ELEMENTARY EVOLUTIONS IN BANACH ALGEBRA

B. KRISHNA DAS AND J. MARTIN LINDSAY

ABSTRACT. An elementary class of evolutions in unital Banach algebras is ob-
tained by integrating product functions over Guichardet’s symmetric measure
space on the half-line. These evolutions, along with a useful subclass, are char-
acterised and a Lie—Trotter product formula is proved. The class is rich enough
to form the basis for a recent approach to quantum stochastic evolutions.

INTRODUCTION

In this note we identify and analyse a simple class of evolutions in unital Banach
algebras along with a useful subclass. They have infinitesimal generators, in terms
of which they are characterised, and we establish a Lie-Trotter product formula for
such evolutions. Our approach is via Guichardet’s symmetric measure space ([Gui])
of the Lebesgue space R;. Apart from the merits of simplicity, one motivation is
the fact that the theory forms the basis for a recent approach to quantum stochastic
evolutions ([DLT], [DL]) in which quantum stochastic Trotter product formulae are
proved (cf. [LSi]), characterisations of stochastic cocycles are established (cf. [LSk])
and convergence theorems for scaled quantum random walks are proved (cf. [Bel]).

After a brief section of preliminaries where notations are fixed, the basic theory
occupies Section 2, and the product formula is proved in Section 3.

1. PRELIMINARIES

For a step function f with domain R} = [0, oo[ we write Disc f for the (possibly
empty) complement of the set of points ¢ where f is constant in some neighbourhood
of t; for a vector-valued function f on R, and subinterval J of R, f; denotes the
function on Ry which agrees with f on J and vanishes outside J. For a Banach
space X, B(X) denotes the unital Banach algebra of bounded operators on X.
The symbol — is used (for both elements of, and subsets of, an algebra) to denote
‘commutes with’ ([RSz]), # denotes cardinality, and CC stands for subset of finite
cardinality. For sets A and B, we write F(A; B) rather than B4, for the set of
functions from A to B, and for f € F(A; B), we denote its range, f(A4), by Ran f.
Finally, we use the following notation for symplices: for n € N and ¢ > r > 0, set

A([:L))t[ ={aert[ma < - <apyand A" :={ae (Ry)":a; < <an}

The uniqueness result below will serve us well. In Section 2 we give a very
convenient representation of the equation’s well-known solution.

Theorem 1.1. Let v € X and a € Li. (R ;A) for a right Banach A-module X.

loc

(a) The following integral equation has at most one solution f € C’(R.,_; X):
t
£(t) = 2o +/ ds f(s)a(s)  (tERy). (1.1)
0
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(b) Let f € C(R4;X). Then f satisfies (1.1) if

f0) =20 and f'(s) = f(s)a(s) (s €Ry \N),
for a Lebesque-null Borel subset N of Ry satisfying Haus f(N) = 0, where
Haus denotes one-dimensional outer Hausdorff measure.

(a) is straightforward and classical; for a proof of (b), see [Vol]. The condition
Haus f(N) = 0 is automatic if either A/ is countable or N is Lebesgue-null and f
is locally Lipschitz; for us, a will be a step function, so that A is finite.

2. EVOLUTIONS IN BANACH ALGEBRA

In this section we consider norm-continuous evolutions in a unital Banach algebra
and analyse two sub-classes. To this end we introduce Guichardet’s symmetric
measure space of the Lebesgue spaces of subintervals of R, .

For the rest of the paper A is a fized unital Banach algebra; its group of invertible
elements is denoted A4*.

Definition. An evolution E in A is a family (Er,t) in A, or function from

APl to A, such that
Er,r =14 and Er,s Es,t = Er,t (0 <r<s< t)7
The class of evolutions in A is denoted Evol(A).

0<r<t

Example. Let o = (oy)i>0 be an Eyp-semigroup on a von Neumann algebra M,
that is, a one-parameter semigroup of endomorphisms of M (which is pointwise
ultraweakly continuous), and let V' = (V})¢>0 be a family of contractions in M
forming an a-cocycle, thus Vo = 1 and Viqr = Vias(Vi) (s, > 0) ([Arv]). Then
the family (O"“(Vt—’“))ogrgt forms an evolution in M.

A family (E,_7t)0<r<t in A is called an opposite evolution if instead
E.,=14 and E,, E, = E,; (0<r<s<i).

An evolution is invertible if it is A*-valued, and continuous, respectively Lipschitz,
if the following maps are continuous, respectively Lipschitz continuous,

[r,o00[— A, s— E,, and [0,t] > A, s+— Eg, (r,t e Ry).
We denote these classes by Evol(A*), Evol.(A) and Evolr,(A) respectively.
Remarks. For E € Evol(A*), ((Er’t)71)0<r<t

E extends to an evolution (E,;)r<; (where r and ¢ now range over R) by the
prescription

defines an opposite evolution; also

. Ey if s >0
ET,t = (rbr 1¢t where ¢s = { (_EO’L) _ )_1 if s <0.

Proposition 2.1. The map {¢ € F(Ry; A*) : ¢(0) = 14} — Evol(AX) given by
¢ (¢:1¢t)0<r<t 18 bijective, and restricts to a bijection

{p € C(Ry;A%) 1 ¢(0) =14} — Evole(A).

Proof. All that needs to be proved is that if E € Evol.(A), then Ey,; € A* for all
t € Ry. Thus let E € Evol.(.A) and suppose for a contradiction that Eg s ¢ A* for
some s € Ry. Set t :=inf{s € Ry : By, ¢ A*}. In view of the facts that the set
A\ A% is closed, the map s — Ej , is right continuous at 0, and Epo =14 € A*,
it follows that Ey; ¢ A* and ¢t > 0. Since E;; = 14 € A*, the openness of A~
and left continuity of the map s — E;; at t imply that, for small enough h > 0,
the evolution identity Eo; = Eo—n Ei—pn, expresses a noninvertible element as a
product of invertibles, and we have our contradiction. 1
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Remarks. Thus continuous evolutions are invertible, and invertible evolutions are
actually one-parameter objects.

Evolutions generalise one-parameter semigroups, in the sense that every (norm-
continuous) one-parameter semigroup (p:)¢>o in A defines a (continuous) evolution
(Pt—r)ogr<t- However—in stark contrast to the well-known simple structure of
continuous semigroups: (e'*);>¢ (a € A) (see e.g. [Rud])—continuous evolutions
are in general far from being differentiable, as the above proposition shows.

Given a Banach space X, every strongly continuous opposite evolution (E; ;)<
in B(X) which is exponentially bounded, i.e. where there is M > 1 and w € R
such that || E, || < Me*®=") (r < t), the prescription (T} f)(s) := FEs_tsf(s —t)
defines a Cy-semigroup on the Banach space Co(R; X) satisfying T} M, = Mr,,TF
(p € Ci(R; X), t € Ry) where T is the right-shift semigroup on Cy(R) and M
denotes (scalar) multiplication operator; every such semigroup arises in this way
(see [EnN]). An interesting question then is—how might norm continuity of an
evolution E be recognised in its semigroup 75?7

Using Guichardet’s symmetric measure space, we shall embed the class of evo-
lutions given by semigroups in a much wider class. For (r,t) € A®) set

L o= {o C [rt]: #0 < o0} and FEZ%[ ={oCnt[: #0=n} (neZ),
with measurable structure and measure induced from that of Lebesgue measure on

each symplex A™  via the bijection

[t

A(") N F(")

[rt[ [rt[ ST {s1,--+ ,sn} (n €N),

and letting @ € Fff)t[ be an atom of measure one ([Gui]). Thus FEZL;[

have measure (t — r)™/n! and exp(t — r) respectively. We use the abbreviations T,

™ 12! and [ do for T o[, ng))oo[, Un>1 '™ and integration with respect to

the symmetric measure on I'. Each function ¢ : Ry — C determines a function
7o :I'=>C, o~ an(s)

se€o

and F[,«,t[

Thus 7y = 0 and the mapping ¢ — 7, respects measure equivalence classes. For
p e L'Ry), mp € LYT), [7, =exp [ ¢ and ||my|1 = exp ||¢]/1. In particular, for
nonnegative functions ¢, € L'(R,),

1Tl = lImpllalimylls and (Imppy = moll = lImolla (lmpll — 1). (2.1)

Remark. For ¢ € L2(Ry), let e, = (1, ¢, (2!)71/20%2 ... ) denote the exponential
vector in the symmetric Fock space I'(L?(Ry)). Then the prescription

Ep > Ty (p € L*(Ry)),

extends to a unitary map I'(L?(R,)) — L?(T). For a Hilbert space k, this tensorises
to give an isometry from I'(L?(Ry;k)) = I'(L?(Ry) ® k) to L*(I'; @), where Py
denotes the full (unsymmetrised) Fock space over k; its image is

{f € L*(T; @) : Voer fo) € k¥#7}.

For more on Guichardet space analysis, see [Lj 2], [Mey] and references therein; a
cornerstone is the integral-sum formula which we state next—for a proof see [LiP].

Lemma 2.2. Let n € N and H € L*(IT"™; X) for a Banach space X. Then

/da1-~-/danH(a1,~-~ ,an):/daZH(al,-~- o)

where the sum is over all n#° partitions of o into n subsets o1, ,0,.
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In particular, for H € LY(I' x T; X)

/da/dﬂH(a,ﬁ):/daZaCUH(oz,a\a).

Note that the integral-sum formula for functions H of the form (aq,- -, ay) —
Moy (a1) -+ 7y, () z, where z € X and @1, ,p, € L'(R;), reduces to the

simple identity ([, exp [ ¢;)z = (exp [ )z, where ¢ = 37" | ;.
The composition of A-valued functions on I' defined by

fog:om Y fla)glo\a) (2.2)

enjoys the following properties: if supp f C I'; and suppg C I'; for disjoint sets I
and J, then
(fog)(o)=f(enI)glcNnJ) for o €T, (2.3)

whereas, by the integral-sum formula, if f,g € L'(T'; A) then
fogel'miA) [ fog= [ [g md Ifogh <Iflulglh.  (24)
r Jr

Definition. Let a € L{ _(R;;A). Its associated product functions m, and gr in
Li (T;A) are defined by m,(@) = (@) = 14 and for 0 = {51 < -+ < s,},
mo(0) = a(s1) -+ - a(s,) whereas gr(0) = a(sy,)---a(s1); in short,

— —
o) == [Ja(s) and ar(o):=[]a(s)

seo se€o

For a € LL (Ry;A) define E* and °E in C(A?); A) as follows.

Er, ::/ 7Ta=/7ra[m[ and “E,; ::/ o
Diref Dpraf

Remark. If a = p(-)1 4, for a function ¢ € L{ (R4 ), then
E;ﬁt:/ leAzejfwlA.
Cir e

Lemma 2.3. Let ¢,d,h € L'(Ry;A) and a,b € L (Ry; A).

() lmelly < exp lelly and mesn — el < lmell (lmalls — 1).

(b) 7. omg = Tera if Rand — Ranc, whereas
Te O 4T = Tetyq provided that d(s1) — (c+ d)(s2) when s3 > s1 > 0.

(c) E® is the unique continuous solution of the integral equations (2.5) below
(in turn, for each fired v, and each fized t); °E is likewise for (2.6).

t t
E.i =14+ / dsE,sa(s) =14+ / dsa(s) Es, (2.5)
"t y
E. =14+ dsb(s) Ers =14+ / ds Es ¢ b(s). (2.6)
(d) For (r, t) (u ’U) € A[z] setting I := [r,t[ and J = [u, v], the following hold:

i) [|EY, — Bl <expllarlli(exp||(b—a)rlh + exp laraslli — 2).
ii) E;‘SE;7 + = B, where e := aj, o + bls ¢
(iii) E bEM = Eﬁfb if b(s1) — (a+b)(s2) forr < s1 < sy <t
(iv) E;}t b, = E where ep(s) = YE, a(s)EY, + b(s).

)

(v ETLg’a B}t for w € [=1,00][, where Lya is given by

_Joals+w)  ifs+w=>0
(Lwa)(s) - { 0 otherwise.
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Proof. Note the following binomial-type identities, for functions ai,as : Ry — A:

Tay+as(0) = Z ai, (81) - ai, (sn) foro={s1 <+ <sp} (2.7)

ie{1,2}n
= Z Tay ()T, (0 \ @) if Rana; — Ranas. (2.8)
aCo
(a) The first estimate follows from submultiplicativity of the norm. For the
second, note that (2.7) implies that ||7eqn(0) — me(o)|| < Teyu(o) — 7o(o) for
o €T, where C :=||c(-)|| and H := ||h(-)||. Thus, by (2.1),
17ern = mells < Imell(lmalls = 1) = Imells (llwnll — 1)

(b) The first identity follows from (2.8). The second follows easily from the fact
that, under the given commutation assumption,

Tera({s} UT) = c(s)mea(T) + mera(T)d(s),
when s < 7 (meaning s <t for all ¢t € 7).
(c) All four of the required identities follow from the integral-sum formula. For
example, for the first one, define 1 (o, ) tobe 1 if #8 =1 and a < b for all a € «
and b € 3, and to be 0 otherwise, then

/Tt ds B} ja(s) = /Tt ds /F[w[ dam,(aU{s})
= [ da [ a8ma, taus)(@5)
- / do Z Tap, (0) Lo, 0\ a) = / domg, (o) = E, — 1a.

>
aCo r=t

Uniqueness for the first and last follows from Theorem 1.1; uniqueness for the other
two follows from the left module sister version of Theorem 1.1.
(d) (i) follows from Part (a). (ii) follows from (2.4), (2.2) and the identity 7, (o N
[r, s]) mp(o N [s,t]) = 7e(o); with (i) it implies that E* € Evol.(A) C Evol(A*).
(iii) follows from Part (b) and identity (2.4). In particular, since E° is invertible,
this implies that
(BT =CPE (rs) e AP (2.9)

To prove (iv), set E equal to the pointwise product E*E®. Integrating by parts
using Part (c), the assumed commutation relations, and (2.9), we have

t t
E,; =14 +/ ds (Eﬁysa(s)EiS + E;‘ﬁsEffjsb(s)) =1y +/ ds E, se.(s).

Therefore (iv) follows from uniqueness in Part (¢). With a simple change of variable,
(v) follows from the identity

(Lwa)[r,t[(s) = a[r+w,t+w[(5 + w) (5 € R+). O
The summarising proposition below now follows easily.

Proposition 2.4. Leta,b € L}, (Ry; A), c € LS (Ry; A) and (r,t) € A2, Then

loc loc
(a) E* € Evol.(A) and E° € Evoli.(A).
(b) EL LB,y = Eﬁi‘b if b(s1) — (a+b)(s2) forr < s1 < so < t, in particular,
(E,‘?}t)_1 = (_“)Er,t, and
elr B, = Efj“o(')l““ for o€ Li (Ry).

L,a Lsa
(c) By = Eyis, and E§ o\, = E§ JEq3", for s,u € Ry
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Definition. An evolution of the form E% where a € L{ (R, ;.A) will be called

loc
elementary, with generator a; we denote this class of evolutions by Evols(.A).

The following example is of considerable historical importance (see e.g. [EnN]).

Example. Let a : Ry — B(X) be strongly continuous, for a Banach space X.
Then, by the Banach-Steinhaus Theorem, «a is locally bounded, and by (2.6),

t
aEr,t:IX+/ dsa(s) “Ey 0<r<t).

In particular, for all z € X, the nonautonomous abstract Cauchy problem
o' (t) = a(t)u(t) (t >0), u(0)=u=x,
has unique “classical” solution “Fy .z € C*(R; X).

Noting that Evole(A) C Evol.(A), we characterise the class of elementary evo-
lutions next.

Theorem 2.5. Let E € Evol.(A) and set ¢y := Eo (t € Ry). Then the following
are equivalent:

(i) There is a function ¢ € Li _(Ry;.A) such that

loc
t
¢t_¢r:/ dse(s) (0<r<i).

(ii) E € Evole(A).
In this case c(s) = Ep sa(s) (s € Ry), where a is the generator of E.

Proof. Multiplying (2.5) on the left by Ey, we see that (ii) implies (i).

Suppose that (i) holds. By Proposition 2.1, Ran¢ C A%, and so we may define
a function a € L} (Ry;A) by a(s) := (¢s)"'c(s). Since E and E® are both
continuous evolutions, it suffices to show that ¢ = Ef, for all ¢ € R;. Now

t
o = 1A+/0 dsgeals)  (t€Ry)

so, by Part (c) of Lemma 2.3 (uniqueness), it follows that ¢, = Eg, for all t € Ry,
as required. O

Remarks. Evolutions of the above type are a.e.-weakly differentiable in the following
sense. By Lebesgue’s Differentiation Theorem, for all w € A* there is a null set N,
in R, such that for all t € R, \ NV,

w(h™ Y (pen — ¢¢) — c(t)) — 0 as h — 0.

Conversely, it follows from Theorem 1.1 that (ii) holds if there is a Lebesgue-null
Borel subset A of R such that ¢ is differentiable on Ry \ N, ¢’ € L{ (Ry;.A) and
Haus ¢(N) = 0.

The next result applies to finite-dimensional Banach algebras. A convenient
reference for the Radon—Nikodym property is [DiU]; for differentiability of Lipschitz
functions, see [LPT].

Corollary 2.6. Let E € Evol.(A) where A has the Radon—Nikodym property, and
set ¢y = FEy, (t € Ry). Then the following are equivalent:
(i) E € Evole(A); respectively, E € Evole(A) with locally bounded generator.
(ii) There is an absolutely continuous A-valued measure m on Ry of locally
bounded variation such that m([r,t]) = ¢y — ¢, (0 < r < t); respectively, ¢
is locally Lipschitz, so E € Evolp.(A).
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We next identify a subclass of elementary evolutions which is useful in applica-
tions. To this end, and for use in the next section, we adopt the following notation.

Notation. Let D = {T} < --- < Ty} CC]0,00[ and set Tp := 0 and Tn41 = 0.
For u € Ry, define m = m(u) € Zy, n =n(u) € N and {uf : —m < k < n} by

(Wl < <u} ={0}UDU{oc} = {To <T1 < -+ < Ty}, e [ug,uil,

—-m
giving the following picture:

0 u 00

. I I I I I I
T T T T T T o

1
T
D e D D D D e D __
107u_m U_l 'LLO ul UQ Un —1N+1

Definition. We call F a piecewise-semigroup evolution if there are associated time
point and semigroup sets

D={Ty < <Ty}CCl0,00] and {PT): T e {0yuD} = {PT0) ... pT}

where Ty := 0 and each P(T) is a semigroup in A, for which the following holds:

P if rf =t
Er,t = (;}S) (TD) (tD ) (tD) . (210)
Py \Po b -Po'p |P otherwise.
ry—r ry =Ty ty —t=, t—tg

Note that, for any such D and {P(™)}, (2.10) defines an evolution. Let Evol,ys(.A)
denote the resulting collection; thus Evol,ys(A) N Evol.(A) C Evolic(A).

The piecewise-semigroup evolutions are therefore those evolutions which enjoy
the semigroup decomposition property (2.10). Note that the set D can be empty,
and it is only the minimal such set D that is determined by the evolution E. We
have the following elementary characterisation.

Proposition 2.7. Let E € Evol.(A). Then the following are equivalent:

(i) E € Evolpys(A).

(ii) F € Evole(A), with piecewise constant generator.
In this case, the associated minimal time point and semigroup sets of E are respec-
tively, Disca and {(esa(t))s>0 :t € {0} UDisca}, where a is the (right-continuous
version of ) the generator of E.
Proof. Suppose that (ii) holds and let a be the generator of E. Let D = Disca =
{Ty < --- < Tn},set Ty := 0and Ty 11 := 00, and let (r,t) € APl. By the evolution
property,

E,.. it r =P
Er’t - ET rD (ETD rD EtD tD)EtD t otherwise. (2'11)
"t 1 1972 —1°%0 0
Now, for k =0,--- , N, a is constant on [T, Tgy1][ so, for [u,v[C [Tk, Tk+1],

Eu,v = /
F[u,v

where P(T) denotes the semigroup generated by a(T'). Thus (2.11) becomes (2.10),
showing F to be a piecewise-semigroup evolution with associated time and semi-
group sets as claimed.

Suppose conversely that (i) holds, and let D = {T} < -+ < Ty} and {PD) :
T e{0}U D} be the associated minimal time point and semigroup sets of E. Since
E € Evol.(A), each of these semigroups is norm continuous. Let a be the piecewise

do 7Ta(0') = / do a(Tk)#" = e(vfu)a(Tk) — P1ETIL)7
[ T

[u,v]

constant function EkN:o afk where, for k =0,---, N, a® is the generator of

Tk, Thet1[
PTe). Then E also satisfies (2.10), and so E = E°. O
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Thus the evolutions with piecewise constant generators are the continuous evo-
lutions which enjoy a semigroup decomposition. We characterise a slightly wider
class of evolutions next. By piecewise continuity for a Banach-space valued func-
tion x defined on Ry, we mean that there is a finite subset D of |0, co[ such that
x is continuous on Ry \ D and the limits a(04), a(s_) and a(s) exist, for s € D.
For definiteness, we take the unique right-continuous (i.e. cadlag) version of each
piecewise continuous function.

Proposition 2.8. Let E € Evol.(A). Then the following are equivalent:

(1) s+ Ey,s has piecewise continuous derivative on Ry.
(ii) F € Evols(A) with piecewise continuous generator.

Proof. By Proposition 2.1, F is invertible. Assume that (i) holds and define a :
R, — A to be the piecewise continuous function s +— (Eo,s)_liEo,s- Then a €
Li .(Ry;A) and (i) holds since s — Ey s and s — Ef _ both satisfy the conditions

of Theorem 1.1, Part (b), with A/ := Disca.
The converse is clear. O

3. LIE-TROTTER PRODUCT FORMULA

In this section we prove a Trotter product formula and an Euler-type formula,
for elementary evolutions. The following notation is convenient for handling Trotter
products of evolutions.

Notation. Let D CCJ0,00], in other words D € TI'jg o[, and let G € F(A2): A).
Then, in the notation associated with the diagram in Section 2, define G'’s D-fold
product function by

GP AP 4, 6P = { Copap o Gooap 1P <1

14 otherwise.

In particular, if G is an evolution then G, equals G.p o if [r,t[ND is nonempty,
and equals 14 otherwise.

Definition. We say that a sequence (D(n))n>1 in T)g,00f \ {D} converges to R, if
min D(n) - 0, maxD(n) — oo and mesh D(n) — 0.

Similarly, a family (D[h]) in ['yg o[ converges to Ry if, as h — 0,

h>0
min D[h] - 0, maxD[h] — co and mesh D[h] — 0.

Here mesh D is defined to be max{|s —t|: s,t € D,s #t} (or oo if #D = 1).

loc

{@} converging to Ry, and let T € Ry. Then

Theorem 3.1. Let aj,az € L (Ry;A), let (D(n))n>1 be a sequence in g oop \

D
sup [|Bger RO | 0, where V7B, , = B, B2,
[rt)c[0.7)

Proof. Set a = aj +as and A = A; + As, where A; == |la;(+)]| € LL . (Ry) (i =1,2)

loc

1,2),
and set m := T, © Tq,, for the composition defined in (2.2). Thus 7 € L{ (T;.A)
with
(@) =14 and w({s}) = a(s) for s € Ry,
so the functions 7 and 7, agree on I'S!. Also, by (2.4),

1,2 = oTm\o u, v [2]
E/ don(o)  ((uv) € A%)

[u,v]
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By further application of the integral-sum formula—more specifically (2.4), and (2.3),

1’2Eft(n) :/ do 7™ (o), where
I

7™ (o) := ’7T(O' N [Tf)(n),rzD(n) D . (0 N[tz D(n) tD(n) [)
Now,
7™ (o) < Talo) (n€N,oel).
Thus 7™ € LL (T;A), 7("(@) = 14 = 7m,(@) and, for o € T}y \ {@}, the
equality
7" (0) = m4(0)
holds—as soon as n € N is sufficiently large that

min D(n) < mine, max D(n) > maxo and mesh D(n) < mesho.

The result therefore follows from the Dominated Convergence Theorem:

sup || B¢ 12ED(")H / do ||ma(o) — g (o) = 0.
[r,¢]C[0,T] T, 1(

O
In order to handle Euler-type products we define, for a € L{ (R.;.A), the trun-
cated evolution:

E®: APl 5 4, Ef,t ::/ T, where T, := lp<img. (3.1)
Clre

Thus Eat = 1A—|—f dsa(s).
Theorem 3.2. Let ay, as, (D(n))n>1 and T be as in Theorem 3.1. Then

sup HE;I’?“Q — 17257%(71)” — 0, where 1’2Eu,v = Eglv EZQU
[r,t]C[0,T]
Proof. A proof is obtained as follows. In the proof of Theorem 3.1 replace m,,, 7q,,
7, 12E and 7™ by T4, Tay, T, 12E and 7™ respectively, where 7 is defined as
7 is but with 7,, and 7,, in place of 7,, and m,,, and 7™ is defined as 7(") is,
but with 7 in place of w. In short, drawing on the definitions (3.1), retrace the
argument with all 7’s and E’s endowed with tildes. O

Remarks. The above two proofs need little adjustment to deliver the following
generalisation. For a = a1 +---+ay where ay, -+ ;ay € I/IOC(IR+;_,41)7 and T € Ry,
sup B2, — VEED| 50, where (B, = B, B ((uo) € 4P,
[r;t]C[0,T7] '
and similarly for the truncations.
The above proofs also yield corresponding results for a continuous-parameter
family (DIh]) hso- In particular, taking a; and ap constant, respectively az = 0 and
a1 = a constant, then gives the following limits

(e halehaz)( to =P/ - atan) g (1A+ha)(t5[h]—rf’m)/h _ ot=r)a

as h — 0; the classical Lie-Trotter product formula ([ReS], Theorem VIIIL.29) and
Euler formula emerge upon taking » = 0 and D[h] = {nh : 1 < n < N} where
= [1/h?):

(ehalehaQ)[t/h] _ etlartas) 419 (1A+ha)[t/h] y eta

The close connection between the Trotter product and Euler formulae was richly
investigated, at the deeper level of Cyp-semigroups, by Chernoff (see [Che]).
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