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Anomalous Wave Function Statistics on a One-Dimensional Lattice with Power-Law Disorder
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(Received 27 February 2003; published 22 October 2003)
176601-1
Within a general framework, we discuss the wave function statistics in the Lloyd model of Anderson
localization on a one-dimensional lattice with a Cauchy distribution for random on-site potential. We
demonstrate that already in leading order in the disorder strength, there exists a hierarchy of anomalies
in the probability distributions of the wave function, the conductance, and the local density of states, for
every energy which corresponds to a rational ratio of wavelength to lattice constant. Power-law rather
than log-normal tails dominate the short-distance wave-function statistics.
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cently in Ref. [10]. pointed out by Borland [15] and Thouless [16], instead of
Much of our present understanding of wave-function
localization in one spatial dimension is based on the
original Anderson model on a one-dimensional lattice [1]

�t��n�1 ��n�1� � Vn�n � E�n; (1)

with a white-noise disorder hVnVmi / �nm, hVni � 0, and
fixed hopping element t. The potential Vn at each site
takes real values according to a probability density
PV�V�. Most of the theoretical investigations of
Anderson localization assume a finite variance varV 	
2D<1, and then consider the weak-disorder limit
D � t2. This condition is a prerequisite for single-
parameter scaling [2], in which the ratio L=
 of propa-
gation distance L and the localization length, 
�1 �
�limn!1

1
n lnj�nj, is the only free parameter in the uni-

versal distribution function of the Lyapunov exponent
� � � 1

n lnj�nj for n � 
. This carries over to universal
distribution functions of the dimensionless conductance
g and the local density of states �. For weak Gaussian
disorder, D � t2, and energies away from the band edges
and the band center, the latter is known to be distributed
according to the exact log-normal law already for L * �F
[3,4], while the distribution of conductance g takes a log-
normal shape only asymptotically for L * 
.

In many realistic applications the distribution function
PV�V� displays power-law tails. The most prominent ex-
ample is the localization of wave functions in the mo-
mentum space of the kicked rotator [5]. This dynamical
problem has been mapped onto the Anderson model with
an effectively random Cauchy-distributed potential [5,6]

PV;Cauchy�V� � ��1 Im �V � i���1; � > 0; (2)

which has a divergent second moment, D � 1, even
for vanishing disorder � ! 0. Such disorder is never
weak in the sense that the mean free path vanishes
when calculated in second Born approximation.
Equation (1) with the disorder distribution function
given by Eq. (2) has been proposed for the first time by
Lloyd [7]. In this model the localization length can be
computed analytically for arbitrary � [8,9], and the vari-
ance of the Lyapunov exponents � has been found re-
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The kicked rotator was experimentally realized in the
dynamics of atoms driven by a regular train of laser
pulses [11,12]. The probability distribution function in
momentum space was seen to relax from an initial
Gaussian into an exponential profile, demonstrating the
absence of diffusion in momentum direction. This experi-
ment probes the finite-distance wave function correlations
and shows the exponential profile already for the shortest
probed distances, where the central-limit theorem (the
mechanism behind the log-normal form for L � 
 [13])
does not apply. Since the wave-function statistics is a
prototypical example of large fluctuations, it is a difficult
task to relate this profile to the decay length of the typical
wave function. Here, theoretical understanding of the
problem has to come into play: does the profile contain
any reliable information? The impact of the shape of the
probability density PV�V� on the statistics of the wave
functions has been already mentioned by Halperin [14],
but has not been analyzed, let alone sufficiently appreci-
ated, in the literature.

In this Letter we address the fluctuations of the wave
function � for distributions PV�V� with power-law tails,
by going beyond the mean 
�1 of � and its variance,
studied so far [8–10], and having the application to the
short-distance wave function statistics in mind, where the
central-limit theorem [13] not yet applies. We first set out
a general framework for arbitrary PV�V�, which then is
applied to the Lloyd model with PV�V� given by Eq. (2).
The fluctuations turn out to display an anomalous energy
dependence [reflecting also the spatial discreetness of the
Anderson model (1)] and non-log-normal tails that
strongly affect the behavior of the moments of �, and �
even in the vanishing disorder limit � � t. Numerically
we find that even the conductance g for a finite system
length L * 
 deviates distinctively from the asymptotic
log-normal form resulting from the central-limit theo-
rem, which only will be obtained for L � 
. These
characteristics of the wave-function statistics are in sharp
contrast to the universality for models with D � t2.

The central quantity of interest in our calculation is the
generating function ���� of the cumulants of ln�. As
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solving Eq. (1) as a boundary-value problem it suffices to
investigate the specific solution �n of the initial-value
problem �0 � a, �1 � b. This solution exponentially
increases as �n � exp��n� for almost all values of a
and b, which statistically is equivalent to the inverse
wave-function decay �n ���1

n in the original problem.
The cumulant-generating function

���� � lim
n!1

1

n
lnhj�nj

�i �
X1
k�1

ck
k!
�k (3)

accounts for the details of convergence of the Lyapunov
exponent � to its mean value c1 � 
�1. The coefficients
ck with k � 2 are numerical constants which characterize
the deviations of � from c1. As follows from Eq. (3) the
cumulants of � vanish according to the law dictated by
the generalized central-limit theorem hh�kii � ckn1�k for
n � 
. The coefficients ck do not depend on the initial
conditions for �n and capture the universal information
about the fluctuations of many essential quantities in the
localized regime, such as g and �. The fluctuations of
their logarithms can be expressed through the same co-
efficients ck by [4,17]

lim
L!1

L�1hh�� lng�kii � L�1hh�� ln��kii � 2kck: (4)

The most important consequence is that the moments
h��i / exp�L���2��� behave exponentially already for
rather short distances L [17], as is indeed seen in the
experiments [cf. Fig. 2b of Ref. [11]]. The experimental
observations now can be analyzed and understood in
terms of the coefficients cn, but this requires one to
include those with n � 3. This is in contrast to the long-
distance wave-function statistics, where only c1 and c2
are relevant quantities [13].

We now set out a general approach to calculate the
generating function ���� and the coefficients ck for arbi-
trary form of PV�V�. We built up on the formalism pre-
viously used to calculate the inverse localization length

�1 � c1 [18–20]. The Anderson model (1) can be writ-
ten in terms of new variables zn � �n�1=�n, rn �
lnj�nj as a map

zn � vn � 1=zn�1; rn � rn�1 � lnjzn�1j; (5)

where vn 	 �Vn � E�=t. We seek the specific solution of
the initial-value problem z0 � b=a, r0 � lnjaj. Iterating
the map (5) we observe that zn and rn take real values z
and r with a probability density Pn�z; r�, which obeys

Pn�z; r� �
Z 1

�1
F�v� dv

ZZ 1

�1
Pn�1�z

0; r0�

� dz0dr0��z� v� 1=z0�

� ��r� r0 � lnjz0j�; (6)

with F�v� � tPV�vt� E� the probability density of v.
It is convenient to introduce the function

hn�z; �� � jzj�
Z 1

�1
er�Pn�z; r� dr (7)
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and rewrite Eq. (6) as

hn�z; �� � jzj�
Z 1

�1
F�z� 1=z0� hn�1�z

0; �� dz0: (8)

According to Eqs. (3) and (7) we have

���� � lim
n!1

1

n
ln

�Z 1

�1
dz hn�1�z; ��

�
: (9)

If the function ���� exists, the solution to Eq. (8) at large
n must fulfill the relation hn�z; �� � e����hn�1�z; ��. Thus
Eq. (8) is transformed into the functional eigenvalue
problem

e������ lnjzjh�z; �� � F �h��z; ��; (10a)

F �h��z; �� 	
Z 1

�1
F�z� 1=z0� h�z0; �� dz0: (10b)

This is the central general equation of this Letter. In any
practical case it has to be solved perturbatively in �. We
expand the function h�z; �� in a series h�z; �� �P

1
k�0

�k
k! hk�z� and introduce the notation ~cc1�z� 	

c1 � lnjzj. Equation (10) is transformed into the follow-
ing set of equations:

F �h0� � h0 � 0; (11a)

F �h1� � h1 � ~cc1h0; (11b)

F �h2� � h2 � �~cc21 � c2�h0 � 2~cc1h1; (11c)

F �h3� � h3 � �~cc31 � 3~cc1c2 � c3�h0

� 3�~cc21 � c2�h1 � 3~cc1h2; etc: (11d)

This hierarchy of equations determines the complete
wave-function statistics for finite n � 
. Equation (11a)
delivers the stationary distribution function of z and has
been used before [18–20] to calculate the localization
length 
 � c�1

1 from

c1 �
Z 1

�1
h0�z� lnjzj dz: (12)

The integrals
R
1
�1 dz on the left-hand side of Eqs. (11)

equal zero. Equation (12) indeed can be derived by in-
tegrating both sides of Eq. (11b) along the real axis. Once
the distribution function h0�z� and the mean Lyapunov
exponent c1 are known, one can construct the solution to
Eq. (11b) iteratively by [21]

h1�z� �K�~cc1h0��z�; (13a)

K�f��z� 	 � f�z� �
Z 1

�1
K�z; z0� f�z0� dz0: (13b)

The second coefficient c2 in the cumulant expansion is
found by integrating Eq. (11c) along the real axis,

c2�
Z 1

�1
�h0�z��lnjzj�c1��2h1�z���lnjzj�c1�dz: (14)
176601-2
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FIG. 1. The ratio c3=c1 is plotted according to the analytical
result (18) for the Lloyd model at the disorder strength � �
0:01t. The ratio is never small inside the band and reveals
anomalies at energies E � �2t cos��p=q� with p and q inte-
gers. The corresponding rational number p=q is indicated in
the figure. The size of the anomaly depends only on the value of
the denominator q.

TABLE I. The leading asymptotic values of the coefficients
ck in the case of weak Gaussian disorder D � t2 upon the
deviation " � 2t� jEj from the band edge (second column) or
from the band center (third column). These results are obtained
from the saddle-point analysis of Eq. (10) [24]. The last column
represents the generic values inside the band.

D2=3t�1=3 � " � t D=t � jEj � t "; jEj � t

c1; c2 D=�4t"� D=�4t2� D=�4t2 � E2�

c3; c4 33D3=�128"4t2� 9D3=�32E2t4� / D3=t6

c5; c6 5175D5=�2048"7t3� 135D5=�128E4t6� / D5=t10
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This procedure can be repeated recursively to calculate
all other coefficients ck.

For the Lloyd model, the scheme developed above
allows us to obtain the coefficients ck analytically. The
stationary distribution function of the variable z is found
by solving the integral Eq. (11a) [7,18],

h0�z��
1

�
Im

1

z�s
; s�

1

s
�
E� i�

t
; Ims> 0: (15)

The integral (12) yields the well-known result c1 � lnjsj.
The kernel function K�z; z0� can be obtained by iterative
application of the operator F �h�,

K�z; z0� �
1

�
Im

X1
n�1

�
1

z� pn�z0�
�

1

z� rn

�
; (16a)

pn�z� �
�sn � s�n� � z�sn�1 � s��n�1��

�sn�1 � s��n�1�� � z�sn � s�n�
; (16b)

rn � pn��1�; (16c)

where the second term in the parentheses on the right-
hand side of Eq. (16a) is added to provide a better con-
vergence of the intermediate expressions [21].

Applying the result (16) to Eqs. (13) and (14) and
performing the summation one recovers the result of
Ref. [10],

c2 � Re�Li2�s
�2��Li2�jsj

�2�� � arg�s���� arg�s��

� lnjsj2�ln�jsj2 � 1� � lnjs2 � 1j�; (17)

where Lin�z� �
P

1
k�1 z

k=kn is the polylogarithmic func-
tion. As has been shown in Ref. [10], in the limit � ! 0
the ratio c2=c1 equals 2 (not 1 as for conventional weak
disorder) inside the band (it vanishes outside the band).
This energy insensitivity has encouraged the authors of
Ref. [10] to conclude that single-parameter scaling is
fulfilled. As we will discuss now, these findings do not
carry over to the fluctuations beyond the variance, char-
acterized by ck with k � 3.

The coefficient c3 can be found from Eq. (11d) as

c3 � 3
Z 1

�1
dz ln

							 s
z� 1=s

							
�
c2 � ln2

							sz
							
�
h0�z�

� 3
Z 1

�1
dz ln

							sz
							
�
ln

							sz
							�2 ln

							 s
z� 1=s

							
�
��z�;

(18a)

��z� �
1

2�
Im

X1
n�1

�
1

z� s
�

1

z�pn�s��

�
ln

s�

p�1
n �z�

; (18b)

where the function p�1
n �z� stands for the inverse of pn�z�.

The ratio c3=c1 is plotted in Fig. 1 versus the energy. The
plot clearly displays a sequence of sharp dips, which
appear exactly at energies E � �2t cos��p=q� where p
and q are integer, and become more narrow in the limit
� ! 0. The anomaly in the band center is the biggest one
and reaches about 3% of the absolute value of the ratio
176601-3
c3=c1 in the limit � ! 0. The existence of such anomalies
for the inverse localization length 
�1 � c1 has been
pointed out by Lambert [22], but for c1 they only show
up in higher orders of the expansion in the disorder
strength, with exception of the band edge jEj � 2 and
the band center E � 0 [19,22,23]. For conventional weak
disorder with D � t2 the other anomalies should be seen
in the higher coefficients ck with k � 3. However, those
cumulants are themselves suppressed by orders of D=t2

(see Table I), again with the exceptions jEj � 0; 2, where
they are of the same order as c1 and c2 [24–26].

In contrast, in the Lloyd model the coefficients ck in-
crease rapidly with increasing index k. In the limit � ! 0
we indeed observe c2=c1 � 2, c3=c1 � 5, c4=c1 � 20,
c5=c1 � 100 for p=q irrational. The analysis of Eqs. (11)
for the Lloyd model demonstrates that the generating
function ���� exists only for � < �c, where the conver-
gence radius �c < 1, which implies a factorial growth of
the ratios ck=c1 for large k. Such a behavior is consistent
with a power-law tail in the conductance distribution
function Pg�g� � g��2��c�=2 for g ! 0. For a general
power law PV�V� / jVj�' for jVj ! 1, �c < '� 1
must be expected to depend on ', implying that the
precise form of the tail in Pg�g� does depend on energy.
176601-3
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FIG. 2. Distribution function Plng�lng� obtained from the
Anderson model (1) with Cauchy disorder (solid circles), box
disorder (open circles), and Gaussian disorder (open squares).
Parameters are in the localized regime L=
 � 6, with local-
ization length 
 � 200 lattice constants, and E � 0:2t. In this
semilogarithmic plot, the log-normal distribution function
for conventional weak (box or Gaussian) disorder maps to
an inverted parabola, while the straight-line asymptotics found
for Cauchy disorder correspond to a power-law tail in Pg�g�.
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This power-law tail is observable as certified by the
numerical result for Cauchy disorder and L=
 � 6 in
Fig. 2. The large deviations from the log-normal form
even at such large distances suggest that the convergence
to the central-limit theorem indeed is difficult to observe
in any practical experiment. The probability to find a
vanishing conductance in the Lloyd model is strongly
enhanced as compared to the case of conventional weak
disorder, which already displays the log-normal tails. In
the weak-disorder case, the generating function ���� is
finite for all � in the entire energy range. Moreover, far
from the band edges (" 	 2t� jEj � D2=3t�1=3) and far
from the band center (E � D=t), it acquires a universal
parabolic form ���� � 
�1��� �2=2�, since c1 � c2 �
D=�4t2 � E2�, while all other coefficients can be disre-
garded in the limit D � t2 (see Table I).

In conclusion, we have studied analytically the statis-
tics of localized wave functions in the Lloyd model,
which is frequently used to analyze dynamical local-
ization. We have found that the distribution functions
of the conductance g and of the local density of states �
do not have a log-normal form, up to rather large dis-
tances compared to the localization length. Moreover,
even in the limit of vanishing disorder these distribu-
tion functions reveal sharp anomalies at energies E �
�2t cos��p=q�, with p=q a rational number. These fea-
tures can be attributed to the power-law decay of the
disorder distribution function, and sensitively affect the
moments (including fractional moments) of g and � in an
energy-dependent way. It is not known whether similar
effects occur for the prelocalized states in the diffusive
regime L & 
 of multichannel systems [27].

We thank B. L. Altshuler and S. Fishman for illuminat-
ing discussions.
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