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Abstract
We investigate the threshold behaviour of transmission resonances and
quasibound states in the multichannel scattering problems of a one-dimensional
(1D) time-dependent impurity potential, and the related problem of a single
impurity in a quasi-1D wire. It was claimed before in the literature that a
quasibound state disappears when a transmission zero collides with the subband
boundary. However, the transmission line shape, the Friedel sum rule, and the
delay time show that the quasibound states still survive and affect the physical
quantities. We discuss the relation between threshold behaviour of transmission
resonances, and quasibound states and their boundary conditions in the general
context of multichannel scatterings.

PACS numbers: 73.23.−b, 03.65.Ge, 73.50.Bk

1. Introduction

Electronic transport properties in quasi-one-dimensional wires have gained much attention,
not only due to scientific interest but also due to practical applications [1]. When an electron
is restricted to a wire, confinement subbands are formed due to quantization of the transverse
momentum. In clean straight wires without impurities the modes of the subbands decouple,
which results in a perfectly quantized conductance. However, the modes (including evanescent
ones) mix when impurities are introduced into the wire, and the transport properties show a rich
and non-trivial behaviour. Detailed aspects of the mixing have been extensively investigated
[2–7]. The impurities put into the wire usually give rise to bound states, which can be separated
into two categories: true bound states with real energy and quasibound states with complex
energy. The imaginary part determines the decay rate of the quasibound state.

Even in simple one-dimensional (1D) scattering problems quasibound states are quite
common, for example resonant transmission states through a double barrier [8, 9] and
Ramsauer-like resonances [10] in potential wells. According to the Breit–Wigner theory
[11], for each quasibound state the transmission amplitude possesses a pole in the complex
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energy plane. In multichannel scattering problems another kind of quasibound states can
appear; the Fano-type resonance originally proposed to explain auto-ionization in atomic
physics [12]. When a discrete energy level interferes with a continuum of states, the excitation
spectra become asymmetric. Each subband mode in a quasi-1D wire gives rise to a zero-pole
pair of transmission in the complex energy plane, where the zero occurs on the real energy axis.
As a consequence, there exist transmission zeros, and the zero-pole pairs lead to asymmetric
resonance features [13].

Transport through a time-dependent (mostly periodically oscillating) potential is also a
subject of increasing importance, with a growing number of applications [14–23]. One of
the important features here is that an oscillating potential can transfer an incoming electron
of energy E with finite probability to ‘Floquet’ sidebands at E ± nh̄ω, where n is an integer
and ω is the angular frequency of the oscillation. Even though this corresponds to an inelastic
scattering, the process is coherent and non-dissipative. Hence, it can still be regarded as a
multichannel scattering problem as in the quasi-1D case, with the sidebands being analogous
to the subbands. However, from the physical point of view, the Fano-type quasibound states
of the periodically oscillating impurity are somewhat different from those of quasi-1D system
[24]. If a bound state exists due to an attractive static potential added to the oscillating
potential, electrons in the incident channel can emit photons and drop to the bound state, and
similarly electrons in the bound state can absorb photons and jump to the incident channel. A
transmission resonance takes place when the energy difference between the incident channel
and the bound state is equal to the energy of one or more photons of the oscillating potential.
Even without bound states transmission resonances such as these can occur.

The multichannel subbands in the quasi-1D case and the Floquet sidebands in the
oscillating potential case divide the complex energy plane into sub-domains with appropriate
boundary conditions for the quasibound states. Upon varying an external parameter such as
the strength of the impurity potential, the quasibound states change their location in complex
energy plane. In the literature [20] it was claimed for the oscillating impurity that the
quasibound state vanishes when the transmission zero collides with the sub-domain boundary
and disappears. However, as we will demonstrate, the transmission line shape, the Friedel
sum rule, and the delay time show that the quasibound states do not disappear abruptly. This
clarifies the relation between threshold behaviour of transmission resonances, and quasibound
states and their boundary conditions in the general context of multichannel scatterings.

In section 2, we briefly summarize our findings about the transmission resonances and
quasibound states. In section 3, we investigate the characteristics of quasibound states in the
scattering problem with a 1D oscillating delta-function impurity, and discuss Friedel sum rule
and Wigner delay time. In section 4, we study our second example, the scattering from a static
delta-function impurity in a quasi-1D wire. Finally, we conclude our paper in section 5.

2. Boundary conditions of quasibound states in multichannel scattering

In this section we summarize the main finding of this paper, which will be further illustrated
in sections 3 and 4. The transmission coefficient tmn(E) relates the incoming wave ψin

n to the
scattered wave ψsc

m by

ψsc
m (E) = tmn(E)ψin

n . (1)

The resonance energies are found by locating the poles of tmn(E), namely

1

tmn(ER − iEI)
= 0. (2)
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The poles of tmn(E) occur at complex energies E = ER − iEI . At these complex energies,
a scattered wave can be produced even if no incident wave is present. When we choose
the sign convention of time as exp(−iEt/h̄), EI must be positive for the system to be
stable. In the Breit–Wigner case [11] the transmission near the quasibound state is given by
t (E) ∼ 1/[E − (ER − iEI)], where the pole in complex energy plane completely determines
the transmission line shape.

The poles can also be found by solving the wave equation with the appropriate boundary
conditions of only outgoing waves. This can be described by the following linear equation

M

(
ψl

out

ψr
out

)
= 0. (3)

Here M is the matrix of wave-matching conditions, and ψl
out and ψr

out are the left and the right
outgoing wave vectors, respectively. The matrix M contains the wave number k as a function
of energy E. For real E the wave number k is given by k = √

2µE/h̄, where µ is the mass.
For complex energies, we have to choose the sign of the square root carefully. Considering
the general relation [25]

√
α + iβ = ±




√
α +

√
α2 + β2

2
+ i

β

|β|

√
−α +

√
α2 + β2

2


 (4)

provided that β �= 0, we obtain√
ER − iEI = ±(kR − ikI ) (5)

where by definition EI , kR and kI are positive. The real energy ER > 0 for propagating states,
and ER < 0 for evanescent states. The correct choice of the sign in equation (5) depends
on the analytical continuation based on the physical constraints on the real energy axis. For
EI = 0 the following relation should be satisfied,√

ER =
{
kR ER > 0
ikI ER < 0

(6)

where both kR and kI are still positive. The choice of sign for propagating states corresponds
to the choice of the negative sign for kI (i.e. the positive sign for kR), and follows from the
propagating direction of the plane wave far from the scatterer. For evanescent states, the
positive sign for kI must be chosen in order to avoid divergence of the solution in space.

It is worth noting that the ‘+’ sign corresponds to the decaying wave exp(ikRx −
kIx) exp(−iERt/h̄−EI t/h̄) while the ‘−’ sign corresponds to the diverging wave exp(ikRx +
kIx) exp(−iERt/h̄ − EI t/h̄), with x > 0. The physical reason of the exponential divergence
of the channels with positive real energy is a retardation effect; the wave at x � 1 has
propagated away from the impurity where it originated at a time �t ≈ x/v in the past,
where v is the velocity of the wave. However, at that earlier time the amplitude of the wave
at the impurity was larger by a factor exp(EI�t/h̄). This corresponds to exp(kI x) since
(ER − iEI)/h̄ � v(kR − ikI )/2 [26].

For multichannel scattering, the wave numbers are given by

kn = ±
√

ER − En − iEI (7)

where En represents the quantized energy of a transverse mode in the quasi-1D case (n =
1, 2, 3, . . .) and is equal to nh̄ω in the 1D oscillating potential case (n = . . . ,−1, 0, 1, . . .).
We order the En by magnitude and denote by n∗ the special value of n which satisfies
En∗ < ER < En∗+1.
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Figure 1. (a) Schematic diagram for possible motion of quasibound states in the complex energy
plane. En and Dn denote subband threshold energies and domains, respectively. (b) Schematic of
the proper Riemann surface R of the domain Dn∗ in the complex energy plane. The circles and the
peaks represent the transmission zeros and the quasibound states (or poles), respectively.

In order to satisfy the physical conditions for the signs of kn mentioned above, for n � n∗

the ‘−’ sign should be chosen for Im kn, and for n > n∗ the ‘+’ sign, which corresponds to
the selection of a certain Riemann sheet for evaluating the complex square root function. This
choice of the signs will be called proper Riemann sheet since this set of signs corresponds to
the correct analytical continuation from the real energy axis. In order to represent the Riemann
sheet through the signs of Im k such as in our convention, the square root functions should
have their branch cuts on the real axis starting from the branch points and extending to the
positive infinity. In general, the notion Riemann sheet depends on the choice of a branch cut.
However, this choice of the branch cut cannot affect physical results, because it is only a way
to label the projection of the Riemann sheets onto the complex plane.

We introduce a labelling for the Riemann sheets by the vector of signs of the square root
function. In this notation the proper Riemann sheet is represented by (. . . ,−,−,�, +, +, . . .),
which implies ‘−’ for Im kn∗−2, ‘−’ for Im kn∗−1, ‘−’ for Im kn∗ , ‘+’ for Im kn∗+1, and ‘+’ for
Im kn∗+2, and � has been used to indicate the sign of n∗. We also call the regions of complex
energies separated by the quantized energies En ‘domains’, e.g. Dn represents the region
with En < ER < En+1 as shown in figure 1(a).

As a parameter of the scattering potential such as its strength is varied, the locations of
the poles change continuously and sometimes can collide with the boundary of the initial
domain. We can trace the pole into the neighbouring domain through the boundary, for
example from Dn∗ to Dn∗−1 in figure 1(a). In fact, the trajectory of the pole across the
boundary is continuous and smooth once we use the same Riemann sheet as that used in Dn∗ ,
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i.e. (. . . ,−,−,�, +, +, . . .). However, this does not correspond to the proper Riemann sheet
(. . . ,−,−,⊕, +, +, . . .) in this new domain Dn∗−1 since the inequality En∗ < ER is violated.
Thus, the solution obtained in Dn∗−1 using the proper Riemann sheet of Dn∗ does not have
any physical meaning in the domain Dn∗−1 (more precisely on the real axis of Dn∗−1), but still
can influence physics on the real axis of Dn∗ , especially when the resonance is broad. Let us
emphasize that only the branch points, En, play an important role in the threshold behaviour of
transmission resonances, but not the placement of the cuts. Physics is in the choice of signs on
the real energy axis, equation (5). This situation is summarized schematically in figure 1(b),
which shows that only small part of the proper Riemann sheet of Dn∗ , i.e. En∗ < ER < En∗+1,
is attached to the real energy axis. Since in either Dn∗−1 or Dn∗+1 the quasibound state
can survive on the proper Riemann sheet of Dn∗ , it can still affect the physics in the region
En∗ < ER < En∗+1, but has no effect on other parts of real axis. In the following sections we
discuss two examples.

3. 1D delta-function impurity with time dependence

As the first example we investigate a 1D scattering problem with a delta-function impurity
oscillating at frequency ω. This problem was studied before by Bagwell and Lake [4], who
calculated electron transmission and discussed transmission resonances. Recently, Martinez
and Reichl [20] have investigated this problem and found the existence of nonresonant bands in
the transmission amplitude as a function of the strength of the potential and driving frequency.
They observed a periodic behaviour of the conductance as a function of the scattering strength
and of the oscillation frequency of the scatterer.

3.1. Scattering matrix formulation

The system is described by the Hamiltonian

H(x, t) = − h̄2

2µ

d2

dx2
+ [Vs + Vd cos(ωt)]δ(x) (8)

where the µ is the mass of an incident particle, and Vs and Vd represent the strength of the
static and the oscillating potential, respectively. Using the Floquet formalism [27] the solution
of this Hamiltonian can be expressed as

�EFl
(x, t) = e−iEFl t/h̄

∞∑
n=−∞

ψn(x) e−inωt (9)

where EFl is the Floquet energy which takes continuous values in the interval 0 < EFl � h̄ω.
Since the potential is zero everywhere except at x = 0, ψn(x) is given by the following

form,

ψn(x) =
{
An eiknx + Bn e−iknx x < 0
Cn eiknx + Dn e−iknx x > 0

(10)

where kn = √
2µ(EFl + nh̄ω)/h̄. The wavefunction �EFl

(x, t) is continuous at x = 0,

An + Bn = Cn + Dn (11)

and the derivative jumps by

d�EFl

dx

∣∣∣∣
x=0+

− d�EFl

dx

∣∣∣∣
x=0−

= 2m

h̄2 [Vs + Vd cos(ωt)]�EFl
(0, t). (12)
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Using equation (9) this leads to the condition

ikn(Cn − Dn − An + Bn) = γs(An + Bn) + γd(An+1 + An−1 + Bn+1 + Bn−1) (13)

= γs(Cn + Dn) + γd(Cn+1 + Cn−1 + Dn+1 + Dn−1) (14)

where γs = 2µVs/h̄
2 and γd = µVd/h̄

2. After some algebra we have the following equation
from equations (11), (13) and (14),( �B

�C

)
=

(−(I + 	)−1	 (I + 	)−1

(I + 	)−1 −(I + 	)−1	

) ( �A
�D

)
(15)

where

	 =




. . .
. . . 0 0 0

γd/ik−1 γs/ik−1 γd/ik−1 0 0

0 γd/ik0 γs/ik0 γd/ik0 0

0 0 γd/ik1 γs/ik1 γd/ik1

0 0 0
. . .

. . .




(16)

and I is an infinite-dimensional square identity matrix. Equation (15) can also be expressed
in the form |out〉 = M |in〉, where M connects the input coefficients to the output
coefficients including the associated evanescent Floquet sidebands. In order to construct
the scattering matrix we multiply an identity to both sides, K−1K |out〉 = MK−1K |in〉,
where Knm = √

knδnm. Then we have �J out = M̄ �J in, where �J represents the amplitude of
probability flux and M̄ ≡ KMK−1. It should be mentioned that M̄ is not unitary due to the
evanescent modes included.

If we keep only the propagating modes, we obtain the unitary scattering matrix S [21, 24],
which can be expressed in the following form,

S =




r00 r01 · · · t ′00 t ′01 · · ·
r10 r11 · · · t ′10 t ′11 · · ·
...

...
. . .

...
...

. . .

t00 t01 · · · r ′
00 r ′

01 · · ·
t10 t11 · · · r ′

10 r ′
11 · · ·

...
...

. . .
...

...
. . .




(17)

where rnm and tnm are the reflection and the transmission amplitudes, respectively, for modes
incident from the left; r ′

nm and t ′nm are similar quantities for modes incident from the right.
From S we can obtain the total transmission coefficient for the propagating mode entering in
the mth channel,

Tm(EFl) =
∞∑

n=0

|tnm|2 . (18)

Figure 2 shows the transmission coefficient T as a function of ε for various values of
a dimensionless potential strength ad , where ε = E/h̄ω (E is the kinetic energy of the
incident particle) and ad = µV 2

d

/
8h̄3ω. We exploit the relation T (E) = Tm(EFl) where

E = EFl + mh̄ω. For small ad the transmission coefficient shows some signatures of Fano-
type transmission resonance structures (figures 2(a) and (b)) whereas the resonance structure
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Figure 2. Transmission through an oscillating potential for (a) ad = 0.2, (b) ad = 0.6,
(c) ad = 1.0 and (d ) ad = 1.2 with as = 0, where ad and as represent the strength of the
oscillating potential and the static part, respectively (for exact definitions see the text). The inset
in (a) shows the locations of the poles in the complex energy plane for each case.

and transmission zero disappear as we increase ad (figure 2(c)). Although there exists no
transmission zero in figure 2(c), the resonance-like structure (the peak around ε = 0.8) still
remains. For much larger ad the transmission zero reappears from ε = 1. Let us note that
the transmission coefficient has no symmetry of energy translation by mh̄ω since in general
Tm(EFl) �= Tm′(EFl) when m �= m′.

3.2. Quasibound states

In order to obtain quasibound states we apply the same procedure used in the previous
subsection, but with the different boundary conditions, A = 0 and D = 0. Since Bn = Cn

because of the reflection symmetry at x = 0, after little algebra we obtain the linear equation


. . .
. . . 0 0 0

i
√

ad i
√

as +
√

ε − 1 i
√

ad 0 0

0 i
√

ad i
√

as +
√

ε i
√

ad 0

0 0 i
√

ad i
√

as +
√

ε + 1 i
√

ad

0 0 0
. . .

. . .




�C =




...

0

0

0

...




. (19)

Here as = µV 2
s

/
2h̄3ω. We solve equation (19) for given as and ad by using singular value

decomposition [28] and find the complex energies of the quasibound states.
Due to the structure of the matrix in equation (19), if ε′ is a solution of equation (19),

then ε′ + n is also a solution, where n is an integer. We limit ourselves to the energy range
of 0 < εR � 1, which means that the poles are meaningful only in the domain D0. This
constraint determines the signs of the complex square root functions in the diagonal of the
matrix in equation (19) as described in section 2. Using the same notation as that used in
section 2 the signs can be expressed by (. . . , +, +,�,−,−, . . .).

Figure 3(a) shows a trajectory of the quasibound state as ad is varied with as = 0. The
quasibound state of the first branch from the top originates from (1, 0) at ad = 0, moves
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Figure 3. (a) Trajectory of a quasibound state (the full circles) as ad increases. The open circles
represent the trajectory of the quasibound state continued into the neighbouring domains on the
proper Riemann sheet of D0. The quasibound state of the third branch from the top appears from
the real axis at ad � 1.869, and collides with εR = 1 and 0 at ad � 2.325 and 2.935, respectively
(see the text for the first and the second branches). Insets: absolute squares of the solution vectors
�C of equation (19) at ad = 0.5, 1.5 and 2.5 from the top, respectively. (b) Trajectory of quasibound
states as ad increases (as = −0.2). At ad = 0 the quasibound state is located at ε = 0.8 due
to the existence of a bound state, with binding energy εB = 0.2. The quasibound state collides
with εR = 0 at ad � 0.46. A second branch of quasibound states appears from the real axis at
ad � 0.525, and collides with εR = 1 and 0 at ad � 0.645 and 1.22, respectively. Finally, a third
branch appears from the real axis at ad � 1.221, and collides with εR = 1 and 0 at ad � 1.475
and 2.035, respectively.

towards the domain D−1, and crosses the domain boundary εR = 0 at ad � 0.935. The
trajectory of the pole helps to understand the transmission curves in figure 2. The resonance
structure of the transmission follows the pole, as is shown in figure 2 and the inset of
figure 2(a). Since in the system considered here the transmission zero always takes place
on the left of the pole in the real energy direction, it collides with the domain boundary
εR = 1 prior to the pole and disappears first at ad � 0.782. In [20] it is concluded
that the quasibound state vanishes when the transmission zero disappears. Even after the
pole moves out of the domain D0 it still affects the transmission line shape, as shown in
figure 2(c). There is no abrupt change of physical quantities, e.g. the transmissions, the
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Friedel phases and the Wigner delay time (these two will be shown below). The transmission
zero disappears when it collides with the point (0, 0). We can trace the transmission zero even
into the non-physical region εR < 0 by calculating S matrix on the proper Riemann sheet of
D0, although the unitarity of the S matrix is violated.

A quasibound state of a second branch appears from the real axis at ad � 1.032 and
moves to the left. It passes through the domain boundaries εR = 1 at ad � 1.31, while the
transmission zero appears in advance at ad � 1.165 as shown in figure 2(d ). The pole finally
leaves the domain D0 by passing εR = 0 at ad � 1.935. The second branch of the pole exactly
corresponds to the case of the schematic shown in figure 1(b). In fact, one can find more
branches of quasibound states in a regular fashion [20]. It is noted, however, that the branches
qualitatively differ in their solution vectors, i.e. the null space of the matrix of equation (19)
at the energy of quasibound state as shown in the insets of figure 3(a).

Figure 3(b) shows the trajectory of the pole in the case of a delta-function impurity with
an attractive static potential added to the oscillating potential. A similar behaviour as in
figure 3(a) is observed. The shifted starting point from ε = 1 at ad = 0 is ascribed to the
existence of the true bound state of an attractive delta-function potential with binding energy
EB = −µV 2

s

/
2h̄2. The introduction of the static potential has no effect on the signs of the

complex square root functions, i.e. the Riemann sheet, which is clear in equation (19).
An interesting difference takes place in the trajectory of the quasibound states in the

oscillating delta-function impurity when the attractive static potential is present. For small
ad the matrix in equation (19) can be approximated by a 3 × 3 matrix involving only k−1, k0

and k1, which corresponds to single-photon processes (absorption and emission). Using the
results of appendix B of [4] it can be seen that this 3 × 3 matrix is not enough for the case
without a static potential to describe the shift along the real energy axis of the quasibound
states as ad is increased. At least a 5 × 5 matrix is needed to include the shift, which implies
two-photon process. The mathematical reason is the fact that the slope dεI/dεR|ad=0 = ∞
in figure 3(a). On the other hand, in the case with an attractive potential 3 × 3 matrix is
enough to obtain a shift of the pole along the real energy axis, as shown in figure 3(b) because
dεI/dεR|ad=0 has a finite value. With an attractive potential, a bound state already exists, and
the oscillating potential leads to an ac-Stark shift [29] of that energy level. Without a static
potential, however, one photon is needed to generate a bound state, and additional photons are
needed to produce the ac-Stark-like shift.

3.3. Friedel sum rule

The number NB of bound states below an energy Ef (say, the Fermi energy) is related to the
Friedel phase θF = ln Det(S)/2i of the scattering matrix S through the Friedel sum rule [30]
(see also [31])

NB = 1

π
θF (Ef ). (20)

This implies that each bound state contributes π to the Friedel phase. Let us note that the
scattering matrix in equation (17) is given as a function of a Floquet energy εF l (≡EFl/h̄ω)

and the same holds for the Friedel phase, i.e. it is only relevant for 0 � ε < 1. Figures 4(a)
and (b) show Friedel phases as a function of εF l for ad = 0.6 (the pole is located in D0) and
ad = 1.0 (the pole is in D−1), respectively, with as = 0. No abrupt change of the Friedel phase
is observed at the threshold ad � 0.782 of the transmission zero or when the pole crosses the
domain boundary, ad � 0.935.

It is noted in figure 4(a) that the Friedel phase does not exhibit a clear π shift but looks
even similar to figure 4(b). We expect the Friedel phase to shift by π near quasibound states.
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Figure 4. Friedel phases as a function of Floquet energy εFl for (a) ad = 0.6, (b) ad = 1.0 and
(c) ad = 0.05 (as = 0). (d ) ad = 0.001 with as = −0.2.

The absence of a clear π shift in figure 4(a) is mainly ascribed to the large overlap between
the resonance and the neighbouring domain since the imaginary part of the complex energy of
a pole εI is quite large, and so is the width of the resonance. Even though εI is quite small for
very small ad , the overlap is still large enough to violate the π phase shift by Friedel sum rule
as shown in figure 4(c). The quasibound state is located quite close to the boundary εR = 1
because of dεI/dεR|ad=0 = ∞. If we consider the oscillating potential with an additional
attractive static potential, however, for very small ad a gap exists between the bound state
and the domain boundary εR = 1, which can make the overlap negligibly small, so that the
phase shift π is clearly seen in figure 4(d ). When the Friedel sum rule is applied to the case
of a multichannel scattering problem, the overlap between the resonance and neighbouring
domains should be carefully considered.

3.4. Wigner delay time

The time scales associated with the quantum scattering have been a quite controversial issue
(see e.g. [32]) because time is not a Hermitian operator in Hilbert space but a parameter.
Nevertheless one can define the global time delay of wave packets by using a Hermitian time
delay operator (see e.g. [33]). This time delay operator turns out to be related to the so-called
Wigner–Smith time delay matrix [34], whose trace averaged over different channels gives a
measure of the time delay of the scattered wave caused by the scattering potential (see also
[35, 36]). The Wigner delay time shows a peak at resonance energies, where the maximal
value of the Wigner delay time approximately corresponds to the decay time h̄/εI . To obtain
the Wigner delay time we use the eigenvalues of the scattering matrix S. Due to the unitarity
of S, all the eigenvalues lie on the unit circle and can be written in the form eiθα . The Wigner
delay time is defined by

τW = h̄
∑

α

dθα

dE
|〈kn|θα〉|2 (21)

where the eigenstate corresponding to the eigenvalue θα and an input propagating state (or
channel) with momentum kn are denoted by |θα〉 and |kn〉, respectively [37]. It is worth noting
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Figure 5. The real energies of the trajectory of a quasibound state (crosses) as a function of ad with
as = 0, compared to the energies of the local maxima of Wigner delay times (the full squares).
The insets show Wigner delay times in unit of 1/ω as a function of energy ε for ad = 0.4 (left)
and ad = 0.8 (right).

that the Wigner delay time is a function of the energy of the incident particle. The insets of
figure 5 show the Wigner delay time as a function of energy of an incident particle for two ad

with as = 0. The peaks of the Wigner delay time are located almost exactly at the real part of
the complex energy of the pole in figure 5 (we omitted the data close to the domain boundaries
where the Wigner delay time diverges), under the condition that the pole is located in D0. No
abrupt change of the Wigner delay time is again observed at the threshold of the transmission
zero (ad = 0.782). However, the peak disappears close to the domain boundary D−1 since
the pole enters the next domain.

4. Delta-function impurity in quasi-1D wire

As our second illustrative example, we study the simple quasi-1D scattering problem with an
attractive static delta-function impurity of strength |γ |. In [3] it was found that dips in the
transmission disappear as |γ | is increased. Let us again discuss the relation to transmission
poles.

4.1. Scattering matrix formulation

The Hamiltonian is given by

H = p2

2µ
+ γ δ(x)δ(y − y0) + Vc(y) (22)

where γ < 0, and Vc represents a confinement potential which restricts the movement of
the particle to the range 0 < y < D in transversal direction. Using the complete set of
the transversal modes χ(y) = √

2/D sin(nπy/D), the solution of this Hamiltonian can be
expressed as

ψE(x, y) =
∞∑

n=1

cn(x)χ(y). (23)
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Figure 6. Transmission through a delta-function impurity in a quasi-1D wire with (a) γ =
−2.28 feV cm2, (b) γ = −5.67 feV cm2, (c) γ = −9.1 feV cm2 and (d ) γ = −22.75 feV cm2,
where γ represents the strength of the impurity potential.

Plugging this expansion into the Schrödinger equation and exploiting orthogonality of the
transversal modes, we obtain the following equation

d2cm(x)

dx2
+ k2

mcm(x) =
∑

n

Mmncn(x)δ(x) (24)

where Mmn = (4µγ/Dh̄2) sin(mπy0/D) sin(nπy0/D) and kn =
√

2µE/h̄2 − (nπ/D)2.
Using both the plane waves of equation (10) for cn(x) and the constraints in equations (11)
and (12), we obtain the following conditions:

An + Bn = Cn + Dn (25)

ikn(Cn − Dn) − ikn(An − Bn) =
∑
m

Mnm(Am + Bm). (26)

These can be rewritten as( �B
�C

)
=

(
(2Q − M)−1M 2(2Q − M)−1Q

2(2Q − M)−1Q (2Q − M)−1M

)( �A
�D

)
(27)

where Qmn = iknδmn. Following the same procedure as that used in equation (17) we can
obtain the S matrix for this problem and the total transmission coefficient

T =
∑

mn(prop)

|tmn|2 (28)

where the sum extends over all propagating modes. The resulting transmission coefficients
are shown in figure 6. We use the parameters D = 30 nm for the width of the wire, the mass
µ = 0.067me as the effective mass of an electron in GaAs, y0 = 5D/12 for the transversal
position of the delta-function scatterer, and energy E normalized by the E1 = 6.24 meV. The
transmission coefficient depends on the number of the propagating channels, which will be
discussed in the next subsection.
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circles) and its continuation into the neighbouring domain. Inset: real energies of the trajectory
of a quasibound state (open circles) as a function of the strength of the delta-function impurity
(γ < 0), and the energies of the transmission zeros (crosses).

4.2. Quasibound states

Quasibound states can be obtained from the following equation, derived from Green’s function
approach [38],

1

γ
−

∑
n

4µ

Dh̄2

(
sin

nπ

D
y0

)2 1

2ikn

= 0 (29)

which has to be solved for energy ER − iEI (entering via equation (7)). It should be mentioned
that the location of the quasibound states and the transmission coefficients strongly depend
on the number of modes Nch [38]. In fact they do not converge although Nch is increased.
In order to model a realistic impurity one should take Nch large but finite, and fix it for all
numerical calculations. Nch = 100 is chosen in this paper.

Figure 7 shows the trajectory of a quasibound state as γ is varied. The quasibound state
crosses the domain boundary E2 at γ � −7.11 feV cm2, and enters the next domain D2

(the open circles in figure 7) on the proper Riemann sheet of the domain D1, (�, +, +, . . .).
The situation is similar to that in section 3 except that the quasibound state collides with the
real axis at γ � −9.06 feV cm2 and only one branch of quasibound states exists. As |γ |
increases the transmission zero moves far away from the pole, as is shown in the inset of
figure 7, and finally vanishes when it collides with the other domain boundary E1 at γ =
−8.83 feV cm2.

Apart from the quasibound state, the attractive delta-function impurity also accommodates
one true bound state below E1. Although the quasibound state vanishes at the threshold value
of γ , the true bound state exists regardless of the value of γ , and its energy monotonically
decreases as |γ | increases.
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Figure 8. Friedel phases in the quasi-1D wire with a static impurity as a function of energy E
for (a) γ = −0.57 feV cm2, (b) γ = −5.69 feV cm2, (c) γ = −9.1 feV cm2 and (d ) γ =
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of |γ |, compared to the energies of the local maxima of Wigner delay times (full squares).
The inset shows Wigner delay time τW in units of 10−12 s as a function of energy E for γ =
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4.3. Friedel sum rule and Wigner delay time

The Friedel phase of the impurity in the quasi-1D wire is shown in figure 8. The π phase shift
by quasibound state is clearly observed for very small |γ |, but it is hard to be resolved for larger
|γ | due to the overlap between the resonance and the neighbouring domain. Figure 9 shows
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the peaks of Wigner delay time and the real part of the complex energy of the pole, which
coincide very well for |γ | � 5.5 feV cm2. For larger |γ | it is again difficult to distinguish the
peaks of the Wigner delay time from the background which diverges at the domain boundary
E2 (see figure 7). As |γ | increases the pole first moves away from E2, and then moves back
towards E2. The peak of the Wigner delay time originating from the pole strongly overlaps
with the divergent part of the background when it changes the direction. Hence, for large |γ |
the position of the peak no longer coincides with the energy of the pole. Friedel phase and
Wigner delay time of the quasi-1D case behave similar to the case of an oscillating impurity.

5. Summary

We have investigated the characteristics of transmission resonances, Friedel phases and Wigner
delay times in multichannel scattering problems focusing on the trajectories of quasibound
states in the complex energy plane as a scattering strength is changed. Subband thresholds
divide the complex energy plane into sub-domains characterized by appropriate boundary
conditions for the quasibound states. This set of boundary conditions is related to the choice
of the signs of the complex wave number kn in each subband. A transmission resonance (or
a transmission zero) can vanish when it collides with the subband boundary, which, however,
does not mean that the pole becomes completely irrelevant, as is seen in the transmission line
shape, the Friedel phase and the delay time. Even if a quasibound state enters the neighbouring
domain, it can still effect physics at the real energies of the domain from which it originated.
We illustrate these findings with two simple examples: the scattering problem with the 1D
oscillating delta-function impurity and the static delta-function impurity in quasi-1D wire.
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