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ABSTRACT. A theory of quantum stochastic processes in Banach space is initi-
ated. The processes considered here consist of Banach space valued sesquilin-
ear maps. We establish an existence and uniqueness theorem for quantum
stochastic differential equations in Banach modules, show that solutions in
unital Banach algebras yield stochastic cocycles, give sufficient conditions for
a stochastic cocycle to satisfy such an equation, and prove a stochastic Lie—
Trotter product formula. The theory is used to extend, unify and refine stan-
dard quantum stochastic analysis through different choices of Banach space, of
which there are three paradigm classes: spaces of bounded Hilbert space op-
erators, operator mapping spaces and duals of operator space coalgebras. Our
results provide the basis for a general theory of quantum stochastic processes
in operator spaces, of which Lévy processes on compact quantum groups is a
special case.

INTRODUCTION

The aim of this paper is to initiate a theory of quantum stochastic processes in
Banach space. The motivation is twofold: to extend the applicability, and begin
to unify, several strands of quantum stochastic analysis. When the results are
applied to the paradigm examples discussed below—optimal results are deduced
for stochastic Lie-Trotter product formulae, and near-optimal results are obtained
for the generation of stochastic cocycles. The Banach space setting presents some
obstruction to the development of a ‘strong’ theory. In a sister paper ([DLs])
we develop quantum stochastic analysis in operator space aided by the superior
functorial properties of the operator space projective tensor product compared to
that of the Banach space projective tensor product. Broadly speaking, the ‘weak’
theory is treated here and the ‘column’ theory there.

The processes considered in this paper are families (g¢):>0 of sesquilinear maps
ExE — X for a Banach space X and exponential domain £ in symmetric Fock space
over L?(R;k), where k is a Hilbert space which serves as the multiplicity space
of the quantum noise. Natural adaptedness and regularity conditions are assumed.
The three paradigm examples of X are: the space B(h;h’), of bounded operators
between Hilbert spaces h and h’, and its closed subspaces; the mapping space
CB(V;W), of completely bounded maps between operator spaces V and W; and
the dual of an operator space coalgebra. The former corresponds to the theory of
unitary and contractive operator processes initiated by Hudson and Parthasarathy
([HuP]), the second includes both the theory of quantum stochastic flows on a
C*-algebra founded by Evans and Hudson ([Eva]), and that of completely positive
stochastic cocycles on a C*-algebra initiated by Lindsay and Parthasarathy ([LiP]),
and the latter corresponds to the theory of quantum stochastic convolution cocycles,
which includes Lévy processes on compact quantum groups in the universal setting
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([LS2]). Expositions of the theory of the first two areas may be found in the
monograph [Par], the lecture notes [Mey], and the surveys [Bia] and [L1].

The sesquilinear theory throws light on the paradigm examples mentioned above
and we obtain refinements of the standard theory, including that of quantum sto-
chastic differential equations in operator spaces ([LS1]). We also obtain new sto-
chastic Lie-Trotter product formulae for cocycles in all three of the examples, ex-
tending the results of [LiS]. Our analysis is founded on some elementary theory of
evolutions in unital Banach algebras ([DLy]).

The plan of the paper is as follows. After a section of preliminaries, we review the
relevant parts of standard quantum stochastic process theory in Section 2, and the
results that we need on evolutions in Section 3. Banach space valued sesquilinear
processes are introduced in the fourth section, where sesquilinear multiple quantum
Wiener integrals are defined and estimated. In Section 5 the existence and unique-
ness theorem is proved for solutions of sesquilinear quantum stochastic differential
equations. In Section 6 we show that solutions of such equations are sesquilin-
ear quantum stochastic cocycles and give sufficient conditions for a sesquilinear
quantum stochastic cocycle to satisfy an equation of this type. We then apply
this to obtain refinements of characterisation theorems in [LS;]. In Section 7 we
prove the sesquilinear quantum stochastic Lie-Trotter product formula and deduce
corresponding formulae in each of the three paradigm examples.

1. PRELIMINARIES

In this section we establish some general notations and state two propositions
which are applied in the paper.

For vector spaces V, V' and W we write V for Co V, v for (11)) (v eV), and
SL(V',V; W) for the space of sesquilinear maps V' x V.— W (or SL(V; W) when
V' = V), inner products and sesquilinear maps here being linear in their second
argument. Basic examples of these are given by |w)gr for T € L(V;V'), w € W
and inner product spaces V and V', where

lwygr : V! x V=W, (' v)— ¥, Tv)w. (1.1)

We also denote by ASL(V',V; W) the collection of maps o : V' x V. — W which
are affine sesquilinear, that is, complex affine linear in the second argument and
conjugate affine linear in the first (or ASL(V; W) when V/ = V). For an ordered
set A and n € N, we write

Al ={ac A" :a; <---<ap} and AL ={acA” a1 < - <ank
also, for n-symplices over a subinterval J of R, we write
A% = g7 and Al = gz, (1.2)

abbreviated to A™ and A™ when J =R,

For a step function f with domain R} we write Disc f for the (possibly empty)
complement of the set of points ¢ where f is constant in some neighbourhood of
t; for a vector-valued function f on Ry and subinterval J of Ry, f; denotes the
function on R which agrees with f on J and vanishes outside J. For Hilbert spaces
H and h and vector e € h, the operator

Ih®le) : HoH®h u—u®e
will be denoted by F., and its adjoint Iy ® (e| by E¢, with context dictating the
Hilbert space H. Thus E° € B(H ® h;H) and E°Ey = (e, f)In. Here (e| € B(h;C)
is the adjoint of the operator |e) € L(C;h) = B(C;h), thus (e] : ¢ — (e, c); we
set |h) := B(C;h) and (h| := B(h;C). If V is an operator space in B(H;H’) and
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B = B(h;h’), for Hilbert spaces h and h’, then the matriz space tensor product of
V with B is the following operator space in B(H® h;H' ® h’) = B(H; H)®B:
Veu B :={T € BH;H)®@B: ECTE,eVforalcd eh,ce h}.

Let W be another concrete operator space. If ¢ € CB(V; W) then the map ¢®idp
extends uniquely to a map ¢ ®u idg € CB(V @u B;W ®wm B) ([LiW]). Also, for
Hilbert spaces k and k', and map ¢ € CB,(B;B(k;k')), the map idpuu) @
restricts to a map in CB (V ®m B;V @m B(k; k’)), denoted idy ®@m. The following
extended composition is very useful. For ¢; € CB (V; V @m B(hg; h’.)) (i=1,2),

(2

¢1 [ ¢2 = (¢1 ®m idB(hz;h’z)) o ¢2 € CB(V,V ®m B(h7 h/)) (13)

Here h = hy ® hy and b’ = h} ® h}, so B(hy;h}) ®m B(h2;hh) = B(h;h').
For dense subspaces D of h and D’ of h’, there are natural inclusions

V@u B C L(D;Vawuh)) C SL(D',D; V), (1.4)
T (¢ TE:) and R ((¢',¢) — ESRe).
Similarly, there are natural inclusions
CB(V;W ®wm B) C L(D; CB(V; W @ |h'))) (1.5)
C SL(D',D;CB(V;W)) C SL(D',D; B(V;W)).

In view of these identifications we are using the subscript notations R and ¢ for
the images of ( € D under R € L(D;V @u |h')) and ¢ € L(D; L(V; W @u |h'))).
Finally we write O(D;h’) for the linear space of operators from h to h’ with domain
D, and OF(D,D’) for the subspace of operators T satisfying Dom T* > D'.

We end this section with two lemmas; the first is elementary linear algebra.

Lemma 1.1. Let V, V' and W be complex vector spaces. The map WYV

W‘A//X‘A/, Qa v, given by

(G CD= N
a(v',v) + 27— 1a(0,v) + (z — D)a(v’,0) + 2 — 1(z — 1)a(0,0),

is injective with left inverse given by v — ., where oy (V' v) 1= 7(17’, 0). It restricts
to a bijection from ASL(V',V; W) to SL(V',V;W).

A useful representation of the well-known solution of the equations in the next
lemma is given in Section 3.

Lemma 1.2. Let X be a right Banach A-module, let zo € X and let a be a step
function Ry — A with discontinuity set D. Then the integral equation

£(t) = 0 +/ ds f(s)a(s) (£ >0). (1.6)
0
and the differential equation

F(0) =0 and f'(s) = f(s)a(s) (s € Ry \D),

have the same unique solution in C(]R+; }C)
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2. QUANTUM STOCHASTICS

In this section we review some standard quantum stochastic analysis, and estab-
lish some notations. Fix now, and for the rest of the paper, a complex Hilbert space
k referred to as the noise dimension space. For a subinterval J of R, let K; :=
L?(J;k) and, for f € K7, write j?for the corresponding k-valued function given by
F(s) := f(s). Let T be a total subset of k containing 0. The space of T-valued step
functions in K is denoted St,; (we take right-continuous versions). The symmetric
Fock space over K is denoted F; the exponential vectors e(f) := ((n!)~1/2f®"), 5
(f € Ky) are linearly independent and &ty := Lin{e(f) : f € St s} is dense in Fy;
when T = k or J = R, we drop the corresponding subscript; the identity operator
on F; and vacuum vector €(0) in F; will be written I; and € respectively. The
orthogonal decomposition

K= Ko,sf & Kool @ Kt oo
yields the tensor decompositions
F = Fio.s[ @ Flst] @ Fit,ooy B(F) = Bio,s|@Bs,1[@Blt,00[, and
E1 = &E7,00,5[ QT[4 [QET [t,0f (0K 5 <.

Definition. Let h and h’ be Hilbert spaces, with dense subspaces D and D’.

An h-h" operator quantum stochastic process with exponential domain DRET is a
family of operators (X;) 150 10 O(D@&T; h' @ F) satisfying the following measura-
bility and adaptedness conditions:

(i) s — X is weakly measurable Ry — h’ @ F, for all ¢ € DR&T, and
(ii) for all £ € Ry, there is an operator X;y € O(D@ETV[(M[; h’®}"[07t[) such that

X = Xt)@l[’tm[ where I[’t,oo[ denotes the restriction of Ij; o t0 ET [1,00]-

Forallg €S, g€ St,e €&t and t € Ry, set

X909 = E=Uor) X, B, ) €O(D;h) and X, . = X, E. € O(D;h' © F).  (2.1)

gjo,t

The process X is initial space bounded if thl’g is bounded (t € Ry, ¢ € S,
g € St); it is column-bounded if X, . is bounded (t € Ry, ¢ € &7); it is bounded if
X is bounded (¢ € Ry ), in which case (ii) reads

(i)’ Vier, Xt C X3 ® Ij,o0[ for some operator X;) € B(h ® Flou;h' ® ]-'[07,5[);
it is adjointable if Dom(X:)* D D'®@&r (t € Ry) for some dense subspace D’ of
h’ and total subset T’ of k containing 0, in which case X, := (Xt)TD,@ST/ (t>0)
defines an h’-h process X 1.

For a column-bounded h-h" process X, and function g € St, we write

Xf) = Xt)ES(gl[o,t[) S B(h; h ® ]:[O,t[) = B(h; h/)®|f[0’t[>, for t > 0, and

X7 = (1dp) E1a) (X[27) € B(hih' @ Firyy), fort>r >0,

where 77,4 denotes the shift | Fio s—r[) = [Fr), and (L¢)¢»0 denotes the coisomet-
ric left shift semigroup on F.
Linear extension of the prescription

Xr,t,s(g) = Z(|5(g[0,7”[)> ® X[gr7t[ ® |5(g[t,00[)>)7 (2'2>
in which ¥ is the tensor flip

| For)@B(h; h' ® Frra)®| Fit,o0)) — B(h; h' ® F),

then gives a two-parameter family (Xr,t) in L(ST;B(h; h' ® ]-'))7 which is

o<r<t
bi-adapted in an obvious sense.
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If X is bounded then
Xrt =0, (X)) (t2r=0), (2.3)
where o, = id () @0y for the right shift of on B(F), thus
Xt € B(h;h')®I19 1 @B(Firap) @ L o0f-

A bounded h-process X (i.e. h-h’-process where h’ = h) is a quantum stochastic
cocycle if it satisfies
Xo = Ih@].‘ and Xs+t = Xsas(Xt) (S,t > O) (24)

By the multiplicativity of the shift, this is equivalent to its associated two-parameter
family forming an evolution:

Xr,r = Ih®.7: and Xr,t = Xr,sXs,t (O <r<s< t),
it is also equivalent to
X§0 = Iy and XZf = XO9X[P0 (5,620,499 €8),

which makes sense for initial-space bounded processes X. In terms of columns, the
cocycle identity is equivalent to

Xg) =1, and X§+t) = (X;q) & I[s,ert[)X[i,s_i_t[v (S,t > 0,9 € S),
which makes sense for column-bounded processes. The relevance of these is that
solutions of quantum stochastic differential equations with bounded coefficients
need only be column bounded; however, they are cocycles in the above two senses.

Let V and W be concrete operator spaces and let B(h;h') be the ambient full
operator space of W. A process in W is an h-h’ operator process X, with exponential
domain h®&T, satisfying Xf/’g eEW (teRy, g €S, geST).

A mapping process from V to W is a family k = (k;);>0 in L(V; O(h®&t;h' ®
F)) such that (ki(z))i0 is a process in W (z € V); it is initial-space bounded
(respectively, initial-space completely bounded) if ktg/’g € B(V; W) (respec. ktgl’g €
CB(V;W)) for all t € Ry, g’ € S, g € St, where k‘f/’g(x) = k()9 9. Tt is
column-bounded (respectively, cb column bounded) if ky . € B(V; W @um |F)) (resp.
ki € CB (V;W ®M |.7-">)) for all t € Ry, € € &t; it is a completely bounded process
if k, € CB(V;W @um B(F)) (t € Ry), under the inclusion (1.5); it is adjointable if
ki (V) € OF(h@&r, h'®ET), for some total subset T’ of k containing 0, so that there
is a process k' from VI to W satisfying k] (2*) C ki(z)T (t € Ry, z € V).

A mapping process k from V to V is a quantum stochastic cocycle if,

ko = 1% and kg;? =k99 0o kthg”Lsg (s,t R4, g €S,9 € St); (2.5)
it is Markov regular (respectively, c¢b Markov regular) if each function s — k:g/’g

is continuous Ry — B(V) (resp. Ry — CB(V)). If k is completely bounded
then (2.5) is equivalent to the more recognisable cocycle identity

kit = ks o (idy @ 2 o) © bt (s,t €RY)

where Es 1= ks) @M idp(F, ) for the induced map kg : V — V ®@u B(Fjp,s[), and
'r[{ioo[ denotes the shift B(F) — B(Fs,o0[)-
Denote by Pepcol(V, W : E7) the set of cb column-bounded quantum stochastic
processes k from V to W with exponential domain &t and by QSC_,coi(V : 1) the
set of cocycles in Pepcol(V : E7) := Pepcar(V, V : E7).

For k € Pepcor(V : &) and g € Sy, the notation kf) = ki) () Bl €

CB(V;V @w |Fo,)) extends to shifted intervals by setting
k‘[gr’t[ = (idv QM T[r,t[) o ktL:T) S CB(V;V QM |f[r,t[>)~ (2.6)
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Let k € L(Vo; W) and let v € SL(67, 6; L(Vo; V)) for dense subspaces D’ and D
of k, and Vg of V. A process k from V to W is a D’-D weak solution on Vg of the
quantum stochastic differential equation

dk; = ko dA(t) ko= 1Mok (2.7)
if, for all x € Vg, ¢’ €, €h, ¢ € Sp/, g €Sp and t > 0,

(¢ ® (), k(@) (C ® () = (¢ ~(@)CNElg), ()
+ / ds (¢’ ® e(g'). ke (T (5). 5()2) (C D e(9)). (28)

For k € L(Vo;W) and ¢ € L(Vo; O(h@D;h’ @k)) such that E°¢(z)E; € V for
all x € Vg, ¢ € k and d € D, where B(h;h’) is the ambient full operator space of V,
k is a strong solution on Vq of the quantum stochastic differential equation

dk; = kyo dAy(t) ko =1%ok (2.9)

if it is a weak solution of (2.7), where v is the sesquilinear map associated with ¢,
and, for all z € Vj, there is a quantum stochastically integrable process X such
that, for all ¢’ € S and g € Sp,

Es(g,) (Egl(S)XsEg(s) - ks (V(.;/(S),g(s))-l'))Eg(g) =0 for a.a. s.

Theorem 2.1 ([LiW]). Let V and W be concrete operator spaces, let k € CB(V; W)
and let ¢ € L(B; CB(V;V ®w |E>)) for a dense subspace D of k. Then the quantum
stochastic differential equation (2.9) has a unique weakly regular weak solution.
The solution lies in Popcol(V,W : Ep). Moreover, if W =V and k = idy then
k € QSC.rco(V: Ep).

Remarks. Weak regularity means: initial space bounded and, for all T € Ry, e’ € £
and ¢ € &p,

sup { | E¥ ky(2) B[ : t € [0,T],z € V, ||z]| <1} < oc.
The unique solution is denoted k%%, or k¢ when W = V and s = idy; these are
related as follows: k‘f”f = (k®midjz) ) o kfjs ([LSq]).
3. EVOLUTIONS IN BANACH ALGEBRA

In this section we summarise results we need from [DL]; A here is a fixed unital
Banach algebra, and A* denotes its group of units.

Definition. An evolution in A is a family (Fr’t) in A, such that

oL<r<t
Fr,rzl.A and Fr,sEs‘,t:Fr,t (O<T<5<t)

An evolution is invertible if it is A*-valued, and continuous if the following maps
are continuous

[r,oo[—= A, s— F., and [0,t] > A, s— F,, (r,t € Ry).

These classes are denoted Evol(A), Evol(A*) and Evol.(.A) respectively. We view
evolutions as maps F : A? — A.

Remark. Continuous evolutions are invertible:
Evol.(A) C Evol(AX),

and for F' € Evol(A*), F,.; = Fy, }ngt. Thus continuous evolutions are determined
by the one parameter family

Ft = F(),t (t c R+) (31)
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For (r,t) € A® and n € Z, set
Lp o= {o Clrtl: #0 < oo} and . {o C[rt[: #0 =n},

[rel "~
with measurable structure and measure induced from that of Lebesgue measure on

each symplex A([:)t[, as defined in (1.2), via the bijection

A([:v)t[ = FE’:%[’ S = {817 e 7sn} (n S N)7

(") ‘be an atom of measure one ([Gui]).

and letting @ € F[T ‘|

Definition. Let a € L} (Ry;.A). Its associated product function m, in Ll (T'; A)
is defined by
H
Ta(0) 1= Ha(s);

se€o

its associated evolution F* in C(APl; A) is defined by

a . J—
Fy .—/ o = /Wa[m[.
Ppref

Proposition 3.1. Let a € Ll (Ry;A), and let (r,t) € AP, Then the following
hold:
(a) F'* € Evol.(A).
(b) Foru € [—r,o0],
FrL,tua = Fﬂ+u,t+u
where Ly, is the left shift defined by (Lya)(s) = a(s + w). In particular,

Fp = FEre and F., =FiFLlo fors,ueR,.
(c)
¢ ¢
Fly=1a +/ dsFl a(s) =14 +/ dsa(s) F¢,.

In order to characterise the subclass of evolutions that are useful for our analysis,
we need some notation.

Notation. Let D = {T} < --- < Ty} CC]0,00[ and set Ty := 0 and Ty := oo.
For u € Ry, letting k = k(D,u) € {0,--- , N} be determined by
Ty <u<Tgyr,
we set
uf =Ty for j=—-k1—k-- N—k (3.2)

Thus for example ul’ = T}, the element of {0} U D immediately to the left of u
(or w itself if u € {0} U D); and uP = Ty 1, the element of DU {oo} ‘immediately’
to the right of u.

Definition. We call F' a piecewise-semigroup evolution if there are associated time
point and semigroup sets

D={Ty < <Ty}CcCl0,00] and {PT) : T € {0yuD} = {PT0) ... pTY

where T := 0 and each P(T) is a semigroup in A, for which the following identity
holds:

D
i P if r§’ = tg’ (3.3)
= D .
it pro) ( pr) L pt(;*lt)D ) Pt(tgt) ) otherwise.
ry =T Ty Ty o ‘-1 —o0

Let Evol,ws(A) denote the collection of these.
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Proposition 3.2. Let F € Evol.(A). Then the following are equivalent:

(i) F = F* where a is piecewise constant.

(ii) F € Evolpys(A).
In this case (taking the right-continuous version of a), the associated time point and
semigroup sets of F' are respectively, Disca and {(es“(t))s>0 :t € {0} UDisc a}.

Thus the evolutions with piecewise constant generators are the continuous evo-
lutions which enjoy a semigroup decomposition (3.3).

Now let X be a right Banach A-module.

Then for z € X, c € L. (Ry;A), and ¢ € LL _(Ry), z F¢ € C(AP; X) and

loc loc
elrva e, = FSFFOM (0<r <), (3.4)
For Trotter products we adopt the following notations.

Notation. For a finite subset D of ]0,00[ and function G : APl — A, in the
notation (3.2), define G’s D-fold product function by

GP APl A, G, = { Grpop - Geoyap 1P <t

3.5
14 otherwise. (3.5)

Definition. A sequence (D(n))n>1 in I'g oo is said to converge to Ry if, asn — oo,
min D(n) - 0, maxD(n) — oo and mesh D(n) — 0. (3.6)

Theorem 3.3. Let aj,ax € Ll (Ri;A), let (D(n))n>1 be a sequence in Tg
converging to Ry, and let T € Ry. Then

sup H Taf”” — 1’2FTDt(n)H — 0, where 1’QFW) = FFe2 ((u,v) S A[2]).
[rt]C[0,T] ' ’ ' '
Remark. The theorem remains true if the definition of D-fold product function is
modified by replacing G,.p .o ---Gp 0 by H, .0 (GmD’rg X 'GtQI,t(?)th’,t for any
continuous functions H, K : A — A satisfying Hyyw=Kyu=14 (ueRy).

4. SESQUILINEAR PROCESSES AND WIENER INTEGRALS

In this section we consider quantum stochastic processes consisting of Banach
space valued sesquilinear maps on Fock space. We define multiple quantum Wiener
integrals and establish their basic estimates.

For the rest of the paper we fix a Banach space X and a Banach algebra A. Later
X will be a right Banach A-module, and eventually A will be assumed to be unital.

Definition. A family of maps q = (q¢)¢>0 in SL(E; X) is an X-valued sesquilinear
process, or SL process in X if, for all ¢/, g € Sand t € R,

) G0(e(9')+(9)) = (8l <(910.0)) (5] )51
It is a continuous SL process in X if, for all £,’ € £,

(ii) s — qs(¢’,€) is continuous.
We denote the linear space of SL processes in X by SLIP(X, k), and the subspace of
continuous SL processes by SLP.(X, k). For q € SLP(X, k), define

af " = qu(e(g0.40),€(904) (9" € Stoe, t € Ry, (4.1)

where S, denotes the space of (right-continuous) step functions, so Sjoe C L12OC (Ry;k).
Thus q € SLP.(X, k) if and only if g9 9 € C(Ry; X) for all ¢/, g € Sic.
For q € SLP(X, k), its time-reversed process q® € SLP(X, k) is defined by

A (e',e) = qi(rie, ree) (4.2)
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where r; is the selfadjoint unitary operator on F given by r:e(f) = £(h) where h(s)
equals f(t — s) for s € [0,t[ and equals f(s) for s € [t,00[. If XT is the conjugate
Banach space of X then the involute q € SLP(X', k) is defined by

aj (', e) = aule, &)l (4.3)
Set
S(k) := {(g’,g,t) €SxSxR, :suppg’,suppg C [O,t[}.

By the linear independence of the exponential vectors, and the definition of adapt-
edness, the following is easily seen.

Lemma 4.1. The following map is a bijection:
SLP(X,k) = F(S(k);X), q— ¢q where ¢q(g's9,t) = qf
Here F(S(k); X) denotes the space of X-valued functions on the set S(k).

Remarks. The inverse of the above bijection is given by adapted, sesquilinear ex-
tension of the prescription

¢ q° where q7(c(g'),2(9)) = 6(g',g,t) for t € Ry and g, g € Sjps.  (4.4)
Thus
q? (E(fl)7 E(f)) = exXp <f[/t,oo[7 f[t,oo[>¢(f[/0,t[7 f[O,t[a t)
If X is a right (or left) Banach module over A, then SLP(X, k) is naturally
likewise.
In all that follows, SL(E;X) could be replaced by SL(Ev/,Et;X), and S(k) by

S(T',T), defined in the obvious way, where T’ and T are both total subsets of k
containing 0. We shall exploit this fact when applying our results.

Examples. We give a trivial, but useful, example and three paradigm examples.

(a) Let # € X. Then, in the notation (1.1), q; := |x) g1 (t € Ry), where I = Ir,
defines an SL process in X. We refer to this as the constant SL process x.

(b) Let Z be an initial-space bounded h-h’ process, for Hilbert spaces h and h’.
Then q;(¢’, ) := E° Z,E. defines an SL process in B(h;h’).

(c) Let k be an initial-space bounded (respectively, completely bounded) map-
ping process from V to W, for concrete operator spaces V and W. Then q;(¢,¢) :=
E<'k; () defines an SL process in B(V; W) (resp. CB(V;W)).

(d) Let I be a cb column bounded quantum stochastic convolution cocycle on C,
for an operator space coalgebra C (see [LSa]). Then q¢(¢’,€) := wer ¢ 0 l; defines an
SL process in the topological dual space C*.

Remark. In (b), (c) and (d), when the process Z, k, respectively [, is a column-
bounded/column-completely bounded Markov-regular quantum stochastic cocycle
([L4]), or satisfies a linear constant-coefficient quantum stochastic differential equa-
tion with cb column bounded coefficients and completely bounded initial conditions
(as in Theorem 2.1), the corresponding SL process ¢ is continuous.

Multiple quantum Wiener integrals are defined in this setting as follows. For
n €N, v, € SL(k&";X) and t > 0, define a map A} (v,) € SL(E; X) by sesquilinear
extension of the prescription

A ) Ee). () = explg'sg) [

[n

[0,¢]

~

ds vn (97" (5),5°™(s))  (d,9€9),

for the convention

~

hen(s) i=h(s1) @ - @ h(s,),  (s€ A,
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The above integral is well-defined, since the integrand is an X-valued simple function
on the simplex. Moreover (A7 (vn)),., € SLP.(X, k) in view of the obvious identity

Af (v )( (9[0 t[) ey Ot[)) = exp(gf07t[,g[0,t[> /A[”] ds Un(9’®n(s)7§®n(s))-
(0,1
For vg € SL(C;X) we define A%(vg) to be the constant SL process |vg(1,1))qr.
Quantum Wiener integration A" : SL(k&"; X) — SLP(X, k) is evidently lincar and,
when X is a right (or left) Banach module over A, it is a module map too.
In order to give the basic estimate for these quantum Wiener integrals, define
bounding constants for them as follows: Cj°(¢’, g) := ||vo(1,1)||, and for n € N,

Co (g, g) = max{”vn(c/(\U@...@cfﬁ)’@@...®Jﬁ))” .
c(1),...,¢(n) € Rang’, d(1),...,d(n) € Rang}; (4.5)
abbreviating C7*(¢’, g) to C"* (¢, g9).

Lemma 4.2. Letn € Z,, v, € SL(E@”; X) and g',g €S. Then, fort >0

’ ! U, ’ t
147 () (e(9), 2] < lexply’s )| Cin (9, 9)—  (E € Ry) (4.6)
and, formeNandt >r >0,

n—1

t
[AF (0n)(e(9), €(9)) = AT (vn) (e 9| < (t=r)|exp(d’, g>|ﬁ
Proof. The first inequality is clear when n = 0, and for n > 1 it follows from the fact

[n]
that AOt[

Cr(g's9).

has n-dimensional volume ¢" /n!. The second follows from the inequality

" " (t — T) n—1

| [Ot\A[O7[’_’A[Ot |A[07-|_E_H\(n_1)!t

O

Definition. Let SLW(X, k) denote the linear space of SL Wiener integrands, that
is the space of sequences U = (vy,)n>0, in which v,, € SL(k&"; X) for each n € Z4
and

a
Vg/,gES Va€R+ Z HCTLTL (glvg) < 0. (47)
n=0
Let U € SLW(X,k). The time-reversed integrand UR € SLW(X, k) is defined by
US(C/7 C) = Un(TnC:/, rnC) (48)

where r, is the selfadjoint unitary on k®" determined by 7 (Cl Q- Q® (n) =
(n®---®(;. If X1 is a conjugate Banach space of X then SLW(X', k) is a conjugate
vector space of SLW(X, k), with UT € SLW(XT, k) defined by

vh(¢',¢) = vn(¢, ¢ (4.9)
Remark. By analyticity, if Y € SLW(X, k) then also

n—1

a
Vg ges Vaecr, Z mcﬁ" (9',9) < . (4.10)

n>1

Proposition 4.3. Let U = (vy)n>0 € SLW(X, k). Then
Uy:=pw. Y Af(v,)  (t>0)

n=0
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defines an SL process A(U) in X satisfying

820, ()] < lexply’ ) 3 539 0)
n=0

and

[Ac)(e(g),e(g)) — Ar(U)(e(g"),2(9))| <

(t—r)lexplg’, g)| Y h
n>1

forallg',g €S and t =1 > 0. Moreover A.(UR) = A.(U)R, and A.(U') = A (U)T.

n—1

Cy (g, 9);

Remarks. The quantum Wiener integral is thereby a linear map
A SLW(X,k) = SLPLip(X, k),
where SLPL;, (X, k) stands for the space of pointwise locally Lipschitz continuous
processes:
{q € SLP(X,k) : Ve crce s+ qs(€’,€) is locally Lipschitz continuous}.

If X is a right (or left) Banach .A-module then SLW(X, k) is likewise, and A is a
module map.

Now suppose that X is a right Banach A-module; let A denote the conditional
unitisation of A that is A if it is unital, and its unitisation if it is not ([Dal]). For
z € X and v € SL(k; A) define zv® = (zv@") _ by 2v€° := |z) ¢; and, for n € N,

Tv87 kB KO s X is the sesquilinearisatlon of the map

K k™ = X, ConH v(Giomi).

1<i<n
Then
Ci (g g) < lleCV (g 9)"  (n€Zig\g€S),
so zv® € SLW(X,k); set “q” := A(zr®). Recall the abbreviation F} := Fy; (3.1)
for an evolution F.

Lemma 4.4. Let q =" forz € X andv € SL(K; A), and let g',g €S andt € R,.
Then ) ~ )
@0 =2 F% and a,(cl),<(9)) = €9 2 .

where a and o' are the A-valued step functions given by
a(t) = v(g'(1),3(1), and @(t) = a(t) + (¢'(t), ()1
Proof. Set @(s) = (g/(s), 9(s)) (s € Ry). Then
u(elg),e(0) = 7 {2+ 3 / ds 1 @530} = e e,

n=1 1<ig<n

B

and so, by identity (3.4),
q‘?/’g = efgs"tha =z F2

Similarly, if 3 is a left Banach B-module, z € 3 and v € SL @; g), defining ®vz =
(&wz) o by @z = |z) s and, for n € N, €z as the sesquilinear extension of

the map

K x k" =3, (C,n)— ( H V(Ci»ni)) Z,

1<ign
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®vz € SLW(3,k) and we set “q* := A(®vz). Thus

el o) =entds ({3 [ as T] @)= +2).
n=1 [

04 1<i<n
and the process q = “q* satisfies
q/9 =“Fz and qi(e(g),e(g)) = 9 Pz,
Remarks. From the definitions we have the following relations
(q")? = *q*  (z € X,ve SLk; A) (4.11)
in which XP s tl/lg/left Banach A°P-module opposite to X, p = v°P : (€,¢) —
v(e,c)°P € A% = A°P and z = z°P € X°P; and
(%q¥)T = 1¢* (z € X,v € SL(k; A))
in which X7 is the left Banach .Af-module conjugate to X, A' is the Banach algebra
conjugate to A, u = vl and z = 2.
Setting q¥ := g¥ and “q := “q!, where 1 = 1 7, we have
@) ="a  (veSLkA).
When X is a Banach A-bimodule,
9" =a"q” and "q** ="94" a, (xeX, ac AveSLk; A)).
The following result is an immediate consequence of Proposition 4.3.

Theorem 4.5. Let X be a right Banach A-module and let v € SL(E; A) and z € X.
Then, for all ¢', g €S,

177 ((9"), e ()) < lexplg’, gl [|z]| ' (t = 0),

and

I7af (e(9'),£(9)) — a5 (e(g"), @) < (t = 7) [exp(g’, 9] 2] Ce™ (0 <7 <),
where C := C" (¢, g). In particular, *q" € SLPLi, (X, k).

If 3 is a left Banach B-module, p € SL(k;B) and z € 3 then % satlisfies
corresponding estimates.

5. SESQUILINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

In this section we prove an existence and uniqueness theorem for quantum sto-
chastic differential equations for SL processes in X. Now X is assumed to be a right
Banach A-module.

Definition. Let v € SL(E; A) and z € X. Then q € SLP.(X, k) is a solution of the
left sesquilinear quantum stochastic differential equation

dgr = q: dAL(8), g0 = |z)gqr (5.1)

if, for all ¢, g € S and t € Ry,
t

q:(e(9'),£(9)) = <E(9’),E(g)>fﬂ+/ ds qs(e(9'), £(9))v(9'(5), 9(s)); (5.2)

0
in other words if, for all g,¢’ € Sand ¢t € R,

t
Gy =el9 9y +/ ds G5 a(s) (5.3)
0

where the functions G and a are given by

~

Gy = q4(e(g"),2(9)), and a(t) := v(g'(t),5(t))- (5-4)
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If 3 is a left Banach B-module then, being a solution of the right sesquilinear
quantum stochastic differential equation

dg; = dA,(t)a:, g0 = [2)aqr (5.5)

is defined analogously, with the order of the images of qs and v in (5.2) reversed.

Theorem 5.1. Let v € SL(Q; A) and x € X. Then 4" is the unique solution of
the left sesquilinear quantum stochastic differential equation (5.1).

Proof. Fix ¢’,g € S and define G : Ry — X and a : Ry — A by (5.4), where
q = "g”. It follows from Lemma 4.4 and Part (c) of Proposition 3.1 that G satisfies
the integral equation (5.3). Thus *q” satisfies (5.1). By the uniqueness part of
Lemma 1.2, the integral equation (5.3) has a unique continuous solution. This
implies that (5.1) has a unique solution q € SLP. (%, k). O

Remarks. If ¢ € SLP.(X,k), x € X and v € SL(E; A), then q°° € SLP.(X°P, k),
q" € SLP.(X',k) and the following are equivalent:

(i) q satisfies (5.1);
(ii) g°P satisfies (5.5) for 3 = X°P, B = A°P, z = z°P and p = v°P;
(iii) qf satisfies (5.5) for 3 = X7, B= Af, 2 = 2 and p = o.
Ifq € SLIPC(JZ, k) then the following are equivalent:
(i) q satisfies (5.1) with X = A and z = e
(i) q" satisfies (5.5) with B=A, 3 =A, p=vand z =15 .
Corollary 5.2. Let u € SL(/k\; B) and z € 3, for a left Banach B-module 3. Then

kq® is the unique solution of the right sesquilinear quantum stochastic differential
equation (5.5).

We next connect the present theory to standard quantum stochastic differential
equations, noting that for operator spaces V and W, CB(V;W) is a right CB(V)-
module. Recall the notation k%% for the solution of the QSDE (2.9).

Proposition 5.3. Let V and W be concrete operator spaces, and let k = k¢
where k € CB(V;W) and ¢ € L(k;CB(V;V @w [K))). Set X = CB(V;W) and
A=CB(V), let g € SLP.(X,k) and v € SL(k; A) be respectively the associated SL
process of k and the SL map associated with ¢:

qt(gl,g) = Eslkt,fs(') (5/55 S 8at S R-i—)a and V(C/aC) = ECI(bC() (C/7C E/k\)
Then q = "q"”.
Proof. Let B(h;h') be the ambient full operator space of V, let ¢’ € h’, { € h,
g,g€Sandt e R ;set e’ =¢(g’) and € = £(g). Applying (2.8),

(@ ki(z)((®e))

= (¢ w(2)0) (' €) + / ds (¢’ @ ¢, ko ((9(5),5(5)2) (C © ),

SO

~—

)()C)-

Since s — q4(e’,€) = E k, . is continuous Ry — CB(V; W) and s (g (s),4(s))
is a step function Ry — C'B(V), this implies that
¢
B(ehe) = eyt [ ds a0 on(@().3(s) (e Ry).
0
Therefore q = "q", by uniqueness in Theorem 5.1. O

(¢, a:(e,e)(@)¢) = (¢, q0(e’, €) (2)C) +/O ds (¢ as(¢,e)v(9'(5), 9(s
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6. SESQUILINEAR STOCHASTIC COCYCLES

For the rest of the paper A is assumed to be a unital Banach algebra. We consider
stochastic cocycles in the present setting. Examples are provided by solutions of
quantum stochastic differential equations, and we give sufficient conditions for a co-
cycle to be governed by such an equation. The latter entails a new characterisation
theorem for standard quantum stochastic cocycles.

For q € SLP(A, k) we extend the notation (4.1) to two parameters by setting

q7g07t,g = qf_rg o for (7’, t) € A[Q]v g/ag € Sioes (6'1)
where (Lr)r>0 is the left-shift semigroup on Sjoc given by (L,g)(s) := g(s + r).
Note that (L?”g)[O,t—r[ = LT(g[r,t[)'

Definition. A process q € SLP(A, k) is a left sesquilinear stochastic cocycle in A
if it satisfies

q07 =14 and g7 =q9q "0 (¢ g € Se, st €RY). (62)
If also g € SLP.(A, k), then g is said to be Markov regular.

We denote the classes of left SL cocycles and Markov-regular left SL cocycles by
SLSC(A, k) and SLSC.(A,k) respectively.

Proposition 6.1. Let q € SLP(A, k). Then the following are equivalent:
(i) q € SLSC(A, k).

(ii) For all ¢’, g € Sioc, (q;‘f:t’g) defines an evolution in A.

0<r<t

In this case, for all ', g € Sioc, qgl’g = (qf:t’g) € Evolpws(A) with associated

o<r<t
time point and semigroup sets Discg’ U Discg and {qcl’c : (d,c) € Ran(g',g)}
respectively.

Proof. Suppose that q € SLSC(A, k), let ¢’, g € Sioe and set D = Disc g’ U Discg.
Then qg,/;g = qir9 B9 — 14 (r > 0) and, in view of the identity Lyh = Ly_,(L,.h)
(0 S r S S, h e SIOC)7
99 Lrg' Lrg Le—rLrg'sLo—yLy L.g',L, ’,
a7,:ad ! = a0 =l =al (0<r<s<)
S0 (qut’g)0<r<t is an evolution. Moreover, for ¢, ¢ € k,

’ / ’ ’
,c Lsc',Lsc ,c .C,C

=14 and qg;%=q5Cq; =q5“q; (s,t>0),

’
c,c

9o

’
e . .
SO (qt )tzo is a semigroup. Set

P® = q¢¢ where (¢,c):= (d'(t),9(t)) for t € {0} U D,

and recall the notation (3.2). If ¢’ and g are constant on an interval [u, v[ then L, g’
and L,g are constant, equal to ¢’(ul’) and g(u®’) respectively, on [0,v — u[, so

’ ’ / D D D
g9 _ JLug' Lug _ 9 (ug)g(ug) _ plug)
qu,v - qv—u - qv—u - Pv—u :

/ D
Let 0 <r <t If rf =t§ then ¢’ and g are constant on [r,t[ so 77 = plro). if

t—r
D _ D : 9’9 ; ;
ry <ty then, since (qr’t )Ogrgt is an evolution,

g9 _

’ ’ ’ ’
g9 (.99 .. 9.9 g'.9
9rt” = 9,0 (qrgrg qtel,tg;)qtg,t

which equals the RHS of (3.3) since ¢’ and g are constant on each interval of the
form [sp, st [, as well as the intervals [r,7{[ and [t},¢[. It follows that q9"9 is

a piecewise semigroup evolution, with associated time point and semigroup set as
claimed.
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Suppose conversely that (ii) holds. Then, for all ¢’, g € Sjoc, qg/"g =14 and
’, /» ’ ’ ".g oLsg’Ls
alii =af b =a0 el =al Tq 00 (siteRyY),
so (i) holds. O

For a cocycle q € SLSC(A, k), we refer to {q°¢ : ¢,c € k} as the family of
associated semigroups of q.

Remark. Clearly, q is Markov regular if and only if each of its associated semigroups
is norm continuous.
Theorem 6.2.
(a) Let q € SLSC.(A, k), and let {Bec: ¢ c € k} be its associated semigroup
generators. Then, for all ¢', g € Sioe,
qg 9 = FE where 5(t) = Bgl(t)7g(t) (t S R+)

(b) Let v € SL(k;.A). Then q” € SLSC.(A,k) and its associated semigroup
generators are given by

Boe=v(d, Q)+, d)la  (d cek). (6.3)
Proof. (a) This follows from Propositions 6.1 and 3.2.
(b) This follows from Lemma 4.4. O

Remark. By Lemma 1.1 and identity (6.3), the sesquilinear map v is expressible
in terms of the associated semigroup generators {f. . : ¢, c € k} of the stochastic
cocycle q¥ as follows

((0)-))-
ﬂc/’c — <CI7C>1A + 2z — 1ﬂ0,c + (Z — 1)55’70 + 2 — ].(Z — 1)50’0. (64)

The affine relations enjoyed by the associated semigroup generators read as follows:

Bc’,ch)\d = Bc’,c + )\Bc’,d - )\Bc’,07 and ﬁc’+)\d’,c = Bc’,c + XBd’,c - XBO,c- (65)

Sufficient conditions for a cocycle to be governed by a QDSE are given in the
next result. We write B.opj to denote bounded conjugate-linear.

Theorem 6.3. Let q € SLSC.(A, k).

(a) Suppose that there are separating families of maps (p; € B(A; X;))icz and
(¢l € B(A;%}))vez for Banach spaces X; and X., such that, for all €';e € &,
teR,,1€Z andi' €T,

(i) @ioqi(e’,-) € B(E;Xi) and @i, 0 qi(+,€) € Beonj(€; X,);
(i) the maps s — @; 0 qs(e’,-) and s — ¢}, o0 qs(-,€) are continuous at 0.
Then q = q¥ for a unique map v € SL(E; A).

(b) Suppose that (ii) is strengthened to the following:

(il)" s+ pioqs(e’,-) and s — ¢l 0 qs(-,€) are Hélder & continuous at 0.

Then, v enjoys the following weak boundedness properties: for alli € T, i €T and

¢.¢" €k, ~ R
©s OV(C/7') € B(ka%z) and Pir OV('aC) € Bconj(k§:{;/)~

Proof. (a) Let {8 : ¢,c € k} be the associated semigroup generators of q. In
view of Theorem 6.2, and the remarks that follow it, if there is such a map v €
SL(k; A) then it must be given by (6.4). It therefore suffices to show that the map

-~

v:kxk— A defined by (6.4) is sesquilinear. By Lemma 1.1 this is equivalent to
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showing that 8. . is complex affine linear in ¢ and conjugate affine linear in ¢/. Let
teR,, d,c,dekand A € C, set

Ct = 5( [0 t[) and 7y 1= 5((1 - /\)C[O,t[ + )\d[w[) — (1= Ne(e Clo t[) Af(do t[)'
Then 7; has no zero or one particle term and so is O(t) as t — 0, and
— — , , o= 1 -1 /
ﬁc’,(l—)\)c—i-)\d (1 )‘)ﬁc e )\ﬁc ,d tg%lﬁ- t qt(Cta 7715)
As ny L €(0),

(G me) = (e — q0) (G me) + (¢ — €(0),m)la (¢ € [0, 1]).
Thus, foralli€e Zand T >t > 0,

[£7 (i 0 ae) (G me) || < [l o (ae = a0) (S ) [t Imell + 11GE — eIt~ Imell [l

Since the family (%)i cr is separating, it follows that 8. . is complex affine linear
in ¢. By a very similar argument it follows that it is also conjugate affine linear in
¢, as required.

(b) Now suppose that (i)’ holds and let i € Z. Let ¢’ € k and set w := (é) ek

and C' = (Cf + C22)1/2 where

O = [loul( @), and Ca:= sup 7 ]lgi0 (a = a0) (=(clop) ) e,

Then, for ¢ = () € k,

u(d,¢) = v(d,8) + (z — V(d,w) = zuv(¢,w) + (v(c,8) — v(d,w))
and (by adaptedness)
@i (v(,2) = v(e,w)) = lm t™" 0 0 (4 = 90) (e(cfp 11): £lcpo.) — £(0)).-
Thus, since t~1/2||e(cp4) — 5(0)|| = |le|l as t — 0,
[(wi 0 )(¢, Q)| < Culz| + Callell < CI¢]l-

It follows that (¢; o v)({, ) is bounded for each ¢’ of the form ¢/. Therefore, by
linearity, (¢; o v)(¢’,-) is bounded for all ¢ € Z and ¢’ € k. Similarly, (¢}, o v)(-, ()
is bounded for each i’ € 7’ and ¢ € k. O

Corollary 6.4. Let q € SLSC.(A, k). Suppose that for allt € Ry ande’,e € €,
(a) qi(e’,-) € B(E;A) and q¢(+,€) € Beonj(€5A);
(b) the resulting maps s — qs(¢’,-) and s — q,(-,€) are Holder § continuous
at 0.
Then, ¢ = q¥ for a unique map v € BSL(E; A).

Proof. The hypotheses of Theorem 6.3 hold, in their strengthened form (ii)'7 with
Z = T’ being a singleton set, X = X’ = A and ¢ = ¢/ = id4. Thus q = ¢q” for
a unique map v € SL(E; A) and v is separately continuous. It follows from the
Banach-Steinhaus Theorem that v is jointly continuous, and thus bounded. O

From these results we obtain cocycle characterisations of solutions of quantum
stochastic differential equations on operator spaces, refining results in Section 5

of [le]

Theorem 6.5. Let k be an adjointable quantum stochastic cocycle on an operator
space V in B(h;h") which is Markov regular (respectively, cb-Markov reqular).
(a) Let k satisfy the following: for allz €V, u € h, v’ €h’ and &',e € &,

(i) the functions s — E* ky(x)ue and s — E"ki(z*)u'e’ are continuous at 0.
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Then there is a map v € SL(k; B(V)) (resp. v € SL(k; CB(V))) such that k satisfies
the weak quantum stochastic differential equation (2.7).
Suppose further that dimk < co. Then v is the sesquilinear map associated with

amap ¢ € B(V;V@w B(/k\)) (resp. ¢ € CB(V;V @wm B(E))), and k strongly satisfies
the quantum stochastic differential equation (2.9).
(b) Let (i) be strengthened as follows:
()" k and k' are both pointwise strongly Hélder 1 continuous (on their expo-
nential domains),

and let v € SL(/k\;B(V)) be the resulting sesquilinear map. Then, for all x € V,
ueh,u eh’ and (, (" €k,

V(- Q)(@)u € Beonj(ki W) and (u/|v(¢',)(w) € B(k; (h).

Suppose further that dimh,dimh’ < co. Then v is the sesquilinear map associ-
ated with a map ¢ € L(E; CB(V;V @m |/k\>)), and k= k®.

(c) Let (i) be further strengthened as follows: for all x € V and ', ¢ € &,

(1) s+ keo(x) and s = kis(x*) are Holder 3 continuous Ry — V @ |F),

respectively Ry — VT @y |F),

and let v be the resulting sesquilinear map. Then, for all x € V, v(-,-)(x) €
BSL(k; V).

Suppose further that dimV < co. Then v is the sesquilinear map associated with
a map ¢ € L(E; CB(V;V @wm \E))), and k = k?.

Proof. Let q € SLP.(A, k) be the corresponding sesquilinear process, with A =
B(V) (resp. CB(V)).

(a) Part (a) of Theorem 6.3 applies with Z' =Z =h’ x V x h, X' = X = C and
Ou wu = P g - K> (W K(2)u). If dimk < oo then the required map ¢ is defined
via the prescription

qb(:c)u ®¢= Z Eeay(eom C) (x)u7 (66)

where (e ) is an arbitrary orthonormal basis of k. The boundedness (resp. complete
boundedness) of ¢ is easily verified.

(b) Part (b) of Theorem 6.3 applies, with Z =V x h, X = |h’) and ¢, : &k —
k(x)|u); 7' = V x h'; X' = (h| and ¢}, ,, : x = (u'[r(z). This gives separate
continuity for each map v(-,-)(z) € BSL(E; V) (x € V). Their joint continuity
again follows from the Banach-Steinhaus Theorem.

If dim h, dim h’ < oo then there are linear isomorphisms

Beonj(k; W) = h' @k and B(k; (h|) = (h@k|,

and the formula (6.6) again defines a linear map ¢ associated with the sesquilinear
map v, moreover by the finite dimensionality of h, ¢ (z) is bounded for each z € V
and by the finite dimensionality of V, ¢ is completely bounded (¢ € E) Thus
NS L(E; CB(V;V 3w |E>)) and, by Theorem 2.1, ¢ generates a quantum stochastic
cocycle k?. Therefore, by uniqueness in Theorem 5.1, k¢ = k.

(c) Part (b) of Theorem 6.3 applies, with Z/ =7 =V, X’ = X = A and both ¢/,
and ¢, being evaluation at . If dimV < oo then there are linear isomorphisms

Beonj(k; V) 2 CB((k|; V) 2V @y [k), and B(k;V) 22 CB(|k); V) 2V @y (k]

and again (6.6) defines a linear map ¢ associated with v, and the finite dimension-

ality of V ensures that ¢ is completely bounded (¢ € E)7 so the argument of (b)
applies. O
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Remarks. There is a subtle difference between Parts (b) and (¢). As noted in [LS;],
finite dimensionality of V does not ensure that V is concretely realisable in a finite
dimensional full operator space (see [Pis]).

The full conclusion of Part (c), without the finite-dimensional restriction, which
is established in [Lg], is recovered and extended to cocycles in an operator space,
by working in a different category ([DLs]).

In [DL2] we also give a corresponding characterisation of convolution cocycles in
an operator space coalgebra.

7. STOCHASTIC LIE-TROTTER PRODUCT FORMULAE

For this section we consider an orthogonal decomposition k; @ kg of the noise
dimension space k, with corresponding tensor decomposition F = F' @ F2, and
prove Lie—Trotter type product formulae for sesquilinear cocycles. This entails
product formulae for our three paradigm examples of Markov-regular quantum
stochastic cocycle.

Let v; € SL(E;.A) for ¢ = 1,2. The map

~ 0~ DD ! dl
kx k= A, (c,d) I—)Vl(Cl,dl)+ 1/2(02,d2) where ¢ = (62> and d = <d2)7
c

is easily verified to be affine sesquilinear and so, by Lemma 1.1, there is a unique
map v Bre € SL(k; A) such that

(1 B 1)@ d) = (e, d") + (2, ) (c,d € k). (7.1)

The composition H is the sesquilinear version of the concatenation product of quan-
tum stochastic control theory ([GoJ]). The relationship between the generated co-
cycles g”1, g*2 and ¢, is given by a stochastic Lie-Trotter product formula. We
first establish this formula under more general conditions.

Recall the notation qﬁ,/t’g introduced in (6.1), and the notation (3.5) for D-fold
product functions.

Definition. Let iq € SLS(C(A, ki)7 for i = 1,2, and let D CC]0,00[. The stochas-
tic Lie— Trotter product of 'q and 2q determined by D is the 2-parameter family
{+%D, : (r;t) € AP} in SL(E;A), given by bi-adapted sesquilinear extension of
the prescr1pt1on

L3P (e(fira)s(gpra) =GBy where Gu = (Yal) (Cal)  ((u,v) € A?)
for f = (fg) and g = ( ;) € Siec-

Remark. Thus (1 2P )t oo € SLP(A, k), but in general stochastic Trotter products
are not cocycles.

Theorem 7.1. Let 'q, 2q and q be Markov-reqular sesquilinear stochastic cocy-
cles in A with respective noise dimension spaces ki, ko and k, let (D(n))n21 be
a sequence in I'g o[ converging to Ry in the sense of (3.6), and suppose that the
associated semigroup generators of the cocycles are related by

217,11 + ,80227(12 = Bc,d (C, de k) (72)

Then

sup ||12q,Dt(”)(e’,e)—qm(s’,s)H—>0 as n—0 (TeER,, e, e€f).

[r,t]C[0,T]
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Proof. Let f,g € Sjoe. By Theorem 6.2,

iqfi,gi = Fa:' Where C’i;(t) = 6}i(t)7gi(t) (Z = 1,27 t S RJ’_)

By assumption, a1 + a2 = a where a(t) := Bf),4¢t) (t € Ry). Therefore, applying
Theorem 6.2 again, qf9 = F® The result therefore follows from the Lie-Trotter
product formula of Theorem 3.3, by bi-adapted sesquilinear extension. O

For subsets S; of k; and Sy of ko, we set

SlEESz:{(S> :cesl}u{C) i€ S},

Remark. If (7.2) holds only for c€ T" and d € T where T/ = T/ BT, T=T, 8T,
and T} and T, are total subsets of k; containing 0 (i = 1,2), then the above proof
yields the same conclusion for ¢’ € £t/ and € € &7.

Corollary 7.2. Let iq = q“ for v; € SL(k;;.A) (i = 1,2), and let (D(n)), ., bea
sequence in Tg oo converging to Ry.. Then, for all T € Ry and €',e € &,

H1,2 D(n)(5/75) (2= 12

sup qr.t — (6/,€)H — 0 as n — 0.

[r,t]C[0,T]
Proof. The identity (7.2) for the associated semigroup generators of q**, 2 and

q := q"*®2 follows from Part (b) of Theorem 6.2, and therefore the theorem applies.
O

Remark. In view of the remark following Theorem 3.3, the above Theorem and
Corollary remain true if (%7;), ., ., is modified by "%, (e(fir41), €(gpre)) taking
its old value multiplied by exp(f,, gs) where J = [r,rP[U[tD, .

We now deduce stochastic Trotter product formulae for mapping, operator and
convolution cocycle settings. To this end, we fix a total subset T; of k; containing
0, for i = 1,2, and set

T=T,HT, and D = Dy & Dy, where Dy = Lin Ty and Dy = Lin Ty;

thus D =LinT, and T is total in k and contains 0.

First let us fix a concrete operator space V. Recall the extended composition
described in (1.3), and notions of cb column-bounded processes and cocycles from
Section 2, in particular the notation (2.6).

Definition. For i = 1,2, let 'k € QSC,pc0i(V : Et,). First set

1’2]€g’D = L[O P o (1’2ng D/ @@ 172kg ) ° L([)t(?,t[ e CB(V,V &M |F[r,t[>)a

[T,t[ Ty [Tl 77'2 [tgl’tOD[
for D €CJ0,00[, g € St and (r,t) € A, where
Dol 1’2k[9w[ € CB(V;V @wm |Fluef)), with

- 1kg1

12,9
k o

[w,v[ * .2k9

2
[u,o]

and L([)uw[ 2T 2 Q)
and we are making the identifications
[ Fruol) @M [Flow) = [Fluw)) and [Fp, ) O Fho) = [Fue) (0 <u <o <w).

The stochastic Trotter product of *k and ?k determined by D CC]0, 00| is the two-

parameter family (1’2k7?t)0<r<t in L(ET; CB(V;V®wm |f))) given by bi-adapted lin-

. . D .
ear extension of the prescription e(gj.¢) — 1’2k[gr7t[, as in (2.2). Thus, (1’2]{:&)@0 €

Pebcor(V 1 E7), but it will not in general be a stochastic cocycle.
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If 'k and 2k are cb cocycles then their stochastic Trotter product determined by
D is the family (122, in CB(V;V @y B(F)) determined by

r,t)ogrgt
SR e (MRp o e 2o, pr) @ p g € CB(V:V @ B(Fpra),
where

Uu,wl]s I’Zk[ujv[ e CB (V7 V @m B(]:[u,v[))a with

1’2]6‘[”’1,[ = lk‘[u’v[ . 2/{[%1,[ and Uup[ T TQ |Q[u7v[> <Q[u’v[|
and we are making the identifications

B(Fpr,sp) @M B(Fisp)) = B(Fry) and B(F o) ©m B(Ff 1) = B(Fisp)-
In this case, bi-adapted extension reads as follows:
P2hp(@) = S(Ijo,r @ V2R (2) @ Ltoof)

where ¥ is the tensor flip B(Fjo,)M®@ V @m B(Fpr4) @M B(Fit,o0)) = V @M B(F);

(1’2k{ft) is then a completely bounded process on V.

Theorem 7.3. Let 'k € QSCopcoi(V : E1,) (i =1,2) and k € QSCypco1(V : ET) be
c¢b Markov reqular. Suppose that their associated semigroup generators are related
by ¢ea = qﬁil’dl + (;532,(12 (c € k,d € T), let (D(n))n>1 be a sequence in T'jg o
converging to Ry, and let T € Ry. Then -

>0

o B (Y k) Ol 0 as noee (el el

If 'k, 2k and k are completely bounded, with locally bounded cb norms, then con-
vergence holds in the stronger sense:

s (idvene) o (AR <kl 20 e nseo (e BE).)

If V is a C*-algebra, 'k and 2k are completely positive and contractive and k is
*_-homomorphic then

cow O k) O] 20 s nooo gehe ).

Proof. The first part follows from Theorem 7.1 by setting A = CB(V) and letting
iq be the sesquilinear process associated with °k (i = 1,2). The second part follows
from the first part and the totality of the set {wer . : ¢’ € €, € 7} in B(F).. The
last part follows from the second part, by the operator Schwarz inequality, since
each 1’2k,13t is then a composition of completely positive contractions. O

Remark. Tt follows from the remark after Corollary 7.2 that the above Theorem

remains true if, in the definition of 172/@‘{7;5[ and 1’2]6[?’15[ the maps L?u’v[ and [, [ are

replaced by the maps z — & ® |£(9g|[u,0])) and z +— 2 & If,,[) respectively.

For i = 1,2, let ¢' € L(BZ—;CB(V;V @M |R>)) Their concatenation product
o' 8¢ € L(D; CB(V;V @ [K))), is defined by

(¢! B ¢?)e(x) = (q%o(x)) +3 <¢330(x)> (xz €V,ceD),

where X is the sum-flip ky ® k; — ky @ ko = k. (This corresponds to (7.1).) Thus

E%(¢' B¢%)5() = B 6L () + E°¢%,()  (cekdeD). (7.3)
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Corollary 7.4. Let 'k = k% for ¢ € L(D;;CB(V;V @n [k))) (i = 1,2), let
(D(n))n>1 be a sequence in I'g o[ converging to Ry and let T' € Ry. Then, for all
e ande € Ep,ap,,

Lo (B (D —ELE)Ollg, 20 es ny oo

If k¢1, k*” and k'8¢ are completely bounded, with locally bounded cb norms, then,
for allw € B(F).,

sup | (idy ) o (2R = k)
[r,t]C[0,T] 7 7

||Cb%0 as n — oo.

Proof. The stochastic cocycles k¢153¢2, k*" and k% are each cb Markov-regular
and cb column-bounded. The identity (7.3) implies that their respective associated
semigroup generators are related as required in Theorem 7.3; the result follows. [

Remark. When ¢* € CB(V;V ®&wm B(R)) (i = 1,2), the concatenation product
¢' B ¢? reads as follows, in terms of block matrices:

T1T+Te a1 Q2

{7'1 O;}EE[TQ ?}2} — Y1 v 0
X1 1 X2 2 Yo 0

Next consider quantum stochastic contraction cocycles on a Hilbert space b, as
in (2.4).

Definition. Let 'V and 2V be quantum stochastic contraction cocycles on h with
respective noise dimension spaces k; and ko. Their stochastic Trotter product de-
termined by D CC]0,00] is the two-parameter family of contraction operators

1,2 1,2 i D 4D
12y/D ._ “Vepp oo 7Vip if r’ <tg
b Iyer otherwise,

where
2V 1= (Wa @ Ir2) (i) ©F) (Voo @ Ir1 ) € B(h® F),

in which ¥ is the tensor flip B(F?)®@B(F') — B(F')®@B(F?) = B(F), and, for
i=1,2, 'V, = (idpgy) @0k ) ("Vy_u) € B(h ® F*), as in (2.3).

An operator F € B(h ® E) stochastically generates a Markov-regular quantum
stochastic cocycle V' and V¥ is a contraction cocycle if and only if F' € Cy(b, k)
where

Co(h,k) == {F € B(h @ k) : 7(F) < 0, equivalently, r(F*) < 0},
where 7(F) := F*+ F 4+ F*AF, moreover V¥ is isometric, respectively coisometric,
if and only if 7(F) = 0, respectively r(F*) = 0 (see [L1]).
For operators F; € B(h ® ki) and Fy € B(h ® k), their concatenation product
Fy B F; € B(h®k) is given, in terms of block matrices, by

Ki+Ky My M,

[IL(I z\]ﬂ &3] [[LQ ]‘Aﬂ = Ly N, 0
1 1 2 2 LQ O N2

In view of the easily verified identity r(F) B Fy) = r(Fy) Br(Fy) and (7.3), VB2
is contractive/isometric/coisometric if V1 and V2 both are.
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Corollary 7.5 ([LiS]). For i = 1,2, let OV = VF' where F' € Co(h, k;), let
(D(n))n>1 be a sequence in ' o converging to Ry, and let T' € Ry. Then, for
all w € B(F)x,

o (Gds @) o (VR = VEER) 50 as n— oo,

If the cocycle VFYEF s isometric then, for all € € h & F,

sup ||(1,2V£(n) — VftlHﬂFz)ﬁﬂ —+0 as n — oo.
[r,t]C[0,T]
Proof. In view of the remark after Theorem 7.3, the first part follows from Corol-
lary 7.4, by means of the completely isometric identifications B(h) = CB(V),
Bh® F) = CB(V;V ®m B(F)) and |h @ F) = V ®wm |F), where V is the col-
umn space [h). The last part follows since weak operator convergence of a sequence
of contractions to an isometry implies strong convergence. U

Finally, consider quantum stochastic convolution cocycles on a counital operator
space coalgebra C ([LS2]). Denote by P’ . (C: &) the set of cb column-bounded
quantum stochastic convolution processes [ on C with exponential domain & and
by QSC},c01(C : &) the set of convolution cocycles in PX ., (C : 7).

For | € P% o (C : &) and g € St, the notation lf) = Iy()le(gyoq)) €

CB(C; | Fio)) extends to shifted intervals by
Ls .
lfs,t[ =70l € C’B(C7 |]:[s,t[>)a

t—s)
where 7 here denotes the shift |F¢—) to |Flsq)-
Definition. Let ‘I € QSCl,c, (C : &r,) for i = 1,2, put T = T; B T, and let
D cC]0,00]. First set
0 1,219 ek 1279 0 e D _ 4D
1’2l[gyth[ — { 6([) P x ( l[rlD,rzD[* * lﬁ?mé’[) * €D | if rP <tf

otherwise,

3

€rtl

where € is the counit, and the convolution is given, in terms of the coproduct, by

(6 %) (x) := (¢ © ¥)(Az), and

e([)u’v[’ 1,2lfu’v[ S C’B(C; |.7:[u7v[>)7 with
1 2
1,21fu7v[ = 1lfu,v[ * QZ[QWJ[ and e?u’v[ = |Q[wj[> o€ (g € St).

Then the stochastic Trotter product of 'l and 2l determined by D is the two-
parameter family (“?12;) _ _, in L(Er; OB(C;|F))) defined by bi-adapted linear
extension of the map e(gp..f) — 1’21‘@]7?[. Again, (1721&)@0 € PYoo(C: &), and
if 1 and 2l are completely bounded then 217, € CB(C;B(F)) (0 < r < t) and
(1’21&),520 is a cb convolution process on C.
Theorem 7.6. Let ‘I € QSClc,(C: E7,) (i = 1,2) and | € QSCyo (C : E7) be
c¢b Markov regular. Suppose that their associated convolution semigroup generators
are related by @e.a = ol p+9% g (¢, d € T), let (D(n))n>1 be a sequence in Iy oo
converging to Ry, and let T € Ry.. Then
sup ||(€’|(1’215t(z) - lr7t75)(~)|| —0 as n— o0 (¢ e &,e€&r).

[r,t]C[0,T]
If 1, 2l and 1 are completely bounded, with locally bounded c¢b norms, then conver-
gence holds in the stronger sense:

sup Hw o (1’213(") — lr,t)” —0 as n— o0 (w € B(F)4),

[r,t]C[0,T]
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and if C is a C*-bialgebra, | is *~homomorphic and 'l and %1 are completely positive
and contractive then
sup H(l’Qlft(n) — L) ()] =0 as n— o0 (&eF).
[r,t]C[0,T]
Proof. The first part follows from Theorem 7.1 by setting A = C* with convolution
product and letting ‘q be the sesquilinear process in A associated with (i = 1,2).
The second and third parts follow in the same way as they do for Theorem 7.3. [

Fori=1,2,let ¢ € L(BZ—; CB(C; |R))) Their concatenation product ¢! H? €
L(K; CB(C; |A>)) is defined by

(p' Bp?)e = (80‘1%(')) + Z(w%(')) (ceD),

where X is the sum-flip Ez Dk — El D ke = k.

Corollary 7.7. Let il = 1¥' for o' € L(b\i;C’B(C; |EZ>)) (1=1,2), set D =D;®Dg,
let (D(n))n>1 be a sequence in I | converging to Ry, and let T € Ry. Then,
foralle' € € and ¢ € &p,

sup ’|<€’\(1’215t(z) - lﬁlwa)(-)|| —0 as n — oo.

[r,t]C[0,T7]

Ifl*”l, 19° and 198" are completely bounded with locally bounded cb norms then,
for allw € B(F).,,

sup Hw o (1’21575(") — lﬂm“ﬂ)n —0 as n— oo.

[r,t]C[0,T]

Proof. The stochastic convolution cocycles 199153992, 19" and 1¢” are each cb Markov-
regular and cb column-bounded, moreover

(@ (" Be)a() = (5 () + (2l h()  (cekdeD),

which implies that their respective associated convolution semigroup generators are
related as required in Theorem 7.6; the result follows. O

Remark. When ¢* € CB(C;B(Q)) (i = 1,2), the concatenation product ! B ¢?
reads as follows, in terms of block matrices:

+
" G ve Gl M+ G G
y H U = m %1 0

m 1 2 2 " 0 1wy
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