
Synchronising Video Playback Information

within a Distributed Framework

Craig Bojko, Mu Mu, Nicholas Race

School of Computing and Communications, Lancaster University

c.bojko@lancaster.ac.uk, m.mu@lancaster.ac.uk, n.race@lancaster.ac.uk

Abstract: This paper details a mechanism to distribute time

coded objects to devices in order to synchronise and

control video playback within a web environment. We

comment on a three-tier architecture of server, client and

second screen and the implementation of a system that

offers the functionality to track playback sessions and

distribute them to peer devices in order to fulfil use cases

and generate a communal aspect around a particular piece

of media content.

Keywords: Media Synchronisation, Distributed, Video

Playback, LIMO, Google App Engine, HTML5

1 INTRODUCTION

With ever increasing bandwidth and speed on the Internet,

new methods of streaming television content have emerged.

With the rise of IPTV, novel ideas have emerged on how we

can integrate multimedia streaming better into our lives and

how we can interact with what we watch on a daily basis. As

mobile phones gain increasingly more processing power and

faster connectivity, we can further develop and integrate these

two mediums for a more immersive viewing experience.

The central theme of the presented work will be to design,

implement and evaluate a system to allow an audience to view

a set of video streams while situated in different locations,

limited only by the reach of the Internet, and be able to

communally discuss, interact and contribute to the application

for future viewers. The system will be designed as a

framework called the Distributed Video Playback (DVP)

framework [1]. The system would require a synchronisation

mechanism running through the application, ensuring all

parties are connected and aware of the other’s presence and

current state, along with a method of being able to store data

so as all devices are able to access the information and present

the user with an immersive experience.

The system’s capability to allow a distributed audience relies

upon an architectural bedrock to provide the mechanisms to

communicate between devices. However, the features and

scenarios we can demonstrate and build on top of this

architecture will exploit another framework developed within

the EC FP7 P2P-Next project [2]. This framework is named

LIMO [3], developed in collaboration with the BBC R&D,

and is a mechanism to facilitate with interactive viewing of

video streams. LIMO defines a way of synchronising

additional material during a video stream; it does this by being

provided with time-based objects, outlined in JSON based

manifest files.

2 BACKGROUND AND CHALLENGES

At the core of the LIMO framework is the LIMO manifest,

this is a JSON file that holds LIMO objects, needed by the

LIMO engine to determine the start and end time for each

LIMO object. A manifest can be designed for several different

scenarios, such as quizzes, subtitles, chapters or more. A

LIMO object contains a start time, duration and payload along

with the possibility of other contents to facilitate in creating an

event at the specified time within a playback session.

Fig. 1: LIMO Architecture

Figure 1 outlines the architecture of the P2P-Next system and

the LIMO engine providing interactive objects within it. The

LIMO [4] engine is the main application aspect of the

framework, it sits between the manifest and the presentation

device. We can describe it better as the controller part of a

model-view-controller architecture, where the manifest is the

model and the user interface or web browser is the viewer.

The job of the engine is to parse the manifest and load the

objects into usable states, which it can then determine at every

time interval whether a state needs to be activated. The engine

has two clocks, internal and remote. The internal clock resides

within the engine itself, in terms of the web framework, this

can come directly from the HTML video object. The remote

clock would reside within an external application, this would

be a second screen device to allow for synchronisation

between the two platforms.

Media Synchronization Workshop 2013 – Organized by CWI, TNO & UPV MediaSync 2013

ISBN/EAN – 978-90-5986-439-9

mailto:c.bojko@lancaster.ac.uk
mailto:m.mu@lancaster.ac.uk
mailto:n.race@lancaster.ac.uk

2.1 Web Sockets

One notable feature of the new HTML5 standard is the

introduction of JavaScript based web sockets. These are

similar to any other type of socket within other programming

languages, however, they are only able to open and listen for

incoming data, while this is a limitation, when combined with

HTTP requests this allows developers to devise push based

mechanisms to allow clients to receive data as and when it is

available rather than having to keep polling the server to

check for updates, thus providing a transport mechanism for

low latency, effective communication between client and

server - an ideal mechanism to distribute synchronisation data

amongst devices.

Web sockets are a way to reduce latency and server load

compared to long polling methods like Ajax, as described in

Nikolai Qveflander’s paper [5] on implementing web sockets,

we can see the enormous effect on performance these

mechanisms provide to servers. Nikolai details the need and

possibility to scale applications on distributed systems using

web sockets and evaluates the effect this has, adding more

servers and load balancers to increase performance. Google

App Engine, the Cloud server used for the production of this

system, provides much of this by default, as the server is

already distributed among many physical sets of hardware,

with load balancers to handle requests, all of which is

transparent and unseen to the viewer and developer.

2.2 Other Synchronisation Techniques

A paper titled “Audio Watermarking: Features, Applications

and Algorithms” [7] looks into how watermarking can be

achieved in audio files. The paper outlines how to insert secret

and public watermarks into audio files that also persist after

compression. The paper also details several applications of

watermarking, one of which is to transfer information, which

the various other applications have utilised in order to create

new interactive content for their viewers.

There are potential issues with this type of synchronisation,

for example, if the area around the video device is noisy, it

can interfere with the audio detection, possibly causing the

mobile device to miss the sound clip and thus depriving the

user of additional interactive content. There is also the

problem of how accurate to a specific time point this method

can link to. For instance if the audio clip being listened for is

three seconds long, by the time the mobile device has detected,

processed, looked up and received the data from the server, it

could be five to ten seconds after the start of the audio clip.

While careful placement and timing can cause something to

happen relatively at an intended time, this method is more

suited to providing additional information alongside the video

stream, as opposed to fine-grained time dependent actions,

this is the type of synchronisation we look at in this paper.

3 SYSTEM DESIGN

The overall architecture will be a three tier design, the first

being the server level, second being the users client machine,

and the third being second screen mobile device. The main

architectural design is based on a client server model, however

the server will be built on a distributed hardware platform to

spread server load across multiple platforms and make the

system more efficient.

Figure 2 shows the data communication paths between the

three architectural tiers. The main data synchronisation will

take place between the client and server; this will be to alert

other clients as to the video position of each user. The mobile

component, while optional, will also require sync data, which

can be obtained directly from the source (client machine).

The server will feature a Model-View-Controller design

pattern allowing us to separate the concerns and different

aspects of the system. The models being the state objects

relating to user sessions, video playback and synchronisation

states, the controllers will allow client devices to interface

with the server and provide the logic to alter their respective

states on the server. Further to this, the server controllers will

facilitate in the distribution of session and playback data to

other clients connected within the same session pool. The

views will be provided in the form of Java Server Pages sent

to the client to visualise the data distributed amongst them.

The synchronisation packets will be transmitted at an interval

of two to three seconds, incorporating local session data and

the relative timestamp of the video playback clock. As the

content will be the same across devices, the relative time will

allow us to determine each user’s location within the playback

and thus open up the possibilities of remote management or

use cases around the video content. The synchronization data

transmitted via the server will allow devices to be aware of

viewer presence and playback location across the distributed

domain, whereas the internal synchronization of the LIMO

engine will manage HTML events to provide added value to

the video playback. Some use cases we focused on were the

ability to have interactive quizzes during the playback, each

question being triggered at specific intervals, another case is

to time code comments that will trigger and be displayed

during playback. This is similar to the way subtitles are

	

Fig. 2: System Architecture

Media Synchronization Workshop 2013 – Organized by CWI, TNO & UPV MediaSync 2013

ISBN/EAN – 978-90-5986-439-9

displayed, however with commenting, we allow users to put

back and augment the content whilst consuming it

simultaneously, creating a community around a piece of

content and allowing for direct discussion about a piece of

content. Figure 3 shows the main video streaming and

synchronised page with use cases implemented and other user

playback positions visualised below the video window.

Fig. 3: Video Playback and Synchronisation page

4 IMPLEMENTATION AND EVALUATION

The primary focus in the implementation of the system was to

build a mechanism to allow for group video watching on a

wide area network. The entire framework centres around the

ability to distribute playback information to groups of users

connected within a session regardless of their physical

location. The range of the system is limited only by the size of

the Internet as the central synchronisation server is globally

accessible to allow as many users to participate as possible.

The overall model for the system is every device requesting

content from the server is connected into a lobby, designed to

collate and distribute synchronisation data to other connected

clients viewing the same content. The sycnhronisation works

on a publish-subscribe model allowing for new clients to start

receiving data from any point that they enter into the stream.

The system is implemented upon the Google App Engine

platform, this being a cloud server offering application level

APIs and services. The application is developed in the Java

programming language, with server classes and servlets being

completely Java based, and the front end using Java Server

Page code to dynamically compile web pages before sending

them to the user.

Many elements of the application front end will utilise HTML

objects; this includes the video player, along with web sockets.

The justification for this is that we can contain much of the

application code within the JavaScript domain, building

libraries of functions to support video manipulation and

interface with the video object in turn with the LIMO

framework. The web socket aspect of the HTML5 standard

allows us to create socket level connections to the server to

create push-based mechanisms to facilitate in user

communication and synchronisation.

The client’s requests are handled by servlets on the server.

Each main aspect of the server has its own servlet, these being

login and global session data, video data, the channel/socket

functionality and the local video session data. Each data pool

also has an index object associated with it, this is to help the

application find and keep track of objects that are saved into

the pool, and is updated at any time that an object is created or

removed. The data pools are built on top of the Google data

store, this is an abstracted form of the Java Persistence

Manager, which is available in Java 6, and allows an

application to save data within a local data store as opposed to

a file on the physical disk. A unique identifier needs to be

stored along with an object, this allows the persistence

manager to correctly identify and load a requested object.

A limitation with the app engine, as is the case with many web

servers, the developer is unable to create new execution

threads, make system calls to the server or open sockets and

pass data across networks. The business model of the Google

App Engine is to provide cloud computing as a service, and

abstracting many low level operations for security or to allow

infrastructure engineers to assign global rules. While this

sandbox model promotes better security and safety, it means

that applications must stick to processing on the host server.

However, the design of the engine promotes scalability for

multiple users, as such developers can concentrate on the

application and not have to worry about how the engine

manages the processes [6].

The current method of synchronisation takes the current

playback time and pushes this data, along with the client ID,

via HTML5 web sockets to the cloud, with an optional

failover to Ajax POSTing. The system tracks when the last

update was sent based on a timestamp, optimising disk I/O by

ignoring late packets, and aggregating individual client data

over time, but persisting and pushing, in real time, the

collective session data required by other clients within the

same playback session. This reduces the amount of write

operations on the server, but introduces some risk to

individual users if something were to fail. A three second

delay reduces the processor load on a client machine when the

updates are aggregated and pushed to other clients within the

session. Between the time synchronisation packets received by

other clients, we infer the playback location of other client’s

video session until we receive a new update specifying any

change within their state. Certain events such as a pause or

seek request instantly push a new synchronisation packet to

the server to update others as to the change as soon as is

possible. Once received and collated by the server, the updates

are then pushed back to the connected clients via the web

socket, or on the Ajax return if using the failover mechanism.

A benefit to using the cloud service is as the system grows and

more clients connect to the service, more backend servlets

could be instantiated on the App Engine to reduce the overall

load, and a thin middleware application could be used to

assign an instance to a client depending on load and

potentially where a distributed session is located to remove

the need for session propagation or migration. Obviously this

allows a developer to produce a single application and create

Media Synchronization Workshop 2013 – Organized by CWI, TNO & UPV MediaSync 2013

ISBN/EAN – 978-90-5986-439-9

new instances extremely quickly depending on system load

without having to worry about server differences or initial

setup procedures.

5 CONCLUSIONS AND FUTURE WORK

The introduced work had many successes within the

distributed domain. The synchronisation running through a

centralised source could be critically evaluated as a bottleneck,

however, due to the fundamental distributed nature of the

cloud server, the effects of a processing power bottleneck are

minimised due to the pure power of the server. Future

implementations may wish to address this as bandwidth

concerns are paramount, or larger amounts of data are needing

to be sent, one solution could be to implement a peer-to-peer

mechanism to aid in synchronisation and reduce the necessity

and reliance on a centralised service.

An experimental addition was also implemented to allow a

desktop platform to run a local server to allow second screen

devices to synchronise together and allow a group to partake

in interactive video streams when either not connected to the

Google App Engine or when bandwidth constraints prevented

devices synchronising effectively. This addition could be

expanded to include a peer-to-peer aspect and allow users to

synchronise playback times directly without going through the

Google App Engine. This would mean that a mesh network

would be created to facilitate in synchronisation, but all data

relating to interactive features would still be pooled on the

server to allow a global authoritative source to ensure all peers

have the same data on their peers.

The DVP framework is successful in providing a mechanism

to provide distributed synchronised viewing of videos on the

Internet, and with the aid of the LIMO framework can provide

viewers with the opportunity to interact with other users

joining them in the video streaming session. The evaluation of

the system has also shown us the strengths and weaknesses of

the system and how we can improve on these if the framework

is continued and expanded upon.

The DVP framework could also be refocused for other types

of applications. The possibilities for this type of application

are endless, and some ideas may include remote management

and communal Internet activities such as gaming, or more

interactive social networking paradigms.

6 ACKNOWLEDGEMENTS

The work presented in this paper is supported by the European

Commission within the FP7 Project: STEER (A Social

Telemedia Environment for Experimental Research). The

DVP framework has developed from the LIMO (lightweight

interactive media objects) conceived by colleagues from BBC

Research and Development department. We greatly

acknowledge their contribution to the work reported in this

paper.

References
[1] Implementation of an Interactive Distributed Video Playback

Framework. Craig Bojko, 2012 http://www.lancs.ac.uk/staff/bojko/msci

[2] Next generation peer-to-peer content delivery platform (P2P-Next brief
project summary). Technical report, 2008 http://cordis.europa.eu/

[3] RadLIMO Wiki Development Site: http://limo.rad0.net/wiki/
[4] P2P-Based IPTV Services: Design, Deployment, and QoE Measurement,

Mu, M., Ishmael, J., Knowles, W., Rouncefield, M., Race, N., Stuart, M. &

Wright, G.1/12/2012 In : IEEE Transactions on Multimedia. 14, 6, p. 1515-
1527 13 p.

[5] Pushing real time data using HTML5 Web Sockets, Nikolai Qveflander,

Aug 2010
http://www8.cs.umu.se/education/examina/Rapporter/NikolaiQveflander.pdf

[6] Google App Engine: Analysis, Craig Bojko, 2011

[7] Audio Watermarking: Features, Applications and Algorithms, Michael
Amold, http://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=871531

Media Synchronization Workshop 2013 – Organized by CWI, TNO & UPV MediaSync 2013

ISBN/EAN – 978-90-5986-439-9

http://cordis.europa.eu/
http://limo.rad0.net/wiki/
http://www.research.lancs.ac.uk/portal/en/publications/p2pbased-iptv-services-design-deployment-and-qoe-measurement(5abedc92-a380-4666-a1c5-a92233826809).html
http://www.research.lancs.ac.uk/portal/en/people/mu-mu(08942b3f-ee89-4de0-8e46-02c2780d8919).html
http://www.research.lancs.ac.uk/portal/en/people/johnathan-ishmael(35091994-020f-4ce5-a90e-a03fb872261f).html
http://www.research.lancs.ac.uk/portal/en/people/william-knowles(54612bcf-2889-42ac-9efc-c2199559e19f).html
http://www.research.lancs.ac.uk/portal/en/people/mark-rouncefield(d62f2ad6-6168-41e8-b84e-3c1696e9d9bf).html
http://www.research.lancs.ac.uk/portal/en/people/nicholas-race(f6e520d5-26fa-4052-b829-73462a4e6e25).html
http://www8.cs.umu.se/education/examina/Rapporter/NikolaiQveflander.pdf

