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Abstract. A theory of quantum stochastic processes in Banach space is initi-
ated. The processes considered here consist of Banach space valued sesquilin-

ear maps. We establish an existence and uniqueness theorem for quantum

stochastic differential equations in Banach modules, show that solutions in
unital Banach algebras yield stochastic cocycles, give sufficient conditions for

a stochastic cocycle to satisfy such an equation, and prove a stochastic Lie–

Trotter product formula. The theory is used to extend, unify and refine stan-
dard quantum stochastic analysis through different choices of Banach space, of

which there are three paradigm classes: spaces of bounded Hilbert space op-

erators, operator mapping spaces and duals of operator space coalgebras. Our
results provide the basis for a general theory of quantum stochastic processes

in operator spaces, of which Lévy processes on compact quantum groups is a

special case.

Introduction

The aim of this paper is to initiate a theory of quantum stochastic processes in
Banach space. The motivation is twofold: to extend the applicability, and begin
to unify, several strands of quantum stochastic analysis. When the results are
applied to the paradigm examples discussed below—optimal results are deduced
for stochastic Lie–Trotter product formulae, and near-optimal results are obtained
for the generation of stochastic cocycles. The Banach space setting presents some
obstruction to the development of a ‘strong’ theory. In a sister paper ([DL2])
we develop quantum stochastic analysis in operator space aided by the superior
functorial properties of the operator space projective tensor product compared to
that of the Banach space projective tensor product. Broadly speaking, the ‘weak’
theory is treated here and the ‘column’ theory there.

The processes considered in this paper are families (qt)t>0 of sesquilinear maps
E×E → X for a Banach space X and exponential domain E in symmetric Fock space
over L2(R+; k), where k is a Hilbert space which serves as the multiplicity space
of the quantum noise. Natural adaptedness and regularity conditions are assumed.
The three paradigm examples of X are: the space B(h; h′), of bounded operators
between Hilbert spaces h and h′, and its closed subspaces; the mapping space
CB(V;W), of completely bounded maps between operator spaces V and W; and
the dual of an operator space coalgebra. The former corresponds to the theory of
unitary and contractive operator processes initiated by Hudson and Parthasarathy
([HuP]), the second includes both the theory of quantum stochastic flows on a
C∗-algebra founded by Evans and Hudson ([Eva]), and that of completely positive
stochastic cocycles on a C∗-algebra initiated by Lindsay and Parthasarathy ([LiP]),
and the latter corresponds to the theory of quantum stochastic convolution cocycles,
which includes Lévy processes on compact quantum groups in the universal setting
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([LS2]). Expositions of the theory of the first two areas may be found in the
monograph [Par], the lecture notes [Mey], and the surveys [Bia] and [L1].

The sesquilinear theory throws light on the paradigm examples mentioned above
and we obtain refinements of the standard theory, including that of quantum sto-
chastic differential equations in operator spaces ([LS1]). We also obtain new sto-
chastic Lie–Trotter product formulae for cocycles in all three of the examples, ex-
tending the results of [LiS]. Our analysis is founded on some elementary theory of
evolutions in unital Banach algebras ([DL1]).

The plan of the paper is as follows. After a section of preliminaries, we review the
relevant parts of standard quantum stochastic process theory in Section 2, and the
results that we need on evolutions in Section 3. Banach space valued sesquilinear
processes are introduced in the fourth section, where sesquilinear multiple quantum
Wiener integrals are defined and estimated. In Section 5 the existence and unique-
ness theorem is proved for solutions of sesquilinear quantum stochastic differential
equations. In Section 6 we show that solutions of such equations are sesquilin-
ear quantum stochastic cocycles and give sufficient conditions for a sesquilinear
quantum stochastic cocycle to satisfy an equation of this type. We then apply
this to obtain refinements of characterisation theorems in [LS1]. In Section 7 we
prove the sesquilinear quantum stochastic Lie–Trotter product formula and deduce
corresponding formulae in each of the three paradigm examples.

1. Preliminaries

In this section we establish some general notations and state two propositions
which are applied in the paper.

For vector spaces V , V ′ and W we write V̂ for C ⊕ V , v̂ for
(

1
v

)
(v ∈ V ), and

SL(V ′, V ;W ) for the space of sesquilinear maps V ′ × V →W (or SL(V ;W ) when
V ′ = V ), inner products and sesquilinear maps here being linear in their second
argument. Basic examples of these are given by |w〉qT for T ∈ L(V ;V ′), w ∈ W
and inner product spaces V and V ′, where

|w〉qT : V ′ × V →W, (v′, v) 7→ 〈v′, T v〉w. (1.1)

We also denote by ASL(V ′, V ;W ) the collection of maps α : V ′ × V → W which
are affine sesquilinear, that is, complex affine linear in the second argument and
conjugate affine linear in the first (or ASL(V ;W ) when V ′ = V ). For an ordered
set A and n ∈ N, we write

An< := {a ∈ An : a1 < · · · < an} and An6 := {a ∈ An : a1 6 · · · 6 an};

also, for n-symplices over a subinterval J of R+ we write

∆
(n)
J := Jn< and ∆

[n]
J := Jn6, (1.2)

abbreviated to ∆(n) and ∆[n] when J = R+.
For a step function f with domain R+ we write Disc f for the (possibly empty)

complement of the set of points t where f is constant in some neighbourhood of
t; for a vector-valued function f on R+ and subinterval J of R+, fJ denotes the
function on R+ which agrees with f on J and vanishes outside J . For Hilbert spaces
H and h and vector e ∈ h, the operator

IH ⊗ |e〉 : H→ H⊗ h, u 7→ u⊗ e

will be denoted by Ee, and its adjoint IH ⊗ 〈e| by Ee, with context dictating the
Hilbert space H. Thus Ee ∈ B(H⊗ h;H) and EeEf = 〈e, f〉IH. Here 〈e| ∈ B(h;C)
is the adjoint of the operator |e〉 ∈ L(C; h) = B(C; h), thus 〈e| : c 7→ 〈e, c〉; we
set |h〉 := B(C; h) and 〈h| := B(h;C). If V is an operator space in B(H;H′) and
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B = B(h; h′), for Hilbert spaces h and h′, then the matrix space tensor product of
V with B is the following operator space in B(H⊗ h;H′ ⊗ h′) = B(H;H′)⊗B:

V ⊗M B :=
{
T ∈ B(H;H′)⊗B : Ec

′
TEc ∈ V for all c′ ∈ h′, c ∈ h

}
.

Let W be another concrete operator space. If φ ∈ CB(V;W) then the map φ⊗ idB
extends uniquely to a map φ ⊗M idB ∈ CB(V ⊗M B;W ⊗M B) ([LiW]). Also, for
Hilbert spaces k and k′, and map ψ ∈ CBσ

(
B;B(k; k′)

)
, the map idB(H;H′)⊗ψ

restricts to a map in CB
(
V⊗M B;V⊗M B(k; k′)

)
, denoted idV⊗Mψ. The following

extended composition is very useful. For φi ∈ CB
(
V;V ⊗M B(hi; h

′
i)
)

(i = 1, 2),

φ1 • φ2 := (φ1 ⊗M idB(h2;h′2)) ◦ φ2 ∈ CB
(
V;V ⊗M B(h; h′)

)
. (1.3)

Here h = h1 ⊗ h2 and h′ = h′1 ⊗ h′2, so B(h1; h′1)⊗M B(h2; h′2) = B(h; h′).
For dense subspaces D of h and D′ of h′, there are natural inclusions

V ⊗M B ⊂ L
(
D;V ⊗M |h′〉

)
⊂ SL(D′,D;V), (1.4)

T 7→
(
ζ 7→ TEζ

)
and R 7→

(
(ζ ′, ζ) 7→ Eζ

′
Rζ
)
.

Similarly, there are natural inclusions

CB
(
V;W ⊗M B

)
⊂ L

(
D;CB(V;W ⊗M |h′〉)

)
(1.5)

⊂ SL
(
D′,D;CB(V;W)

)
⊂ SL

(
D′,D;B(V;W)

)
.

In view of these identifications we are using the subscript notations Rζ and φζ for
the images of ζ ∈ D under R ∈ L

(
D;V ⊗M |h′〉

)
and φ ∈ L

(
D;L(V;W ⊗M |h′〉)

)
.

Finally we write O(D; h′) for the linear space of operators from h to h′ with domain
D, and O‡(D,D′) for the subspace of operators T satisfying DomT ∗ ⊃ D′.

We end this section with two lemmas; the first is elementary linear algebra.

Lemma 1.1. Let V , V ′ and W be complex vector spaces. The map WV ′×V →
W V̂ ′×V̂ , α 7→ γα given by

γα

((z′
v′

)
,

(
z

v

))
=

α(v′, v) + z′ − 1α(0, v) + (z − 1)α(v′, 0) + z′ − 1(z − 1)α(0, 0),

is injective with left inverse given by γ 7→ αγ where αγ(v′, v) := γ(v̂′, v̂). It restricts

to a bijection from ASL(V ′, V ;W ) to SL(V̂ ′, V̂ ;W ).

A useful representation of the well-known solution of the equations in the next
lemma is given in Section 3.

Lemma 1.2. Let X be a right Banach A-module, let x0 ∈ X and let a be a step
function R+ → A with discontinuity set D. Then the integral equation

f(t) = x0 +

∫ t

0

ds f(s)a(s) (t > 0). (1.6)

and the differential equation

f(0) = x0 and f ′(s) = f(s)a(s) (s ∈ R+ \D),

have the same unique solution in C
(
R+;X

)
.
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2. Quantum stochastics

In this section we review some standard quantum stochastic analysis, and estab-
lish some notations. Fix now, and for the rest of the paper, a complex Hilbert space
k referred to as the noise dimension space. For a subinterval J of R+, let KJ :=

L2(J ; k) and, for f ∈ KJ , write f̂ for the corresponding k̂-valued function given by

f̂(s) := f̂(s). Let T be a total subset of k containing 0. The space of T-valued step
functions in KJ is denoted ST,J (we take right-continuous versions). The symmetric

Fock space over KJ is denoted FJ ; the exponential vectors ε(f) := ((n!)−1/2f⊗n)n>0

(f ∈ KJ) are linearly independent and ET,J := Lin{ε(f) : f ∈ ST,J} is dense in FJ ;
when T = k or J = R+, we drop the corresponding subscript; the identity operator
on FJ and vacuum vector ε(0) in FJ will be written IJ and ΩJ respectively. The
orthogonal decomposition

K = K[0,s[ ⊕ K[s,t[ ⊕ K[t,∞[

yields the tensor decompositions

F = F[0,s[ ⊗F[s,t[ ⊗F[t,∞[, B(F) = B[0,s[⊗B[s,t[⊗B[t,∞[, and

ET = ET,[0,s[⊗ET,[s,t[⊗ET,[t,∞[ (0 6 s 6 t).

Definition. Let h and h′ be Hilbert spaces, with dense subspaces D and D′.
An h-h′ operator quantum stochastic process with exponential domain D⊗ET is a

family of operators
(
Xt

)
t>0

in O(D⊗ET; h′ ⊗ F) satisfying the following measura-

bility and adaptedness conditions:

(i) s 7→ Xsζ is weakly measurable R+ → h′ ⊗F , for all ζ ∈ D⊗ET, and
(ii) for all t ∈ R+, there is an operator Xt) ∈ O

(
D⊗ET,[0,t[; h′⊗F[0,t[

)
such that

Xt = Xt)⊗I ′[t,∞[ where I ′[t,∞[ denotes the restriction of I[t,∞[ to ET,[t,∞[.

For all g′ ∈ S, g ∈ ST, ε ∈ ET and t ∈ R+, set

Xg′,g
t := Eε(g

′
[0,t[)XtEε(g[0,t[) ∈ O(D; h′) and Xt,ε = XtEε ∈ O(D; h′ ⊗F). (2.1)

The process X is initial space bounded if Xg′,g
t is bounded (t ∈ R+, g′ ∈ S,

g ∈ ST); it is column-bounded if Xt,ε is bounded (t ∈ R+, ε ∈ ET); it is bounded if
Xt is bounded (t ∈ R+), in which case (ii) reads

(ii)
′ ∀t∈R+

Xt ⊂ Xt) ⊗ I[t,∞[ for some operator Xt) ∈ B
(
h⊗F[0,t[; h

′ ⊗F[0,t[

)
;

it is adjointable if Dom(Xt)
∗ ⊃ D′⊗ET′ (t ∈ R+) for some dense subspace D′ of

h′ and total subset T′ of k containing 0, in which case X†t := (Xt)
∗
|D′⊗ET′

(t > 0)

defines an h′-h process X†.
For a column-bounded h-h′ process X, and function g ∈ ST, we write

Xg
t) := Xt)Eε(g|[0,t[) ∈ B

(
h; h′ ⊗F[0,t[

)
= B(h; h′)⊗|F[0,t[〉, for t > 0, and

Xg
[r,t[ :=

(
idB(h;h′)⊗τ[r,t[

)(
XLrg
t−r)

)
∈ B

(
h; h′ ⊗F[r,t[

)
, for t > r > 0,

where τ[r,t[ denotes the shift |F[0,t−r[〉 → |F[r,t[〉, and (Lt)t>0 denotes the coisomet-
ric left shift semigroup on F .

Linear extension of the prescription

Xr,t,ε(g) = Σ
(
|ε(g[0,r[)〉 ⊗Xg

[r,t[ ⊗ |ε(g[t,∞[)〉
)
, (2.2)

in which Σ is the tensor flip

Σ : |F[0,r[〉⊗B(h; h′ ⊗F[r,t[)⊗|F[t,∞[〉 → B(h; h′ ⊗F),

then gives a two-parameter family
(
Xr,t

)
06r6t

in L
(
ET;B(h; h′ ⊗ F)

)
, which is

bi-adapted in an obvious sense.
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If X is bounded then

Xr,t = σr(Xt−r) (t > r > 0), (2.3)

where σr = idB(h;h′)⊗σk
r for the right shift σk

r on B(F), thus

Xr,t ∈ B(h; h′)⊗I[0,r[⊗B(F[r,t[)⊗ I[t,∞[.

A bounded h-process X (i.e. h-h′-process where h′ = h) is a quantum stochastic
cocycle if it satisfies

X0 = Ih⊗F and Xs+t = Xsσs(Xt) (s, t > 0). (2.4)

By the multiplicativity of the shift, this is equivalent to its associated two-parameter
family forming an evolution:

Xr,r = Ih⊗F and Xr,t = Xr,sXs,t (0 6 r 6 s ≤ t);
it is also equivalent to

Xg′,g
0 = Ih and Xg′,g

s+t = Xg′,g
s XLsg

′,Lsg
t (s, t > 0, g′, g ∈ S),

which makes sense for initial-space bounded processes X. In terms of columns, the
cocycle identity is equivalent to

Xg
0) = Ih and Xg

s+t) =
(
Xg
s) ⊗ I[s,s+t[

)
Xg

[s,s+t[, (s, t > 0, g ∈ S),

which makes sense for column-bounded processes. The relevance of these is that
solutions of quantum stochastic differential equations with bounded coefficients
need only be column bounded; however, they are cocycles in the above two senses.

Let V and W be concrete operator spaces and let B(h; h′) be the ambient full
operator space of W. A process in W is an h-h′ operator process X, with exponential

domain h⊗ET, satisfying Xg′,g
t ∈W (t ∈ R+, g′ ∈ S, g ∈ ST).

A mapping process from V to W is a family k = (kt)t>0 in L
(
V;O(h⊗ET; h′ ⊗

F)
)

such that (kt(x))t>0 is a process in W (x ∈ V); it is initial-space bounded

(respectively, initial-space completely bounded) if kg
′,g
t ∈ B(V;W) (respec. kg

′,g
t ∈

CB(V;W)) for all t ∈ R+, g′ ∈ S, g ∈ ST, where kg
′,g
t (x) := kt(x)g

′,g. It is
column-bounded (respectively, cb column bounded) if kt,ε ∈ B

(
V;W ⊗M |F〉

)
(resp.

kt,ε ∈ CB
(
V;W ⊗M |F〉

)
) for all t ∈ R+, ε ∈ ET; it is a completely bounded process

if kt ∈ CB
(
V;W ⊗M B(F)

)
(t ∈ R+), under the inclusion (1.5); it is adjointable if

kt(V) ⊂ O‡(h⊗ET, h′⊗ET′), for some total subset T′ of k containing 0, so that there

is a process k† from V† to W† satisfying k†t (x
∗) ⊂ kt(x)† (t ∈ R+, x ∈ V).

A mapping process k from V to V is a quantum stochastic cocycle if,

k0 = ιVF and kg
′,g
s+t = kg

′,g
s ◦ kLsg

′,Lsg
t (s, t ∈ R+, g

′ ∈ S, g ∈ ST); (2.5)

it is Markov regular (respectively, cb Markov regular) if each function s 7→ kg
′,g
s

is continuous R+ → B(V) (resp. R+ → CB(V)). If k is completely bounded
then (2.5) is equivalent to the more recognisable cocycle identity

ks+t = k̂s ◦ (idV⊗M τ
B
[s,∞[) ◦ kt (s, t ∈ R+)

where k̂s := ks) ⊗M idB(F[s,∞[) for the induced map ks) : V → V ⊗M B(F[0,s[), and

τB[s,∞[ denotes the shift B(F)→ B(F[s,∞[).

Denote by PcbCol(V,W : ET) the set of cb column-bounded quantum stochastic
processes k from V to W with exponential domain ET and by QSCcbCol(V : ET) the
set of cocycles in PcbCol(V : ET) := PcbCol(V,V : ET).

For k ∈ PcbCol(V : ET) and g ∈ ST, the notation kgt) := kt)(·)Eε(g|[0,t[) ∈
CB

(
V;V ⊗M |F[0,t[〉

)
extends to shifted intervals by setting

kg[r,t[ :=
(

idV⊗M τ[r,t[
)
◦ kLrgt−r) ∈ CB

(
V;V ⊗M |F[r,t[〉

)
. (2.6)
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Let κ ∈ L(V0;W) and let ν ∈ SL
(
D̂′, D̂;L(V0;V)

)
for dense subspaces D′ and D

of k, and V0 of V. A process k from V to W is a D′-D weak solution on V0 of the
quantum stochastic differential equation

dkt = kt ◦ dΛν(t) k0 = ιWF ◦ κ (2.7)

if, for all x ∈ V0, ζ ′ ∈ h′, ζ ∈ h, g′ ∈ SD′ , g ∈ SD and t > 0,

〈ζ ′ ⊗ ε(g′), kt(x)(ζ ⊗ ε(g))〉 = 〈ζ ′, κ(x)ζ〉〈ε(g′), ε(g)〉

+

∫ t

0

ds 〈ζ ′ ⊗ ε(g′), ks
(
ν(ĝ′(s), ĝ(s))x

)
(ζ ⊗ ε(g))〉. (2.8)

For κ ∈ L(V0;W) and φ ∈ L
(
V0;O(h⊗D̂; h′ ⊗ k̂)

)
such that E ĉφ(x)Ed̂ ∈ V for

all x ∈ V0, c ∈ k and d ∈ D, where B(h; h′) is the ambient full operator space of V,
k is a strong solution on V0 of the quantum stochastic differential equation

dkt = kt ◦ dΛφ(t) k0 = ιVF ◦ κ (2.9)

if it is a weak solution of (2.7), where ν is the sesquilinear map associated with φ,
and, for all x ∈ V0, there is a quantum stochastically integrable process X such
that, for all g′ ∈ S and g ∈ SD,

Eε(g
′)
(
Eg
′(s)XsEg(s) − ks

(
ν(ĝ′(s), ĝ(s))x

))
Eε(g) = 0 for a.a. s.

Theorem 2.1 ([LiW]). Let V and W be concrete operator spaces, let κ ∈ CB(V;W)

and let φ ∈ L
(
D̂;CB(V;V⊗M |k̂〉)

)
for a dense subspace D of k. Then the quantum

stochastic differential equation (2.9) has a unique weakly regular weak solution.
The solution lies in PcbCol(V,W : ED). Moreover, if W = V and κ = idV then
k ∈ QSCcbCol(V : ED).

Remarks. Weak regularity means: initial space bounded and, for all T ∈ R+, ε′ ∈ E
and ε ∈ ED,

sup
{
‖Eε

′
kt(x)Eε‖ : t ∈ [0, T ], x ∈ V, ‖x‖ 6 1

}
<∞.

The unique solution is denoted kκ,φ, or kφ when W = V and κ = idV; these are

related as follows: kκ,φt,ε =
(
κ⊗M id|F〉

)
◦ kφt,ε ([LS1]).

3. Evolutions in Banach algebra

In this section we summarise results we need from [DL1]; A here is a fixed unital
Banach algebra, and A× denotes its group of units.

Definition. An evolution in A is a family
(
Fr,t
)

06r6t
in A, such that

Fr,r = 1A and Fr,s Fs,t = Fr,t (0 6 r 6 s 6 t).

An evolution is invertible if it is A×-valued, and continuous if the following maps
are continuous

[r,∞[→ A, s 7→ Fr,s and [0, t]→ A, s 7→ Fs,t (r, t ∈ R+).

These classes are denoted Evol(A), Evol(A×) and Evolc(A) respectively. We view
evolutions as maps F : ∆[2] → A.

Remark. Continuous evolutions are invertible:

Evolc(A) ⊂ Evol(A×),

and for F ∈ Evol(A×), Fr,t = F−1
0,r F0,t. Thus continuous evolutions are determined

by the one parameter family

Ft := F0,t (t ∈ R+). (3.1)
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For (r, t) ∈ ∆(2) and n ∈ Z+, set

Γ[r,t[ :=
{
σ ⊂ [r, t[ : #σ <∞

}
and Γ

(n)
[r,t[ := {σ ⊂ [r, t[ : #σ = n},

with measurable structure and measure induced from that of Lebesgue measure on

each symplex ∆
(n)
[r,t[, as defined in (1.2), via the bijection

∆
(n)
[r,t[ → Γ

(n)
[r,t[, s 7→ {s1, · · · , sn} (n ∈ N),

and letting ∅ ∈ Γ
(n)
[r,t[ be an atom of measure one ([Gui]).

Definition. Let a ∈ L1
loc(R+;A). Its associated product function πa in L1

loc(Γ;A)
is defined by

πa(σ) :=
−→∏
s∈σ

a(s);

its associated evolution F a in C(∆[2];A) is defined by

F ar,t :=

∫
Γ[r,t[

πa =

∫
πa[r,t[ .

Proposition 3.1. Let a ∈ L1
loc(R+;A), and let (r, t) ∈ ∆[2]. Then the following

hold :

(a) F a ∈ Evolc(A).
(b) For u ∈ [−r,∞[,

FLuar,t = F ar+u,t+u
where Lu is the left shift defined by (Lua)(s) = a(s+ u). In particular,

F ar,t = FLrat−r and F as+u = F as F
Lsa
u for s, u ∈ R+.

(c)

F ar,t = 1A +

∫ t

r

ds F ar,s a(s) = 1A +

∫ t

r

ds a(s)F as,t.

In order to characterise the subclass of evolutions that are useful for our analysis,
we need some notation.

Notation. Let D = {T1 < · · · < TN} ⊂⊂ ]0,∞[ and set T0 := 0 and TN+1 := ∞.
For u ∈ R+, letting k = k(D,u) ∈ {0, · · · , N} be determined by

Tk 6 u < Tk+1,

we set
uDj := Tk+j for j = −k, 1− k, · · · , N − k. (3.2)

Thus for example uD0 = Tk, the element of {0} ∪D immediately to the left of u
(or u itself if u ∈ {0} ∪D); and uD1 = Tk+1, the element of D ∪ {∞} ‘immediately’
to the right of u.

Definition. We call F a piecewise-semigroup evolution if there are associated time
point and semigroup sets

D = {T1 < · · · < TN} ⊂⊂ ]0,∞[ and
{
P (T ) : T ∈ {0} ∪D

}
=
{
P (T0), · · · , P (TN )

}
,

where T0 := 0 and each P (Ti) is a semigroup in A, for which the following identity
holds:

Fr,t =

 P
(rD0 )
t−r if rD0 = tD0

P
(rD0 )

rD1 −r

(
P

(rD1 )

rD2 −rD1
· · ·P (tD−1)

tD0 −tD−1

)
P

(tD0 )

t−tD0
otherwise.

(3.3)

Let Evolpws(A) denote the collection of these.
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Proposition 3.2. Let F ∈ Evolc(A). Then the following are equivalent :

(i) F = F a where a is piecewise constant.
(ii) F ∈ Evolpws(A).

In this case (taking the right-continuous version of a), the associated time point and
semigroup sets of F are respectively, Disc a and

{(
esa(t)

)
s>0

: t ∈ {0} ∪Disc a
}

.

Thus the evolutions with piecewise constant generators are the continuous evo-
lutions which enjoy a semigroup decomposition (3.3).

Now let X be a right Banach A-module.
Then for x ∈ X, c ∈ L1

loc(R+;A), and ϕ ∈ L1
loc(R+), xF c ∈ C(∆[2];X) and

e
∫ t
r
ϕ xF cr,t = xF

c+ϕ(·)1A
r,t (0 6 r 6 t). (3.4)

For Trotter products we adopt the following notations.

Notation. For a finite subset D of ]0,∞[ and function G : ∆[2] → A, in the
notation (3.2), define G’s D-fold product function by

GD : ∆[2] → A, GDr,t =

{
GrD1 ,rD2 · · ·GtD−1,t

D
0

if rD1 < tD0
1A otherwise.

(3.5)

Definition. A sequence
(
D(n)

)
n>1

in Γ]0,∞[ is said to converge to R+ if, as n→∞,

minD(n)→ 0, maxD(n)→∞ and meshD(n)→ 0. (3.6)

Theorem 3.3. Let a1, a2 ∈ L1
loc(R+;A), let

(
D(n)

)
n>1

be a sequence in Γ]0,∞[

converging to R+, and let T ∈ R+. Then

sup
[r,t]⊂[0,T ]

∥∥F a1+a2
r,t − 1,2F

D(n)
r,t

∥∥→ 0, where 1,2Fu,v := F a1u,v F
a2
u,v,

(
(u, v) ∈ ∆[2]

)
.

Remark. The theorem remains true if the definition of D-fold product function is
modified by replacing GrD1 ,rD2 · · ·GtD−1,t

D
0

by Hr,rD1

(
GrD1 ,rD2 · · ·GtD−1,t

D
0

)
KtD0 ,t

for any

continuous functions H,K : ∆[2] → A satisfying Hu,u = Ku,u = 1A (u ∈ R+).

4. Sesquilinear processes and Wiener integrals

In this section we consider quantum stochastic processes consisting of Banach
space valued sesquilinear maps on Fock space. We define multiple quantum Wiener
integrals and establish their basic estimates.

For the rest of the paper we fix a Banach space X and a Banach algebra A. Later
X will be a right Banach A-module, and eventually A will be assumed to be unital.

Definition. A family of maps q = (qt)t>0 in SL(E ;X) is an X-valued sesquilinear
process, or SL process in X if, for all g′, g ∈ S and t ∈ R+,

(i) qt(ε(g
′), ε(g)) = qt(ε(g

′
[0,t[), ε(g[0,t[))〈ε(g′[t,∞[), ε(g[t,∞[)〉.

It is a continuous SL process in X if, for all ε, ε′ ∈ E ,

(ii) s 7→ qs(ε
′, ε) is continuous.

We denote the linear space of SL processes in X by SLP(X, k), and the subspace of
continuous SL processes by SLPc(X, k). For q ∈ SLP(X, k), define

qg
′,g
t := qt(ε(g

′
[0,t[), ε(g[0,t[)) (g′, g ∈ Sloc, t ∈ R+), (4.1)

where Sloc denotes the space of (right-continuous) step functions, so Sloc ⊂ L2
loc(R+; k).

Thus q ∈ SLPc(X, k) if and only if qg
′,g ∈ C(R+;X) for all g′, g ∈ Sloc.

For q ∈ SLP(X, k), its time-reversed process qR ∈ SLP(X, k) is defined by

qR
t (ε′, ε) = qt(rtε

′, rtε) (4.2)
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where rt is the selfadjoint unitary operator on F given by rtε(f) = ε(h) where h(s)
equals f(t − s) for s ∈ [0, t[ and equals f(s) for s ∈ [t,∞[. If X† is the conjugate
Banach space of X then the involute q† ∈ SLP(X†, k) is defined by

q†t(ε
′, ε) = qt(ε, ε

′)†. (4.3)

Set

S(k) :=
{

(g′, g, t) ∈ S× S× R+ : supp g′, supp g ⊂ [0, t[
}
.

By the linear independence of the exponential vectors, and the definition of adapt-
edness, the following is easily seen.

Lemma 4.1. The following map is a bijection:

SLP(X, k)→ F
(
S(k);X

)
, q 7→ φq where φq(g′, g, t) := qg

′,g
t

Here F
(
S(k);X

)
denotes the space of X-valued functions on the set S(k).

Remarks. The inverse of the above bijection is given by adapted, sesquilinear ex-
tension of the prescription

φ 7→ qφ where qφt
(
ε(g′), ε(g)

)
= φ(g′, g, t) for t ∈ R+ and g′, g ∈ S[0,t[. (4.4)

Thus

qφt
(
ε(f ′), ε(f)

)
= exp 〈f ′[t,∞[, f[t,∞[〉φ

(
f ′[0,t[, f[0,t[, t

)
.

If X is a right (or left) Banach module over A, then SLP(X, k) is naturally
likewise.

In all that follows, SL(E ;X) could be replaced by SL(ET′ , ET;X), and S(k) by
S(T′,T), defined in the obvious way, where T′ and T are both total subsets of k
containing 0. We shall exploit this fact when applying our results.

Examples. We give a trivial, but useful, example and three paradigm examples.
(a) Let x ∈ X. Then, in the notation (1.1), qt := |x〉 qI (t ∈ R+), where I = IF ,

defines an SL process in X. We refer to this as the constant SL process x.
(b) Let Z be an initial-space bounded h-h′ process, for Hilbert spaces h and h′.

Then qt(ε
′, ε) := Eε

′
ZtEε defines an SL process in B(h; h′).

(c) Let k be an initial-space bounded (respectively, completely bounded) map-
ping process from V to W, for concrete operator spaces V and W. Then qt(ε

′, ε) :=

Eε
′
kt,ε(·) defines an SL process in B(V;W) (resp. CB(V;W)).

(d) Let l be a cb column bounded quantum stochastic convolution cocycle on C,
for an operator space coalgebra C (see [LS2]). Then qt(ε

′, ε) := ωε′,ε ◦ lt defines an
SL process in the topological dual space C∗.

Remark. In (b), (c) and (d), when the process Z, k, respectively l, is a column-
bounded/column-completely bounded Markov-regular quantum stochastic cocycle
([L1]), or satisfies a linear constant-coefficient quantum stochastic differential equa-
tion with cb column bounded coefficients and completely bounded initial conditions
(as in Theorem 2.1), the corresponding SL process q is continuous.

Multiple quantum Wiener integrals are defined in this setting as follows. For

n ∈ N, υn ∈ SL(k̂⊗n;X) and t > 0, define a map Λnt (υn) ∈ SL(E ;X) by sesquilinear
extension of the prescription

Λnt (υn)(ε(g′), ε(g)) := exp〈g′, g〉
∫

∆
[n]

[0,t[

ds υn
(
ĝ′
⊗n

(s), ĝ⊗n(s)
)

(g′, g ∈ S),

for the convention

ĥ⊗n(s) := ĥ(s1)⊗ · · · ⊗ ĥ(sn), (s ∈ ∆[n]).
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The above integral is well-defined, since the integrand is an X-valued simple function
on the simplex. Moreover

(
Λnt (υn)

)
t>0
∈ SLPc(X, k) in view of the obvious identity

Λnt (υn)
(
ε(g′[0,t[), ε(g[0,t[)

)
= exp〈g′[0,t[, g[0,t[〉

∫
∆

[n]

[0,t[

ds υn
(
ĝ′
⊗n

(s), ĝ⊗n(s)
)
.

For υ0 ∈ SL(C;X) we define Λ0
· (υ0) to be the constant SL process |υ0(1, 1)〉 qI .

Quantum Wiener integration Λn : SL(k̂⊗n;X)→ SLP(X, k) is evidently linear and,
when X is a right (or left) Banach module over A, it is a module map too.

In order to give the basic estimate for these quantum Wiener integrals, define
bounding constants for them as follows: Cυ00 (g′, g) := ‖υ0(1, 1)‖, and for n ∈ N,

Cυnn (g′, g) := max
{∥∥υn(ĉ(1)⊗ · · · ⊗ ĉ(n), d̂(1)⊗ · · · ⊗ d̂(n)

)∥∥ :

c(1), . . . , c(n) ∈ Ran g′, d(1), . . . , d(n) ∈ Ran g
}

; (4.5)

abbreviating Cυ11 (g′, g) to Cυ1(g′, g).

Lemma 4.2. Let n ∈ Z+, υn ∈ SL(k̂⊗n;X) and g′, g ∈ S. Then, for t > 0,∥∥Λnt (υn)(ε(g′), ε(g))
∥∥ ≤ | exp〈g′, g〉|Cυnn (g′, g)

tn

n!
(t ∈ R+) (4.6)

and, for n ∈ N and t > r > 0,∥∥Λnt (υn)(ε(g′), ε(g))−Λnr (υn)(ε(g′), ε(g))
∥∥ ≤ (t−r)| exp〈g′, g〉| tn−1

(n− 1)!
Cυnn (g′, g).

Proof. The first inequality is clear when n = 0, and for n > 1 it follows from the fact

that ∆
[n]
[0,t[ has n-dimensional volume tn/n!. The second follows from the inequality∣∣∆[n]

[0,t[ \∆
[n]
[0,r[

∣∣ =
∣∣∆[n]

[0,t[| − |∆
[n]
[0,r[

∣∣ =
tn

n!
− rn

n!
6

(t− r)
(n− 1)!

tn−1.

�

Definition. Let SLW(X, k) denote the linear space of SL Wiener integrands, that

is the space of sequences U = (υn)n>0, in which υn ∈ SL(k̂⊗n;X) for each n ∈ Z+

and

∀g′,g∈S ∀α∈R+

∑
n>0

αn

n!
Cυnn (g′, g) <∞. (4.7)

Let U ∈ SLW(X, k). The time-reversed integrand UR ∈ SLW(X, k) is defined by

υR
n (ζ ′, ζ) = υn(rnζ

′, rnζ) (4.8)

where rn is the selfadjoint unitary on k̂⊗n determined by rn
(
ζ1 ⊗ · · · ⊗ ζn

)
=

ζn⊗· · ·⊗ζ1. If X† is a conjugate Banach space of X then SLW(X†, k) is a conjugate
vector space of SLW(X, k), with U† ∈ SLW(X†, k) defined by

υ†n(ζ ′, ζ) = υn(ζ, ζ ′)†. (4.9)

Remark. By analyticity, if U ∈ SLW(X, k) then also

∀g′,g∈S ∀α∈R+

∑
n>1

αn−1

(n− 1)!
Cυnn (g′, g) <∞. (4.10)

Proposition 4.3. Let U = (υn)n>0 ∈ SLW(X, k). Then

Λt(U) := p.w.
∑
n>0

Λnt (υn) (t > 0)
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defines an SL process Λ(U) in X satisfying∥∥Λt(U)(ε(g′), ε(g))
∥∥ ≤ | exp〈g′, g〉|

∑
n>0

tn

n!
Cυnn (g′, g)

and∥∥Λt(U)(ε(g′), ε(g))− Λr(U)(ε(g′), ε(g))
∥∥ 6

(t− r)| exp〈g′, g〉|
∑
n>1

tn−1

(n− 1)!
Cυnn (g′, g),

for all g′, g ∈ S and t > r > 0. Moreover Λ·(UR) = Λ·(U)R, and Λ·(U†) = Λ·(U)†.

Remarks. The quantum Wiener integral is thereby a linear map

Λ : SLW(X, k)→ SLPLip(X, k),

where SLPLip(X, k) stands for the space of pointwise locally Lipschitz continuous
processes:{

q ∈ SLP(X, k) : ∀ε,ε′∈E s 7→ qs(ε
′, ε) is locally Lipschitz continuous

}
.

If X is a right (or left) Banach A-module then SLW(X, k) is likewise, and Λ is a
module map.

Now suppose that X is a right Banach A-module; let Ã denote the conditional
unitisation of A that is A if it is unital, and its unitisation if it is not ([Dal]). For

x ∈ X and ν ∈ SL(k̂; Ã) define xν⊗ =
(
xν⊗n

)
n>0

by xν⊗0 := |x〉 qI and, for n ∈ N,

xν⊗n : k̂⊗n × k̂⊗n → X is the sesquilinearisation of the map

k̂n × k̂n → X, (ζ, η) 7→ x
−−−→∏
16i6n

ν(ζi, ηi).

Then
Cxν

⊗n
n (g′, g) ≤ ‖x‖Cν(g′, g)n (n ∈ Z+, g

′, g ∈ S),

so xν⊗ ∈ SLW(X, k); set xqν := Λ(xν⊗). Recall the abbreviation Ft := F0,t (3.1)
for an evolution F .

Lemma 4.4. Let q = xqν for x ∈ X and ν ∈ SL(k̂; Ã), and let g′, g ∈ S and t ∈ R+.
Then

qg
′,g = xF ã and qt(ε(g

′), ε(g)) = e〈g
′,g〉 xF at ,

where a and a′ are the Ã-valued step functions given by

a(t) := ν
(
ĝ′(t), ĝ(t)

)
, and ã(t) := a(t) + 〈g′(t), g(t)〉1Ã.

Proof. Set ϕ(s) = 〈g′(s), g(s)〉 (s ∈ R+). Then

qt(ε(g
′), ε(g)) = e〈g

′,g〉
{
x+

∞∑
n=1

x

∫
∆

[n]

[0,t[

ds
−−−→∏
16i6n

ν(ĝ′(si), ĝ(si))
}

= e〈g
′,g〉 xF at ,

and so, by identity (3.4),

qg
′,g
t = e

∫ t
0
ϕ xF at = xF ãt .

�

Similarly, if Z is a left Banach B-module, z ∈ Z and ν ∈ SL
(
k̂; B̃

)
, defining ⊗νz =(⊗nνz)

n>0
by ⊗0νz := |z〉 qI and, for n ∈ N, ⊗nνz as the sesquilinear extension of

the map

k̂n × k̂n → Z, (ζ, η) 7→
(←−−−∏

16i6n

ν(ζi, ηi)
)
z,
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⊗νz ∈ SLW(Z, k) and we set νqz := Λ(⊗νz). Thus

νqzt (ε(g
′), ε(g)) = exp〈g′, g〉

({ ∞∑
n=1

∫
∆

[n]

[0,t[

ds
←−−−∏
16i6n

ν(ĝ′(si), ĝ(si))
}
z + z

)
,

and the process q = νqz satisfies

qg
′,g = ãF·z and qt(ε(g

′), ε(g)) = e〈g
′,g〉 aFtz.

Remarks. From the definitions we have the following relations

(xqν)op = µqz (x ∈ X, ν ∈ SL(k̂; Ã)) (4.11)

in which Xop is the left Banach Aop-module opposite to X, µ = νop : (ê, ĉ) 7→
ν(ê, ĉ)op ∈ Ãop = Ãop and z = xop ∈ Xop; and

(xqν)† = µqz (x ∈ X, ν ∈ SL(k̂; Ã))

in which X† is the left Banach A†-module conjugate to X, A† is the Banach algebra
conjugate to A, µ = ν† and z = x†.

Setting qν := 1qν and νq := νq1, where 1 = 1Ã, we have

(qν)R = νq (ν ∈ SL(k̂; Ã)).

When X is a Banach A-bimodule,

axqν = a xqν and νqxa = νqx a, (x ∈ X, a ∈ A, ν ∈ SL(k̂; Ã)).

The following result is an immediate consequence of Proposition 4.3.

Theorem 4.5. Let X be a right Banach A-module and let ν ∈ SL(k̂;A) and x ∈ X.
Then, for all g′, g ∈ S,

‖xqνt (ε(g′), ε(g))‖ ≤ | exp〈g′, g〉| ‖x‖ etC (t > 0),

and

‖xqνt (ε(g′), ε(g))− qx,νr (ε(g′), ε(g))‖ ≤ (t− r) | exp〈g′, g〉| ‖x‖CetC (0 6 r 6 t),

where C := Cν(g′, g). In particular, xqν ∈ SLPLip(X, k).

If Z is a left Banach B-module, µ ∈ SL(k̂;B) and z ∈ Z then νqz satisfies
corresponding estimates.

5. Sesquilinear stochastic differential equations

In this section we prove an existence and uniqueness theorem for quantum sto-
chastic differential equations for SL processes in X. Now X is assumed to be a right
Banach A-module.

Definition. Let ν ∈ SL(k̂;A) and x ∈ X. Then q ∈ SLPc(X, k) is a solution of the
left sesquilinear quantum stochastic differential equation

dqt = qt dΛν(t), q0 = |x〉qI (5.1)

if, for all g′, g ∈ S and t ∈ R+,

qt(ε(g
′), ε(g)) = 〈ε(g′), ε(g)〉x+

∫ t

0

ds qs(ε(g
′), ε(g))ν(ĝ′(s), ĝ(s)); (5.2)

in other words if, for all g, g′ ∈ S and t ∈ R+,

Gt = e〈g
′,g〉x+

∫ t

0

ds Gs a(s) (5.3)

where the functions G and a are given by

Gt := qt(ε(g
′), ε(g)), and a(t) := ν(ĝ′(t), ĝ(t)). (5.4)
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If Z is a left Banach B-module then, being a solution of the right sesquilinear
quantum stochastic differential equation

dqt = dΛν(t)qt, q0 = |z〉qI (5.5)

is defined analogously, with the order of the images of qs and ν in (5.2) reversed.

Theorem 5.1. Let ν ∈ SL(k̂;A) and x ∈ X. Then xqν is the unique solution of
the left sesquilinear quantum stochastic differential equation (5.1).

Proof. Fix g′, g ∈ S and define G : R+ → X and a : R+ → A by (5.4), where
q = xqν . It follows from Lemma 4.4 and Part (c) of Proposition 3.1 that G satisfies
the integral equation (5.3). Thus xqν satisfies (5.1). By the uniqueness part of
Lemma 1.2, the integral equation (5.3) has a unique continuous solution. This
implies that (5.1) has a unique solution q ∈ SLPc(X, k). �

Remarks. If q ∈ SLPc(X, k), x ∈ X and ν ∈ SL(k̂;A), then qop ∈ SLPc(Xop, k),
q† ∈ SLPc(X†, k) and the following are equivalent:

(i) q satisfies (5.1);
(ii) qop satisfies (5.5) for Z = Xop, B = Aop, z = xop and µ = νop;
(iii) q† satisfies (5.5) for Z = X†, B = A†, z = x† and µ = ν†.

If q ∈ SLPc(Ã, k) then the following are equivalent:

(i) q satisfies (5.1) with X = Ã and x = 1Ã;

(ii) qR satisfies (5.5) with B = A, Z = Ã, µ = ν and z = 1Ã.

Corollary 5.2. Let µ ∈ SL(k̂;B) and z ∈ Z, for a left Banach B-module Z. Then
µqz is the unique solution of the right sesquilinear quantum stochastic differential
equation (5.5).

We next connect the present theory to standard quantum stochastic differential
equations, noting that for operator spaces V and W, CB(V;W) is a right CB(V)-
module. Recall the notation kκ,φ for the solution of the QSDE (2.9).

Proposition 5.3. Let V and W be concrete operator spaces, and let k = kκ,φ

where κ ∈ CB(V;W) and φ ∈ L
(
k̂;CB(V;V ⊗M |k̂〉)

)
. Set X = CB(V;W) and

A = CB(V), let q ∈ SLPc(X, k) and ν ∈ SL(k̂;A) be respectively the associated SL
process of k and the SL map associated with φ:

qt(ε
′, ε) := Eε

′
kt,ε(·) (ε′, ε ∈ E , t ∈ R+), and ν(ζ ′, ζ) := Eζ

′
φζ(·) (ζ ′, ζ ∈ k̂).

Then q = κqν .

Proof. Let B(h; h′) be the ambient full operator space of V, let ζ ′ ∈ h′, ζ ∈ h,
g′, g ∈ S and t ∈ R+; set ε′ = ε(g′) and ε = ε(g). Applying (2.8),

〈ζ ′ ⊗ ε′, kt(x)(ζ ⊗ ε)〉

= 〈ζ ′, κ(x)ζ〉〈ε′, ε〉+

∫ t

0

ds
〈
ζ ′ ⊗ ε′, ks

(
ν(ĝ′(s), ĝ(s))x

)
(ζ ⊗ ε)

〉
,

so

〈ζ ′, qt(ε′, ε)(x)ζ〉 = 〈ζ ′, q0(ε′, ε)(x)ζ〉+

∫ t

0

ds
〈
ζ ′, qs(ε

′, ε)ν(ĝ′(s), ĝ(s))(x)ζ
〉
.

Since s 7→ qs(ε
′, ε) = Eε

′
ks,ε is continuous R+ → CB(V;W) and s 7→ ν(ĝ′(s), ĝ(s))

is a step function R+ → CB(V), this implies that

qt(ε
′, ε) = 〈ε′, ε〉κ+

∫ t

0

ds qs(ε
′, ε) ◦ ν

(
ĝ′(s), ĝ(s)

)
(t ∈ R+).

Therefore q = κqν , by uniqueness in Theorem 5.1. �
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6. Sesquilinear stochastic cocycles

For the rest of the paper A is assumed to be a unital Banach algebra. We consider
stochastic cocycles in the present setting. Examples are provided by solutions of
quantum stochastic differential equations, and we give sufficient conditions for a co-
cycle to be governed by such an equation. The latter entails a new characterisation
theorem for standard quantum stochastic cocycles.

For q ∈ SLP(A, k) we extend the notation (4.1) to two parameters by setting

qg
′,g
r,t := qLrg

′,Lrg
t−r for (r, t) ∈ ∆[2], g′, g ∈ Sloc, (6.1)

where
(
Lr
)
r>0

is the left-shift semigroup on Sloc given by (Lrg)(s) := g(s + r).

Note that (Lrg)[0,t−r[ = Lr(g[r,t[).

Definition. A process q ∈ SLP(A, k) is a left sesquilinear stochastic cocycle in A
if it satisfies

qg
′,g

0 = 1A and qg
′,g
s+t = qg

′,g
s qLsg

′,Lsg
t (g′, g ∈ Sloc, s, t ∈ R+). (6.2)

If also q ∈ SLPc(A, k), then q is said to be Markov regular.

We denote the classes of left SL cocycles and Markov-regular left SL cocycles by
SLSC(A, k) and SLSCc(A, k) respectively.

Proposition 6.1. Let q ∈ SLP(A, k). Then the following are equivalent :

(i) q ∈ SLSC(A, k).

(ii) For all g′, g ∈ Sloc,
(
qg
′,g
r,t

)
06r6t

defines an evolution in A.

In this case, for all g′, g ∈ Sloc, qg
′,g :=

(
qg
′,g
r,t

)
06r6t

∈ Evolpws(A) with associated

time point and semigroup sets Disc g′ ∪ Disc g and
{
qc
′,c : (c′, c) ∈ Ran(g′, g)

}
respectively.

Proof. Suppose that q ∈ SLSC(A, k), let g′, g ∈ Sloc and set D = Disc g′ ∪ Disc g.

Then qg
′,g
r,r = qLrg

′,Lrg
0 = 1A (r ≥ 0) and, in view of the identity Lsh = Ls−r(Lrh)

(0 ≤ r ≤ s, h ∈ Sloc),

qg
′,g
r,s qg

′,g
s,t = qLrg

′,Lrg
s−r q

Ls−rLrg
′,Ls−rLrg

t−s = qLrg
′,Lrg

t−r = qg
′,g
r,t (0 6 r 6 s 6 t)

so
(
qg
′,g
r,t

)
0≤r≤t is an evolution. Moreover, for c′, c ∈ k,

qc
′,c

0 = 1A and qc
′,c
s+t = qc

′,c
s qLsc

′,Lsc
t = qc

′,c
s qc

′,c
t (s, t ≥ 0),

so
(
qc
′,c
t

)
t≥0

is a semigroup. Set

P (t) := qc
′,c where (c′, c) :=

(
g′(t), g(t)

)
for t ∈ {0} ∪D,

and recall the notation (3.2). If g′ and g are constant on an interval [u, v[ then Lug
′

and Lug are constant, equal to g′(uD0 ) and g(uD0 ) respectively, on [0, v − u[, so

qg
′,g
u,v = qLug

′,Lug
v−u = q

g′(uD0 ),g(uD0 )
v−u = P

(uD0 )
v−u .

Let 0 ≤ r < t. If rD0 = tD0 then g′ and g are constant on [r, t[ so qg
′,g
r,t = P

(rD0 )
t−r ; if

rD0 < tD0 then, since
(
qg
′,g
r,t

)
0≤r≤t is an evolution,

qg
′,g
r,t = qg

′,g

r,rD1

(
qg
′,g

rD1 ,r
D
2
· · · qg

′,g

tD−1,t
D
0

)
qg
′,g

tD0 ,t

which equals the RHS of (3.3) since g′ and g are constant on each interval of the

form [sDk , s
D
k+1[, as well as the intervals [r, rD1 [ and [tD0 , t[. It follows that qg

′,g is
a piecewise semigroup evolution, with associated time point and semigroup set as
claimed.
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Suppose conversely that (ii) holds. Then, for all g′, g ∈ Sloc, qg
′,g

0 = 1A and

qg
′,g
s+t = qg

′,g
0,s+t = qg

′,g
0,s qg

′,g
s,s+t = qg

′,g
s qLsg

′,Lsg
t (s, t ∈ R+),

so (i) holds. �

For a cocycle q ∈ SLSC(A, k), we refer to {qc′,c : c′, c ∈ k} as the family of
associated semigroups of q.

Remark. Clearly, q is Markov regular if and only if each of its associated semigroups
is norm continuous.

Theorem 6.2.

(a) Let q ∈ SLSCc(A, k), and let {βc′,c : c′, c ∈ k} be its associated semigroup
generators. Then, for all g′, g ∈ Sloc,

qg
′,g = F ã where ã(t) = βg′(t),g(t) (t ∈ R+).

(b) Let ν ∈ SL(k̂;A). Then qν ∈ SLSCc(A, k) and its associated semigroup
generators are given by

βc′,c = ν(ĉ′, ĉ) + 〈c′, c〉1A (c′, c ∈ k). (6.3)

Proof. (a) This follows from Propositions 6.1 and 3.2.
(b) This follows from Lemma 4.4. �

Remark. By Lemma 1.1 and identity (6.3), the sesquilinear map ν is expressible
in terms of the associated semigroup generators {βc′,c : c′, c ∈ k} of the stochastic
cocycle qν as follows

ν

((
z′

c′

)
,

(
z

c

))
=

βc′,c − 〈c′, c〉1A + z′ − 1β0,c + (z − 1)βc′,0 + z′ − 1(z − 1)β0,0. (6.4)

The affine relations enjoyed by the associated semigroup generators read as follows:

βc′,c+λd = βc′,c + λβc′,d − λβc′,0, and βc′+λd′,c = βc′,c + λβd′,c − λβ0,c. (6.5)

Sufficient conditions for a cocycle to be governed by a QDSE are given in the
next result. We write Bconj to denote bounded conjugate-linear.

Theorem 6.3. Let q ∈ SLSCc(A, k).
(a) Suppose that there are separating families of maps (ϕi ∈ B(A;Xi))i∈I and

(ϕ′i′ ∈ B(A;X′i′))i′∈I′ for Banach spaces Xi and X′i′ such that, for all ε′, ε ∈ E,
t ∈ R+, i ∈ I and i′ ∈ I ′,

(i) ϕi ◦ qt(ε′, ·) ∈ B(E ;Xi) and ϕ′i′ ◦ qt(·, ε) ∈ Bconj(E ;X′i′);
(ii) the maps s 7→ ϕi ◦ qs(ε′, ·) and s 7→ ϕ′i′ ◦ qs(·, ε) are continuous at 0.

Then q = qν for a unique map ν ∈ SL(k̂;A).
(b) Suppose that (ii) is strengthened to the following :

(ii)
′
s 7→ ϕi ◦ qs(ε′, ·) and s 7→ ϕ′i′ ◦ qs(·, ε) are Hölder 1

2 continuous at 0.

Then, ν enjoys the following weak boundedness properties: for all i ∈ I, i′ ∈ I ′ and

ζ, ζ ′ ∈ k̂,

ϕi ◦ ν(ζ ′, ·) ∈ B(k̂;Xi) and ϕi′ ◦ ν(·, ζ) ∈ Bconj(k̂;X′i′).

Proof. (a) Let {βc′,c : c′, c ∈ k} be the associated semigroup generators of q. In
view of Theorem 6.2, and the remarks that follow it, if there is such a map ν ∈
SL(k̂;A) then it must be given by (6.4). It therefore suffices to show that the map

ν : k̂ × k̂ → A defined by (6.4) is sesquilinear. By Lemma 1.1 this is equivalent to
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showing that βc′,c is complex affine linear in c and conjugate affine linear in c′. Let
t ∈ R+, c′, c, d ∈ k and λ ∈ C, set

ζ ′t := ε(c′[0,t[) and ηt := ε
(
(1− λ)c[0,t[ + λd[0,t[

)
− (1− λ)ε(c[0,t[)− λε(d[0,t[).

Then ηt has no zero or one particle term and so is O(t) as t→ 0, and

βc′,(1−λ)c+λd − (1− λ)βc′,c − λβc′,d = lim
t→0+

t−1qt(ζ
′
t, ηt).

As ηt ⊥ ε(0),

qt(ζ
′
t, ηt) = (qt − q0)(ζ ′t, ηt) + 〈ζ ′t − ε(0), ηt〉1A (t ∈ [0, 1[).

Thus, for all i ∈ I and T > t > 0,∥∥t−1(ϕi ◦ qt)(ζ ′t, ηt)
∥∥ 6 ∥∥ϕi ◦ (qt − q0)(ζ ′T , ·)

∥∥t−1‖ηt‖+ ‖ζ ′t − ε(0)‖t−1‖ηt‖‖ϕi‖.

Since the family
(
ϕi
)
i∈I is separating, it follows that βc′,c is complex affine linear

in c. By a very similar argument it follows that it is also conjugate affine linear in
c′, as required.

(b) Now suppose that (ii)
′

holds and let i ∈ I. Let c′ ∈ k and set ω :=
(

1
0

)
∈ k̂

and C =
(
C2

1 + C2
2

)1/2
, where

C1 :=
∥∥ϕi(ν(ĉ′, ω))

∥∥
Xi

and C2 := sup
t∈]0,1]

t−1/2
∥∥ϕi ◦ (qt − q0)

(
ε(c′[0,1[), ·

)∥∥
B(E;Xi)

.

Then, for ζ =
(
z
c

)
∈ k̂,

ν(ĉ′, ζ) = ν(ĉ′, ĉ) + (z − 1)ν(ĉ′, ω) = zν(ĉ′, ω) +
(
ν(ĉ′, ĉ)− ν(ĉ′, ω)

)
and (by adaptedness)

ϕi
(
ν(ĉ′, ĉ)− ν(ĉ′, ω)

)
= lim
t→0

t−1ϕi ◦ (qt − q0)
(
ε(c′[0,1[), ε(c[0,t[)− ε(0)

)
.

Thus, since t−1/2‖ε(c[0,t[)− ε(0)‖ → ‖c‖ as t→ 0,∥∥(ϕi ◦ ν)(ĉ′, ζ)
∥∥ 6 C1|z|+ C2‖c‖ 6 C‖ζ‖.

It follows that (ϕi ◦ ν)(ζ ′, ·) is bounded for each ζ ′ of the form ĉ′. Therefore, by

linearity, (ϕi ◦ ν)(ζ ′, ·) is bounded for all i ∈ I and ζ ′ ∈ k̂. Similarly, (ϕ′i′ ◦ ν)(·, ζ)

is bounded for each i′ ∈ I ′ and ζ ∈ k̂. �

Corollary 6.4. Let q ∈ SLSCc(A, k). Suppose that for all t ∈ R+ and ε′, ε ∈ E,

(a) qt(ε
′, ·) ∈ B(E ;A) and qt(·, ε) ∈ Bconj(E ;A);

(b) the resulting maps s 7→ qs(ε
′, ·) and s 7→ qs(·, ε) are Hölder 1

2 continuous
at 0.

Then, q = qν for a unique map ν ∈ BSL(k̂;A).

Proof. The hypotheses of Theorem 6.3 hold, in their strengthened form (ii)
′
, with

I = I ′ being a singleton set, X = X′ = A and ϕ = ϕ′ = idA. Thus q = qν for

a unique map ν ∈ SL(k̂;A) and ν is separately continuous. It follows from the
Banach-Steinhaus Theorem that ν is jointly continuous, and thus bounded. �

From these results we obtain cocycle characterisations of solutions of quantum
stochastic differential equations on operator spaces, refining results in Section 5
of [LS1].

Theorem 6.5. Let k be an adjointable quantum stochastic cocycle on an operator
space V in B(h; h′) which is Markov regular (respectively, cb-Markov reqular).

(a) Let k satisfy the following : for all x ∈ V, u ∈ h, u′ ∈ h′ and ε′, ε ∈ E,

(i) the functions s 7→ Eu
′
ks(x)uε and s 7→ Euk†s(x

∗)u′ε′ are continuous at 0.



QUANTUM STOCHASTIC ANALYSIS IN BANACH SPACE 17

Then there is a map ν ∈ SL(k̂;B(V)) (resp. ν ∈ SL(k̂;CB(V))) such that k satisfies
the weak quantum stochastic differential equation (2.7).

Suppose further that dim k <∞. Then ν is the sesquilinear map associated with

a map φ ∈ B
(
V;V ⊗MB(k̂)

)
(resp. φ ∈ CB

(
V;V ⊗MB(k̂)

)
), and k strongly satisfies

the quantum stochastic differential equation (2.9).
(b) Let (i) be strengthened as follows:

(i)
′
k and k† are both pointwise strongly Hölder 1

2 continuous (on their expo-
nential domains),

and let ν ∈ SL(k̂;B(V)) be the resulting sesquilinear map. Then, for all x ∈ V,

u ∈ h, u′ ∈ h′ and ζ, ζ ′ ∈ k̂,

ν(·, ζ)(x)u ∈ Bconj(k̂; h′) and 〈u′|ν(ζ ′, ·)(x) ∈ B(k̂; 〈h|).

Suppose further that dim h,dim h′ < ∞. Then ν is the sesquilinear map associ-

ated with a map φ ∈ L
(
k̂;CB(V;V ⊗M |k̂〉)

)
, and k = kφ.

(c) Let (i) be further strengthened as follows: for all x ∈ V and ε′, ε ∈ E,

(i)
′′
s 7→ ks,ε(x) and s 7→ k†s,ε(x

∗) are Hölder 1
2 continuous R+ → V ⊗M |F〉,

respectively R+ → V† ⊗M |F〉,
and let ν be the resulting sesquilinear map. Then, for all x ∈ V, ν(·, ·)(x) ∈
BSL(k̂;V).

Suppose further that dimV <∞. Then ν is the sesquilinear map associated with

a map φ ∈ L
(
k̂;CB(V;V ⊗M |k̂〉)

)
, and k = kφ.

Proof. Let q ∈ SLPc(A, k) be the corresponding sesquilinear process, with A =
B(V) (resp. CB(V)).

(a) Part (a) of Theorem 6.3 applies with I ′ = I = h′ × V × h, X′ = X = C and
ϕu′,x,u = ϕ′u′,x,u : κ 7→ 〈u′, κ(x)u〉. If dim k <∞ then the required map φ is defined
via the prescription

φ(x)u⊗ ζ =
∑
α

Eeαν(eα, ζ)(x)u, (6.6)

where (eα) is an arbitrary orthonormal basis of k̂. The boundedness (resp. complete
boundedness) of φ is easily verified.

(b) Part (b) of Theorem 6.3 applies, with I = V × h, X = |h′〉 and φx,u : κ 7→
κ(x)|u〉; I ′ = V × h′, X′ = 〈h| and φ′x,u′ : κ 7→ 〈u′|κ(x). This gives separate

continuity for each map ν(·, ·)(x) ∈ BSL(k̂;V) (x ∈ V). Their joint continuity
again follows from the Banach-Steinhaus Theorem.

If dim h,dim h′ <∞ then there are linear isomorphisms

Bconj(k̂; h′) ∼= h′ ⊗ k̂ and B(k̂; 〈h|) ∼= 〈h⊗ k̂|,

and the formula (6.6) again defines a linear map φ associated with the sesquilinear
map ν, moreover by the finite dimensionality of h, φζ(x) is bounded for each x ∈ V

and by the finite dimensionality of V, φζ is completely bounded (ζ ∈ k̂). Thus

φ ∈ L
(
k̂;CB(V;V⊗M |k̂〉)

)
and, by Theorem 2.1, φ generates a quantum stochastic

cocycle kφ. Therefore, by uniqueness in Theorem 5.1, kφ = k.
(c) Part (b) of Theorem 6.3 applies, with I ′ = I = V, X′ = X = A and both ϕ′x

and ϕx being evaluation at x. If dimV <∞ then there are linear isomorphisms

Bconj(k̂;V) ∼= CB(〈k̂|;V) ∼= V ⊗M |k̂〉, and B(k̂;V) ∼= CB(|k̂〉;V) ∼= V ⊗M 〈k̂|,

and again (6.6) defines a linear map φ associated with ν, and the finite dimension-

ality of V ensures that φζ is completely bounded (ζ ∈ k̂), so the argument of (b)
applies. �
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Remarks. There is a subtle difference between Parts (b) and (c). As noted in [LS1],
finite dimensionality of V does not ensure that V is concretely realisable in a finite
dimensional full operator space (see [Pis]).

The full conclusion of Part (c), without the finite-dimensional restriction, which
is established in [L2], is recovered and extended to cocycles in an operator space,
by working in a different category ([DL2]).

In [DL2] we also give a corresponding characterisation of convolution cocycles in
an operator space coalgebra.

7. Stochastic Lie–Trotter product formulae

For this section we consider an orthogonal decomposition k1 ⊕ k2 of the noise
dimension space k, with corresponding tensor decomposition F = F1 ⊗ F2, and
prove Lie–Trotter type product formulae for sesquilinear cocycles. This entails
product formulae for our three paradigm examples of Markov-regular quantum
stochastic cocycle.

Let νi ∈ SL(k̂i;A) for i = 1, 2. The map

k× k→ A, (c, d) 7→ ν1(ĉ1, d̂1) + ν2(ĉ2, d̂2) where c =

(
c1

c2

)
and d =

(
d1

d2

)
,

is easily verified to be affine sesquilinear and so, by Lemma 1.1, there is a unique

map ν1 � ν2 ∈ SL(k̂;A) such that

(ν1 � ν2)(ĉ, d̂) = ν1(ĉ1, d̂1) + ν2(ĉ2, d̂2) (c, d ∈ k). (7.1)

The composition � is the sesquilinear version of the concatenation product of quan-
tum stochastic control theory ([GoJ]). The relationship between the generated co-
cycles qν1 , qν2 and qν , is given by a stochastic Lie–Trotter product formula. We
first establish this formula under more general conditions.

Recall the notation qg
′,g
r,t introduced in (6.1), and the notation (3.5) for D-fold

product functions.

Definition. Let iq ∈ SLSC(A, ki), for i = 1, 2, and let D ⊂⊂ ]0,∞[. The stochas-
tic Lie–Trotter product of 1q and 2q determined by D is the 2-parameter family{

1,2qDr,t : (r, t) ∈ ∆[2]
}

in SL(E ;A), given by bi-adapted sesquilinear extension of
the prescription

1,2qDr,t
(
ε(f[r,t[), ε(g[r,t[)

)
:= GDr,t, where Gu,v :=

(
1qf

1,g1

u,v

) (
2qf

2,g2

u,v

)
((u, v) ∈ ∆[2])

for f =
(
f1

f2

)
and g =

(
g1

g2

)
∈ Sloc.

Remark. Thus
(

1,2qD0,t
)
t>0
∈ SLP(A, k), but in general stochastic Trotter products

are not cocycles.

Theorem 7.1. Let 1q, 2q and q be Markov-regular sesquilinear stochastic cocy-
cles in A with respective noise dimension spaces k1, k2 and k, let

(
D(n)

)
n>1

be

a sequence in Γ]0,∞[ converging to R+ in the sense of (3.6), and suppose that the
associated semigroup generators of the cocycles are related by

β1
c1,d1 + β2

c2,d2 = βc,d (c, d ∈ k). (7.2)

Then

sup
[r,t]⊂[0,T ]

∥∥1,2q
D(n)
r,t (ε′, ε)− qr,t(ε

′, ε)
∥∥→ 0 as n→ 0 (T ∈ R+, ε

′, ε ∈ E).
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Proof. Let f, g ∈ Sloc. By Theorem 6.2,

iqf
i,gi = F ãi where ãi(t) := βifi(t),gi(t) (i = 1, 2, t ∈ R+).

By assumption, ã1 + ã2 = ã where ã(t) := βf(t),g(t) (t ∈ R+). Therefore, applying

Theorem 6.2 again, qf,g = F ã. The result therefore follows from the Lie–Trotter
product formula of Theorem 3.3, by bi-adapted sesquilinear extension. �

For subsets S1 of k1 and S2 of k2, we set

S1 � S2 =
{(c

0

)
: c ∈ S1

}
∪
{(0

c

)
: c ∈ S2

}
.

Remark. If (7.2) holds only for c ∈ T′ and d ∈ T where T′ = T′1�T′2, T = T1�T2

and T′i and Ti are total subsets of ki containing 0 (i = 1, 2), then the above proof
yields the same conclusion for ε′ ∈ ET′ and ε ∈ ET.

Corollary 7.2. Let iq = qνi for νi ∈ SL(k̂i;A) (i = 1, 2), and let
(
D(n)

)
n>1

be a

sequence in Γ]0,∞[ converging to R+. Then, for all T ∈ R+ and ε′, ε ∈ E,

sup
[r,t]⊂[0,T ]

∥∥1,2q
D(n)
r,t (ε′, ε)− qν1�ν2r,t (ε′, ε)

∥∥→ 0 as n→∞.

Proof. The identity (7.2) for the associated semigroup generators of qν1 , qν2 and
q := qν1�ν2 follows from Part (b) of Theorem 6.2, and therefore the theorem applies.

�

Remark. In view of the remark following Theorem 3.3, the above Theorem and
Corollary remain true if

(
1,2qDr,t

)
0≤r≤t is modified by 1,2qDr,t

(
ε(f[r,t[), ε(g[r,t[)

)
taking

its old value multiplied by exp〈fJ , gJ〉 where J = [r, rD1 [∪[tD0 , t[.

We now deduce stochastic Trotter product formulae for mapping, operator and
convolution cocycle settings. To this end, we fix a total subset Ti of ki containing
0, for i = 1, 2, and set

T = T1 � T2 and D = D1 ⊕ D2, where D1 = LinT1 and D2 = LinT2;

thus D = LinT, and T is total in k and contains 0.
First let us fix a concrete operator space V. Recall the extended composition

described in (1.3), and notions of cb column-bounded processes and cocycles from
Section 2, in particular the notation (2.6).

Definition. For i = 1, 2, let ik ∈ QSCcbCol(V : ETi). First set

1,2kg,D[r,t[ := ι0[r,rD1 [ •
(

1,2kg
[rD1 ,r

D
2 [
• · · · • 1,2kg

[tD−1,t
D
0 [

)
• ι0[tD0 ,t[ ∈ CB

(
V;V ⊗M |F[r,t[〉

)
,

for D ⊂⊂]0,∞[, g ∈ ST and (r, t) ∈ ∆[2], where

ι0[u,v[,
1,2kg[u,v[ ∈ CB

(
V;V ⊗M |F[u,v[〉

)
, with

1,2kg[u,v[ := 1kg
1

[u,v[ •
2kg

2

[u,v[ and ι0[u,v[ : x 7→ x⊗ |Ω[u,v[〉,

and we are making the identifications

|F[u,v[〉⊗M |F[v,w[〉 = |F[u,w[〉 and |F1
[u,v[〉⊗M |F2

[u,v[〉 = |F[u,v[〉 (0 6 u 6 v 6 w).

The stochastic Trotter product of 1k and 2k determined by D ⊂⊂ ]0,∞[ is the two-
parameter family

(
1,2kDr,t

)
06r6t

in L
(
ET;CB(V;V⊗M |F〉)

)
given by bi-adapted lin-

ear extension of the prescription ε(g[r,t[) 7→ 1,2kg,D[r,t[, as in (2.2). Thus,
(

1,2kD0,t
)
t>0
∈

PcbCol(V : ET), but it will not in general be a stochastic cocycle.
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If 1k and 2k are cb cocycles then their stochastic Trotter product determined by
D is the family

(
1,2kDr,t

)
06r6t

in CB(V;V ⊗M B(F)
)

determined by

1,2kD[r,t[ := ι[r,rD1 [ •
(

1,2k[rD1 ,r
D
2 [ • · · · • 1,2k[tD−1,t

D
0 [

)
• ι[tD0 ,t[ ∈ CB

(
V;V ⊗M B(F[r,t[)

)
,

where

ι[u,v[,
1,2k[u,v[ ∈ CB

(
V;V ⊗M B(F[u,v[)

)
, with

1,2k[u,v[ := 1k[u,v[ • 2k[u,v[ and ι[u,v[ : x 7→ x⊗ |Ω[u,v[〉〈Ω[u,v[|

and we are making the identifications

B(F[r,s[)⊗M B(F[s,t[) = B(F[r,t[) and B(F1
[s,t[)⊗M B(F2

[s,t[) = B(F[s,t[).

In this case, bi-adapted extension reads as follows:

1,2kDr,t(x) = Σ
(
I[0,r[ ⊗ 1,2kD[r,t[(x)⊗ I[t,∞[

)
,

where Σ is the tensor flip B(F[0,r[)M⊗ V⊗M B(F[r,t[)⊗M B(F[t,∞[)→ V⊗M B(F);(
1,2kD0,t

)
t>0

is then a completely bounded process on V.

Theorem 7.3. Let ik ∈ QSCcbCol(V : ETi) (i = 1, 2) and k ∈ QSCcbCol(V : ET) be
cb Markov regular. Suppose that their associated semigroup generators are related
by φc,d = φ1

c1,d1 + φ2
c2,d2 (c ∈ k, d ∈ T), let

(
D(n)

)
n>1

be a sequence in Γ]0,∞[

converging to R+, and let T ∈ R+. Then

sup
[r,t]⊂[0,T ]

∥∥Eε′(1,2kD(n)
r,t,ε − kr,t,ε

)
(·)
∥∥

cb
→ 0 as n→∞ (ε′ ∈ E , ε ∈ ET).

If 1k, 2k and k are completely bounded, with locally bounded cb norms, then con-
vergence holds in the stronger sense:

sup
[r,t]⊂[0,T ]

∥∥( idV⊗M ω
)
◦
(

1,2k
D(n)
r,t − kr,t

)∥∥
cb
→ 0 as n→∞ (ω ∈ B(F)∗).

If V is a C∗-algebra, 1k and 2k are completely positive and contractive and k is
*-homomorphic then

sup
[r,t]⊂[0,T ]

∥∥(1,2kD(n)
r,t − kr,t

)
(·)ξ
∥∥→ 0 as n→∞ (ξ ∈ h⊗F).

Proof. The first part follows from Theorem 7.1 by setting A = CB(V) and letting
iq be the sesquilinear process associated with ik (i = 1, 2). The second part follows
from the first part and the totality of the set {ωε′,ε : ε′ ∈ E , ε ∈ ET} in B(F)∗. The
last part follows from the second part, by the operator Schwarz inequality, since
each 1,2kDr,t is then a composition of completely positive contractions. �

Remark. It follows from the remark after Corollary 7.2 that the above Theorem

remains true if, in the definition of 1,2kg,D[r,t[ and 1,2kD[r,t[ the maps ι0[u,v[ and ι[u,v[ are

replaced by the maps x 7→ x⊗ |ε(g|[u,v[)〉 and x 7→ x⊗ I[u,v[) respectively.

For i = 1, 2, let φi ∈ L
(
D̂i;CB(V;V ⊗M |k̂i〉)

)
. Their concatenation product

φ1 � φ2 ∈ L
(
D̂;CB(V;V ⊗M |k̂〉)

)
, is defined by

(φ1 � φ2)ĉ(x) :=

(
φ1

ĉ1
(x)

0

)
+ Σ

(
φ2

ĉ2
(x)

0

)
(x ∈ V, c ∈ D),

where Σ is the sum-flip k̂2 ⊕ k1 → k̂1 ⊕ k2 = k̂. (This corresponds to (7.1).) Thus

E ĉ(φ1 � φ2)d̂(·) = E ĉ
1
φ1

d̂1
(·) + E ĉ

2
φ2

d̂2
(·) (c ∈ k, d ∈ D). (7.3)
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Corollary 7.4. Let ik = kφ
i

for φi ∈ L
(
D̂i;CB(V;V ⊗M |k̂i〉)

)
(i = 1, 2), let(

D(n)
)
n>1

be a sequence in Γ]0,∞[ converging to R+ and let T ∈ R+. Then, for all

ε′ ∈ E and ε ∈ ED1⊕D2
,

sup
[r,t]⊂[0,T ]

∥∥Eε′(1,2kD(n)
r,t,ε − k

φ1�φ2

r,t,ε

)
(·)
∥∥

cb
→ 0 as n→∞.

If kφ
1

, kφ
2

and kφ
1�φ2

are completely bounded, with locally bounded cb norms, then,
for all ω ∈ B(F)∗,

sup
[r,t]⊂[0,T ]

∥∥( idV⊗M ω
)
◦
(

1,2k
D(n)
r,t − kφ

1�φ2

r,t

)∥∥
cb
→ 0 as n→∞.

Proof. The stochastic cocycles kφ
1�φ2

, kφ
1

and kφ
2

are each cb Markov-regular
and cb column-bounded. The identity (7.3) implies that their respective associated
semigroup generators are related as required in Theorem 7.3; the result follows. �

Remark. When φi ∈ CB(V;V ⊗M B(k̂i)
)

(i = 1, 2), the concatenation product

φ1 � φ2 reads as follows, in terms of block matrices:[
τ1 α1

χ1 ν1

]
�

[
τ2 α2

χ2 ν2

]
:=

τ1 + τ2 α1 α2

χ1 ν1 0
χ2 0 ν2

 .
Next consider quantum stochastic contraction cocycles on a Hilbert space h, as

in (2.4).

Definition. Let 1V and 2V be quantum stochastic contraction cocycles on h with
respective noise dimension spaces k1 and k2. Their stochastic Trotter product de-
termined by D ⊂⊂ ]0,∞[ is the two-parameter family of contraction operators

1,2V Dr,t :=

{ 1,2VrD1 ,rD2 · · ·
1,2VtD−1,t

D
0

if rD1 < tD0
Ih⊗F otherwise,

where

1,2Vu,v :=
(

1Vu,v ⊗ IF2

)(
idB(h)⊗Σ

)(
2Vu,v ⊗ IF1

)
∈ B(h⊗F),

in which Σ is the tensor flip B(F2)⊗B(F1) → B(F1)⊗B(F2) = B(F), and, for
i = 1, 2, iVu,v := (idB(h)⊗σki

u )(iVv−u) ∈ B(h⊗F i), as in (2.3).

An operator F ∈ B(h ⊗ k̂) stochastically generates a Markov-regular quantum
stochastic cocycle V F , and V F is a contraction cocycle if and only if F ∈ C0(h, k)
where

C0(h, k) :=
{
F ∈ B(h⊗ k̂) : r(F ) 6 0, equivalently, r(F ∗) 6 0

}
,

where r(F ) := F ∗+F +F ∗∆F , moreover V F is isometric, respectively coisometric,
if and only if r(F ) = 0, respectively r(F ∗) = 0 (see [L1]).

For operators F1 ∈ B(h ⊗ k̂1) and F2 ∈ B(h ⊗ k̂2), their concatenation product

F1 � F2 ∈ B(h⊗ k̂) is given, in terms of block matrices, by[
K1 M1

L1 N1

]
�

[
K2 M2

L2 N2

]
:=

K1 +K2 M1 M2

L1 N1 0
L2 0 N2

 .
In view of the easily verified identity r(F1�F2) = r(F1)� r(F2) and (7.3), V F1�F2

is contractive/isometric/coisometric if V F1 and V F2 both are.
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Corollary 7.5 ([LiS]). For i = 1, 2, let (i)V = V F
i

where F i ∈ C0(h, ki), let(
D(n)

)
n>1

be a sequence in Γ]0,∞[ converging to R+, and let T ∈ R+. Then, for

all ω ∈ B(F)∗,

sup
[r,t]⊂[0,T ]

∥∥( idB(h)⊗ω
)
◦
(

1,2V
D(n)
r,t − V F1�F2

r,t

)∥∥→ 0 as n→∞.

If the cocycle V F1�F2 is isometric then, for all ξ ∈ h⊗F ,

sup
[r,t]⊂[0,T ]

∥∥(1,2V D(n)
r,t − V F1�F2

r,t

)
ξ
∥∥→ 0 as n→∞.

Proof. In view of the remark after Theorem 7.3, the first part follows from Corol-
lary 7.4, by means of the completely isometric identifications B(h) = CB(V),
B(h ⊗ F) = CB(V;V ⊗M B(F)) and |h ⊗ F〉 = V ⊗M |F〉, where V is the col-
umn space |h〉. The last part follows since weak operator convergence of a sequence
of contractions to an isometry implies strong convergence. �

Finally, consider quantum stochastic convolution cocycles on a counital operator
space coalgebra C ([LS2]). Denote by P?cbCol(C : ET) the set of cb column-bounded
quantum stochastic convolution processes l on C with exponential domain ET and
by QSC?cbCol(C : ET) the set of convolution cocycles in P?cbCol(C : ET).

For l ∈ P?cbCol(C : ET) and g ∈ ST, the notation lgt) := lt)(·)|ε(g|[0,t[)〉 ∈
CB

(
C; |F[0,t[〉

)
extends to shifted intervals by

lg[s,t[ := τ ◦ lLsgt−s) ∈ CB
(
C; |F[s,t[〉

)
,

where τ here denotes the shift |F[0,t−s[〉 to |F[s,t[〉.

Definition. Let il ∈ QSC?cbCol(C : ETi) for i = 1, 2, put T = T1 � T2 and let
D ⊂⊂ ]0,∞[. First set

1,2lg,D[r,t[ :=

{
ε0
[r,rD1 [

?
(

1,2lg
[rD1 ,r

D
2 [
? · · · ? 1,2lg

[tD−1,t
D
0 [

)
? ε0

[tD0 ,t[
if rD1 < tD0

ε0[r,t[ otherwise,

where ε is the counit, and the convolution is given, in terms of the coproduct, by
(φ ? ψ)(x) := (φ⊗ ψ)(∆x), and

ε0[u,v[,
1,2lg[u,v[ ∈ CB

(
C; |F[u,v[〉

)
, with

1,2lg[u,v[ := 1lg
1

[u,v[ ?
2lg

2

[u,v[ and ε0[u,v[ := |Ω[u,v[〉 ◦ ε (g ∈ ST).

Then the stochastic Trotter product of 1l and 2l determined by D is the two-
parameter family

(
1,2lDr,t

)
06r6t

in L
(
ET;CB(C; |F〉)

)
defined by bi-adapted linear

extension of the map ε(g[r,t[) 7→ 1,2lg,D[r,t[. Again,
(

1,2lD0,t
)
t>0
∈ P?cbCol(C : ET), and

if 1l and 2l are completely bounded then 1,2lDr,t ∈ CB(C;B(F)) (0 6 r 6 t) and(
1,2lD0,t

)
t>0

is a cb convolution process on C.

Theorem 7.6. Let il ∈ QSC?cbCol(C : ETi) (i = 1, 2) and l ∈ QSC?cbCol(C : ET) be
cb Markov regular. Suppose that their associated convolution semigroup generators
are related by ϕc,d = ϕ1

c1,d1 +ϕ2
c2,d2 (c, d ∈ T), let

(
D(n)

)
n>1

be a sequence in Γ]0,∞[

converging to R+, and let T ∈ R+. Then

sup
[r,t]⊂[0,T ]

∥∥〈ε′|(1,2lD(n)
r,t,ε − lr,t,ε

)
(·)
∥∥→ 0 as n→∞ (ε′ ∈ E , ε ∈ ET).

If 1l, 2l and l are completely bounded, with locally bounded cb norms, then conver-
gence holds in the stronger sense:

sup
[r,t]⊂[0,T ]

∥∥ω ◦ (1,2lD(n)
r,t − lr,t

)∥∥→ 0 as n→∞ (ω ∈ B(F)∗),
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and if C is a C∗-bialgebra, l is *-homomorphic and 1l and 2l are completely positive
and contractive then

sup
[r,t]⊂[0,T ]

∥∥(1,2lD(n)
r,t − lr,t

)
(·)ξ
∥∥→ 0 as n→∞ (ξ ∈ F).

Proof. The first part follows from Theorem 7.1 by setting A = C∗ with convolution
product and letting iq be the sesquilinear process in A associated with il (i = 1, 2).
The second and third parts follow in the same way as they do for Theorem 7.3. �

For i = 1, 2, let ϕi ∈ L
(
D̂i;CB(C; |k̂i〉)

)
. Their concatenation product ϕ1�ϕ2 ∈

L
(
k̂;CB(C; |k̂〉)

)
is defined by

(ϕ1 � ϕ2)ĉ :=

(
ϕ1

ĉ1
(·)

0

)
+ Σ

(
ϕ2

ĉ2
(·)

0

)
(c ∈ D),

where Σ is the sum-flip k̂2 ⊕ k1 → k̂1 ⊕ k2 = k̂.

Corollary 7.7. Let il = lϕ
i

for ϕi ∈ L
(
D̂i;CB(C; |k̂i〉)

)
(i = 1, 2), set D = D1⊕D2,

let
(
D(n)

)
n>1

be a sequence in Γ]0,∞[ converging to R+, and let T ∈ R+. Then,

for all ε′ ∈ E and ε ∈ ED,

sup
[r,t]⊂[0,T ]

∥∥〈ε′|(1,2lD(n)
r,t,ε − l

ϕ1�ϕ2

r,t,ε

)
(·)
∥∥→ 0 as n→∞.

If lϕ
1

, lϕ
2

and lϕ
1�ϕ2

are completely bounded with locally bounded cb norms then,
for all ω ∈ B(F)∗,

sup
[r,t]⊂[0,T ]

∥∥ω ◦ (1,2lD(n)
r,t − lϕ

1�ϕ2

r,t

)∥∥→ 0 as n→∞.

Proof. The stochastic convolution cocycles lϕ
1�ϕ2

, lϕ
1

and lϕ
2

are each cb Markov-
regular and cb column-bounded, moreover

〈ĉ| (ϕ1 � ϕ2)d̂(·) = 〈ĉ1|ϕ1

d̂1
(·) + 〈ĉ2|ϕ2

d̂2
(·) (c ∈ k, d ∈ D),

which implies that their respective associated convolution semigroup generators are
related as required in Theorem 7.6; the result follows. �

Remark. When ϕi ∈ CB(C;B(k̂i)
)

(i = 1, 2), the concatenation product ϕ1 � ϕ2

reads as follows, in terms of block matrices:[
γ1 ζ1
η1 ν1

]
�

[
γ2 ζ2
η2 ν2

]
:=

γ1 + γ2 ζ1 ζ2
η1 ν1 0
η2 0 ν2

 .
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