in the CB
(see Appendix B 2), is not known; however, we can safely
assume that it is negligible with respect to Δv. As explained
above, we assume that Δv < 0, so we find that
g⊥so ≈ 8mej~γ3j2jΔvj=ðE2

bgÞ. We note that in the case of bulk
semiconductors, a similar formula to Eq. (B8) is called
Roth’s formula [65].
The relevant parameters Δv, jγ3j, and Ebg to calculate gvl

and g⊥so are shown in Table VII.
The parameter γ3 was obtained with the help of Kohn-

Sham orbitals (see Appendix A 3), while the band gap
Ebg ¼ εc − εv is readily available from our DFT calcula-
tions. We note that, because Ebg is underestimated in DFT,

the values of gvl and gso shown in Table II are
overestimated.

2. Intrinsic SOC Hamiltonian Hso;int

Starting from Eqs. (B2b) and (B3b), it is easy to show
that, apart from a constant term, the intrinsic SOC
Hamiltonian Hso;int can be written as shown in Eq. (1),
with ΔCB ¼ Δc þ ðω1 − ω2Þ=2, where ω1 ≈ jΔc;cþ1j2=
ðεc − εcþ1Þ and ω2 ≈ jΔc;v−1j2=ðεc − εv−1Þ and in the
denominators we use ετ;sb ≈ εb.
The spin splitting in the CB is discussed in

Refs. [26,36,45]. Using our latest FP results, we revisit
and expand our previous discussion [26] of the problem.
Generally, the intrinsic SOC Hamiltonian Hso;int has two
contributions. One contribution comes from the coupling of
the CB to other, remote bands and is, therefore, second
order in the off-diagonal SOC matrix elements. In our
seven-band model, the couplings to VB − 1 and CBþ 1,
described by Δc;cþ1 and Δc;v−1, are nonzero. These con-
tributions are expected to be dominated by the metal d
orbitals. If one neglects the chalcogenide p orbital admix-
ing to the CB, these are the only terms that can explain the
spin splitting of the CB, which is found in FP calculations
[26,32,36,66,67], and this is the motivation to consider
these second-order terms in Ref. [26]. For the ↑ states at the
K point, the term jΔc;cþ1j2=ðεc − εcþ1Þ predicts a negative
shift. This would mean that the heavier ↑ band would be
lower in energy than the lighter ↓ band. In our DFT
calculations, this is indeed the case for WS2 and WSe2, but
not for MoS2 and MoSe2. However, from the orbital
decomposition of the FP results (see, e.g., Ref. [27]), we
know that there is small chalcogenide p-orbital contribu-
tion to the CB as well. The X-p orbitals, which have
initially been neglected [26,45] in the discussion of the spin
splitting in the CB, give rise to the first term in Eqs. (B2b)
and (B3b) (the largest weight in the CB comes from the
M-dz2 orbitals, but these carry no angular momentum, so
they play no role in the SOC). Taking Δc > 0 at the K point
(the corresponding Bloch wave function is an eigenfunc-
tion of L̂z with positive eigenvalue, see Table IV in
Ref. [26]), the contribution of the X-p orbitals to the
energy of the ↑ states is positive. Therefore, a plausible
explanation of the presence or absence of the band crossing
in the spin-split CB for MoX2=WX2 materials is that these
two contributions compete. Namely, from Eqs. (B2b) and
(B3b), it is clear that the X-p orbitals contribute to the spin
splitting in first order, whereas remote bands contribute in
second order; therefore, it is not obvious which is dom-
inant. It is possible that for MoX2 materials the first, X-p
orbital–related term is larger, whereas in the case of WX2,
which contains a heavier metal, the second term is larger,
explaining the difference between the MoX2 and WX2

materials regarding the energy of the heavier or lighter CB
(this possibility has also been mentioned recently
in Ref. [36]).

TABLE VII. Parameters appearing in the expressions for gvl
and gso for different TMDCs.

MoS2 WS2 MoSe2 WSe2

jγ3j [eV=Å] 3.01 3.86 2.51 3.32
2jΔvj [eV] 0.146 0.42 0.184 0.456
Ebg [eV] 1.85 1.98 1.624 1.736
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In addition, the X-p orbital contribution to the CB spin
splitting seems to be the simplest way to explain the
difference between the spin splitting of MoX2 and
MoSe2: in our DFT calculations, we find that it is larger
in MoSe2 (ΔMoSe2

c ≈ 23 meV), which contains a heavier
chalcogenide than in MoS2 (Δ

MoS2
c ≈ 3 meV). On the other

hand, the above reasoning would suggest that, because of
the competition between the two SOC terms of different
origins, the splitting in WS2 (ΔWS2

c ≈ 38 meV) should be
larger than in WSe2 (ΔWSe2

c ≈ 46 meV), which is not the
case according to our DFT calculations. This might be
related to the larger orbital weight of theM-d orbitals in the
relevant bands in the case of WSe2. In any case, the detailed
understanding of the SOC in the CB requires further study.

3. Band-edge shift HU

The Hamiltonian HU in Eqs. (B2c) and (B3c) describes
the dependence of the band edge on the external electric
field. An order-of-magnitude estimate can be obtained by
calculating ζc;v−2 using LDA Kohn-Sham orbitals, gener-
ated by the CASTEP code. As one can see from Table VIII, it
is a small effect for the electric field values
(Ez ≲ 10−2 V=Å), where the perturbation theory should
be valid, and therefore we neglect it. We note that, as one
can see in Eqs. (B2c) and (B3c), the value of HU also
depends (indirectly) on Ebg. The band gap, according to
GW calculations [32,68–71], is most likely to be

underestimated by our DFT-LDA calculations. On the
other hand, ξc;v−2 is probably overestimated, because
screening is neglected in our perturbative Kohn-Sham-
orbital-based calculations. As a consequence, the values
shown in Table VIII overestimate the real value ofHU. This
conclusion is supported by our preliminary DFT results on
the Ez dependence of Ebg obtained by the CASTEP code.
The shift of the band edge is, in principle, spin

dependent, but as one can see from Eqs. (B2c) and
(B3c), this is a higher-order effect and can be safely
neglected.

4. Bychkov-Rashba Hamiltonian HBR

Finally, we discuss the Bychkov-Rashba Hamiltonian
[Eqs. (B2d) and (B3d)]. It is a sum of several terms, each
having the same structure and related to the matrix elements
ξv;cþ1, ξv−3;v−1, ξcþ1;v−1, and ξc;v−2. Using Löwdin parti-
tioning, one finds for the most important term at the
K point,

~Hð1Þ;K
BR ≈

1

ðεc − ϵ↓v Þðεc − εcþ1Þ
ðγ�3qþξv;cþ1s−Δ�

c;cþ1 þ γ3q−ξ�v;cþ1sþΔc;cþ1Þ

¼ ðλð1Þ;rBR þ iλð1Þ;iBR Þqþs− þ ðλð1Þ;rBR − iλð1Þ;iBR Þq−sþ
¼ λð1Þ;rBR ðsxqx þ syqyÞ þ λð1Þ;iBR ðsyqx − sxqyÞ (B9a)

¼
�

0 ðλð1ÞBRÞ�q−
λð1ÞBRqþ 0

�
: (B9b)

To make the results more transparent, in the above
formula we neglect the spin splittings of the CB and
CBþ 1, which are much smaller than the splitting of the
VB. The product γ�3ξv;cþ1Δ�

c;cþ1 is, in general, a complex
number and, therefore, the Bychkov-Rashba coupling
constant

λð1ÞBR ¼ γ�3ξv;cþ1Δ�
c;cþ1

ðεc − ϵ↓vÞðεc − εcþ1Þ
(B10)

is also complex. By separating the real and imaginary parts
of λð1ÞBR, one can write Hð1Þ;K

BR in the more familiar form
shown in Eq. (B9a)).
One can estimate the magnitude of λð1ÞBR in the following

way. As mentioned in Appendix A4, one can calculate
the magnitude of ζzv;cþ1 and the parameter γ3 using the

band-edge Kohn-Sham orbitals (see Table IX). The band-
edge energies ϵ↑;↓c , ε↓v , and ε

↑;↓
cþ1 are known from DFT-LDA

band structure calculations; we have collected their values
in Table IX. Unfortunately, the off-diagonal SOC matrix
element Δc;cþ1 is not directly given by the DFT calcu-
lations. However, information about the weight of the M-d
orbitals in each of the bands can be obtained from DFT
computations, and, therefore, we can relate this matrix
element to Δv, because the dominant contribution to the
SOC should come from the M-d orbitals. Because the M-d
orbital weight in both the CB and the CBþ 1 band is
similar to the one in the VB, we take jΔc;cþ1j≲ jΔvj.
A similar procedure can be performed to estimate the

terms proportional to the other nonzero ξb;b0 matrix elements
as well. We find that the magnitude of these further terms
are significantly smaller than that of λð1ÞBR, mainly because of
the prefactors, which are inversely proportional to the
product of band-edge energy differences between remote
bands. Therefore, as an order-of-magnitude estimate of the

TABLE VIII. Band-edge shift HU in meV, if Ez is expressed in
V=Å.

MoS2 WS2 MoSe2 WSe2

HU [meV] 24:6E2
z 2.4E2

z 30:3E2
z 3.0E2

z
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strength of the Bychkov-Rashba SOC, one can just use λð1ÞBR.
Taking values for jγ3j from Table VII and for the other
parameters from Table IX, one finally arrives at the results
shown in Table III.
The method outlined here most likely overestimates the

real values of the Bychkov-Rashba parameters. In addition
to the uncertainties in the values of the SOCmatrix elements
and the γi parameters, there are two other sources of error:
(i) the calculation of ζzb;b0 did not take into account screening
effects (seeRef. [47]) and, (ii) according toGW calculations,
the real band gap is larger then the DFTone, and this affects
the energy denominators in the above formulas.

APPENDIX C: EIGENFUNCTIONS OF
THE α− AND αþ OPERATORS

Considering the functions ga;lðρ;φÞ ¼
eilφρjlj=2e−ρ=2Mða; jlj þ 1; ρÞ; one can show that

α̂−ga;lðρ;φÞ ¼
� a

jljþ1
gaþ1;l−1ðρ;ϕÞ l ≤ 0;

lga;l−1ðρ;ϕÞ l > 0
(C1)

and

α̂þga;lðρ;φÞ ¼
�

lga−1;lþ1ðρ;φÞ l < 0;

ð1 − a
mþ1

Þga;lþ1ðρ;φÞ l ≥ 0.
(C2)

To prove these relations, one may use the following
identities for the confluent hypergeometric functions:

∂ρMða; b; ρÞ ¼ a
b
Mðaþ 1; bþ 1; ρÞ (C3)

ðb − aÞMða; bþ 1; ρÞ ¼ bMða; b; ρÞ − b∂ρMða; b; ρÞ;
(C4)

ðb − 1ÞMða; b − 1; ρÞ ¼ ðb − 1ÞMða; b; ρÞ
þ ρ∂ρMða; b; ρÞ; (C5)

ðb − 1ÞMða − 1; b − 1; ρÞ ¼ðb − 1 − ρÞMða; b; ρÞ
þ ρ∂ρMða; b; ρÞ: (C6)

APPENDIX D: COMPUTATIONAL DETAILS

The band structure calculations are performed with the
VASP code [72] using the LDA. The plane-wave cutoff
energy is 600 eV. We use a 12 × 12 Monkhorst-Pack k-
point grid in the 2 D plane to relax the geometry and a
24 × 24 grid to calculate the band structure. The artificial
periodicity in the vertical direction is 20 Å. The optimized
lattice parameter a0 for each TMDC is shown in Table X.
The matrix elements of the momentum operator p̂� and

the Hamiltonian describing the perpendicular electric field
are evaluated within the LDA using the CASTEP code [73]
because the necessary plane-wave coefficients of the Kohn-
Sham orbitals at the band edges were readily accessible in
the output of CASTEP. We use norm-conserving pseudopo-
tentials, a plane-wave cutoff energy of 2177 eV, an artificial
periodicity of 15.9 Å in the vertical direction, and a
21 × 21 Monkhorst-Pack mesh. The optimized lattice
parameters are similar to those found in the VASP

calculations.
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