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1 Joint density of Ik = (I1,k, I2,k, . . . , IJ,k)

The following section considers the generalised version of computing the density of a transformed

random vector. X and Y denote standard random vectors here with no connections to the HMM

or wavelet setup. This material is from Grimmett and Stirzaker (2001). As (Y1 = X2
1 , Y2 =

X2
2 ) = T (X1, X2) is a many-to-one mapping, direct application of a standard change of variable

via the Jacobian argument (Grimmett and Stirzaker, 2001, p. 109) is not permissible. In the

one-dimensional case, the following proposition is proposed.

Proposition 1.1. Let I1, I2, . . . , In be intervals which partition R2, and suppose that Y = g(x)

where g is strictly monotone and continuously differentiable on every Ii. For each i, the function

g : Ii → R is invertible on g(Ii) with the inverse function hi. Then

fY (y) =

n∑
i=1

fX(hi(y))|h′i(y)|,

with the convention that the ith summand is 0 if hi is not defined at y, and h′i(·) is the first

derivative of hi(·).
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Proof. See page 112 of Grimmett and Stirzaker (2001).

Therefore,

Proposition 1.2. For Y = (Y1, Y2, . . . , Yn) = (X2
1 , X

2
2 , . . . , X

2
n)

fY(y) = fY(y1, . . . , yn) =
1

2n
∏n
i=1 |xi|

∑
a1,...,an∈{+,−}

fX (a1|x1|, . . . , an|xn|) .

Proof. Applications of Propositions 1.1 and Corollary 4 (Grimmett and Stirzaker, 2001, p. 109).

2 Computing ΣD
k , the covariance structure of Dk

This section outlines how the covariance structure of Dk = (D1,j . . . , DJ,k), can be computed

from the Evolutionary Wavelet Spectrum W 2
j ( kn).

Proposition 2.1. The autocovariance structure for the observation process, Yt, can be charac-

terised by the Evolutionary Wavelet Spectrum as follows:

Cov(Yt, Yt−v) =
∑
l

∑
m

W 2
l

(m
n

)
ψl,m−tψl,m−t+v.

Proof. See proof of Proposition 1 in Nason et al. (2000).

Proof of Proposition 2 in paper. As LSW processes are assumed to have mean zero, E[Yt] = 0,

then it follows that the wavelet coefficients are mean zero themselves since they can be seen as
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a linear combination of Gaussian observations. Thus E[Dj,k] = E[Dj′,k′ ] = 0. Then

Cov(Dj,k, Dj′,k′) = E[Dj,kDj′,k′ ]− E[Dj,k]E[Dj′,k′ ] = E[Dj,kDj′,k′ ]

= E

[(∑
t

Ytψj,k−t

)(∑
s

Ysψj′,k′−s

)]

= E

[∑
t

(∑
l

∑
m

Wl

(m
n

)
ψl,m−tξl,m

)
ψj,k−t

∑
s

(∑
p

∑
q

Wp

( q
n

)
ψp,q−sξp,q

)
ψj′,k′−s

]

=
∑

t,l,m,s,p,q

Wl

(m
n

)
ψl,m−tψj,k−tWp

( q
n

)
ψp,q−sψj′,k′−sE[ξl,mξp,q]/

By definition, E[ξl,mξp,q] =

 1, iff l = p, m = q;

0, otherwise.

Thus,

Cov(Dj,k, Dj′,k′) =
∑
t,l,s,m

W 2
l

(m
n

)
ψl,m−tψl,m−sψj,k−tψj′,k′−s

=
∑
t

ψj,k−t
∑
s

ψj′,k′−s
∑
l

∑
m

W 2
l

(m
n

)
ψl,m−tψl,m−s.

Let s = t− v, then

Cov(Dj,k, Dj′,k′) =
∑
t

ψj,k−t
∑
t+v

ψj′,k′−t+v
∑
l

∑
m

W 2
l

(m
n

)
ψl,m−tψl,m−t+v

=
∑
t

ψj,k−t
∑
v

ψj′,k′−t+v
∑
l

∑
m

W 2
l

(m
n

)
ψl,m−tψl,m−t+v

=
∑
t

∑
v

ψj,k−tψj′,k′−t+vCov(Yt, Yt−v).

Thus,

Cov(Dj,k, Dj′,k′) =
∑
t

∑
v

ψj,k−tψj′,k−t+vCov(Yt, Yt−v). (2.1)

3 Determining how much of the EWS one needs to know to

compute ΣD
k

In determining how much of the EWS needs to be known when computing the covariance

structure at location k, we consider the following lines of logic. Let Lj denote the support for

the wavelet at scale j (number of non-zero filter coefficients in ψj). The number of non-zero
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product filtering coefficients, ψl,m−tψl,m−t+v, is greatest when we consider the variance of the

wavelet coefficients or observations process and no lag is present (v = 0). We thus consider

Var(Dj,k) and Var(Yt). In addition, the number of non-zero product terms will be greatest for

the coarsest scale considered, J , with corresponding support LJ

Var(Dj,k) will be dependent on observations Yk, . . . , Yk−(Lj−1) for any scale j = 1, . . . , J .

Thus for the coarsest scale Var(DJ,k) will be dependent on observations Yk, . . . , Yk−(LJ−1). The

variance for the most distant observation Yk−(LJ−1) is dependent on the power from the following

locations: k−(Lj−1)−(Lj−1), . . . , k−(Lj−1), for scale j. The coarsest scale requires the most

power feeding into it: W 2
J

(
k−2(LJ−1)

n

)
, . . . ,W 2

J

(
k−(LJ−1)

n

)
. For the most recent observation

Yk at the coarsest scale, the following power needs to be known W 2
J

(
k−(LJ−1)

n

)
, . . . ,W 2

J

(
k
n

)
.

Thus to compute ΣD
k , the covariance structure of the wavelet coefficients at location k, we

must record the power from the locations k − 2(Lj − 1), . . . , k for scale j = 1, . . . , J .

4 Order of HMM with respect to analysing wavelet and J

We briefly comment on the behaviour of the order of the HMM as we consider more scales and

different choices in analysing wavelet. Recall that the order of the HMM is associated with

the analysing wavelet considered and J , the number of scales considered. More specifically, the

HMM order is 2LJ − 1.

For the case of the Haar wavelet, where Lj = 2, 4, 8, 16 for j = 1, 2, 3, 4, the corresponding

order of the induced HMM is 3, 7, 15, 31 for J∗ = 1, 2, 3, 4. Similarly, Daubechies Extrexmal

Phase wavelets with two vanishing moment has the following supports Lj = 4, 10, 22, 46 for

j = 1, 2, 3, 4. The induced order of HMM is thus 7, 19, 43, 91 for J∗ = 1, 2, 3, 4 scale processes

respectively. Thus by considering coarser scales and smoother analysing wavelets, the order of

the induced HMM grows exponentially which causes computational problems eventually. The

use of a Haar wavelet and only considering a few finer scale processes is thus advocated.

5 SMC samplers example implementation

This section describes more explicitly the SMC samplers implementation described in Section

3.2. Defining l(d2
1:n|θ,H) as the likelihood, and p(θ|H) as the prior of the model parameters,

4



we can define the following sequence of distributions,

πb(θ) ∝ l(d2
1:n|θ,H)γbp(θ|H) b = 1, . . . , B, (5.1)

where {γb}Bb=1 is a non-decreasing tempering schedule such that γ1 = 0 and γB = 1. We could

therefore sample from the sequence of distribution {πb}Bb=1 as follows:

Initialisation, Sampling from π1 = p(θ|H): Assume independence between the transition

probability matrix, P and the state dependent power, W 2.

p(θ|H) = p(P|H)p(W 2|H). (5.2)

Transition Probability matrix, P: Sample each of the H transition probability rows

pr = (pr1, . . . , prH), r = 1, . . . ,H independently from a Dirichlet prior distribution.

As HMMs are typically associated with persistent behaviour in the same underlying

state, asymmetric priors encouraging persistent behaviour are generally implemented.

That is,

pr
iid∼ Dir(αr) r = 1, . . . ,H

p(P|H) =
H∏
r=1

p(pr|H),

where αr is the associated hyperparameter encouraging persistency.

State Dependent Power, W 2: Sample each of the state dependent inverse power for

each scale independently from a Gamma distribution. That is,

λj,r =
1

w2
j,r

iid∼ Gamma(αλ, βλ) j = 1, . . . , J, r = 1, . . . ,H

p(Λ =
1

W 2
|H) =

J∏
j=1

H∏
r=1

p(
1

w2
j,r

|H),

where αλ and βλ are associated shape and scale hyperparameters.

Mutation and Reweighting, approximating πb from πb−1: We consider Random Walk Metropo-

lis Hastings proposal kernels on different domains given the constraints of the parameters;

P is a stochastic matrix, w2
j,r are non-negative. We consider mutating and updating com-

ponents of θ separately, using the most recent value of the components (akin to Gibbs

sampling). In particular, we consider the following mutation strategies to move from θib−1

to θib, for particle i at iteration b.
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Transition Probability matrix, P: Consider each of the H transition probability rows

pr separately, and mutate on the logit scale. That is, we propose moving from pr to

pPr via:

Define the current logits: lr =

(
lr1 = log

pr1
prH

, . . . , lrH = log
prH
prH

= 0

)
,

(5.3)

Proposal logits: lPr = lr + εl εl ∼ MVN(0,Σl), with lPrH = 0,

(5.4)

Proposal probability vectors: pPr =

(
exp lPr1∑H
n=1 exp lPrn

, . . . ,
exp lPrH∑H
n=1 exp lPrn

)
, (5.5)

where Σl is a suitable H ×H proposal covariance matrix.

State Dependent Power, W 2: Consider each of the state dependent inverse powers for

each scale independently, and mutate on the log scale. That is we propose moving

from λj,r to λPj,r via:

λPj,r = exp(log λj,r + ελ) ελ ∼ N(0, σ2λ), j = 1, . . . , J, r = 1, . . . ,H, (5.6)

where σ2λ is a suitable proposal variance.

Reweighting: One can show that under general conditions of SMC samplers, the re-

weighting formula for particle i to approximate πb is:

U ib =
U ib−1ũb(θ

i
b−1, θ

i
b)∑N

i=1 U
i
b−1ũb(θ

i
b−1, θ

i
b)

(5.7)

with ũb(θ
i
b−1, θ

i
b) =

πb(θ
i
b−1)

πb−1(θ
i
b−1)

=
l(d2

1:n|θib−1, H)γb

l(d2
1:n|θib−1, H)γb−1

. (5.8)

Final Output: We have a weighted cloud of N particles approximating the parameter poste-

rior:

p(θ|d2
1:n, H) ≈ {θiB, U iB|H}Ni=1 ≡ {θi, U i|H}Ni=1. (5.9)
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