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Abstract

Particle MCMC is a class of algorithms that can be used to analyse
state-space models. They use MCMC moves to update the parameters of
the models, and particle filters to propose values for the path of the state-
space model. Currently the default is to use random walk Metropolis to
update the parameter values. We show that it is possible to use infor-
mation from the output of the particle filter to obtain better proposal
distributions for the parameters. In particular it is possible to obtain es-
timates of the gradient of the log posterior from each run of the particle
filter, and use these estimates within a Langevin-type proposal. We pro-

pose using the recent computationally efficient approach of
for obtaining such estimates. We show empirically that for a vari-
ety of state-space models this proposal is more efficient than the standard
random walk Metropolis proposal in terms of: reducing autocorrelation of
the posterior samples, reducing the burn-in time of the MCMC sampler
and increasing the squared jump distance between posterior samples.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are a popular and well studied
methodology that can be used to draw samples from posterior distributions.
MCMC has allowed Bayesian statistics to evolve beyond simple tractable mod-
els to more complex and realistic models where the posterior may only be known
up to a constant of proportionality. Over the past few years MCMC methodol-
ogy has been extended further to tackle problems where the model likelihood is
intractable. For such models it is often possible to replace the intractable like-
lihood with an estimate (Beaumont| [2003)), which can be obtained from Monte
Carlo simulations. Andrieu and Roberts| (2009)) showed that within the MCMC
sampler, if the likelihood is replaced with an unbiased estimate, then the sampler
still targets the correct stationary distribution. |Andrieu et al.| (2010]) extended
this work further to create a class of MCMC algorithms for state-space mod-
els based on sequential Monte Carlo methods (also known as particle filters).
This class of algorithms is referred to as particle MCMC. In this paper we shall
focus on one particular algorithm, the particle marginal Metropolis Hastings




algorithm which replaces the likelihood term in the Metropolis Hastings (MH)
sampler with an unbiased particle filter estimator.

In the standard Metropolis Hastings algorithm a popular proposal is the ran-
dom walk Metropolis (RWM). This proposal selects new parameter values by
perturbing the previous values with random Gaussian noise. The efficiency of
the MH algorithm is dependent on the magnitude of the noise added. Theoret-
ical results have established that tuning this proposal such that approximately
23.4% of the proposed samples are accepted is optimal as the number of param-
eters tend to infinity (Roberts et al.,{1997)). An extension to the RWM proposal
is the Metropolis adjusted Langevin algorithm (MALA) which incorporates an
estimate of the gradient of the posterior within the proposal distribution. This
proposal has the advantage of steering the proposed parameters towards the
mode of the posterior. Thus proposed values are more likely to be accepted,
and it has an optimal acceptance rate of 57.4% (Roberts and Rosenthall |1998)).

As with the standard Metropolis Hastings algorithm the efficiency of the
particle marginal Metropolis Hastings algorithm is also affected by the choice
of proposal distribution. For state-space models, it is generally not possible to
use the MALA proposal because, as with the likelihood, the gradient of the
log posterior is intractable. In this paper we present an algorithm for creating
approximations of the gradient of the log posterior using output from the particle
filter, based on the algorithm given by Nemeth et al. (2013). The particle
approximation of the gradient is then used within the MALA framework to
create a new proposal which we refer to as particle MALA (pMALA).

In order for the pMALA algorithm to be practicable it is important that
the extra computational cost of estimating the gradient of the log posterior is
small, while the estimate itself is accurate. As such, the use of the algorithm
from Nemeth et al.| (2013) is central to our algorithm. This algorithm has a
cost that is linear in the number of particles, and requires only a small overhead
on top of running a standard particle filter. It has been shown to have a much
smaller Monte Carlo error for estimating the gradient than other algorithms
whose computational cost in linear in the number of particles. A similar pMALA
algorithm has been independently proposed by [Dahlin et al.[(2013a)), but their
algorithm for estimating the gradient has a computational cost that is quadratic
in the number of particles, and hence leads to a much slower pMALA algorithm.

The outline of the paper is as follows. We first give an introduction to
state-space models, and to MCMC and sequential Monte Carlo (particle fil-
ter) algorithms for analysing these models. In Section [3| we introduce particle
MCMC, and show that information from running the particle filter can be used
to guide the choice of proposal distribution for the parameters. We then in-
troduce our pMALA algorithm. Section [4] presents empirical results comparing
PMALA and standard particle MCMC algorithms across a range of examples.
The paper ends with a discussion.

2 Inference for state space models

2.1 State space models

Consider the general state space model where there is a latent Markov process
{X:;1 <t < T} that takes values on some measurable space X C R"™=. The pro-



cess is fully characterised by its initial density p(z1|0) = ue(z1) and transition
probability density

p(xe|T1:6—1,0) = p(at|Ti—1,0) = fo(we|ai—1),

where 6 € © represents a vector of model parameters. For an arbitrary sequence
{%;} the notation z;,; corresponds to (z;, zi+1,...,2;) for i < j.

We assume that the process {X;} is not directly observable, but partial
observations are received via a second process {Y;;1 < t < T} C Y™. The
observations {Y;} are conditionally independent given {X;} and are defined by
the probability density

P(Yely1:e—1, 210, 0) = p(ye|ze, 0) = go(yel ).
The marginal likelihood of observations for a given 6 can be decomposed as

T
p(yrr10) = p(w110) T [ p(welyre—1,0), (1)

t=2

where,

P(yt|y1:t—1,9) :/ge(yt|=’ﬂt)/fa($t|$t—1)]?($t—1|y1:t—1,e)dﬂ?t—ldiﬂt

is the predictive likelihood.

Aside from a few special cases, it is generally not possible to evaluate the
likelihood analytically, but it is often possible to approximate the likelihood
using importance sampling (Pitt, |2002)). Model parameters 6 can be estimated
by maximising the likelihood using expectation maximisation (EM) or gradient
based maximum likelihood methods (Nemeth et al.,|2013; Poyiadjis et al., |[2011;
Dempster et al., [1977)). Alternatively, within the Bayesian framework, MCMC
techniques (Andrieu et al.|, [2010; [Fearnhead} [2011)) can be applied to estimate the
posterior density p(f|y;.7) of the parameters conditional on the observed data.
Within this paper we shall consider only the latter case of applying MCMC to
state-space models.

2.2 MCMC for state-space models

We start by considering the generic MCMC algorithm used to perform Bayesian
inference on the parameters 6. Firstly, we introduce a prior distribution for the
parameters, p(#). Our goal is then to estimate the posterior density p(8|y1.7)
p(y1.7160)p(0), which is known only up to a constant of proportionality. In this
setting we are considering the ideal case, where we assume that the likelihood
(1)) is known and tractable.

Samples from the posterior (61,62,...,6;,...,0) are generated using the
Metropolis Hastings algorithm where proposed values #’ are sampled from a
proposal distribution ¢(-|6;_1) and accepted (i.e. 6; = 0") with probability

p(yr.7|0")p(0")q(0;-11¢") }
"p(yr7]0i-1)p(0;-1)q(0'10;-1) )

The samples {6; }3’:1 generated by the MH algorithm form a Markov chain of
correlated samples. The choice of proposal distribution ¢(6'|6) is important as it

(2)

a(0'16,_1) = min {1



affects the autocorrelation of the samples from the algorithm. A standard choice
of proposal is the Gaussian random walk proposal. This proposal generates
new parameter values by perturbing the current parameters with noise sampled
from a Gaussian distribution with zero mean and covariance matrix . The
covariance matrix can be chosen to account for correlations in the parameter
vector §. Or in the simplest case, each element of  is perturbed independently
by replacing the covariance matrix with 021, where I is the identity matrix and
o2 is a user chosen step size parameter. For this simple case, new parameters

€
0" are sampled from

' =0,_1+0.2 where z~ N(0,I).

The efficiency of the Gaussian random walk proposal is determined by the
scaling of the step size parameter. Theoretical results show that as the number
of parameters d — oo the optimal acceptance rate for the MH ratio (2)) is
0.234 (Roberts et al., [1997). A great deal of research has been dedicated to the
optimal scaling of the Gaussian random walk proposal and the interested reader
is referred to Roberts and Rosenthal (2001) for a review.

Alternatively, efficient proposal distributions can be designed using the ge-
ometry of the posterior density (Roberts and Tweedie, [1996; |Girolami and
Calderhead, 2011) to improve the mixing of the MCMC sampler. One such
approach is the Metropolis adjusted Langevin algorithm (Roberts and Rosen-
thal, |1998) which uses the gradient of the log posterior Vlogp(8|yi.r) within
the proposal

2
g
0 =0,_1+0c2+ ?GVIng(aj—lh!l:T)

where z ~ N (0,1) and o, is the step size. The gradient of the log posterior can be
given in terms of the score vector (gradient of the loglikelihood) V log p(y1.7|6)
and the gradient of the log prior density Vlogp(fly1.r) = Vlogp(yi.r|0) +
Vlog p(0).

Samples proposed using MALA tend to be less correlated compared to sam-
ples generated from the Gaussian random walk proposal. Intuitively, this is
because using the gradient of the log posterior steers the proposed samples
towards the mode of the posterior allowing for more ambitious jumps in the
parameter space which are likely to be accepted. [Roberts and Rosenthal| (1998)
showed that applying MALA within the MCMC sampler gives an optimal ac-
ceptance rate of 0.574, much higher than the standard Gaussian random walk
proposal. Also they show that the mixing of MALA scales much better with
dimension than random walk Metropolis.

The outline of MCMC given above is appropriate for the idealised scenario
where the likelihood p(y1.7|6) is tractable. However, for most state-space models
this is not the case. |Andrieu and Roberts| (2009) showed that by replacing the
likelihood with a Monte Carlo estimate p(y1.7|6), which is non-negative and
unbiased, the MCMC sampler will still target the correct posterior distribution.
One way of obtaining unbiased estimates of the likelihood for state-space models
is to use a particle filter.

2.3 Sequential Monte Carlo

Sequential Monte Carlo algorithms represent a class of simulation methods for
the sequential approximation of posterior probability distributions. In the con-



text of state-space modelling, we are interested in approximating the posterior
p(z¢|y1.t, 0) of the filtered latent state x;, given a sequence of observations y.¢.
In this section we shall assume that the model parameters 6 are fixed. Ap-
proximations of p(x¢|y1.t,8) can be calculated recursively by first approximat-
ing p(z1|y1,0), then p(xalyi.2,0) and so forth for t = 1,...,T. At time ¢ the
posterior of the filtered state is

P(xt|y1:e,6) 0<ga(yt|$t)/f9(33t|90t—1)p(90t—1|y1:t—17Q)dl‘t—1 (3)

where p(zi—1|y1.4—1,0) is the posterior at time ¢ — 1.

The posterior at time ¢ can be approximated if we assume that at time
t — 1 we have a set of particles {x,(f_)l}fil and corresponding weights {wt(z_)l}fil
which produce a discrete approximation of p(z¢—1|y1.+—1,6). The Monte Carlo
approximation for at time t is then

N
laelyrie. 8) = cgolyelan) Y wiy folwelzi?,), (4)

=1

where ¢ is a normalising constant. The particle approximation p(xt|y;.¢, 0) tends
to the true density p(x¢|y1.t,0) as the number of particles N — oo (Crisan and
Doucet,, [2002)). The filtered density, as given above, can be updated recursively
by propagating and updating the particle set using importance sampling tech-
niques. The resulting algorithms are called particle filters, see [Doucet et al.
(2000) and |Cappé et al.| (2007)) for a review.

In this paper the particle approximations of the latent process are created
with the auxiliary particle filter of |Pitt and Shephard| (1999). This filter can be
viewed as a general filter from which simpler filters are given as special cases. We
shall consider the version of this filter as presented in [Fearnhead et al.| (2010).
The aim is to view the target as defining a joint distribution on the particle
at time t — 1 and the value of a new particle at time t. The probability of

sampling particle 5”521 and using a conditional density for then sampling x; is

cwl | go(yelae) folze|z)).

We approximate this with §§i)q(xt|x§i_)1, yt,0), where g(z; |x§i_)1, Y, 0) is a density
function that can be sampled from and {ft(i) N | are a set of probabilities. This
defines a proposal which we can simulate from by first choosing particle xgi)

with probability ft(i), and then, conditional on this, a new particle value, x;, is

sampled from q(xﬂxi?l, yt,0). The weight assigned to our new particle is then

o go(yela) folwila )
557')(1(%\%&)1, Yt, 9)
Details are summarised in Algorithm [I]
Simpler filters, such as the bootstrap filter (Gordon et all [1993)), can be
derived from the general filter by setting q(mt|m§21,yt,9) = fg(xt|xgl) and

fti) = w,@l The bootstrap filter is a popular choice due to its simplicity,
however, this filter can be inefficient as it does not take account of the newest



observations in the proposal, and therefore can lead to the propagation of par-
ticles that are likely to be given small weights.

The optimal proposal density, in terms of minimising the variance of the
weights (Doucet et al.L|2000)), is available when q(zﬁx@l, yi, 0) = p(:ct|x§1)1, Y, 0)
and £ x w,E >1p(yt\x"’ ). This filter is said to be fully adapted as all the

weights wf ) will equal 1/N. Generally it is not possible to sample from the
optimal proposal, but alternative proposals can be used which approximate the
fully adapted filter.

Algorithm 1 Auxiliary Particle Filter
Step 1: Tteration t = 1,
(a) Fori=1,..., N, sample particles {xY)} from the prior p(z1]6) and set
" = p(ylaf").
( ) Calculate Cy = ZZ]\LI u?%i); set p(y1) = C1/N; and calculate normalised
weights wgi) = wg“/cl fori=1,...,N.
Step 2: Tteration t = 2,...,T. Assume a user- deﬁned set of proposal weights
{ft )} v, and family of proposal distributions q(xt|xt 1, Yt 0).

(a) Sample indices {k1, ko, ...,kn} from {1,..., N} with probabilities §t(i).

(b) Propagate particles :cgi) ~ q( |x£k"’1),yt, 0).
)

. o) fo (2 F)
(c) Weight particles HJEZ) = g(iegm(‘ ”l:)rjfci(f ,tytie) D) and calculate C; =
OARE S
(d) Obtain an estimate of the predictive likelihood, p(y:|y1.t—1,0) = C;/N,
and calculate normalised weights w'” = @\” /C, for i =1,... N.

One of the benefits of using the particle filter is that an estimate for the
likelihood p(y1.7|0) is given for free from the particle filter output. We can
estimate p(y¢|y1.4—1,0) by

N0
ﬁ(yt|y1:t—179) = [Z ]if‘| ) (5)

i=1
where, w§“ are unnormalised weights. An unbiased estimate of the likelihood
is then

T
p(yr:7l0) = p(y1(0) H (ytly1:e—1,0

See Algorithm [T} and [Pitt et al] (2012) and [Del Moral| (2004) for further details.

3 Particle MCMC

3.1 Particle marginal Metropolis Hastings

The auxiliary particle filter given in Algorithm [I] provides a positive, unbiased
estimate of the likelihood based on the importance weights . Andrieu and
Roberts| (2009) and [Andrieu et al| (2010) have shown how we can use such
estimates in place of the likelihood function within MCMC. The idea is to run



Algorithm [1] at each iteration of an MCMC algorithm to get an estimate of the
likelihood for the current parameter value. We then use this estimate instead
of the true likelihood value within the accept-reject probability. If interest lies
just in the posterior for the parameter, this results in the particle marginal
Metropolis Hastings (PMMH) algorithm (see Algorithm [2). We will focus on
this algorithm in the following (see |Andrieu et al., 2010} for alternative particle
MCMC algorithms).

Algorithm 2 Particle Marginal Metropolis Hastings (PMMH) Algorithm

Step 1: iteration j =1,
(a) Set 6y arbitrarily.
(b) Run Algorithm [I| and compute the marginal likelihood p(y;.7|61) from
the importance weights .
Step 2: iteration j =2,..., M.

(a) Sample 0" ~ g(-]0;_1)

(b) Run Algorithm [1] and compute the marginal likelihood p(y1.7|6") from
the importance weights .

(c) Set 6; = 0" and p(y1.7(0;) = P(y1.7|0")

: s P(y1.710")p(0")q(0;-116")
with probability 1 A ﬁ(yl;T|9j71)p(9j7£);(0/|9j71)

else set 9j = 0]‘_1 and ﬁ(yl:TWj) = p(ylzT\Gj_l).

A key result is that PMMH has p(f|y;.7) as its stationary distribution (An-
drieu and Roberts], |2009; |Andrieu et all 2010). Let &/ denote the random vari-
ables used in the particle filter to generate the estimate of the likelihood, and
p(U|0) their conditional density given . We can define a target distribution on
(0,U) which is

p(0,Uly1.7) o< p(y1.7|0,U)p(U|0)p(0). (6)

It is straightforward to show that PMMH is a standard MCMC algorithm with
this target distribution, and with a proposal distribution ¢(6'|6)p(i4]0"). Fur-
thermore, the marginal target distribution for 6 is just

/ B0, Ulyr)dU - / Pyr.10. U)p(U10)p(0)dU
= p(y1:T|9)P(9)7

the posterior, p(f|y1.7). The last equality follows from the fact that p(y1.7|0,U)
is unbiased estimator of the likelihood. Note that implementation of PMMH
does not require storing all details of the particle filter, U, just the resulting
estimate of the likelihood p(y1.7|60,U).

Whilst PMMH admits p(0|y1.7) as the invariant density regardless of the
variance of the likelihood estimator p(y;.7|0,U), the variance does affect the
mixing properties of the algorithm; see Pitt et al| (2012) and [Sherlock et al.
(2013) for details. The choice of proposal distribution for the parameter, ¢(:6),
will also have an important impact on the mixing properties of the algorithm.
We now show that information from the particle filter can be used to guide this
choice of proposal.



3.2 Efficient use of the particle filter output

Consider using some information from the particle filter, which we will denote
Z(U), within the proposal distribution. So if the current state of the Markov
chain is (0,U), our proposal will be §(6’|0,Z(U)). The acceptance probability of
a new state (6/,U") will then be

o0/, U'60,U) = wmin {1, Pner| 0L 04010, L) } ™)

P(yrr|0,U)p(0)4(0'10, Z(U))

It is straightforward to show that such an algorithm admits p(0|y;.7) as the
invariant density :

Proposition 3.1 Implementing PMMH with proposal distribution §(0'|0,Z(U)),
and acceptance probability given by (@, gives an MCMC algorithm which admits
p(Bly1.T) as the invariant density.

Proof As before the PMMH is a standard MCMC algorithm with p(0, U|y1.7)

as its invariant distribution, but now the proposal distribution is (6’6, Z(U))p(U'|6").

The acceptance probability for such an MCMC algorithm is

pyrr|8, U )pU’|0")p(0")q(616", Z(U"))p(U]0) }
P(yrr|6,U)pU|0)p(0)4(6"10, Z(U))p(U’|0")

which simplifies to @ as required. O

a0, U'|6,U) = min {1,

Again, when implementing this version of PMMH we do not need to store all
details of the particle filter. All we need is to store our estimate of the likelihood
P(y1.7|0,U) and the information Z(U).

Our choice of information will be an estimate of the score, Z(U) = V log p(y1.7|0),
where we give details of how to obtain such an estimate in the next section. We
then use this estimate in place of the true score within a MALA proposal:

i(010.200) = X (0,21 + % [V Iog i0hr) ). ®

where Vlogp(8|y1.7) = Viogp(y1.7]0) + Viogp(f), and o, is the step-size pa-
rameter. The new proposal can be used in place of ¢(6’|6) in Algorithm
to give the particle MALA algorithm.

3.3 Particle approximations of the score vector

We can create a particle approximation of the score vector based on Fisher’s
identity (Cappé et al., [2005)

Viegp(yrrlf) = /Vlogp(xm, yrr|0)p(zrrlyrr, 0)dey.r
= E[Vlogp(zi.T,y1.710)|y1.7, 0]
which is the expectation of
Vg p(z1.7,y1.7|0) = Vg p(x1.7-1, y1.7-1|0)+V log go (yr|z7)+V log fo(vr|rr-1)

over the path xq.7.



The particle approximation to the score vector is obtained by replacing
p(z1.7|y1.7,0) with a particle approximation p(xi.r|y1.7,6). Here we outline
this idea, but see |Poyiadjis et al.| (2011)) for more details.

For each particle at a time ¢t — 1, there is an associated path, defined by
tracing the ancestry of each particle back in time. With slight abuse of notation

denote this path by :CY% 1- We can thus associate with particle ¢ at timet—1 a

value at 1 = Vlog p(ajgg5 1,Y1:t—1]0). These values can be updated recursively.
Remember that in step 2(b) of Algorithm [1| we sample k;, which is the index of
the particle at time ¢ — 1 that is propagated to produce the ith particle at time
t. Thus we have
oy = ai™) + Vlog go (yrlx”) + Vo fo (welo;™)). (9)
The problem with this approach is that the variance of the score estimate
Vlog p(y1.t]0) increases quadratically with ¢ (Poyiadjis et al., |2011)) due to de-
generacy in the approximation of ay. |[Poyiadjis et al.| (2011) suggest an alter-
native particle filter algorithm, which avoids a qudratically increasing variance
but at the expense of a computational cost that is quadratic in the number of
particles. Instead we will use the algorithm of Nemeth et al.[ (2013, which uses
kernel density estimation and Rao-Blackwellisation to substantially reduce the
Monte Carlo variance, but still maintains an algorithm whose computational
cost is linear in the number of particles.
An outline of their approach is as follows. We first use kernel density esti-

mation to replace each discrete a,@l value by a Gaussian distribution:

Oé(z_)l ~ N(m,(gi_)l, Vic1). (10)

(@)

The mean of this distribution is obtained by shrinking «;”’; towards the mean

of ay_1,
m® = xal? +( wz)a
t1 t—1 t—10 "1

Here 0 < A < 1 is a user-defined shrinkage parameter. The idea of this shrinkage
is that it corrects for the increase in variability introduced through the kernel
density estimation of West| (1993). For a definition of V;_; see [Nemeth et al.
(2013), however its actual value does not affect the following details.

The resulting model for the ays, including their updates @ is linear Gaus-

sian. Hence we can use Rao-Blackwellisation to avoid sampling the a( )s and
instead calculate the parameters of the kernel (| . directly. This gives the fol-
lowing recursion for the means,

mgi) = )\m Zwtl)lmt 1 (11)

+V log go(yel i) + Vlog fo(a(”al™)).

The final score estimate depends only on these means, and is

V log p(y1.4|0) = Zwtl @,



Algorithm 3 Rao-Blackwellised Kernel Density Estimate of the Score Vector
Add the following steps to Algorithm

Step 1: ‘ A
(c) Set Vlogp(y:|0) = Vlog go(y1|25”) + Vlog g ("),
Step 2:

(e) Fori=1,...,N, calculate

mgz) = Am t 1+ Zwt lmt 1

+V10gge(ytlfﬂ(”) +Vlog fo(z(”|xf™)).

(f) Update and store the score vector

V log p(y1:e|6) = Zw

See Algorithm [3] for a summary.

When A =1 the recursion simplifies to the method given by [Poyiadjis et al.
(2011)), where the variance of the score estimate will increase quadratically with
t. The use of a shrinkage parameter A\ < 1 alleviates the degeneracy problems
that affect the estimation of the score and significantly reduces the estimate’s
variance. As a rule of thumb, setting A = 0.95 produces reliable estimates where
the variance of the score estimate increases only linearly with ¢ (see Nemeth et al.
(2013) for further details). We shall use this tuning for all examples given in
the Section [

4 Simulation Studies

In this section we compare the particle marginal Metropolis Hastings algorithm,
using the random walk Metropolis proposal (10f), which we shall refer to as
PMMH, against the particle MALA proposal The two proposals shall be
compared in terms of the their inefficiency, which is measured by the integrated
autocorrelation time of the Markov chain, Ineff = 1+ 23, p;, where p;
is the autocorrelation of the Markov chain at lag [. The infinite sum in the
integrated autocorrelation time is truncated to L*, which is the lag after which
the autocorrelations are approximately zero. As a rule of thumb the maximum
number of lags L* = min{1000, L}, where L is the lowest index for ! such that
lp1| < 2/vV/M and M is the sample size used to compute p;. Lower values for
the inefficiency indicate less correlation between samples, see |Pitt et al.| (2012)
for further details of this metric.

The MCMC algorithms can also be compared using the squared jump dis-
tance

1
SJD = + i1 — Ol

This metric measures the average distance between successive posterior samples,
where larger jumps correspond to better mixing of the MCMC sampler and
improved exploration of the posterior.

10



All results are given as the average of 10 independent Monte Carlo simu-
lations, where for each simulation the PMMH algorithm (Alg. [2) is run for
100, 000 iterations. Only the last 50,000 iterations are taken as samples from
the posterior with the first 50,000 iterations treated as burn-in.

4.1 Linear Gaussian Model

We start by considering the linear Gaussian state-space model, where is it is
possible to estimate the marginal likelihood p(y1.7|f) and score vector exactly
with the Kalman filter (Durbin and Koopman, 2001). This model provides
a benchmark for comparing the efficiency of PMMH and pMALA. We also
implement the MH and MALA algorithms using the exact estimates of the
likelihood and score vector given by the Kalman filter. Finally, a comparison is
also given for both the O(N) and O(N?) algorithms of [Poyiadjis et al. (2011
to estimate the score vector. Proposals created using the O(N?) algorithm have
been implemented by |Dahlin et al.| (2013a).
Consider the following linear Gaussian model

Ye = a + Bxy + Tey,
Ty = W+ ¢xy_1 + ony,
zo ~ N(p/(1—¢),0%/(1 - %),

where €, and 7, are standard independent Gaussian random variables and 6 =
(o, B, 7, 1ty ¢, 0) are model parameters.

For this model it is possible to use the fully adapted particle filter using the
optimal proposal for the latent states (see Appendix [A|for details). Compared
to the simpler bootstrap filter this will reduce the variance of the weights, which
will therefore reduce the variance of the likelihood estimate.

We use simulated data from the model where 500 observations are generated
with model parameters « = 0.2, =1, 7=1, u =0.1, ¢ = 0.9, 0 = 0.15. At
each iteration of the PMMH/pMALA algorithm an estimate of the likelihood
and score vector was calculated from the particle filter (Alg. |1|and [3)) using 500
and 2000 particles. For the Poyiadjis O(NN?) algorithm, the particle filter is run
with v/ N particles to match the computational cost of the PMMH and pMALA
algorithms.

The MCMC sampler was run with the following prior distributions

(5)~~ (1) = (% o5)) -~ 78007201,

pu~ N(0.15,0.5), (¢ +1)/2 ~ Beta(20,5) and 02 ~ ZG(2,1/40), where ZG is
an inverse gamma distribution.

The parameters (¢, o, 7) are constrained such that |¢| <1, 0 > 0 and 7 > 0.
These parameters are transformed for the MCMC sampler as tanh(¢), log(o)
and log(7), noting that this transformation now introduces a Jacobian term into
the MH acceptance ratio (2).

As discussed in Section the optimal acceptance rate for the standard
random walk Metropolis algorithm is 0.234 as the number of parameters d — oc.
Recent results given by Sherlock et al.[(2013]) show that for MH algorithms where
the likelihood is replaced with an unbiased estimate, the optimal acceptance
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rate is approximately 0.07. For the PMMH algorithm with RWM proposal we
shall use the scaling suggested by the authors o2 = (2.562)%%/d, where X is an
estimate of the posterior covariance of the parameters 6 given from a pilot run
(we use 2.38 in place of 2.562 for the Kalman RWM). The particle MALA and
Kalman MALA algorithms were scaled as 02 = X/d'/? to match the mixing
rate of MALA algorithms (Roberts and Rosenthall |1998)).

. . Inefficiency
Algorithm Particles | Acc. rate N Nox
Kal. RWM 0.13 52.47 78.31
Kal. MALA 0.25 27.33 51.55

2000 0.14 59.02 107.87
PMMH 500 0.13 52.28 116.83
2000 0.25 26.87 47.58
pMALA 500 0.24 29.65 58.91
2000 0.25 31.62 58.41
Poy. O(N) " I=55p 0.12 30.26 | 61.71
/2000 0.16 50.05 | 111.67

Poy. N2
oy- OWN%) =755 0.12 128.20 | 170.97

Table 1: Linear Gaussian example. Comparison of the efficiency of PMMH,
pMALA, Poyiadjis MALA and the exact estimates of the likelihood and score
vector from the Kalman filter. Particle approximations are based on 500 and
2000 particles.

Table 1 summarises the results of the MCMC simulations where for ease of
presentation we have presented the minimum and maximum inefficiencies for
each algorithm over all parameters. The inefficiency of all particle filter based
samplers is increased, and the acceptance rate decreased, when the number of
particles is reduced. The sampler still targets the correct stationary distribution,
but less efficiently as a smaller number of particles leads to an increase in the
variance of the estimate of the likelihood. This increased inefficiency would
be more noticeable for models where it is not possible to use the fully adapted
importance proposal distribution. Increasing the number of the particles reduces
the variance of the likelihood estimate and increases the acceptance rate of the
MCMC sampler (Pitt et al.l [2012).

The pMALA algorithm has an increased acceptance rate compared to PMMH
and also displays reduced inefficiency. The estimate of the gradient of the log
posterior which is used in the proposal allows for greater jumps in the posterior,
which leads to reduced autocorrelation between posterior samples. The Poyi-
adjis O(N?) implementation is less efficient than the pMALA algorithm when
compared with equal computational effort. The increase in inefficiency of the
O(N?) algorithm is caused by an increase in the variance of both the likelihood
and score estimate. This is caused by the reduced number of particles used to
run the particle filter at equal computational cost to pMALA.

Table 2 gives the inefficiencies for pMALA and the Poyiadjis O(N) algorithm
compared with equal computational cost. The pMALA algorithm is more effi-
cient than the Poyiadjis O(N) implementation of MALA as the length of the
data T increases. This is due to the increased variance in the score vector esti-
mate given by the Poyiadjis O(N) algorithm, which has been proven to increase
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. . Inefficiency
Algorithm | Observations N Nax
5000 343.48 | 1036.37
pMALA 2000 76.98 | 360.07
1000 44.02 | 58.93
5000 394.74 | 1208.75
Poy. O(N) | 2000 95.16 | 403.37
1000 45.65 | 59.86

Table 2: Linear Gaussian example. Comparison of the efficiency of pMALA and
Poyiadjis O(NN) MALA. Particle approximations are based on 500 particles over
datasets of length 7' = 1000, 2000, 5000.

quadratically with T' (see [Poyiadjis et al| (2011)) for details). The improved
efficiency of pMALA is the result of the reduced Monte Carlo error in the score
vector given by the Rao-Blackwellised score estimate (Algorithm . Proposi-
tion [3.1] establishes that arbitrary output from the particle filter can be used
within the proposal, but as the pMALA proposal demonstrates, the efficiency
of the sampler can be improved by choosing better proposals. For the example
considered here, pMALA is up to 20% more efficient.

PMMH

Value
L

00 02 04 06

T T T T T T
0 2000 4000 6000 8000 10000

Iteration

PMALA

Value

-01 01 03 05

T T T T T T
0 2000 4000 6000 8000 10000

Iteration

Figure 1: Linear Gaussian example. Trace plots of PMMH and pMALA for p
parameter.

The pMALA algorithm also has the advantage of reducing the burn-in time
of the MCMC sampler. Consider the trace plot of the first 10,000 samples
of the parameter p shown in Figure The MCMC sampler using PMMH
reaches stationarity after approximately 4,000 iterations, where the chain is
initially sticky with few new parameters accepted. Whereas pMALA reaches
stationarity with less than 1,000 iterations, given the same starting values for
both samplers. Using information about the posterior (i.e. the gradient of the
log posterior) pMALA can quickly reach stationarity and therefore significantly
reduce the burn-in time of the MCMC sampler.
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4.2 GARCH with noisy observations

This example considers the GARCH(1,1) model (Bollerslev et al., [1994]) which
has been extensively applied to financial returns data. We assume that the
observations are observed with Gaussian noise

2
Yt =Tt + TE€, Ty = 0p N,
2 _ 2 2

oy =a+ fri_y +70i_q,

zo ~ N(0, /(1 = B =),

where ¢; and 7; are standard independent Gaussian random variables and 6 =
(a, 8,7, 7) are the model parameters.

A dataset with 500 observations is sampled from the model using the pa-
rameters a = 0.1, § = 0.8, v = 0.05 and 7 = 0.3. The model parameters
are estimated using the PMMH algorithm and compared against the pMALA
implementation. Estimates of the likelihood and score vector, in the case of
PMALA, are obtained from the particle filter using 1000 particles.

The parameters of this model must satisfy the following constraints: a > 0,
B8 >0,v>0,7>0and 8+ < 1. These constraints can be satisfied by re-
parameterising the model so that ¢ = a+ 8, p = /(1 — ¢) and A = 3/¢. The
MCMC scheme is then completed by setting the prior distributions for the pa-
rameters: (¢+1)/2 ~ Beta(10,3/2), p ~ U(0,2), (A+1)/2 ~ Beta(20,3/2) and
72 ~ IG(2,1/2). Finally, the parameters are transformed to the unconstrained
scale logit(¢), log(u), logit(A) and log(7) where the appropriate Jacobian is
included in the MH ratio.

The proposal of the PMMH algorithm is scaled as 02 = (2.562)2(0.23,1.43,0.58,0.011) /4,
where the vector (0.23,1.43,0.58,0.011) is the diagonal of the covariance matrix
for 6 obtained from a pilot run. For the pMALA algorithm the proposal is
scaled as o2 = (0.23,1.43,0.58,0.011) /41/3.

PMMH PMMH PMMH

\\\\\\\\\\\\\\
nnnnnnnnnnnnnn

PMALA PMALA PMALA

\\\\\\\\\\\\\
nnnnnnnnnnnnnn

Figure 2: GARCH example. Trace plots, autocorrelation plots and posterior
density (dashed line indicates true parameter) plots of the parameter « from
the MCMC sampler using PMMH and pMALA.

The trace plots given in Figure[2)show that the MCMC sampler mixes well for
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both PMMH and pMALA. The posterior provides a good approximation of the
parameter v with the mode of the density matching the true parameter value.
The autocorrelation plots show the reduced lagged correlation and improved
mixing of the MCMC sampler using the pMALA algorithm compared to PMMH.

PMMH | pMALA
Acc. rate 0.15 0.33
logit(}) | 35.01 | 26.72
log(n) | 38.42 | 38.61
logit(y) | 30.50 21.24
log(t) | 32.80 | 25.28
logit(¢) | 3.38 3.79

Ineff

_ log(p) 1.13 1.44

2

SID (<1075) Hogit(y) T10.06 | 12.47
log(r) | 0.17 0.18

Table 3: GARCH example. Comparison of the inefficiency and squared jump
distance of PMMH and pMALA. Bold font indicates the best algorithm in terms
of inefficiency and squared jump distance for each parameter.

The MCMC simulation results summarised in Table 3 show the significant
improvement of pMALA over PMMH in terms of efficiency (except one param-
eter) and squared jump distance. Both metrics indicate that pMALA improves
the mixing of the MCMC sampler by proposing new parameter values which
are in the direction of the mode of the posterior. This increases the acceptance
rate of the MCMC scheme as the sampler is less likely to become stuck in the
tails of the density where new samples are unlikely to be accepted.

4.3 Stochastic volatility with leverage

The univariate stochastic volatility model is a state-space model with non-
Gaussian observations, where the latent volatility follows an autoregressive pro-
cess (see|Shephard| (2005 for a book length review). Variations of the stochastic
volatility model have been extensively applied to model stock market returns.
In this example we shall consider the stochastic volatility model with leverage
given by |Omori et al.| (2007)),

yr = exp(x/2)et,
Ty = p+ ¢(we_1 — p) + 1,
zo ~ N(0,0%/(1 = ¢?)),

(o)~ (G)- (%))

The observations y; are the returns, x; is the latent log-volatility, u is the drift,
o2 is the volatility of the log-volatility and ¢ is the persistence parameter. This
model also allows the errors in the observation and state transition equations
to be correlated through the parameter p. In the context of stock market data

where,
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a negative value of p corresponds to an increase in volatility which follows from
a drop in returns (Yu, 2005)).

We apply the PMMH and pMALA algorithms to estimate the parameters
0 = (u, 9,0, p), where the likelihood and score vector are obtained from a par-
ticle filter using 1000 particles. We use daily returns data from the S&P 500
index taken from January 1980 to December 1987 (2022 observations). This
dataset has previously been studied by |Yu| (2005) using MCMC methods and
by |[Jungbacker and Koopman| (2007 using a Monte Carlo likelihood method.

The prior distributions for the parameters are: u ~ N(0,1), (¢ +1)/2 ~
Beta(20,1.5), 0% ~ 2G(2.5,0.025) and p ~ U(—1,1). The constrained param-
eters ¢,p and o > 0 are transformed to unconstrained parameters logit(¢),
atanh(p) and log(c), where the Jacobian of the transformation is included in
the MH acceptance ratio.

The RWM proposal of the PMMH algorithm is scaled as 02 = (2.562)%(0.017,0.18,0.037, 0.02) /4,
where the vector (0.017,0.18,0.037,0.02) is the diagonal of the covariance ma-
trix for 6 obtained from a pilot run. For the pMALA proposal the step-size is
scaled as 02 = (0.017,0.18,0.037,0.02) /41/3.

PMMH PMMH PMMH

yyyyyyyyyy

Figure 3: Stochastic Volatility example. Trace plots, autocorrelation plots
and posterior density plots of the parameter p from the MCMC sampler us-
ing PMMH and pMALA. The dashed line indicates the posterior mean given
by [Yul (2005)).

As with the previous examples Figure [3| displays the mixing of the MCMC
samplers as well as the autocorrelation and posterior density plots. Both pro-
posals show good mixing and sensible posteriors which contain the parameter
estimates given by |Yu (2005) and |Jungbacker and Koopman| (2007). The lagged
correlation of the Markov chain given by the autocorrelation plots shows that,
compared to PMMH, pMALA explores the posterior density more efficiently.

Table 4 provides a comparison of the two proposals in terms of their ineffi-
ciency and squared jump distance. For all parameters of the stochastic volatility
model pMALA creates a more efficient MCMC sampler than PMMH. The in-
creased acceptance rate indicates that pMALA allows the sampler to propose
samples which are more likely to be accepted and therefore better explore the
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PMMH | pMALA

Acc. rate 0.10 0.21
1 57.02 | 54.65
logit(¢) | 68.80 | 51.92

Ineft log(c) | 57.68 | 40.10
atanh(p) | 43.44 37.28
[ 1.82 1.90

SID (x10-%) logit(¢) | 16.27 16.73

log(o) 3.25 3.54
atanh(p) | 1.64 1.78

Table 4: Stochastic volatility example. Comparison of the inefficiency and
squared jump distance of PMMH and pMALA. Bold font indicates the best
algorithm in terms of inefficiency and squared jump distance for each parame-
ter.

posterior. The result is an increased squared jump distance between samples
and reduced correlation between samples.

5 Discussion

The particle MALA proposal presented in this paper shows a significant im-
provement over the standard random walk Metropolis proposal when applied
to the particle marginal Metropolis Hastings algorithm. One of the main ad-
vantages of this algorithm is its fast computational time, where the order of
computation is equivalent to the computational effort required to estimate the
likelihood. This means that more particles can be used to estimate the score
vector and likelihood, resulting in estimates with lower variance and improved
mixing of the MCMC sampler.

We have shown that it is possible to create MALA proposals using score
estimates given by the O(N) and O(N?) algorithms of [Poyiadjis et al. (2011).
Compared to the O(N?) algorithm, our pMALA algorithm offers significant
improvements in terms of computational cost. The benefit of this computational
saving is highly significant as the pMALA algorithm can be executed with a
larger number of particles, thus reducing the variance of the likelihood estimate.
As shown, this reduction in variance considerably improves the efficiency of
the MCMC sampler. For the Poyiadjis O(N) algorithm, our particle MALA
algorithm is more efficient when implemented with equal computational cost.
The improvement of pMALA also increases as the size of the dataset increases
due to the quadratically increasing variance of the Poyiadjis O(N) algorithm.
For the example given here, pMALA was up to 20% more efficient.

This proposal can also be used with more complex models where the deriva-
tive of the log posterior is not available for all parameters, but can be computed
for a subset of the parameters. This will improve the overall efficiency of the
sampler as pMALA will sample, from this subset, parameters more likely to
be accepted. The remaining parameters can be sampled with the random walk
Metropolis proposal.

A second order MALA proposal (Dahlin et al.,|2013b)) which takes account of
the curvature of the posterior could be found using an estimate of the observed

17



information matrix. In principle, this would improve the mixing of the MCMC
sampler by taking account of the local parameter covariance structure. However,
estimates of the observed information matrix are not guaranteed to be positive
definite which is an issue that would need to be addressed.

An important extension to this work would be to develop theoretical results
establishing the optimal acceptance rate for pMALA. Recent results (Sherlock
et al) [2013) have established optimal acceptance rates for the random walk
Metropolis proposal which are helpful when tuning these proposals. Similar
results for pMALA would make it easier to implement and reduce the time
spent tuning the algorithm.

A Importance proposals

The importance proposals Ziil ft(l)q(xtpcgl, yt, 0) for each example in Section
[4 are given below.

Linear Gaussian model. For this model the fully adapted filter is available
where z; is sampled from the optimal proposal q(z¢|xi—1, yt,0) = p(xt|xi—1, Yy, 6)
(see [Doucet et al| (2000) for details) and the normalised posterior weights

wgi) = 1/N are all equal. Explicitly the importance proposal is
&) o« W Na+ B+ gz, 20 +72)
P @ile Ly 0) = N @By — )% + (n+ gt 1)), )

where Q; = (072 + g%27r72)~L.
GARCH model. We again use the fully adapted filter for the GARCH
model with noise where the importance proposal is
i ()
" o w N7 477
qopt(If|17t 1Y 0) = N(Qtyﬂfz,@t)

K

and Q; = (0;2(” +772)~L
Stochastic volatility model with leverage. We use the importance
proposal described by |[Omori et al.| (2007)),

W ocw? N0, exp(ul”))
(|2 y, 0) = N(ul”, (1 = p*)0?)

where ) = pu+ ¢ (", — ) + po exp(—x{”; /2)y,
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