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Abstract Let G be a discrete group. We give a decomposition theorem for the Hochschild cohomology of
�1(G) with coefficients in certain G-modules. Using this we show that if G is commutative–transitive, the
canonical inclusion of bounded cohomology of G into simplicial cohomology of �1(G) is an isomorphism.
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1. Introduction

The bounded cohomology of a (discrete) group G is known to embed as a summand in
the simplicial cohomology of the convolution algebra �1(G). Consequently, knowing that
the bounded cohomology of G is non-zero, or non-Hausdorff, immediately implies that
the simplicial cohomology of �1(G) is non-zero or non-Hausdorff, respectively.

In this paper we observe that for a wide class of discrete groups, including all torsion-
free hyperbolic groups, this summand is the only non-zero contribution to simplicial
cohomology; more precisely, the aforementioned inclusion of bounded cohomology into
simplicial cohomology is an isomorphism. The precise statement is given below as Theo-
rem 3.5. By standard homological arguments (see Lemma 3.1) we may recast our result
as saying that the augmentation ideals for these groups are simplicially trivial, in the
sense that the ‘naive’ Hochschild cohomology groups H∗(I0(G), I0(G)′) vanish (see Corol-
lary 5.1). Thus, our work is a partial generalization of the results in [4] on weak amenabil-
ity of such ideals.

Our work is also motivated by [10], in which a version of our decomposition theorem
is given for second-degree cohomology; the conclusion is stronger in [10] because the
second bounded cohomology of any discrete group is known to be a Banach space (no
such general result is true for degrees 3 and above).
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2. Notation and homological background

Throughout we shall denote the identity map on a Banach space, module or algebra X

by idX (we will sometimes omit the subscript if there is no risk of ambiguity).
Given a family (E(x))x∈I of Banach spaces and p ∈ [1,∞], we can form the �p-direct

sum of the E(x) in the obvious way: this will be denoted by

[p]⊕
i∈I

E(x).

Isometric linear isomorphism of two Banach spaces E and F will be denoted by E ∼=
1

F ;
the dual of a Banach space E will be denoted by E′.

Given a Banach algebra A, our definition of a Banach A-bimodule M is the usual one:
we require that the actions of A on M are jointly continuous, but not necessarily that
they are contractive. When we write M ′, we tacitly assume that it is equipped with the
canonical A-bimodule structure obtained by taking adjoints of the actions of A on M .

2.1. (Isometric) isomorphism of chain complexes and functors

We assume familiarity with the notions of chain and cochain complexes of Banach
spaces and modules. For brevity we adopt the convention that our chain and cochain
complexes vanish in degrees less than or equal to −1, i.e. are of the form

0 ←− E0 ←− E1 ←− · · · or 0 −→ M0 −→ M1 −→ · · · .

Definition 2.1. Let A be a Banach algebra and let E∗ and F∗ be chain complexes of
left Banach A-modules. We say that E∗ and F∗ are topologically isomorphic as (module)
chain complexes if there exist mutually inverse chain maps f : E∗ → F∗ and g : F∗ → E∗,
with each fn (and hence each gn) a continuous A-module map.

If, moreover, we can arrange that each fn (and hence each gn) is an isometry, we say
that the chain complexes E∗ and F∗ are isometrically isomorphic, and write E∗ ∼=

1
F∗.

2.2. Hochschild cohomology

We repeat some background material in order to fix our notation. Let A be a Banach
algebra and let M be a Banach A-bimodule. The Hochschild cochain complex is

0 → C0(A, M) δ−→ C1(A, M) δ−→ C2(A, M) δ−→ · · · , (2.1)

where, for each n ∈ Z+, Cn(A, M) is the Banach space of all bounded n-linear maps from
A to M , and the coboundary operator δ : Cn(A, M) → Cn+1(A, M) is given by

(δψ)(a1, . . . an+1) := a1ψ(a2, . . . , an+1) +
n∑

j=1

(−1)jψ(a1, . . . , ajaj+1, . . . , an+1)

+ (−1)n+1ψ(a1, . . . , an)an+1.
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We denote the kernel of δ : Cn(A, M) → Cn+1(A, M) by Zn(A, M) and the range of δ :
Cn−1(A, M) → Cn(A, M) by Bn(A, M). The quotient vector space Zn(A, M)/Bn(A, M)
is the nth cohomology group of A with coefficients in M , denoted by Hn(A, M).

The case where M = A′ merits special attention. If Hn+1(A, A′) = 0 for all n � 1, we
say that A is simplicially trivial.

For most of this paper A will be the �1-convolution algebra of a discrete group G.
There is a canonical one-dimensional �1(G)-module, denoted by Cε, corresponding to
the augmentation character on G: we shall sometimes refer to Hn(�1(G), Cε) as the nth
bounded cohomology group of G.

Although we do not require much of the machinery of Ext we shall assume familiarity
with at least its basic definition and its relation to Hochschild cohomology, as can be found
in [5, § III.4]. Central to the machinery developed in [5] is the notion of an admissible
resolution or complex. It is convenient (though, as was pointed out to us by the referee,
not essential) to have a more precise notion defined. We thank the referee for advice
regarding the following terminology, which is modelled on that in [5, § III.1].

Definition 2.2. Let 0 ← E0
d0←− E1

d1←− · · · be a chain complex of Banach spaces and
continuous linear maps. We say that the complex E∗ is 1-contractible in Ban if there exist
contractive linear maps sj : Ej → Ej+1, j � 0, such that d0s0 = id and sj−1dj−1+djsj =
id for all j � 1.

The point of introducing ‘1-contractibility’ explicitly is that it has good stability prop-
erties. For instance, we have the following simple observation, whose proof we omit as it
is straightforward.

Lemma 2.3. Let I be an index set and let p ∈ [1,∞]. Suppose that for each x ∈ I we
have a 1-contractible chain complex

0 ← E0(x)
dx
0←− E1(x)

dx
1←− · · ·

in Ban, such that for each n we have supx∈I ‖dx
n‖ < ∞. Then the �p-sum

0 ←
[p]⊕
x∈I

E0(x) d0←−
[p]⊕
x∈I

E1(x) d1←− · · ·

is also a 1-contractible complex, and is, in particular, exact.

Remark 2.4. Without the 1-contractible condition, the �p-sum of a family of con-
tractible chain complexes need not even be exact: we shall return to this point in § 3.

3. Augmentation ideals

The original version of the following lemma was stated in the special case of augmentation
ideals in discrete group algebras (the author thanks N. Grønbæk for pointing out that a
more general result holds).
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Lemma 3.1. Let A be a unital Banach algebra which has a character ϕ : A → C and
let I = ker(ϕ). Then the following are equivalent:

(i) I is simplicially trivial;

(ii) Hn(A, I ′) = 0 for all n � 1;

(iii) for each n � 1, the canonical map Hn(A, Cϕ)
ϕ∗

−−→ Hn(A, A′) that is induced by the
inclusion C → A′, 1 �→ ϕ, is a topological isomorphism.

Proof. The implications (i) ⇐⇒ (ii) are immediate from the observation that A ∼=
I# and the fact (see [5, Exercise III.4.10] or [6, Chapter 1]) that Hn(B#, M) ∼= Hn(B, M)
for any Banach algebra B and Banach B-bimodule M , where B# denotes the forced
unitization of B.

To obtain the implications (ii) ⇐⇒ (iii), consider the long exact sequence of cohom-
ology associated with the short exact sequence 0 → Cϕ → A′ → I ′ → 0, namely

· · · → Hn(A, Cϕ)
ϕ∗

−−→ Hn(A, A′)
ρ−→ Hn(A, I ′) → Hn+1(A, Cϕ) → · · ·

We claim that the map H0(A, A′)
ρ−→ H0(A, I ′) is surjective. If this is true, then our long

exact sequence has the form

0 → H1(A, Cϕ)
ϕ∗

−−→ H1(A, A′)
ρ−→ H1(A, I ′) → H2(A, Cϕ) → · · ·

and the equivalence of (ii) and (iii) now follows from [5, Lemma 0.5.9]. Hence, it remains
only to justify our claim.

For any A-bimodule X, H0(A, X) is just the centre Z(X) of X, so that ρ : Z(A′) →
Z(I ′) is given by the restriction of a trace on A to the ideal I. It therefore suffices to
show that every element of Z(I ′) extends to a trace on A. But this is easy: if ψ ∈ I ′ and
ψ · a = a · ψ for all a ∈ A, then the functional a �→ ψ(a − ϕ(a)1A) gives such a trace, and
the proof is complete. �

We now specialize to group algebras. Throughout the paper, G will denote a discrete
group, �1(G) its convolution algebra and I0(G) the augmentation ideal in �1(G), that
is, the kernel of the augmentation character ε which sends each standard basis vector of
�1(G) to 1.

Definition 3.2. A group G is said to be commutative–transitive if each element of
G \ {1G} has an abelian centralizer.

It is not immediately clear that there exist any non-abelian, infinite, commutative–
transitive groups: examples can be found in [8, Chapter 1] (see in particular the remarks
after Proposition 2.19). Let us just mention one family of examples.

Theorem 3.3 (Gromov [3]; see also [1, Proposition 3.5]). Any torsion-free
word-hyperbolic group is commutative–transitive.
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The arguments given for this in [3] are scattered over several sections and are not easily
assembled into a proof. The simplest and clearest account appears in [1, Chapter 3].
(I thank K. Goda for drawing these notes to my attention.)

Remark 3.4. It is often observed that direct products of hyperbolic groups need not
be hyperbolic, the standard example being F2 × F2, where F2 denotes the free group
on two generators. In the current context it is worth pointing out that clearly F2 × F2

is not commutative–transitive (since the centralizer of (1, x) always contains a copy of
F2 × {1}).

Theorem 3.5. Let G be a commutative–transitive, discrete group. Then, for each
n � 1, Hn(�1(G), I0(G)′) = 0.

The key to the proof is the following well-known idea: when we pass to a conjugation
action, I0(G) decomposes as an �1-direct sum of modules of the form �1(Clx), where Clx

denotes the conjugacy class of x. Hence, there is an isomorphism of cochain complexes

C∗(�1(G), I0(G)′) ∼=
1

[∞]⊕
x∈I

C∗(�1(G), �1(Clx)′), (3.1)

where I is a set of representatives for each conjugacy class in G \ {1G}. Our theorem will
now follow from a computation of the cohomology of the complex on the right-hand side
of (3.1).

For each summand on the right-hand side of (3.1), the cohomology groups can be
reduced to certain bounded cohomology groups: more precisely, it is observed in [10]
that for each x there are isomorphisms

H∗(�1(G), �1(Clx)′) ∼= Ext∗
�1(G)(�

1(Clx), C)
∼= Ext∗

�1(Cx)(C, C)
∼= H∗(�1(Cx), C), (3.2)

where Cx denotes the centralizer of x. It is implicitly claimed in [9, Corollary 3.7] that
the cohomology of the cochain complex

[∞]⊕
x∈I

C∗(�1(G), �1(Clx)′)

is isomorphic to
[∞]⊕
x∈I

H∗(�1(G), �1(Clx)′).

If this were the case, then Theorem 3.5 would follow immediately from (3.2). However,
the justification given in [9] for this supposed isomorphism is insufficient, because it is
not in general true that the cohomology of an �∞-sum is the �∞-sum of the cohomology
of the summands (see the remarks at the end of § 2).
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Remark 3.6. In the special case where G is commutative–transitive, each Cx is
abelian, hence amenable, and so for each x the cochain complex C∗(�1(Cx), C) has a
contractive linear splitting. Hence, for such G, in order to deduce that the cochain com-
plex

[∞]⊕
x∈I

C∗(�1(G), �1(Cx)′)

splits, it would suffice to prove that the isomorphisms of (3.2) are induced by chain
homotopies with norm control independent of x. This is implicitly done in [10, § 4], but
only for second-degree cohomology.

Rather than follow the approach outlined in Remark 3.6, we instead generalize the
argument sketched in the final section of [10], so that it applies to any left G-set S

(i.e. we drop their hypothesis that the action is transitive). Since our hypotheses are
weaker, we are not able to deduce an isomorphism of cohomology groups as in [10];
however, our weaker conclusion suffices to prove Theorem 3.5.

4. Disintegration over stabilizers

The promised generalization is as follows.

Theorem 4.1. Let G be a discrete group acting from the left on a set S and let
S =

∐
x∈I

Orbx be the partition into G-orbits. Let Hx := StabG(x).
Regard �1(S) as a Banach �1(G)-bimodule with left action given by the G-action on

S and right action given by the augmentation action (x, g) �→ x. Then, for each n, the
Hochschild cohomology group Hn(�1(G), �1(S)′) is topologically isomorphic to the nth
cohomology group of the complex

0 →
[∞]⊕
x∈I

C0(�1(Hx), C) →
[∞]⊕
x∈I

C1(�1(Hx), C) → · · · .

Corollary 4.2. Let G, S be as above, and assume that each stabilizer subgroup Hx

is amenable. Then Hn(�1(G), �1(S)′) = 0 for all n � 1.

Proof of corollary. Since each Hx is amenable, the cochain complex C∗(�1(Hx), C)
admits a contractive linear splitting in degrees 1 and above. Therefore, the chain complex

[∞]⊕
x∈I

C∗(�1(Hx), C)

is also split in degrees 1 and above by linear contractions, and is, in particular, exact in
degree n. Now apply Theorem 4.1. �

Proof of Theorem 3.5, assuming Corollary 4.2. By adapting the remarks pre-
ceding [6, Theorem 2.5], it is straightforward to show that

Hn(�1(G), I0(G)′) ∼= Hn(�1(G), (I0(G)◦)′),
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where I0(G)◦ is the �1(G)-bimodule with underlying space I0(G) but with trivial right
action and the conjugation left action.∗

Let S = G \ {1G}, which may be regarded as a left G-set via conjugation action. Then
the �1(G)-module �1(G)◦ decomposes into a module-direct sum C ⊕ �1(S), where C is
the point module with trivial action. Composing the truncation map �1(G) → �1(S) with
the inclusion map I0(G) → �1(G) gives a linear isomorphism I0(G) → �1(S), and this is
also a G-module map (for the conjugation action). So for this action I0(G)◦ ∼= �1(S) as
G-modules, and therefore

Hn(�1(G), I0(G)′) ∼= Hn(�1(G), �1(S)′).

Write S as the disjoint union S =
∐

x∈I
Clx of conjugacy classes. The corresponding

stabilizer subgroups are precisely the centralizers Cx of each x ∈ I; since G is assumed to
be commutative–transitive and 1G /∈ S, each Cx is commutative (hence amenable) and
applying Corollary 4.2 completes the proof. �

The proof of Theorem 4.1 is broken into a succession of small lemmas: each is to some
extent standard knowledge, but for our purposes we need to make explicit certain uniform
bounds and linear splittings for which I can find no precise reference. To do the requisite
bookkeeping, we take a functorial viewpoint.

Notation

The projective tensor product of Banach spaces E and F will be denoted by E ⊗̂ F .
Given a unital Banach algebra B, we denote by Bunmod the category whose objects

are unit-linked, left Banach B-modules and whose morphisms are the B-module maps
between them. Ban is the category of Banach spaces and bounded linear maps (equiva-
lently, Ban ≡ Cunmod).

For such a B there are two canonical functors: the ‘forgetful functor’ U : Bunmod →
Ban, which sends a module to its underlying Banach space; and the ‘free functor’ B ⊗̂ · :
Ban → Bunmod, which sends a Banach space E to the left B module B ⊗̂ E.

If B is a Banach algebra, M is a right Banach B-module and N a left Banach B-module,
we write M ⊗̂

B
N for the Banach tensor product of M and N over B (see [5, § II.3.1] for

the definition and basic properties).

Definition 4.3. Let B, C be unital Banach algebras and let F and G be functors
Bunmod → Cunmod. We say that F and G are isometrically isomorphic if there is a
natural isomorphism α : F → G such that, for each M ∈ Bunmod, the morphism αM :
F(M) → G(M) is an isometry as a map between Banach C-modules.

∗ In fact, there is a continuous chain isomorphism Θ∗ from C∗(�1(G), I0(G)′) to C∗(�1(G), (I0(G)◦)′),
given by

(Θnψ)(g1, . . . , gn) = (g1 . . . gn)−1 · ψ(g1, . . . , gn),

where ψ ∈ Cn(�1(G), I0(G)′) and g1, . . . , gn ∈ G. This formula differs slightly from those in [6, § 2],
because we wish to reduce to the case of cohomology coefficients with augmentation action on the left,
rather than on the right as in [6]. The two viewpoints are essentially equivalent but, rather than convert
between the two, it is simpler to verify that Θ∗ is a chain map and that each Θn is an isomorphism of
Banach spaces.
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Remark 4.4. Let B be a Banach algebra and let E∗ be a chain complex in Bunmod.
If F and G are isometrically isomorphic functors from Bunmod to Ban, then the chain
complexes F(E∗) and G(E∗) are isometrically isomorphic. In particular, if F(E∗) is
1-contractible then so is G(E∗).

Lemma 4.5 (factorization of functors). Let A be a unital Banach algebra and let
B ⊆ A be a closed subalgebra that contains 1A. Regard A as a right B-module via the
inclusion homomorphism B ↪→ A. Then

(i) we have a natural isometric isomorphism of functors

A ⊗̂
B
(B ⊗̂ ·) ∼=

1
A ⊗̂ ·,

where B ⊗̂ · and A ⊗̂ · are the free functors from Ban (to Bunmod and Aunmod
respectively),

(ii) we have a natural isometric isomorphism of functors

B Hom(·, C) ∼=
1

A Hom
(
A ⊗̂

B
·, C

)
,

where both sides are functors Bunmod → Ban.

The proof is clear (the analogous statements without the qualifier ‘isometric’ are essen-
tially given in, for instance, [5, § II.5.3]).

In what follows, given an indexing set I (such as discrete group, or coset space) the
standard unit basis of �1(I) will be denoted by (ex)x∈I; thus, ex is the function which
sends x to 1 and all other elements of I to 0. We shall also abuse notation slightly, to
make some of the formulae more legible: if H is a subgroup of G and M and N are,
respectively, right and left Banach �1(H)-modules, then we shall write M ⊗̂

H
N for the

Banach tensor product of M and N over �1(H).

Lemma 4.6 (a little more than flatness). Let H be any subgroup of G and let
G/H = {gH : g ∈ G} be the space of left cosets. Then we have a (natural) isometric
isomorphism of functors

UG(�1(G) ⊗̂
H

·) ∼=
1

�1(G/H) ⊗̂(UH ·),

where UG and UH are the forgetful functors to Ban (from the categories �1(G)unmod and
�1(H)unmod, respectively).

Proof. Choose a transversal for G/H, that is, a function τ : G/H → G such that
τ(J ) ∈ J for all J ∈ G/H. (Equivalently, τ(J )H = J for all J ). This transversal yields
a function η : G → H such that

g = τ(gH) · η(g) for all g ∈ G.

Note that η(gh) = η(g) · h for every g ∈ G and h ∈ H.
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If E is a unit-linked left �1(H)-module, define a contractive linear map �1(G) ⊗̂ E →
�1(G/H) ⊗̂ E by eg ⊗̂ v �→ egH ⊗ (η(g) · v). This map factors through the quotient map

q : �1(G) ⊗̂ E → �1(G) ⊗̂
H

E,

and so induces a linear contraction

TE : �1(G) ⊗̂
H

E → �1(G/H) ⊗̂ E,

where
TE

(
eg ⊗

H
v
)

:= egH ⊗(η(g) · v).

On the other hand, the composite map

RE : �1(G/H) ⊗̂ E
τ ⊗̂ idE−−−−−→ �1(G) ⊗̂ E

q−→ �1(G) ⊗̂
H

E

is a linear contraction, defined by the formula

R(eJ ⊗ v) := eτ(J ) ⊗
H

v.

RE is the composition of two maps which are natural in E, and hence is itself natural in E.
Direct checking on elementary tensors shows that RE and TE are mutually inverse maps.
Hence, R is a natural, isometric isomorphism from UG(�1(G) ⊗̂

H
·) to �1(G/H) ⊗̂(UH ·) as

required. �

Lemma 4.7. Let X be a left Banach �1(G)-module. Regard it as an �1(G)-bimodule
Xε by defining the right G-action on X to be trivial (i.e. augmentation). Then for all n

there is a topological isomorphism

Hn(�1(G), X ′
ε) ∼= Extn

�1(G)(X, C).

Proof. This is a special case of the isomorphisms

H∗(A,L(E, F )) ∼= Ext∗
Ae(A,L(E, F )) ∼= Ext∗

A(E, F )

valid for any unital Banach algebra A and any left Banach A-modules E and F (see [5,
Theorem III.4.12]). �

Lemma 4.8. Fix a Banach algebra A and an index set I; for each x ∈ I let 0 ←
M0(x) ← M1(x) ← · · · be a chain complex of contractive left Banach A-modules and
continuous A-module maps.

Suppose that, for each n ∈ N, the family of linear maps (Mn(x) → Mn−1(x))x∈I

is uniformly bounded. Then, for every left Banach A-module N , there is an isometric
isomorphism of chain complexes

A Hom
( [1]⊕

x∈I

M∗(x), N
)

∼=
[∞]⊕
x∈I

A Hom(M∗(x), N).
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Outline of the proof. Let n � 0. Given

ψ :
[1]⊕
x

Mn(x) → N,

define ψy : Mn(y) → N to be the map obtained by restricting ψ to the embedded copy
of Mn(y). Then (ψy)y∈I is a well-defined element of

[∞]⊕
y∈I

A Hom(Mn(y), N).

It is then straightforward to check that the function θn : ψ �→ (ψy)y∈I is an isometric
linear isomorphism, and that the maps θn assemble to form a chain map. �

Proof of Theorem 4.1. First observe that, by Lemma 4.7, there is a topological
isomorphism

Hn(�1(G), �1(S)′) ∼= Extn
�1(G)(�

1(S), C).

Since Ext may be calculated up to topological isomorphism using any admissible pro-
jective resolution of the first variable, it therefore suffices to construct an admissible
�1(G)-projective resolution 0 ← �1(S) ← P0 ← P1 ← · · · with the following property:

(∗) the cochain complex 0 → �1(G) Hom(P∗, C) is topologically isomorphic to

0 →
[∞]⊕
x∈I

C∗(�1(Hx), C).

We do this as follows. For each x ∈ I, let 0 ← C ← P∗(x) denote the one-sided bar
resolution of C by left �1(Hx)-projective modules, i.e.

0 ← C
εx←− �1(Hx)

dx
0←− �1(Hx)⊗̂ 2 dx

1←− · · · ,

where εx is the augmentation character and dx
n : �1(Hx)⊗̂ n+2 → �1(Hx)⊗̂ n+1 is the

�1(Hx)-module map given by

dx
n(eh(0) ⊗ · · · ⊗ eh(n+1)) =

n∑
j=0

(−1)jeh(0) ⊗ · · · ⊗ eh(j)h(j+1) ⊗ · · · ⊗ eh(n+1)

+ (−1)n+1eh(0) ⊗ · · · ⊗ eh(n)

for h(0), h(1), . . . , h(n + 1) ∈ Hx. The complex 0 ← C ← P∗(x) is 1-contractible in Ban
(one can take as splitting homotopy the sequence (sn) defined by sn : w �→ e1 ⊗ w, where
1 is the identity element of G), and applying �1(G/Hx) ⊗̂ · to it also yields a 1-contractible
complex in Ban. Therefore, by Lemma 4.6 and Remark 4.4, the chain complex

0 ← �1(G/Hx) ε̃x←− �1(G) ⊗̂
Hx

P0(x)
d̃x
0←− �1(G) ⊗̂

Hx

P1(x)
d̃x
1←− · · · (4.1)
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is 1-contractible as a complex in Ban. Here, we have written ε̃x for the �1(G)-module
map

�1(G) ⊗
Hx

εx,

and d̃x
n for the �1(G)-module map

�1(G) ⊗
Hx

dx
n.

For each n � 0 let Pn be the left Banach �1(G)-module

Pn :=
[1]⊕
x∈I

�1(G) ⊗̂
Hx

Pn(x);

write ε̃ for the �1-sum of all the ε̃x, and define d̃n similarly for each n � 0. As the �1-sum
of 1-contractible complexes is 1-contractible (by Lemma 2.3), the complex of Banach
�1(G)-modules

0 ←
[1]⊕
x∈I

�1(G/Hx) ε̃←− P0
d̃0←− P1

d̃1←− · · · (4.2)

is 1-contractible as a complex in Ban. There is an isomorphism of �1(G)-modules

�1(S) = �1
( ∐

x∈I

Orbx

)
∼=
1

[1]⊕
x∈I

�1(Orbx) ∼=
1

[1]⊕
x∈I

�1(G/Hx),

where in the last step we identified the orbit of x with the coset space G/Hx via the
correspondence g ·x ↔ gHx. Hence, 0 ← �1(S) ← P∗ is an admissible complex of Banach
�1(G)-modules.

Moreover, for each x ∈ I and n � 0, Lemma 4.5 provides an isometric isomorphism of
left �1(G)-modules

�1(G) ⊗̂
Hx

Pn(x) ∼=
1

�1(G) ⊗̂ �1(Hx)⊗̂ n,

and taking the �1-direct sum over all x yields isometric isomorphisms of left �1(G)-
modules

Pn =
[1]⊕
x∈I

�1(G) ⊗̂
Hx

Pn(x) ∼=
1

[1]⊕
x∈I

�1(G) ⊗̂ �1(Hx)⊗̂ n ∼=
1

�1(G) ⊗̂

( [1]⊕
x∈I

�1(Hx)⊗̂ n

)
,

from which we see that each Pn is free, and hence projective, as an �1(G)-module.
Combining the previous two paragraphs we see that 0 ← �1(S) ← P∗ is an admissible

resolution of �1(S) by �1(G)-projective modules.
It remains to verify the condition (∗). Observe that, for each x,

�1(Hx) Hom(P∗(x), C) ∼=
1

C∗(�1(Hx), C);
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hence, by Lemma 4.5 we have

C∗(�1(Hx), C) ∼=
1

�1(G) Hom
(
�1(G) ⊗̂

Hx

P∗(x), C
)
,

and taking the �∞-sum over all x yields

[∞]⊕
x∈I

C∗(�1(Hx), C) ∼=
1

[∞]⊕
x∈I

�1(G) Hom
(
�1(G) ⊗̂

Hx

P∗(x), C
)

∼=
1

�1(G) Hom(P∗, C),

where for the last isomorphism we applied Lemma 4.8. �

Remark 4.9. The proof of Theorem 4.1 does not require the full force of 1-
contractibility: given Lemmas 4.5–4.8, it suffices to know only that for each x the one-
sided bar resolution of C as a left �1(Hx)-module admits a contracting homotopy (in Ban),
whose constituent splitting maps are in each fixed degree n bounded by some constant
independent of x. (The author thanks the referee for this observation.)

However, it is no easier to show that the bar resolution has such a property of ‘uniformly
bounded contractibility’ than to show that it is 1-contractible in our sense. Since it is the
author’s belief that the notion of 1-contractibility for chain complexes has good stability
properties which turn out to be useful, we have chosen to focus on this property. It would
be interesting to know if it fails in situations where a more general notion of ‘degreewise
uniform contractibility’ is successful.

5. Corollaries and closing remarks

Corollary 5.1. Let G be a commutative–transitive, discrete group. Then I0(G) is
simplicially trivial.

Proof. This is immediate from combining Lemma 3.1 and Theorem 3.5. �

Remark 5.2. Recalling that biflat Banach algebras are simplicially trivial, it is natural
to enquire if our result might follow from biflatness of I0(G). To see that this is not always
the case, observe that if I0(G) is biflat, then H2(I0(G), Cann) = 0 by [11, Theorem 4.13],
while it is known that

H2(I0(F2), Cann) ∼= H2(�1(F2), C) �= 0.

While it is known that I0(G) is amenable if and only if G is, there appears to be no
analogous characterization of precisely when I0(G) is biflat.

Question. Let G be a discrete group. If I0(G) is biflat, is G amenable?
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Remark 5.3. We remarked earlier that F2 × F2 is not commutative–transitive. The
arguments above show that I0(F2 ×F2) is not simplicially trivial, since its second simpli-
cial cohomology will contain a copy of the second bounded cohomology of C(x,1), where
x ∈ F2 \ {1}. (To see that H2(�1(C(x,1)), C) is non-zero, observe that C(x,1)

∼= Cx × F2

is the direct product of a commutative group with F2, and hence has the same bounded
cohomology as F2; by [6, Proposition 2.8], H2(�1(F2), C) �= 0.)

The question of what happens for augmentation ideals in non-discrete, locally compact
groups is much trickier to solve since measure-theoretic considerations come into play.
Johnson and White have shown [7] that the augmentation ideal of PSL2(R) is not even
weakly amenable; in contrast, PSL2(Z) is known to be commutative–transitive and so
by our results its augmentation ideal is simplicially trivial.
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